
CALCULEMUS 2006

Mining Maple Code for Contracts

Jacques Carette1 Stephen Forrest2

Computing and Software
McMaster University

Hamilton, Ontario, Canada

Abstract

We wish to answer the following question: what is the most appropriate language for de-
scribing the “contracts” that Maple routines offer? In this, we are seeking much more than
types (which Maple does not have, at least statically), as these are not sufficiently expres-
sive to capture what is going on. We also wish to study what is actually in Maple, rather
than whatshould be there. Put another way, we do not expect to find that a type system
like Aldor’s or Axiom’s would be especially helpful in explaining Maple. Our real goal is
a mathematical description of the interfaces between routines. As such, the only current
terminology flexible enough to encompass reality is that of contracts, by which we mean
simply statements of complex properties (static as well as dynamic) in a sufficiently general
logic.

This works focuses mainly on the requirements analysis phase of this project: we per-
form automated analyses of the complete Maple library, to understand the kinds of contracts
that are in actual use. We wish to know which kinds of theoremswould need to be proved in
order to formally analyze the types, effects, invariants, and contracts present in the current
code base. As this is a monumental task, we describe what knowledge we have currently
been able to extract from a very systematic approach to the problem.

1 Introduction

Our initial goal was to write a prototype type inferencer for(parts of) Maple. When
this led to certain difficulties, it seemed that we should instead employ a “type-and-
effects” system [6]. Ultimately, this too seemed unfruitful, and a re-evaluation of
our approach was necessary. Analysis of the obstacles facedled us to conclude that
what we had expected to find (which drove our initial design) diverged considerably
from what was actually present intypical library code.

The current work grew out of this impasse. We wanted to begin anew, and get a
realistic view of what is actually in Maple’s library as evidenced by its source code.

1 carette@mcmaster.ca
2 forressa@mcmaster.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Carette and Forrest

While we had originally thought that a type system was a good means of “infer-
ring” this information, it became clear that standard type systems based on Hindley-
Milner type inference and System F [8,9] would not be sufficient. Re-examining
our original goals, we saw that code comprehension was more important to us than
any particular formalism. This was clearly a sign that, in time-honoured mathemat-
ical tradition, we needed to widen rather than narrow our scope. Some experience
with the programming language Haskell [7] led us to speculate thattype classes
could help. Also influential were Eiffel [5] and various specification mechanisms
(most notably algebraic specifications with a categorical flavour following Goguen
[2]). However, since we did not know exactly what we were seeking, we settled
upon a rather vague term,contract, that we hoped would be general enough to en-
compass our needs. Contracts are very familiar to the specification community (but
under the terms used by Floyd, Hoare, and Dijkstra, that is pre and post-conditions
as well as invariants), and increasingly to the object-oriented community as well
[4]. They are also making some inroads into the functional programming world
[3]. However, we do not wish to use this word too formallyyet, and certainly our
use differs from that of [4,3].

We also knew that a weak logic (like first-order logic) would be insufficient
to handle Maple’s higher-order functions. Indeed, even higher-order logic is not
sufficient, since Maple has both reflection and reification (e.g. explicitly delayed
evaluation,eval,ToInert andFromInert,pointto andaddressof, etc),
first-class “types”, dependent “types”, and so on. (For moreinformation on some
Maple-specific language constructs, refer to our Appendix.A) In view of these ad-
vanced features and of previous work [10], it seemed clear that even a higher-order
modal logic may not even fit. So we embarked upon the road ofrequirements anal-
ysis: what languagecould we use to express the structures found in Maple code?

We therefore decided to use Maple’s own library as a large unstructured database,
and mine it for requirements. This paper reflects our currentunderstanding of what
our tools have unearthed, and what requirements we have beenable to extract from
these results.

As this could easily devolve into anad hocforaging expedition, we needed to
settle on a reasonable methodology by which we could systematically investigate
the data at hand. Section2 explains our methodology, our tool and its evolution,
while section3 gives a description of the stages of the tool. Section4 gives an
overview of our main data-mining results. Section5 presents a discussion of in-
teresting nuggets of information we have been able to dig outof this same data,
and some explicit examples of our results. Finally, in section 6, we give the main
requirements we have been able to gather until now, and offeran overview of the di-
rections in which we wish to proceed further. In appendixA we provide a glossary
which defines some of the more arcane Maple terminology that we use; unfor-
tunately space requirements mean that some familiarity with Maple is needed to
comfortably read this work.

