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Abstract

We wish to answer the following question: what is the mostrappate language for de-
scribing the “contracts” that Maple routines offer? In thig are seeking much more than
types (which Maple does not have, at least statically), asetare not sufficiently expres-
sive to capture what is going on. We also wish to study whatisadly in Maple, rather
than whatshould be there Put another way, we do not expect to find that a type system
like Aldor’'s or Axiom’s would be especially helpful in exptang Maple. Our real goal is

a mathematical description of the interfaces betweennesti As such, the only current
terminology flexible enough to encompass reality is thataftacts, by which we mean
simply statements of complex properties (static as wellaguhic) in a sufficiently general
logic.

This works focuses mainly on the requirements analysisepb&this project: we per-
form automated analyses of the complete Maple library, tieustand the kinds of contracts
that are in actual use. We wish to know which kinds of theorexmgld need to be proved in
order to formally analyze the types, effects, invariantg] eontracts present in the current
code base. As this is a monumental task, we describe whatl&dge/we have currently
been able to extract from a very systematic approach to titggm.

1 Introduction

Our initial goal was to write a prototype type inferencer (oarts of) Maple. When
this led to certain difficulties, it seemed that we shouldead employ a “type-and-
effects” system#§]. Ultimately, this too seemed unfruitful, and a re-evaioatof
our approach was necessary. Analysis of the obstacleslieded to conclude that
what we had expected to find (which drove our initial designg@dyed considerably
from what was actually present iypicallibrary code.

The current work grew out of this impasse. We wanted to beggwaand get a
realistic view of what is actually in Maple’s library as eeiiced by its source code.
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While we had originally thought that a type system was a goedms of “infer-
ring” this information, it became clear that standard tyystems based on Hindley-
Milner type inference and System B,9] would not be sufficient. Re-examining
our original goals, we saw that code comprehension was mgyertant to us than
any particular formalism. This was clearly a sign that, mgthonoured mathemat-
ical tradition, we needed to widen rather than narrow oupsc&ome experience
with the programming language Haskell [ed us to speculate thaype classes
could help. Also influential were Eiffe§] and various specification mechanisms
(most notably algebraic specifications with a categorieatilir following Goguen
[2]). However, since we did not know exactly what we were segkine settled
upon a rather vague terrogntract that we hoped would be general enough to en-
compass our needs. Contracts are very familiar to the spatodin community (but
under the terms used by Floyd, Hoare, and Dijkstra, thatdsapd post-conditions
as well as invariants), and increasingly to the objectrded community as well
[4]. They are also making some inroads into the functional gnagning world
[3]. However, we do not wish to use this word too formalist, and certainly our
use differs from that of4,3].

We also knew that a weak logic (like first-order logic) would imsufficient
to handle Maple’s higher-order functions. Indeed, evemdigorder logic is not
sufficient, since Maple has both reflection and reificatiag.(explicitly delayed
evaluationgval , Tol nert andFr om nert,poi ntt o andaddr essof , etc),
first-class “types”, dependent “types”, and so on. (For mofermation on some
Maple-specific language constructs, refer to our AppeAdii view of these ad-
vanced features and of previous wotKJ], it seemed clear that even a higher-order
modal logic may not even fit. So we embarked upon the roadmfirements anal-
ysis whatlanguagecould we use to express the structures found in Maple code?

We therefore decided to use Maple’s own library as a larggwuctsired database,
and mine it for requirements. This paper reflects our cumaderstanding of what
our tools have unearthed, and what requirements we havedbéeto extract from
these results.

