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What I learned from formalizing Category Theory in Agda

Introduction

What I learned formalizing category1 in Agda:

To be proficient with, and idiomatic in, Agda,
Category theory,
Lots about the design space.

Visit https://github.com/agda/agda-categories and submit PRs!

1but were rarely new
Jacques Carette | McMaster University 2 / 17
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What I learned from formalizing Category Theory in Agda

Design Decisions

Design Decisions:

Use dependent types “a lot”; stick to standard Agda.

≈ of Hom carries evidence and ◦ respects it.
Obj ̸= Hom ̸= evidence of ≈.
Obj has no equality.
Hom is not necessarily a set.

i.e. Setoid-enriched aka E-categories plus universes plus proof-relevance.

Fewer assumptions lets you see more.
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What I learned from formalizing Category Theory in Agda

What that looks like in Agda

record Category (o l e : Level) : Set (suc (o ⊔ l ⊔ e)) where
field

Obj : Set o
_⇒_ : (A B : Obj) → Set l
id : ∀ {A} → (A ⇒ A)
_◦_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C

_≈_ : ∀ {A B} → (f g : A ⇒ B) → Set e
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
◦-resp-≈ : f ≈ h → g ≈ i → f ◦ g ≈ h ◦ i

-- plus laws

Jacques Carette | McMaster University 4 / 17



What I learned from formalizing Category Theory in Agda

op involutive?

Want (Cop)op “=” C. (Technically: definitionally).

op as a function from the presentation of a category to another presentation.

assoc : (h ◦ g) ◦ f ≈ h ◦ (g ◦ f)
sym-assoc : h ◦ (g ◦ f) ≈ (h ◦ g) ◦ f

Some concepts, e.g. Monad and NaturalTransformation, require similar additional laws.
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What I learned from formalizing Category Theory in Agda

Duals of Constant Functor?

Want a single dual to Functor F : ⊤ ⇒ C .

Problem: using either left or right identity law to prove that F preserves composition is “wrong”.

identity² : ∀ {A} → id ◦ id {A} ≈ id {A}

Probably exists a much better reason for this, but I don’t know it!
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What I learned from formalizing Category Theory in Agda

Category of categories exists!

Cats : ∀ o l e → Category (suc (o ⊔ l ⊔ e)) (o ⊔ l ⊔ e) (o ⊔ l ⊔ e)
Cats o l e = record

{ Obj = Category o l e
; _⇒_ = Functor
; _≈_ = NaturalIsomorphism
; id = id
; _◦_ = _◦F_
; assoc = λ {_ _ _ _ F G H} → associator F G H
; sym-assoc = λ {_ _ _ _ F G H} → sym (associator F G H)
; identityl = unitorl

; identityr = unitorr

; identity² = unitor²
; equiv = isEquivalence
; ◦-resp-≈ = _i○h_
}

Jacques Carette | McMaster University 7 / 17



What I learned from formalizing Category Theory in Agda

Underlying graph, is that a categorical notion?

Consider the following two categories:

• • •

Are equivalent
Have different underlying graphs

Underlying : Functor (StrictCats o l e) (Quivers o l e)
PathsOf : Functor (Quivers o l e) (StrictCats o (o ⊔ l ) (o ⊔ l ⊔ e))
Free⊣Underlying : Adjoint (PathsOf {o} {o ⊔ l } {o ⊔ l ⊔ e}) Underlying
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What I learned from formalizing Category Theory in Agda

Adjoint Functors: Hom iso?

Consider adjoint functors:
record Adjoint {C : Category o l e} {D : Category o′ l ′ e′}

(L : Functor C D) (R : Functor D C) : Set _ where

L ⊣ R iff HomD(L−,=) ≃ HomC (−,R =).
Universe levels of C and D are unrelated ⇒ Hom functors cannot be directly related.