2



Carette and Forrest

2 Methodology

Both the authors know rather “too much” about Maple and its innards. This knowl-
edge could seriously handicap an experimental effort to discover theactual state
of the codebase, as the seeds of knowledge “discovered” by the inference engine
may only be those planted by its authors’ implicit bias! To counter this, the first
methodological decision was to use a naı̈ve process. More specifically, we wish to
build in to our process noa priori knowledge, but to construct an inference engine
based only on what is found at each turn.

To this end, we first “exploded” the complete Maple library into a form more
suitable for automatic manipulation. Maple’sToInert function, coupled with
the tools fromLibraryTools are exactly what we needed: with these we could
extract an accurate Abstract Syntax representation of every global name stored in
Maple’s library. Maple’s internal representation (seen through the reflection tools)
is essentially like LISP s-expressions: a header indicating the low-level “type” of
the object, and an ordered sequence of sub-objects. In Maplenotation, this looks
like Header(sub1, sub2, sub3, sub4), where each sub-object is simi-
lar; the leaf nodes are either literal integers or literal strings. More details can be
found in AppendixA and [1].

The methodology we followed is perhaps best described asopportunistic. We
sought to find as much as possible, as quickly as possible. Twonatural approaches
suggested themselves: atop-downand abottom-upapproach.
The top-down approach would proceed in this manner:

1. Construct a list of items as yet unhandled by the inferencer, ordered by decreas-
ing number of occurrences,

2. Implement a simple approach to dealing with the first item in the above list,

3. Go back to1.

This ensures maximal coverage of the most important parts ofthe library as early as
possible. One disadvantage is that very simple things mightnever occur frequently
enough to be handled. For example, if there were but20 raw strings in the library,
these might not be “typed” for a very long time, even though this would be easy to
do.
The bottom-up approach would proceed in the following manner:

1. Construct a list of items as yet unhandled by the inferencer, ordered by increasing
complexity,

2. Implement a simple approach to dealing with the first item in the above list,

3. Go back to1.

This might also be called a greedy approach, one in which the simplest parts would
be done first, and results would arrive early. A drawback is that some large pieces
of code that are nevertheless “simple” remain unhandled andeven unexamined for
a very long time.

The approach we ultimately took was a somewhat idiosyncratic combination
of the these two. We first do a top-down step, then a bottom-up step, and re-
peat. As well, because computing a reasonable “complexity”of Maple objects is

3



Carette and Forrest

not straightforward, we decided that the bottom-up steps would be done manually,
somewhat at the whim of the implementor.

Consequently, while we are quite interested in a very systematic approach to
this problem, we decided to take this rather more pragmatic approach to maximize
the results we could get. Nevertheless, this hybrid strategy still preserves thea pri-
ori nature of our approach, as our results are merely a refinementof those produced
by a purely top-down approach.

The methodology above clearly defines a notion ofstages, corresponding to
new “features” of the inferencer, depending on what each phase above says should
be done next. We felt that it would be very important to be ableto re-run our infer-
encer at any given stage, especially since a bug in one stage could completely throw
off our histograms. Thus we built our entire system with ahistorymechanism. In
other words, at run-time, the inferencer is first initialized to work at a particular
stage, and then the inference proceeds on the whole library.This particular deci-
sion required a much more complex system architecture, but we also feel that it
was a key factor in being able to push things as far as we did.

Also key to our methodology was our desire to heavily bias oursystem towards
what was actuallyfound in the code, rather than what we might have expected or
what perhapsshouldbe present in software which implements mathematics. Our
past experience told us that while the structures of mathematics were implicitly
present in a significant portion of the code, they were not in fact so easy to find
explicitly. For example, although one would expect to find many Monoids in code
handling algebraic mathematics, in practice they seem to either be rarer than one
would think, or perhaps more thoroughly disguised.

As mentioned in the introduction, we at first wanted to write asystem which
would serve as the mainrequirements analysis tool for a puretype inferenceen-
gine for Maple. On top of our pre-existing familiarity with Maple (and its un-
derlying mathematics), we were also influenced by the types of two different sys-
tems: Haskell [7] and Aldor [11]. However, we knew that this would not be suffi-
cient since Maple supports reflection and reification, first-class “types”, dependent
“types”, etc. We opted instead to look for any kind of logicalconclusion we could
draw from the code. From a formal methods perspective, it became clear that we
were looking at wererelationssatisfied between the input of a procedure, the out-
put of the procedure, and the environment, as an approximation to an axiomatic
description of the operational semantics of the library code. However, the word
contractseemed to convey what we were after more succinctly.