As this could easily devolve into ad hocforaging expedition, we needed to
settle on a reasonable methodology by which we could sysiesiig investigate
the data at hand. Sectidhexplains our methodology, our tool and its evolution,
while section3 gives a description of the stages of the tool. Sectayives an
overview of our main data-mining results. Sectipresents a discussion of in-
teresting nuggets of information we have been able to digobthis same data,
and some explicit examples of our results. Finally, in 808, we give the main
requirements we have been able to gather until now, andarifeverview of the di-
rections in which we wish to proceed further. In appeniliwe provide a glossary
which defines some of the more arcane Maple terminology tleatuse; unfor-
tunately space requirements mean that some familiaritly Wiaple is needed to
comfortably read this work.
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2 Methodology

Both the authors know rather “too much” about Maple and isnds. This knowl-
edge could seriously handicap an experimental effort toadisr theactual state

of the codebase, as the seeds of knowledge “discovered’ebinterence engine
may only be those planted by its authors’ implicit bias! Taucter this, the first
methodological decision was to use a naive process. Meafgally, we wish to
build in to our process na priori knowledge, but to construct an inference engine

based only on what is found at each turn.
To this end, we first “exploded” the complete Maple libraryoim form more

suitable for automatic manipulation. Mapléel®l nert function, coupled with
the tools fromLi br ar yTool s are exactly what we needed: with these we could
extract an accurate Abstract Syntax representation ofy@lebal name stored in
Maple’s library. Maple’s internal representation (seemtigh the reflection tools)

is essentially like LISP s-expressions: a header indigatie low-level “type” of
the object, and an ordered sequence of sub-objects. In Mapd¢ion, this looks
like Header (subl, sub2, sub3, sub4), where each sub-object is simi-
lar; the leaf nodes are either literal integers or literehgs. More details can be

found in AppendixA and [].
The methodology we followed is perhaps best describespasrtunistic We

sought to find as much as possible, as quickly as possible n&tvwal approaches

suggested themselvestap-downand abottom-upapproach.

The top-down approach would proceed in this manner:

1. Construct a list of items as yet unhandled by the infereredered by decreas-
ing number of occurrences,

2. Implement a simple approach to dealing with the first iterthe above list,

3. Go back tal.

This ensures maximal coverage of the most important pattedibrary as early as

possible. One disadvantage is that very simple things nmgér occur frequently

enough to be handled. For example, if there were2butiw strings in the library,

these might not be “typed” for a very long time, even though #ould be easy to

do.

The bottom-up approach would proceed in the following manne

1. Construct alist of items as yet unhandled by the infengiocdered by increasing
complexity,

2. Implement a simple approach to dealing with the first iterthe above list,

3. Go back tal.

This might also be called a greedy approach, one in whichithglest parts would
be done first, and results would arrive early. A drawbackas ome large pieces
of code that are nevertheless “simple” remain unhandlecesad unexamined for

a very long time.
The approach we ultimately took was a somewhat idiosyrcatmbination

of the these two. We first do a top-down step, then a bottomteyp, @nd re-
peat. As well, because computing a reasonable “complegityflaple objects is
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not straightforward, we decided that the bottom-up stepddvbe done manually,
somewhat at the whim of the implementor.

Consequently, while we are quite interested in a very syatienapproach to
this problem, we decided to take this rather more pragmapecaach to maximize
the results we could get. Nevertheless, this hybrid styadéty preserves tha pri-
ori nature of our approach, as our results are merely a refinevhémise produced
by a purely top-down approach.

The methodology above clearly defines a notiorstaiges corresponding to
new “features” of the inferencer, depending on what eacls@héove says should
be done next. We felt that it would be very important to be able-run our infer-
encer at any given stage, especially since a bug in one staigecompletely throw
off our histograms. Thus we built our entire system withistory mechanism. In
other words, at run-time, the inferencer is first initialz® work at a particular
stage, and then the inference proceeds on the whole libFduig. particular deci-
sion required a much more complex system architecture, bualso feel that it
was a key factor in being able to push things as far as we did.

Also key to our methodology was our desire to heavily biassystem towards

what was actuallfoundin the code, rather than what we might have expected or
what perhapshouldbe present in software which implements mathematics. Our
past experience told us that while the structures of mathiesnavere implicitly
present in a significant portion of the code, they were notaat 50 easy to find
explicitly. For example, although one would expect to findwy&onoids in code
handling algebraic mathematics, in practice they seemtheebe rarer than one
would think, or perhaps more thoroughly disguised.