(Ugly) use lifting functors:

Lift ◦ HomD(L−,−) ≃ Lift ◦ HomC (−,R−)

This form of lifting arises in many definitions / statements involving Homs.
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What I learned from formalizing Category Theory in Agda

Unit-Counit Definition of Adjoint Functors

Definition
Functors L : C ⇒ D and R : D ⇒ C are adjoint, L ⊣ R , if there exist two natural
transformations, unit η : 1C ⇒ RL and counit ϵ : LR ⇒ 1D, so that the triangle identities hold:

1 ϵL ◦ LηD. ≈ 1L (zig)
2 Rϵ ◦ ηRC . ≈ 1R (zag)

Advantage: does not (explicitly) involve any Hom-sets, or universe levels.
Lesson: unlearn set-theoretic constructs when formalizing categories in type theory!
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What I learned from formalizing Category Theory in Agda

Fibration?

record Fibration {o l e o′ l ′ e′} {C : Category o l e} {D : Category o′ l ′ e′}
(F : Functor C D) : Set _ where
field

universal0 : (f : A D.⇒ F0 B) → C.Obj
universal1 : (f : A D.⇒ F0 B) → universal0 f C.⇒ B
iso : (f : A D.⇒ F0 B) → F0 (universal0 f) ≊ A

module iso {A B} (f : A D.⇒ F0 B) = _≊_ (iso f)

field
commute : (f : A D.⇒ F0 B) → f D.◦ iso.from f D.≈ F1 (universal1 f)
cartesian : (f : A D.⇒ F0 B) → Cartesian F (universal1 f)

Jacques Carette | McMaster University 11 / 17



What I learned from formalizing Category Theory in Agda

Usability / Engineering lessons: Explicit duals

record IsEqualizer {E} (arr : E ⇒ A) (f g : A ⇒ B) : Set _ where
field
equality : f ◦ arr ≈ g ◦ arr
equalize : ∀ {h : X ⇒ A} → f ◦ h ≈ g ◦ h → X ⇒ E
universal : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ equalize eq
unique : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ i

→ i ≈ equalize eq
record IsCoequalizer {E} (f g : A ⇒ B) (arr : B ⇒ E) : Set _ where
field
equality : arr ◦ f ≈ arr ◦ g
coequalize : {h : B ⇒ C} → h ◦ f ≈ h ◦ g → E ⇒ C
universal : {h : B ⇒ C} {eq : h ◦ f ≈ h ◦ g} → h ≈ coequalize eq ◦ arr
unique : {h : B ⇒ C} {i : E ⇒ C} {eq : h ◦ f ≈ h ◦ g} → h ≈ i ◦ arr

→ i ≈ coequalize eq
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unique : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ i

→ i ≈ equalize eq

But it really is more deck chair shuffling:
Coequalizer⇔coEqualizer : ∀ (coequalizer : Coequalizer f g) →
coEqualizer⇒Coequalizer (Coequalizer⇒coEqualizer coequalizer) ≡ coequalizer

Coequalizer⇔coEqualizer _ = refl

Jacques Carette | McMaster University 12 / 17



What I learned from formalizing Category Theory in Agda

Usability / Engineering lessons: Predicates vs Structures

record IsEqualizer {E} (arr : E ⇒ A) (f g : A ⇒ B) : Set _ where
field
equality : f ◦ arr ≈ g ◦ arr
equalize : ∀ {h : X ⇒ A} → f ◦ h ≈ g ◦ h → X ⇒ E
universal : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ equalize eq
unique : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ i

→ i ≈ equalize eq

record Equalizer (f g : A ⇒ B) : Set (o ⊔ l ⊔ e) where
field
{obj} : Obj
arr : obj ⇒ A
isEqualizer : IsEqualizer arr f g

open IsEqualizer isEqualizer public
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What I learned from formalizing Category Theory in Agda

Usability / Engineering lessons: Conservative (Definitional) Extensions

record IsEqualizer {E} (arr : E ⇒ A) (f g : A ⇒ B) : Set _ where
field
equality : f ◦ arr ≈ g ◦ arr
equalize : ∀ {h : X ⇒ A} → f ◦ h ≈ g ◦ h → X ⇒ E
universal : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ equalize eq
unique : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ i

→ i ≈ equalize eq

unique′ : (eq eq′ : f ◦ h ≈ g ◦ h) → equalize eq ≈ equalize eq′

unique′ eq eq′ = unique universal

id-equalize : id ≈ equalize equality
id-equalize = unique (sym identityr)

. . .