What are we trying to find? Consider the following Maple procedure:

proc ( a , t , x )
map ( I n t , i n d e t s ( a , t ) , x = 0 . . 1 )

end proc

The code’s size belies its complexity. It returns a set of unevaluated definite in-
tegrals with respect tox over the interval[0, 1], where the integrands are all the
subexpressions matching typet which are present ina.

We would be happy to have a system that could tell us thatamust be atraversable
object,t must represent a Mapletype, x must be asymbol, and that the result must

4



Carette and Forrest

be aset of objects of typeInt(t, x=0..1). Additionally, we should like to
know that this is a pure function (i.e. no side-effects), that all 3 arguments are used
but additional arguments, if given, are simply ignored. We could also demand that
the resultsmake sense, in which case we would further constraint to represent a
type of integrable expressions. Note that this would not constraina, as it would still
be sensible to use this procedure when we knew thata contained no sub-objects of
type t. Though our actual representation of these results is more complex, we
could write a pretty-printer for the types that could outputa representation like

(Traversable(a),Type(t),Symbol(x)) ⇒

(a, t, x, $ ) → {Int((b : t), x= 0..1)} ⇐ b 4 a

where constraints on the input types appear before the⇒, $ delimits the variable
arguments, constraints on the output types appear after the⇐, underlines (e.g.
Int) indicate value embeddings at the type level, and4 is the sub-object relation
(at the type level). The above ought to be taken as an indication of ourintentions,
rather than as an example from a formal contract system.

3 System overview

In this section, we give an overview of our process. To interpret the results, it
is crucial to comprehend the multi-stage inferencer as described in the previous
section.

Below, we describe each stage and explain what new “feature”the stage imple-
ments. There are currently53 stages; this stopping-point is quite arbitrary, and was
chosen merely because it was time to write up our results rather than because we
had finished the task or arrived at a “natural” endpoint.

While these53 stages were certainly sufficient to obtain many interestingre-
sults, we believe that at least100 stages or more would be necessary to achieve
reasonable coverage of the full Maple library. Nevertheless, we feel that this pro-
cess has already uncovered sufficiently many requirements for a contract system to
demonstrate the value of our approach.

All of the items below are marked with either aTor aB, indicating respectively
a top-down or bottom-up stage. It is also worth noting that weseparate an analysis
phase (recursing through the components of an object) and the reconstruction phase
where we “build” the contract of the object as a whole from thesub-contracts. For
reasons of length, we will assume that the reader is familiarwith Maple’s object
representation; an appendix to theAdvanced Programming Guide[1] provides a
good introduction to these details. However, a detailed understanding is not neces-
sary to comprehend the general concepts behind our approach.

We will follow the Maple naming convention of using all-capitals to name in-
ternal objects; these names correspond to those used in Maple’s inert formA.

1 T On start-up, the only thing known is that the library consists of a lot (13063)
of named objects, each of which is given by an Abstract SyntaxTree, with a

5



Carette and Forrest

named root node and sub-trees. Each node in the tree has a “type” which
corresponds to an object of the 37 visible Maple internal tags for its own
internal representation. Table1 gives the full results of this stage. We make
one concession toa priori knowledge: all names that start withtype/ are
treated as types, not values.

2 B Leaf objects are implemented. In other words, INTPOS, INTNEG, STRING,
and FLOAT. RATIONAL and COMPLEX are implemented too.

3 T As procedures are (by far) the most common, recurse on each component.
4 B Recurse through SET, LIST, and EXPSEQ. Types for these can all be straight-

forwardly rebuilt from the components. In fact, if all sub-objects are static
values, then it is reconstructed as a Static value.

5 T Stage 3 was completely naı̈ve and, as expected, pushes the problem to the
first component of procedures (the parameter sequence PARAMSEQ). We im-
plement (again by simple recursion) traversal of PARAMSEQ,LOCALSEQ,
OPTIONSEQ, LEXICALSEQ, RETURNTYPE. We give the global sequence
(GLOBALSEQ) the typeNone as it has no operational significance.

6 B Recurse through EQUATION and POWER. Static cases handled.
7 T Again, Stage 5 handling was naı̈ve, in particular with respect to locals.