As mentioned in the introduction, we at first wanted to writeyatem which

would serve as the mairequirements analysis tool for a puretype inferencen-
gine for Maple. On top of our pre-existing familiarity with aple (and its un-
derlying mathematics), we were also influenced by the typés@different sys-
tems: Haskell 7] and Aldor [L1]. However, we knew that this would not be suffi-
cient since Maple supports reflection and reification, fitass “types”, dependent
“types”, etc. We opted instead to look for any kind of logicahclusion we could
draw from the code. From a formal methods perspective, ilmecclear that we
were looking at wereelationssatisfied between the input of a procedure, the out-
put of the procedure, and the environment, as an approxamabi an axiomatic
description of the operational semantics of the libraryecotiowever, the word

contractseemed to convey what we were after more succinctly.
What are we trying to find? Consider the following Maple piwes:

proc(a,t,x)
map(Int, indets(a, t), x=0..1)
end proc

The code’s size belies its complexity. It returns a set ofvah&ated definite in-

tegrals with respect t@ over the interval0, 1], where the integrands are all the

subexpressions matching typeavhich are present ia.
We would be happy to have a system that could tell usatimatist be draversable

object,t must represent a Maptgpe x must be asymbo) and that the result must
4
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be aset of objects of typd nt (t, x=0..1). Additionally, we should like to
know that this is a pure function (i.e. no side-effects)t #lb3 arguments are used
but additional arguments, if given, are simply ignored. Wald also demand that
the resultanake sensean which case we would further constrainto represent a
type of integrable expressions. Note that this would nostrama, as it would still
be sensible to use this procedure when we knewaltaintained no sub-objects of
typet. Though our actual representation of these results is momgplex, we
could write a pretty-printer for the types that could outpuepresentation like

(Traver sabl e(a), Type(t), Synbol (z)) =
(a,t,2,8.) = {Int ((b:t),2=0.1)} <b=<a

where constraints on the input types appear before=th&_ delimits the variable
arguments, constraints on the output types appear aftee=thanderlines (e.g.
I nt) indicate value embeddings at the type level, anid the sub-object relation
(at the type level). The above ought to be taken as an inditati ourintentions
rather than as an example from a formal contract system.

3 System overview

In this section, we give an overview of our process. To imerphe results, it
is crucial to comprehend the multi-stage inferencer asrdest in the previous
section.

Below, we describe each stage and explain what new “featbesStage imple-
ments. There are currenthy stages; this stopping-point is quite arbitrary, and was
chosen merely because it was time to write up our resulterakian because we
had finished the task or arrived at a “natural” endpoint.

While these53 stages were certainly sufficient to obtain many interestéig
sults, we believe that at least0 stages or more would be necessary to achieve
reasonable coverage of the full Maple library. Neverthelese feel that this pro-
cess has already uncovered sufficiently many requiremengsdontract system to
demonstrate the value of our approach.

All of the items below are marked with eitheffar aB, indicating respectively
a top-down or bottom-up stage. It is also worth noting thatejarate an analysis
phase (recursing through the components of an object) ar@tonstruction phase
where we “build” the contract of the object as a whole fromghbb-contracts. For
reasons of length, we will assume that the reader is famililr Maple’s object
representation; an appendix to tAdvanced Programming Guidé&] provides a
good introduction to these details. However, a detailecetstdnding is not neces-
sary to comprehend the general concepts behind our approach

We will follow the Maple naming convention of using all-ctgds to name in-
ternal objects; these names correspond to those used irelaprt formA.

1 T On start-up, the only thing known is that the library corsadta lot (13063)
of named objects, each of which is given by an Abstract Symtar, with a
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named root node and sub-trees. Each node in the tree hase {tyych
corresponds to an object of the 37 visible Maple internas tag its own
internal representation. Tablegives the full results of this stage. We make
one concession ta priori knowledge: all names that start wittype/ are
treated as types, not values.

2 B Leafobjects are implemented. In other words, INTPOS, INGNETRING,
and FLOAT. RATIONAL and COMPLEX are implemented too.

3 T As procedures are (by far) the most common, recurse on eacpawent.

4 B Recurse through SET, LIST, and EXPSEQ. Types for these tha siraight-
forwardly rebuilt from the components. In fact, if all subjects are static
values, then it is reconstructed as a Static value.

