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Introduction to GJK

Given two convex shapes

◮ Computes distance d

◮ Can also compute closest pair of points PA and PB
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Terminology – Support Point

Supporting (extreme) point P for direction d returned by support
mapping function Support(d)
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Terminology – Simplex

Simplex
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Terminology – Convex Hull
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Algorithm in detail

◮ 1. Initialize simplex set Q with up to d+1 points from C (in d
dimensions)

◮ 2. Compute point P of minimum norm in CH(Q)

◮ 3. If P is the origin, exit; return 0.0;

◮ 4. Reduce Q to the smallest subset Q’ of Q, such that P in
CH(Q’)

◮ 5. Let V = Support(-P)

◮ 6. If V no more extreme in direction -P than P itself, exit;
return length(P)

◮ 7. Add V to Q. Go to step 2
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Example 1/10

Input: Convex shape C
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Example 2/10

1. Initialize simplex set Q with up to d+1 points from C (in d
dimensions)
Q = [Q1,Q0]
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Example 3/10

2. Compute point P of minimum norm in CH(Q)
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Example 4/10

3. If P is the origin, exit; return 0.0;
4. Reduce Q to the smallest subset Q’ of Q, such that P in CH(Q’)
Q = [Q1,Q0]
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Example 5/10

5. Let V = Support(-P)
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Example 6/10

6. If V no more extreme in direction -P than P itself, exit; return
length(P)
7. Add V to Q, go to step 2
Q = [Q1,Q0,V ]
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Example 7/10

2. Compute point P of minimum norm in CH(Q)
Q = [Q1,Q0,V ]
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Example 8/10

3. If P is the origin, exit; return 0.0;
4. Reduce Q to the smallest subset Q’ of Q, such that P in CH(Q’)
Q = [Q3]
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Example 9/10

5. Let V = Support(-P)
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Example 10/10

6. If V no more extreme in direction -P than P itself, exit; return
length(P)
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Minkowski Difference (GJK with two convex objects)

◮ Problem: How do we handle two convex objects, A and B?

◮ Solution: Use Minkowski Difference of A and B.
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Minkowski Sum
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Minkowski Sum

MinkowskiSum(A,B) = a + b : a ∈ A, b ∈ B

MinkowskiDifference(A,B) = MinkowskiSum(A,−B)
MinkowskiDifference(A,B) = a − b : a ∈ A, b ∈ B
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Minkowski Difference
◮ What happens to points in A and B that are overlapping when

you take the minkowski difference?
◮ They are mapped to the origin.
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Minkowski Difference

◮ So, A and B are intersecting iff MinkowskiDifference(A,B)
contains the origin!

◮ The algorithm can stay the same, we just need to change the
support point function to compute the Minkowski Difference

◮ MinkowskiDiffSupport(A,B,d) = A.Support(d) -
B.Support(-d)
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Support Point Functions – Polyhedra

Given: C – A convex hull of points

Support(d) = max(d · p : p ∈ C )
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Support Point Functions – Sphere

Given: Sphere centered at c with radius r

Support(d) = c + r
d

||d ||
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Support Point Functions – Cylinder

Given: Cylinder centered at c and whose central axis is spanned by
the unit vector u. Let the radius of the cylinder be r and the half
height be n. As well, Let w = d − (u · d)u be the component of d
orthogonal to u.
If w 6= 0:

Support(d) = c + sign(u · d)nu + r
w

||w ||

else:
Support(d) = c + sign(u · d)nu
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Support Point Functions – Transformation

Given: T (x) = Bx + c Where B is the rotation matrix’s basis and
c is the translation. SupportC is the support function of the
untransformed convex object.