Create a recursiveenvironmentwhere bindings for locals (and parameters)
can be stored, and deal with NAME and DCOLON entries in LOCALSEQ.

8 B Global NAMEs in the library are, by definition,symbols.
9 T Deal with unknown options. Optionsremember, operator, arrow, system

and copyright strings have no operational meaning, so they are stripped out.
Other options will be treated later.

10 B Recurse through NOT, UNEVAL, and FUNCTION (i.e. function applica-
tions). Handle Static cases of NOT and UNEVAL.

11 T Like stage 7, but for parameters.
12 B Recurse through PROD (and handle Static).
13 T We are finally at the stage where procedure’s actual STATSEQ is the main

blocking point! Right now, just recurse through, and accumulate information.
The resulting value will be that of the last statement in the STATSEQ (until
we are ready to deal with more complex control flow).

14 B Recurse through RANGE, CATENATE, SUM, AND, and OR, handling
Static cases.

15 T Somewhat surprisingly, the most common object in a Maple procedure
amongst all the “statements” is ASSIGN. We do not take this tomean that
Maple is fundamentally imperative, as many assignments could be done via a
let expression, if Maple had them. Right hand sides of assignments are typed,
and a binding to that type is added to the left hand side in the environment.

16 B Recurse through INEQUAT, MEMBER, and NARGS, handling Static cases.
17 T Deal with ASSIGNEDNAME. This corresponds to the use of a namewhich

either has a meaning in the library or is a builtin function. If the name has
already been typed (successfully or otherwise), the resultis taken from the
environment. Recursion (through names) is not handled, andcaught via the
environment. Failures for each builtin is given by name, causing an explosion
of the number of unhandled cases at all later stages.

6



Carette and Forrest

18 B Handle function calls when the function called is asymbol.
19 T The second-most popular statement is a conditional. As an IFis always

composed of at least one CONDPAIR, recurse through these too. Also, put a
guard to ensure that conditions in an IF have type “boolean”.

20 B Recurse through LESSTHAN and LESSEQ.
21 T Implement some inference for Maple types (InferType). All symbols are

considered to be types at this stage.
22 B Handle a DCOLON. Ensure right hand side corresponds to a Maple type.
23 T Handle references to PARAM. The environment is queried for the type.
24 B Give a type to the builtinsevalb, andlength (as they are amongst the

simplest builtins).evalb takes in any single Maple object and will return
true or false, whilelength takes any single Maple object and returns a
positive integer.

25 Due to some hiccup in our development, this stage number was skipped.
26 T Start giving types to non “Static” objects. For this stage, just implement

dispatching to internal-type driven tables. We will call the infering of contracts
from pieces “re-assembling”.

27 B Re-assemble EQUATION, INEQUAT, LESSTHAN, LESSEQ as well as1
and2 argument EXPSEQ.1 argument EXPSEQ occur for example in the inert
representation of a list like[a] wherea is a parameter.

28 T First implementation of VerifyBoolean, the routine to check that an ex-
pected boolean really is.

29 B Recurse through XOR
30 T References to LOCAL are most common, and handled much like PARAM.
31 B Re-assemble AND, OR, and NOT.
32 T We give a contract fortype. This takes any Maple object as first parameter,

a Maple type as second, and returns a value of typetruefalse.
33 B InferType support for SET, LIST, EQUATION, and RANGE. SinceMaple

types are quite different than values, even though they are implemented as
values, it is important to infer them separately.

34 T Re-assemble ASSIGN. Amounts to returning the type of the right hand side.
35 B VerifyBoolean - add support for Static values, as well as thetype construc-

torsNot, And andOr.
36 T Re-assembling of FUNCTION (function calls). Make sure thatwhen calling

a function, that the types expected and the arguments passedare “compatible”.
37 B Check if Static values are actually types. This occurs surprisingly often.
38 T Recurse through TABLEREF.
39 B Implement checks that< and≤ are booleans, which means verifying that

the arguments are numeric. Implement VerifyNumeric for this task. Deal with
Static values, and (Maple) subtypes of “numeric”.

40 T Calls to builtinop are most common. Deal with this by creating a name for
the type of the functionop, call it OpType. Becauseop is ad-hoc polymor-
phic, this allows us to typeop at the call site instead.

41 B Re-assemble (some) TABLEREF.

7



Carette and Forrest

42 T Now OpTypecan be be implemented at the call site. Create what is essen-
tially a type class, calledOpAbleto represent all objects which can beop’ed.
OpAbletracks whether1- or 2-argumentop was used, and in the2-argument
case, what that was. This is done as aconstraint.