5 T Stage 3 was completely naive and, as expected, pushesothlerprto the
first component of procedures (the parameter sequence PAAEE). We im-
plement (again by simple recursion) traversal of PARAMSEQCALSEQ,
OPTIONSEQ, LEXICALSEQ, RETURNTYPE. We give the global seqoe
(GLOBALSEQ) the typeNone as it has no operational significance.

6 B Recurse through EQUATION and POWER. Static cases handled.

7 T Again, Stage 5 handling was naive, in particular with respe locals.
Create a recursivenvironmentwhere bindings for locals (and parameters)
can be stored, and deal with NAME and DCOLON entries in LOCELS

8 B Global NAMEs in the library are, by definitiosymbols

9 T Deal with unknown options. Optiomememberoperator, arrow, system
and copyright strings have no operational meaning, so tregtaipped out.
Other options will be treated later.

10 B Recurse through NOT, UNEVAL, and FUNCTION (i.e. functiornpéipa-
tions). Handle Static cases of NOT and UNEVAL.

11 T Like stage 7, but for parameters.

12 B Recurse through PROD (and handle Static).

13 T We are finally at the stage where procedure’s actual STATSERe main
blocking point! Right now, just recurse through, and acclateinformation.
The resulting value will be that of the last statement in tAATSEQ (until
we are ready to deal with more complex control flow).

14 B Recurse through RANGE, CATENATE, SUM, AND, and OR, handling
Static cases.

15 T Somewhat surprisingly, the most common object in a Maplegxutare
amongst all the “statements” is ASSIGN. We do not take thim&an that
Maple is fundamentally imperative, as many assignmentkldmidone via a
let expression, if Maple had them. Right hand sides of assigtsvaa typed,
and a binding to that type is added to the left hand side intlE@ment.

16 B Recurse through INEQUAT, MEMBER, and NARGS, handling $taises.

17 T Deal with ASSIGNEDNAME. This corresponds to the use of a narhieh
either has a meaning in the library or is a builtin functiohthle name has
already been typed (successfully or otherwise), the résuétken from the
environment. Recursion (through names) is not handledcangdht via the
environment. Failures for each builtin is given by name saagian explosion
of the number of unhandled cases at all later stages.
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18 B Handle function calls when the function called isyanbol

19 T The second-most popular statement is a conditional. As dm #fways
composed of at least one CONDPAIR, recurse through theseAlso, put a
guard to ensure that conditions in an IF have type “boolean”.

20 B Recurse through LESSTHAN and LESSEQ.

21 T Implement some inference for Maple types (InferType). Adindols are
considered to be types at this stage.

22 B Handle a DCOLON. Ensure right hand side corresponds to aévgipé.

23 T Handle references to PARAM. The environment is queriedHertype.

24 B Give a type to the builtingval b, andl engt h (as they are amongst the
simplest builtins).eval b takes in any single Maple object and will return
true orfal se, whilel engt h takes any single Maple object and returns a
positive integer.

25 Due to some hiccup in our development, this stage numbeskipped.

26 T Start giving types to non “Static” objects. For this stagest jimplement
dispatching to internal-type driven tables. We will cat ihfering of contracts
from pieces “re-assembling”.

27 B Re-assemble EQUATION, INEQUAT, LESSTHAN, LESSEQ as wellas
and2 argument EXPSEQ. argument EXPSEQ occur for example in the inert
representation of a list like] wherea is a parameter.

28 T First implementation of VerifyBoolean, the routine to ckdbat an ex-
pected boolean really is.

29 B Recurse through XOR

30 T References to LOCAL are most common, and handled much [ilkARA

31 B Re-assemble AND, OR, and NOT.

32 T We give a contract farype. This takes any Maple object as first parameter,
a Maple type as second, and returns a value of typeef al se.

33 B InferType support for SET, LIST, EQUATION, and RANGE. Sindaple
types are quite different than values, even though theyraptemented as
values, it is important to infer them separately.

34 T Re-assemble ASSIGN. Amounts to returning the type of tha tignd side.

35 B VerifyBoolean - add support for Static values, as well astyipe construc-
torsNot , And andCOr .

36 T Re-assembling of FUNCTION (function calls). Make sure thiaén calling
a function, that the types expected and the arguments passé&tbmpatible”.

