Soft Eng 3M04 Mid-Term II 2003 Dr. Jacques Carette

- This midterm contains 5 questions on 3 double-sided pages (including this one).
- This midterm will be marked out of 50. There are 54 total marks available.
- Answer the question in the space provided.
- Make sure that your name is on all sheets.
- You may seperate the last page with the MIS/MID and the definition of the mod function.
- Make sure that you do not get stuck on one question; use your time wisely.

1. Give the value of all state variables, output and/or exception after each call in the calling sequence for the MIS and MID on the last page. On the first line, write down the complete initial state. Assume that 'a=int. [32]

	state		output		exceptions	
call	MIS	MID	MIS	MID	MIS	MID
isempty()						
* init()						
addback(6)						
addfront(5)						
removefront()						
addback(4)						
addfront(3)						
isempty()						
* addback(2)						
* addback(1)						
removefront()						
removeback()						
removefront()						
removeback()						
isempty()						

2.

$$t \to ((t=(num \ge 0)) \land |s| = num \land$$

$$(\forall i: int. 0 \le i \le num - 1 \to s[|s|-i-1] = d[(start+i) \text{ mod Max}]))$$

Evaluate the abstraction function given above for the starred (*) states indicated in question 1. Please show all relevant details. [8]

• • • ()	
init()	
1.11 1.(2)	
addback(2)	
1 11 1 (4)	
addback(1)	

- 3. (true/false) It is possible to write an expression using the state variables of the MID on the last page which will always be equal to the MIS state variable out. [1]
- 4. Explain what your answer to question 3 means with respect to the abstraction function from question 2 from a verification and validation perspective. [2]

5. Given the declarations

val s : 'a seq

val $f: (`a \rightarrow bool) \rightarrow ((`a \rightarrow `b) \rightarrow (`a seq \rightarrow `b seq))$

 $\begin{array}{l} val\;g:\; `a \to bool \\ val\;h:\; `a \to `b \end{array}$

(a) Write a formula that states that all the elements of s are different. [2]

- (b) What is the type of f(g)? [2]
- (c) f(h)(g)(s) is an invalid expression explain why. [1]
- (d) Write a formula which asserts that all elements of s satisfy the predicate g. [1]
- (e) Let 'a=int for this question. Write down a value for s which would make the following formula true. /1/

$$|s| \ge 5 \land (\forall i : int.0 \le i < |s| - 1 \rightarrow s[i] < s[i+1]) \land (\exists j : int.0 \le j < |s| \land s[j] < -100)$$

(f) Write an expression which would be found in the MIS for f which would assert that f(g)(h)(s) is a sequence of elements y_j of type 'b, and where $y_j = h(x_i)$ for some $x_i \in s$, and where we select exactly those elements x_i for which $g(x_i)$ is true. [4]

The following MIS and MID will be used for several questions.

Common information:

Used External Functions: NONE Used External Data Types: 'a Exported Constants: Max:int = 4

Exported Functions:

Name	Input Types	Output Types	Exceptions
init			
addfront	'a		notinit, full
addback	'a		notinit, full
remove front		'a	notinit, empty
removeback		'a	notinit, empty
isempty		bool	notinit

MIS		MID
State Variables:		Variables:
s: 'a seq		'a d[0Max-1]
t: bool := fals	se	int num := -1, start := 0
out: 'a		
Transition Funct	ions:	Exported Functions:
init()		init()
Transition:	s := <>	num := 0;
	t := true	start := 0;
addfront(n:'a)		addfront(n:'a)
Exception:	$\neg t \Rightarrow \text{notinit}$	if $num < 0$ then $ERROR(notinit)$
Ехсерион.	$ s \ge \text{Max} \Rightarrow \text{full}$	else if num \geq Max then ERROR(full)
Transition:	$s := s \parallel n$	$else start := (start-1) \mod Max;$
nansiuon.	$s = s \parallel n$	d[start] := n; num := num + 1
addback(n:'a)		addback(n:'a)
Exception:	$\neg t \Rightarrow \text{notinit}$	if $num < 0$ then $ERROR(notinit)$
Exception.	$ s \ge \text{Max} \Rightarrow \text{full}$	else if num \geq Max then ERROR(full)
Transition:	$s := n \parallel s$	else $d[(start+num) \mod Max] := n;$
	$s := n \parallel s$	num := num + 1
'a removefront()		'a removefront()
Exception:	$\neg t \Rightarrow \text{notinit}$	if $num < 0$ then $ERROR(notinit)$
	$ s = 0 \Rightarrow \text{empty}$	else if $num = 0$ then $ERROR(empty)$
Transition:	out := s[s - 1]	else start := $(start+1) \mod Max;$
	s := s[0 s - 2]	num := num - 1;
Output:	out	$RETURN(d[(start-1) \mod Max])$
'a removeback()		'a removeback()
Exception:	$\neg t \Rightarrow \text{notinit}$	if $num < 0$ then $ERROR(notinit)$
	$ s = 0 \Rightarrow \text{empty}$	else if $num = 0$ then $ERROR(empty)$
Transition:	out := s[0]	else num := num - 1;
	s := s[1 s - 1]	RETURN(d[(start+num) mod Max])
Output:	out	
bool isempty()		bool isempty()
Exception:	$\neg t \Rightarrow \text{notinit}$	if num < 0 then ERROR(notinit)
Output:	s = 0	else RETURN(num=0)

(see back of page for more information)

Convention: if s is of type 'a seq, then s[a..b] with b < a is understood to

be <>.