43 B Static TABLEREF, re-assembly of SET, LIST.
44 T Type for builtin nops. As an approximation, use typeanythingfor the

input, although typeOpAblemight be more accurate.
45 B Previous handling of UNEVAL was naı̈ve (it basically did nothing!). Now

set an environment variable so that ASSIGNEDNAME encountered inside an
UNEVAL are treated as a NAME.

46 T Handle ERROR statement. Get the type of the components, but then return
None, which is the absence of a type. This does not correctly handle the case
where there is code below an ERROR, but this should be very rare.

47 B InferType implemented over ASSIGNEDNAME, and UNEVAL.
48 T Implement ARGS. Likeop, this is done by creating a new typeSequence-

Variable(where clearly Mathematica has influenced our choice of name).
49 B Re-assemble DCOLON, UNEVAL and RANGE
50 T Implement RETURN. Like ERROR, the ’value’ of a RETURN is actually

None, however RETURN adds its value as aresult typein the environment.
The result of a procedure will be composed of the appropriatecombination of
all obtained result types.

51 B VerifyBoolean now know about::, and Parameter. When encountering a
Parameter, it adds a constraint to the environment.

52 T Re-assemble simple IF. “simple” is defined to mean an IF with 2branches
and identical types in both branches, or a one branch IF of typeNone.

53 B InferType can now handle POWER, FUNCTION and RETURNTYPE.

We plan to pursue this line of study and record our detailed results in a technical
report; also, we hope to eventually make our inferencer codeavailable as we feel
that it could in time be useful to others as well.

4 Results

Table1 shows the results we get for stage1, where for space reasons we use A* to
designate the long name ASSIGNED. As expected, procedures make up the bulk
of the library. The large number of tables is in part due tointtranswhich uses a
pattern-matching approach to computing integral transforms, and includes a large
number of data tables. TheInferTypeentry refers to the409 type/ routines. See
the next section for a further discussion of these findings.

Figure1 shows a plot of the number of named Maple objects which are success-
fully “typed” at each stage. The jump at stage2 reflects the typing of122 objects
(the raw integers, floating point numbers, etc) in the library. The jump at stage4
reflects the typing of265 lists (of integers, floats, strings,244 are lists of lists of ei-
ther floats or integers) as well as11 expression sequences and11 sets (all empty!).
Stage8 reflects the typing of symbols (264 of them, as well as32 compound ob-
jects containing symbols). Stage16 reflects the typing of very simple procedures

8



Carette and Forrest

Number 11023 457 409 297 264

Tag PROC TABLE InferType LIST NAME

Number 164 141 84 71 55

Tag MODULE INTPOS TABLEREF SET FUNCTION

Number 39 16 16 9 9

Tag A*NAME EXPSEQ ARRAY LOCALNAME FLOAT

Number 3 3 1 1 1

Tag STRING UNEVAL INTNEG COMPLEX A*LOCALNAME

Table 1
Results of first-stage failures

0

200

400

600

800

1000

10 20 30 40 50

Stage

Fig. 1. Number of typed objects per stage

like proc() 0 end proc (there are17 occurrences of this in the library). Fur-
ther advances are then hard-won, and reflect the many features that have had to be
implemented to get to that point, documented in the previoussection.

Figure2 shows, from stage16 onwards, the difference in the number of suc-
cessfully typed objects at each successive stage. Unlike the early successes shown
in the previous figure, it is clear that few Maple procedures are completely trivial,
and that a fair amount of infrastructure is necessary beforesteady progress occurs.
However, one can see that, beginning at approximately stage40, our efforts start to
pay off, and successes come more readily.

Figure3 displays, again from stage16 onwards, the number of changed Fail-
ure messages at each stage. This reflects movement from one source of failure to
another. What is most interesting is the overall even/odd separation: one can see
a “high” curve corresponding to the large movements due to the top-down passes,

9



Carette and Forrest

0

10

20

30

40

50

60

20 25 30 35 40 45 50

Stage

Fig. 2. Difference in number of successfully typed object per stage (post stage 16)

0

1000

2000

3000

4000

20 25 30 35 40 45 50

Stage

Fig. 3. Number of changed Failure messages per stage (post stage 16)

and a “low” curve corresponding to the more idiosyncratic bottom-up passes; this
distinction is apparently at least until stage40, when the two curves get very close
to each other. The one outlier in the bottom-up process is stage27, as the relational
operators=, <>, < and≤ together caused quite a few failures. We believe that this
graph lends credence to our methodology of combining top-down and bottom-up
approaches.