37 B Check if Static values are actually types. This occurs ssirgly often.

38 T Recurse through TABLEREF.

39 B Implement checks that and< are booleans, which means verifying that
the arguments are numeric. Implement VerifyNumeric fos thsk. Deal with
Static values, and (Maple) subtypes of “numeric”.

40 T Calls to builtinop are most common. Deal with this by creating a name for
the type of the functiomp, call it OpType Becausep is ad-hoc polymor-
phic, this allows us to typep at the call site instead.

41 B Re-assemble (some) TABLEREF.
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42 T Now OpTypecan be be implemented at the call site. Create what is essen-
tially a type class, calle@pAbleto represent all objects which can bp’ed.
OpAbletracks whethet - or 2-argumenbp was used, and in thizargument
case, what that was. This is done asastraint

43 B Static TABLEREF, re-assembly of SET, LIST.

44 T Type for builtinnops. As an approximation, use tymnythingfor the
input, although typ®©pAblemight be more accurate.

45 B Previous handling of UNEVAL was naive (it basically did hioig!). Now
set an environment variable so that ASSIGNEDNAME encowctérside an
UNEVAL are treated as a NAME.

46 T Handle ERROR statement. Get the type of the componentshéntréeturn
None which is the absence of a type. This does not correctly lesihdl case
where there is code below an ERROR, but this should be veey rar

47 B InferType implemented over ASSIGNEDNAME, and UNEVAL.

48 T Implement ARGS. Likeop, this is done by creating a new ty&quence-
Variable (where clearly Mathematica has influenced our choice of hame

49 B Re-assemble DCOLON, UNEVAL and RANGE

50 T Implement RETURN. Like ERROR, the 'value’ of a RETURN is @ity
None however RETURN adds its value asesult typein the environment.
The result of a procedure will be composed of the appropcaebination of
all obtained result types.

51 B VerifyBoolean now know about: , and Parameter. When encountering a
Parameter, it adds a constraint to the environment.

52 T Re-assemble simple IF. “simple” is defined to mean an IF withéhches
and identical types in both branches, or a one branch IF efiXigne

53 B InferType can now handle POWER, FUNCTION and RETURNTYPE.

We plan to pursue this line of study and record our detailsdltgin a technical
report; also, we hope to eventually make our inferencer esdédable as we feel
that it could in time be useful to others as well.

4 Results

Tablel shows the results we get for stagevhere for space reasons we use A* to
designate the long name ASSIGNED. As expected, procedua&s op the bulk
of the library. The large number of tables is in part duemd t r ans which uses a
pattern-matching approach to computing integral trams$§orand includes a large
number of data tables. ThHeferTypeentry refers to the(09 t ype/ routines. See
the next section for a further discussion of these findings.

Figurel shows a plot of the number of named Maple objects which areesise
fully “typed” at each stage. The jump at sta®jeeflects the typing ot 22 objects
(the raw integers, floating point numbers, etc) in the lijardrhe jump at stage
reflects the typing o265 lists (of integers, floats, string844 are lists of lists of ei-
ther floats or integers) as well &% expression sequences aridsets (all empty!).
Stages reflects the typing of symbol2¢4 of them, as well a82 compound ob-
jects containing symbols). Stagé reflects the typing of very simple procedures
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Number| 11023 457 409 297 264

Tag PROC TABLE InferType LIST NAME

Number| 164 141 84 71 55

Tag MODULE INTPOS TABLEREF SET FUNCTION

Number| 39 16 16 9 9

Tag A*NAME EXPSEQ ARRAY LOCALNAME FLOAT

Number| 3 3 1 1 1

Tag STRING UNEVAL INTNEG COMPLEX A*LOCALNAME
Table 1

Results of first-stage failures
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Fig. 1. Number of typed objects per stage
like proc() O end proc (there arel7 occurrences of this in the library). Fur-
ther advances are then hard-won, and reflect the many feahathave had to be
implemented to get to that point, documented in the prevéaaesion.