Jacques Carette | McMaster University 12 / 17



What I learned from formalizing Category Theory in Agda

Usability / Engineering lessons: Equational Proofs!

record IsEqualizer {E} (arr : E ⇒ A) (f g : A ⇒ B) : Set _ where
field
equality : f ◦ arr ≈ g ◦ arr
equalize : ∀ {h : X ⇒ A} → f ◦ h ≈ g ◦ h → X ⇒ E
universal : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ equalize eq
unique : ∀ {eq : f ◦ h ≈ g ◦ h} → h ≈ arr ◦ i

→ i ≈ equalize eq

equalize-resp-≈ : ∀ {eq : f ◦ h ≈ g ◦ h} {eq′ : f ◦ i ≈ g ◦ i} →
h ≈ i → equalize eq ≈ equalize eq′

equalize-resp-≈ {h = h} {i = i} {eq = eq} {eq′ = eq′} h≈i =
unique $ begin
i ≈˘⟨ h≈i ⟩
h ≈⟨ universal ⟩
arr ◦ equalize eq ■

Jacques Carette | McMaster University 12 / 17



What I learned from formalizing Category Theory in Agda

Usability / Engineering lessons: (Un)Bundling

open import Categories.Category.Unbundled using (Category)
record IdentityOnObjects {Obj : Set o}

(C : Category Obj l e) (D : Category Obj l ′ e′) : Set _ where
field
F1 : ∀ {A B} → (A C.⇒ B) → A D.⇒ B
-- laws elided

IOO⇒Functor : {Ob : Set o} {C : Category Ob l e} {D : Category Ob l ′ e′} →
(F : IdentityOnObjects C D) → Functor (pack′ C) (pack′ D)

IOO⇒Functor F = record { F0 = id→; IOO }
where module IOO = IdentityOnObjects F

Jacques Carette | McMaster University 13 / 17



What I learned from formalizing Category Theory in Agda

Levels as Signals: Comma Category (and thus (co)Slice too)

module _ {A : Category o1 l 1 e1} {B : Category o2 l 2 e2} {C : Category o3 l 3 e3} where
record CommaObj (T : Functor A C) (S : Functor B C) : Set (o1 ⊔ o2 ⊔ l 3) where
field
{α} : Obj A
{β} : Obj B
f : C [ T0 α , S0 β ]

record Comma⇒ {T : Functor A C} {S : Functor B C} (X1 X2 : CommaObj T S)
: Set (l 1 ⊔ l 2 ⊔ e3) where

field
g : A [ α1 , α2 ]
h : B [ β1 , β2 ]
commute : CommutativeSquare f1 (T1 g) (S1 h) f2

Comma : Functor A C → Functor B C
→ Category (o1 ⊔ o2 ⊔ l 3) (l 1 ⊔ l 2 ⊔ e3) (e1 ⊔ e2)
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What I learned from formalizing Category Theory in Agda

Levels as Signals: Enriched Functors

record Functor (C : Category o l e) (D : Category o′ l ′ e′)
: Set (o ⊔ l ⊔ e ⊔ o′ ⊔ l ′ ⊔ e′)

module _
{o l e} {V : Setoid-Category o l e} (M : Monoidal V) where

record Category (v : Level) : Set (o ⊔ l ⊔ e ⊔ suc v)
record Functor {c d} (C : Category c) (D : Category d)

: Set (l ⊔ e ⊔ c ⊔ d)

Maybe “enriched functor” should also do change of base?
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What I learned from formalizing Category Theory in Agda

Additional bits

More Observations:
Definitional extensions of Monoidal Category so large that they needed to be split out into
own module.
The category of Setoids (at a particular level) cannot be a Topos for size/predicatity
reasons: the setoid classifier (classifying map) is “too large”. (ΠW-Pretopos is ok)
Multicategory easier to do with generalized arities and relative equations (implicit
combinatorics of N awful).

Conjecture 1: The Category of −1-Categories, seen as the collection of Enriched categories over
the Monoidal −2-Category, is equivalent to the Category 2, is equivalent to Excluded Middle.

Conjecture 2: Discr is not left adjoint of the forgetful Functor from Cats to Setoids.
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What I learned from formalizing Category Theory in Agda

Conclusion

CT in Agda, Lean, cubical Agda, Coq, Coq/HoTT, Isabelle, . . .
⇒ Category Theory is robust wrt foundations

Setoid-enriched weak Category Theory is akin “1.5” Category Theory
Tremendous fun!
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