In Table2, we show the most common Failure mode for our inferencer after
a successful bottom-up stage. This is the deciding factor for what will be imple-
mented in the next, top-down, stage. First, it is clear that these numbers are gen-
erally decreasing, which means that the bottlenecks “spread out” over more cases.
The large drop after stage12 reflects that Maple procedures are not uniform, and

10



Carette and Forrest

that while assignments are most common, they account for just over half. The drop
at stage20 actually reflects two things: thatif statements are quite common, and
that in stage17 builtin procedures were split out into cases. That sometimes the
numbers go back up reflects that handling more cases sometimes causes a refocus-
ing of the reasons for failures into a few common bottlenecks. By stage53, while
there are still12050 objects to “type”, the most common source of failure accounts
for just 4.5% of the total. The top10 however do account for32% of the failures,
so there still are quite a lot of commonalities.

We will make our complete results available as a technical report, but this al-
ready spans roughly150 pages of “data”.

5 Discussion

Our systematic approach had the side-effect of generating aconsiderable amount
of data. Some of it is pure trivia, but quite a lot was rather surprising to us. In this
section, we provide a sampling of what we have found, first providing some explicit
examples, and then concentrating on those items which were most unexpected.

5.1 Examples

5.1.1 Im/abs
A trivial example is that for the procedureIm/abs, which is a special case of the
Im function (the imaginary part) applied to a symbolic absolute value. Since the
result of an absolute value is always a positive real,Im/abs is a trivial procedure
which simply returns 0 always.

Unsurprisingly, the analysis of this procedure is not difficult. What is perhaps
more surprising is that, as a consequence of our design choices, the return value
is actually hardcoded in the contract:Function([],Static(0)) expresses
succinctly the fact that this is equivalent to the constant zero function.

5.1.2 codegen/joinprocs/isAssign
A short utility procedure used by thecodegen package, this routine is ana-
lyzed to be of “type”Function([OpAble(0)],truefalse). That is, this
function accepts a single argument (say,x), and the function requires that the Maple
commandop(0, x) be defined. The symboltruefalse indicates that the re-
sult is a boolean value.

TheOpAble(0) predicate, which indicates that Maple’sop command may
be invoked to extract the 0th argument, is really the equivalent of a type class in
Haskell.

5.1.3 codegen/C/function/argtype/irem
This example exhibits need for first-class types in our contract language. The con-
tract generated is
Function([Parameter(1,"mode")],Static(Symbol("integer")))
This specifies that the object in fact a function from an arbitrary input to atypeen-
coded as a plain value.

11



Carette and Forrest

stage occurrences Failure mode

2 11023 cannot handle PROC

4 11023 cannot handle GLOBALSEQ

6 8955 cannot handle nonempty LOCALSEQ

8 9419 cannot handle nonempty OPTIONSEQ

10 9708 cannot handle nonempty PARAMSEQ

12 9544 cannot handle STATSEQ

14 4502 cannot handle ASSIGN

16 4414 cannot handle ASSIGNEDNAME

18 3671 cannot handle IF

20 1653 InferType not implemented

22 1531 cannot handle PARAM

25 1917 cannot unify non-Static types

27 1417 VerifyBoolean not implemented

29 1416 cannot handle LOCAL

31 1407 no type for builtin type

33 1419 cannot re-assemble 2-arg ASSIGN

35 1120 cannot re-assemble 2-arg FUNCTION

37 1141 cannot handle TABLEREF

39 748 no type for builtin op

41 616 unknown function call OpType

43 594 no type for builtin nops

45 628 cannot handle ERROR

47 608 cannot handle ARGS

49 669 cannot re-assemble IF

51 788 cannot handle RETURN

53 549 cannot handle FORFROM

Table 2
Most frequent failure after a bottom-up stage, leading to a top-down stage

12



Carette and Forrest

5.2 Assertions

Hinze, Jeuring, and Löh are very specific in stating that their use of the term “con-
tract” implies that a contract affects program behaviour.[3] We do not share this
view of contracts, and here we concentrate on what they referto asstatic proper-
ties. However, as we have to deal with many more issues, these properties fall far
outside the usual realm of properties considered for type systems. Nevertheless, it
would be an easy task to implement an “assert” command similar to theirs which,
given a procedure and an (inferred) contract, returns a procedure which checks that
the contract is satisfied before and after execution. Such a construct may lead to
more information-rich error messages, and is worth furtherinvestigation.