Figure 2 shows, from stagé6 onwards, the difference in the number of suc-
cessfully typed objects at each successive stage. UnlkkedHy successes shown
in the previous figure, it is clear that few Maple procedunescmpletely trivial,
and that a fair amount of infrastructure is necessary befte@dy progress occurs.
However, one can see that, beginning at approximately dtagrur efforts start to
pay off, and successes come more readily.

Figure 3 displays, again from stages onwards, the number of changed Fail-
ure messages at each stage. This reflects movement from e 86 failure to
another. What is most interesting is the overall even/ogdusgion: one can see
a “high” curve corresponding to the large movements duedddp-down passes,
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Fig. 2. Difference in number of successfully typed objecatgiage (post stage 16)
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Fig. 3. Number of changed Failure messages per stage (pgst 56)

and a “low” curve corresponding to the more idiosyncratittm-up passes; this
distinction is apparently at least until stagfe when the two curves get very close
to each other. The one outlier in the bottom-up process g&8@ as the relational
operators=, <>, < and< together caused quite a few failures. We believe that this
graph lends credence to our methodology of combining toaprdand bottom-up
approaches.

In Table2, we show the most common Failure mode for our inferencer afte
a successful bottom-up stage. This is the deciding factowfat will be imple-
mented in the next, top-down, stage. First, it is clear thasé numbers are gen-
erally decreasing, which means that the bottlenecks “sippe# over more cases.
The large drop after stage reflects that Maple procedures are not uniform, and
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that while assignments are most common, they account fooyes half. The drop
at stage20 actually reflects two things: thaff statements are quite common, and
that in stagel7 builtin procedures were split out into cases. That sometithe
numbers go back up reflects that handling more cases sonsatamees a refocus-
ing of the reasons for failures into a few common bottlene@&ssstages3, while
there are stilll 2050 objects to “type”, the most common source of failure acceunt
for just4.5% of the total. The tod0 however do account fd2% of the failures,
so there still are quite a lot of commonalities.

We will make our complete results available as a technigabnte but this al-
ready spans roughlis0 pages of “data”.

5 Discussion

Our systematic approach had the side-effect of generatoansiderable amount
of data. Some of it is pure trivia, but quite a lot was rathepssing to us. In this
section, we provide a sampling of what we have found, firstipling some explicit
examples, and then concentrating on those items which wesé unexpected.

5.1 Examples

5.1.1 I abs

A trivial example is that for the proceduten abs, which is a special case of the
I mfunction (the imaginary part) applied to a symbolic absehslue. Since the
result of an absolute value is always a positive reaf, abs is a trivial procedure
which simply returns 0 always.

Unsurprisingly, the analysis of this procedure is not diffic What is perhaps
more surprising is that, as a consequence of our designe)dice return value
is actually hardcoded in the contradtunction([], Stati c(0)) expresses
succinctly the fact that this is equivalent to the constanb Zunction.

5.1.2 codegen/j oi nprocs/i sAssi gn
A short utility procedure used by theodegen package, this routine is ana-
lyzed to be of “type”Functi on([ OpAbl e(0)], truefal se). Thatis, this
function accepts a single argument (say,and the function requires that the Maple
commandop( 0, x) be defined. The symbolr uef al se indicates that the re-
sultis a boolean value.

The OpAbl e( 0) predicate, which indicates that Mapled® command may
be invoked to extract the Oth argument, is really the eqaivabf a type class in
Haskell.

5.1.3 codegen/ C/ function/argtype/irem

This example exhibits need for first-class types in our @attianguage. The con-
tract generated is