Support(SupportC , d) = T (SupportC (BTd))
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Computing P of minimum norm in CH(Q’) and reducing Q
to Q’

◮ Overview of affine hulls and convex hulls

◮ Equivelance of affine and convex hulls

◮ Finding closest point on affine hull to origin

◮ Finding smallest Q’ where P is in CH(Q’)
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Affine and Convex Hulls

◮ Affine Hull: AH(S) = λ1x1 + λ2x2 + ... + λkxk |xi ∈ S , λi ∈ R

◮ i = 1, ..., k, λ1 + λ2 + ...λk = 1, k = 1, 2, ...

◮ Convex Hull: CH(S) = λ1x1 +λ2x2 + ...+λkxk |xi ∈ S , λi ∈ R

◮ i = 1, ..., k, λ1 + λ2 + ...λk = 1, k = 1, 2, ..., λi >= 0

The point P closest to the origin is defined as a convex
combination of the points in Q. P =

∑n
i=1 λixi where

∑n
i=1 λi = 1.0 and λi ≥ 0 Since we are looking for the smallest Q’

that contains P we can add another restriction: λ > 0 Now we are
looking for Q ′ = xi : λi > 0
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Equivelance of affine and convex hulls

If we can find a set Q ′ = xi : i ∈ Y for which i ∈ Y , λi > 0.0 in

AH(Q ′) =
∑

i∈Y

λixi ,
∑

i∈Y

λi = 1.0

and for all j /∈ Y , λj <= 0.0 in

AH(Q ′ ∪ Xj) =
∑

i∈Y∪j

λixi ,
∑

i∈Y∪j

λi = 1.0

For such a set Q ′ we have P(AH(Q ′)) = P(CH(Q ′))
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Finding Q’

◮ You find Q’ by iterating over all subsets of Q and checking if
they fit the two previous conditions.

◮ Need to compute all of the λi terms for all subsets
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Closest point to origin on affine hull of triangle (2-simplex)

◮ Affine hull of a triangle is plane containing the triangle vertices

◮ We need to find a point P = λ1x1 + λ2x2 + λ3x3

◮ P will be closest to the origin if the vector from the origin to
P is perpendicular to the plane

◮ In other words when P is perpendicular to the triangles edges

◮ Two arbitrary edges are x1x2 and x1x3 we want x1x2 · P = 0
and x1x3 · P = 0

◮ If we substitute λ1x1 + λ2x2 + λ3x3 for P with both edges we
get:

Mccutchan: Introduction to GJK(slide 31), 31



Closest point to origin on affine hull of triangle (2-simplex)

A =





1 1 1
(x2 − x1) · x1 + (x2 − x1) · x2 + (x2 − x1) · x3

(x3 − x1) · x1 + (x3 − x1) · x2 + (x3 − x1) · x3





b = [1, 0, 0]

x = [λ1, λ2, λ3]
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Johnson’s Distance sub algorithm

In general:

A =









1 ... 1
(x2 − x1) · x1 ... (x2 − x1) · xm

... ...
(xm − x1) · x1 ... (xm − x1) · xm









b = [1, 0, ..., 0]

x = [λ1, ..., λm]
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Johnson’s Distance sub algorithm

◮ 1. Need to solve Ax = b for every subset of Q

◮ 2. Search for smallest Q ′ which satisfies above two conditions

◮ 3. Q = Q ′ and P =
∑

i∈Q′ λixi
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Johnson’s Distance sub algorithm

◮ How can all of the Ax = b systems be solved efficiently?

◮ Gino: Cramers Rule

◮ McCutchan: Use Maple/Matlab to precompute generic
λ = A−1b for simplex size of 2,3,4

◮ Gino’s is faster but McCutchan’s is simple and obvious.

◮ GJK is already so fast and O(1) that speed difference not
noticeable on modern machines
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Alternative way to find Q’

◮ Look at the problem geometrically

◮ Use voronoi region checks to find which part of simplex the
origin is in.

◮ Solve single set of equations once proper sub simplex has been
found.

◮ Pros: Most efficient and Intuitive way of working with GJK.

◮ Cons: May be floating point issues in using two different
mathematical formulations. One for determining the sub
simplex and the other for solving for the lambda values.
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