5.3 Artifacts

Any piece of software that has been developed continuously for a quarter-century
will necessarily have accumulated baggage along the way. Our investigations have
unearthed a host of oddities, few of which are outright bugs,but many of them
interesting artifacts nevertheless.

The Maple system has evolved greatly over the years. Quite a few older features
have been deprecated, and mention of their existence is all but banished from much
of the present documentation. However, because of the sheersize of the library and
the need for backwards compatibility, it cannot all be “upgraded” to employ only
newer features.

Names defined in a Maple archive are stored in records calleddot-mfiles, whose
load is triggered when the associated name is first seen. Though modern Maple
code is designed in such a way that there is at most one global name defined per
dot-m file, this was not always the case. It is therefore possible for certain global
names in Maple to be defined from the main Maple repository only if some other
name, whose relationship to the first may not be obvious, is read first. Among the
names defined in this “hidden” way are the globalsa andb; the concern this fact
may stir should be dampened somewhat by the fact that they areburied under the
nametttesting1/ a, which the casual user is unlikely to use. Also, names
used to not be automatically defined, and so one had to use the routinereadlib
to achieve this; as this practice was discouraged quite sometime ago, we were quite
surprised to discover80 calls toreadlib remaining in the library.

One may also wonder, why are there so many integer constants stored in the
library? Some are so-calledmagic constantswhich control the behaviour of certain
routines (provide thresholds, etc). Others are pure artifacts: when the tables for
integral transforms are saved, the number of entries in eachtable is also saved in
a separate name, yet this name is not referenced anywhere else in the library! So
those integers serve no effective purpose.

5.4 Modules

In modern Maple (i.e. starting with Maple 6), modules are oneof the most impor-
tant structuring mechanisms for larger pieces of code, including the Maple library.

13



Carette and Forrest

Though in following our greedy approach we have so far ignored top-level modules,
given the special focus on modules in the last several Maple releases we might still
expect to encounter many references to modules in the analysis of other top-level
names.

As such, it is quite surprising that through53 passes in the library, modules have
not been at top of the list of bottlenecks. It would appear that “old” Maple (i.e. the
code saved in top-level names not assigned to modules) does not call “new” Maple
very much. Perhaps this indicates that newer routines are somehow less “central”
to the system, which would be reasonable for a mature system.Or perhaps this
indicates that the refactoring and maintenance of older routines is not an active
concern of Maplesoft.

5.5 Code Templates

There is a long tradition of run-time code instantiation in Maple. The modern
method is to use lexically scoped procedures (or modules), but this does have a
certain overhead for the generated procedure. The older method, of usingsubs
directly into a templateproc is sometimes still used for this purpose. However,
this older method fell into disfavour because it was accident-prone: since it used
explicit names for the substitution, it was possible to be unlucky and have accidental
name captures. Efforts to avoid these accidental name captures led to some rather
creative names used as placeholders in some procedure templates.

There is, however, a modern twist: since a Maple string may never have an
assigned value, one may safely use a string in place of a name for the substitution
parameter and avoid accidental capture. However, since thestring is usually likely
to be a different type than its substituted value, this has the side-effect of having
the code template beinginvalid code, i.e. code which cannot be run on its own
without generating a nonsensical error, but which works fineafter the substitution
is performed.‘dsolve/numeric/MB/solnproc‘ is one such a routine, and
they cause many headaches for our inference engine!

5.6 Monoids and other algebraic structures

One might hastily conclude Maple’s library is entirely freeof algebraic structures,
and this would be quite inaccurate. Nevertheless algebraicstructures do seem to
be present implicitly rather than explicitly. They may appear in two ways: via a
natural morphism, or via correctness conditions. In the first case, we find a nat-
ural refinement morphism between the specification of an algebraic structure and
a computational implementation. It seems quite difficult toinfer such algebraic
structures, as frequently such morphisms are not invertible. In the second case,
there is also a natural refinement morphism present, but alsonatural correctness
conditions — for example division can only be used when it exists and is well-
defined. In this case, the algebraic structure seems to be an emergent property of
the implementation.