Function([ Paranmeter (1, "node")], Static(Synbol ("integer")))
This specifies that the object in fact a function from an aaloytinput to atypeen-
coded as a plain value.
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stage| occurrences Failure mode
2 11023 cannot handle PROC
4 11023 cannot handle GLOBALSEQ
6 8955 cannot handle nonempty LOCALSEQ
8 9419 cannot handle nonempty OPTIONSEQ
10 9708 cannot handle nonempty PARAMSEQ
12 9544 cannot handle STATSEQ
14 4502 cannot handle ASSIGN
16 4414 cannot handle ASSIGNEDNAME
18 3671 cannot handle IF
20 1653 InferType not implemented
22 1531 cannot handle PARAM
25 1917 cannot unify non-Static types
27 1417 VerifyBoolean not implemented
29 1416 cannot handle LOCAL
31 1407 no type for builtin type
33 1419 cannot re-assemble 2-arg ASSIGN
35 1120 cannot re-assemble 2-arg FUNCTION
37 1141 cannot handle TABLEREF
39 748 no type for builtin op
41 616 unknown function call OpType
43 594 no type for builtin nops
45 628 cannot handle ERROR
47 608 cannot handle ARGS
49 669 cannot re-assemble IF
51 788 cannot handle RETURN
53 549 cannot handle FORFROM
Table 2

Most frequent failure after a bottom-up stage, leading tmpadown stage
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5.2 Assertions

Hinze, Jeuring, and Loh are very specific in stating thai tiige of the term “con-
tract” implies that a contract affects program behavi@iV/e do not share this
view of contracts, and here we concentrate on what they tefasstatic proper-
ties However, as we have to deal with many more issues, theseniegpfall far
outside the usual realm of properties considered for tygeesys. Nevertheless, it
would be an easy task to implement an “assert” command sitoildoeirs which,
given a procedure and an (inferred) contract, returns agpite which checks that
the contract is satisfied before and after execution. Suamatct may lead to
more information-rich error messages, and is worth furtnegstigation.

5.3 Artifacts

Any piece of software that has been developed continuowoslg fjuarter-century
will necessarily have accumulated baggage along the wayin@estigations have
unearthed a host of oddities, few of which are outright bdmg, many of them
interesting artifacts nevertheless.

The Maple system has evolved greatly over the years. Qué aller features
have been deprecated, and mention of their existence istddemished from much
of the present documentation. However, because of the stzesof the library and
the need for backwards compatibility, it cannot all be “wgubgd” to employ only
newer features.

Names defined in a Maple archive are stored in records addiedhfiles, whose
load is triggered when the associated name is first seen. ghhamodern Maple
code is designed in such a way that there is at most one glaloa¢ mefined per
dot-m file, this was not always the case. It is therefore fbesgor certain global
names in Maple to be defined from the main Maple repository drdome other
name, whose relationship to the first may not be obviousad fiest. Among the
names defined in this “hidden” way are the globalandb; the concern this fact
may stir should be dampened somewhat by the fact that theyuaied under the
namet tt esti ngl/ ___a, which the casual user is unlikely to use. Also, names
used to not be automatically defined, and so one had to useukieer eadl i b
to achieve this; as this practice was discouraged quite siomeeago, we were quite
surprised to discovei0 calls tor eadl i b remaining in the library.

One may also wonder, why are there so many integer constaméeisn the
library? Some are so-calledagic constanta/hich control the behaviour of certain
routines (provide thresholds, etc). Others are pure atsifawhen the tables for
integral transforms are saved, the number of entries in &dilh is also saved in
a separate name, yet this name is not referenced anywhermelse library! So
those integers serve no effective purpose.

5.4 Modules

In modern Maple (i.e. starting with Maple 6), modules are ofithe most impor-
tant structuring mechanisms for larger pieces of codeudinl the Maple library.
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Though in following our greedy approach we have so far igdtop-level modules,
given the special focus on modules in the last several Mahases we might still
expect to encounter many references to modules in the asalfysther top-level
names.

As such, itis quite surprising that througB passes in the library, modules have
not been at top of the list of bottlenecks. It would appeat ‘tbla” Maple (i.e. the
code saved in top-level names not assigned to modules) dvealh“new” Maple
very much. Perhaps this indicates that newer routines anelsow less “central”
to the system, which would be reasonable for a mature sys@inperhaps this
indicates that the refactoring and maintenance of oldetirres is not an active
concern of Maplesoft.

5.5 Code Templates

There is a long tradition of run-time code instantiation impfe. The modern
method is to use lexically scoped procedures (or moduleg)this does have a
certain overhead for the generated procedure. The olddranebf usingsubs
directly into a templatg@r oc is sometimes still used for this purpose. However,
this older method fell into disfavour because it was acdiggane: since it used
explicit names for the substitution, it was possible to blecky and have accidental
name captures. Efforts to avoid these accidental namerespted to some rather
creative names used as placeholders in some procedureatespl

There is, however, a modern twist: since a Maple string masgmbave an
assigned value, one may safely use a string in place of a nantleef substitution
parameter and avoid accidental capture. However, sincettimg is usually likely
to be a different type than its substituted value, this hassible-effect of having
the code template beingvalid code, i.e. code which cannot be run on its own
without generating a nonsensical error, but which works difter the substitution
is performed. dsol ve/ nuneri ¢/ MB/ sol nproc' is one such a routine, and
they cause many headaches for our inference engine!

5.6 Monoids and other algebraic structures

One might hastily conclude Maple’s library is entirely frefealgebraic structures,
and this would be quite inaccurate. Nevertheless algeltaictures do seem to
be present implicitly rather than explicitly. They may appé two ways: via a
natural morphism, or via correctness conditions. In the dese, we find a nat-
ural refinement morphism between the specification of anbadge structure and
a computational implementation. It seems quite difficulirtter such algebraic
structures, as frequently such morphisms are not invertilh the second case,
there is also a natural refinement morphism present, butrelsgal correctness
conditions — for example division can only be used when isexand is well-
defined. In this case, the algebraic structure seems to bmargent property of
the implementation.
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6 Conclusion

Among the more surprising results of our investigation is liigh importance in
the system of traditional “computer science” data striegusuch as lists, sets,
functions, variables, and conditionals. This is in corttkaish the rarity of basic
algebraic structures such as sums, products, or more crrslectures such as
monoids and groups. But just as interesting is the pervasagof symbols, and
of functions with variable numbers of arguments. While weodbund a lot of dy-
namic type checks, it is still unclear to us whether thesaelgnamic by necessity,
or simply for convenience to the programmer.

On the other hand, we have found substantial use of first-tjaes (i.e. types
as values) and dependent types; there is also considersblafad hocpolymor-
phism (throughop, nops, etc). It is not clear to us whether these are fundamental
or whether a solid implementation of pattern-matchinghvpitoper syntactic sup-
port (unlike what is offered by ypenat ch) would remove the need for these.

The frequency of assignments involving single-use locaheg suggests that
Maple sorely needslaet construct. Surprisingly, the data also suggest that Maple
is arguably somewhat more functional than imperative, asetlare more uses of
map than off or loops.

Finally, it seems to us that many of the currently unhandlgitt-in functions
may depend upon some sort of generalized “Expression” tgpeh a dependency
would be somewhat disheartening, as the generality of sugheawould impede
wide-scale inference of useful static contracts involuimgse builtin functions.
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A Maple Glossary

We provide a brief description of a few of the commands or gigras specific to
the Maple programming language that have been referended text.

op: Returns the operands of any structured expression (eegeléments of a
list or set, or the arguments of a function call.)

nops: Similar toop, but returns only theumberof operands.

inert formt A method of representing Maple code as a data object camgist
unevaluated (inert) function calls, equivalent to an au$tsyntax tree. This may
be programmatically manipulated with no fear of accideataluation.

Tol nert, From nert: A means of converting live code (e.g. an expression,
procedure, or module) into anert form and vice-versa.

Table A.1 provides a short synopsis of the data structures assoaciatedhe
more esoteric names among the inert form names used throuiiectext.

name(s) data structure

ASSIGNEDNAME | Name with an assigned value, as opposed to an (unassigmedpbky

CONDPAIR “Conditional pair”: a boolean condition and associatedesteent,
found only inside an IF structure

DCOLON Procedure parameter or local variable with an explicit tgpeotation

EXPSEQ “Expression sequence”: a self-flattening sequence of ezes

FORFROM A for/while loop: both for loops and while loops are speciates

INTPOS, INTNEG
TABLE
TABLEREF
UNEVAL

Positive and negative integers, respectively
Hash table
Index into a hash table

Wrapper around an expression which delays evaluation

Table A.1

Data structures corresponding to inert form tags
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