14



Carette and Forrest

6 Conclusion

Among the more surprising results of our investigation is the high importance in
the system of traditional “computer science” data structures such as lists, sets,
functions, variables, and conditionals. This is in contrast with the rarity of basic
algebraic structures such as sums, products, or more complex structures such as
monoids and groups. But just as interesting is the pervasiveness of symbols, and
of functions with variable numbers of arguments. While we also found a lot of dy-
namic type checks, it is still unclear to us whether these aredynamic by necessity,
or simply for convenience to the programmer.

On the other hand, we have found substantial use of first-class types (i.e. types
as values) and dependent types; there is also considerable use ofad hocpolymor-
phism (throughop, nops, etc). It is not clear to us whether these are fundamental
or whether a solid implementation of pattern-matching, with proper syntactic sup-
port (unlike what is offered bytypematch) would remove the need for these.

The frequency of assignments involving single-use local names suggests that
Maple sorely needs alet construct. Surprisingly, the data also suggest that Maple
is arguably somewhat more functional than imperative, as there are more uses of
map than offor loops.

Finally, it seems to us that many of the currently unhandled built-in functions
may depend upon some sort of generalized “Expression” type.Such a dependency
would be somewhat disheartening, as the generality of such atype would impede
wide-scale inference of useful static contracts involvingthese builtin functions.

References

[1] DeMarco, P., K. Geddes, K. M. Heal, G. Labahn, J. McCarron, M. B. Monagan and
S. M. Vorkoetter, “Maple 10 Advanced Programming Guide,” Maplesoft, 2005.

[2] Goguen, J.,Types as theories, in: G. M. Reed, A. W. Roscoe and R. F. Wachter, editors,
Topology and Category Theory in Computer Science, Oxford, 1991 pp. 357–390.

[3] Hinze, R., J. Jeuring and A. Löh,Typed contracts for functional programming, in:
Proceedings of FLOPS, 2006.

[4] Meyer, B.,Applying ”design by contract”, Computer25 (1992), pp. 40–51.

[5] Meyer, B., “Eiffel: The Language,” Prentice Hall, 1992.

[6] Nielson, F., H. R. Nielson and C. Hankin, “Principles of Program Analysis,” Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[7] Peyton Jones, S., “Haskell 98 Language and Libraries,” Cambridge University Press,
2003.

[8] Pierce, B. C., “Types and programming languages,” MIT Press, Cambridge, MA,
USA, 2002.

15



Carette and Forrest

[9] Pierce, B. C., editor, “Advanced Topics in Types and Programming Languages,” MIT
Press, 2005.

[10] Taha, W., “Multi-Stage Programming: its theory and applications,” Ph.D. thesis,
Oregon Graduate Institute of Science and Technology (1999).

[11] Watt, S. M., Aldor, in: J. Grabmeier, E. Kaltofen and V. Weispfennig, editors,
Computer Algebra Handbook: Foundations, Applications, Systems, Springer Verlag,
2003 .

A Maple Glossary

We provide a brief description of a few of the commands or paradigms specific to
the Maple programming language that have been referenced inthe text.

• op: Returns the operands of any structured expression (e.g. the elements of a
list or set, or the arguments of a function call.)

• nops: Similar toop, but returns only thenumberof operands.
• inert form: A method of representing Maple code as a data object consisting of

unevaluated (inert) function calls, equivalent to an abstract syntax tree. This may
be programmatically manipulated with no fear of accidentalevaluation.

• ToInert, FromInert: A means of converting live code (e.g. an expression,
procedure, or module) into aninert form and vice-versa.

TableA.1 provides a short synopsis of the data structures associatedwith the
more esoteric names among the inert form names used throughout the text.

name(s) data structure

ASSIGNEDNAME Name with an assigned value, as opposed to an (unassigned) symbol

CONDPAIR “Conditional pair”: a boolean condition and associated statement,

found only inside an IF structure

DCOLON Procedure parameter or local variable with an explicit typeannotation

EXPSEQ “Expression sequence”: a self-flattening sequence of expressions

FORFROM A for/while loop: both for loops and while loops are special cases

INTPOS, INTNEG Positive and negative integers, respectively

TABLE Hash table

TABLEREF Index into a hash table

UNEVAL Wrapper around an expression which delays evaluation

Table A.1
Data structures corresponding to inert form tags

16


	Introduction
	Methodology
	System overview
	Results
	Discussion
	Examples
	Assertions
	Artifacts
	Modules
	Code Templates
	Monoids and other algebraic structures

	Conclusion
	References
	Maple Glossary

