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Abstract—Constraint solving is a fundamental tenet of most
test case generation strategies. However, conventional con-
straint solving methods were not designed in consideration of
that aspect of test case generation. It has led to a situation
where test case generation techniques can miss test cases
when constraints contain function invocations. This is due
to the fact that, when solving constraints to generate test
cases, function invocations are not effectively handled and, as a
result, solutions to some constraints are not found even though
they do exist. This problem occurs in both specification-based
and code-based testing. To address the problem, this paper
presents a function substitution method that transforms test
case constraints that contain certain types of functions into
equivalent constraints that do not contain those functions. The
transformation preserves the solution space and avoids missed
test cases. As a result, the completeness of test case generation
can be improved.

Keywords-software testing; test case generation; test case
constraint; tabular expression; substitution completeness;

I. INTRODUCTION

Testing strategies always give some criteria for selecting

test cases. For example, the criterion for the basic branch

testing strategy is to execute enough tests to ensure that

every branch in a program has been executed at least once

under some test [1]. To find the test cases that fulfill a

criterion, the criterion must first be represented as a set

of test case constraints with respect to a given program.

Consider the following code segment: {if (x > 5) return 20;

else return 15;}. For branch coverage, at least two test cases

are needed to meet the criterion: one must satisfy x > 5
and the other must satisfy x ≤ 5. We call x > 5 and x ≤ 5

test case constraints, and assignments that satisfy the con-

straints solutions (i.e., test cases). Many constraint solvers

have been developed to search for solutions automatically.

They have been developed as either single-purpose tools or

as functionality within a much larger commercial product

such as Maple (http://www.maplesoft.com) and Mathemati-
ca (http://www.wolfram.com). Constraint solving algorithms

usually search the domain of the variables in the constraint

until a combination of value assignments is found to make

the constraint hold true. Consider x > 5, for instance, a

searching algorithm may yield x = 6 as a solution to this

constraint.

It is common that a program calls other program functions

to fulfill a task. Hence, it is typical that function invocations

appear in the constraints. If f(x) replaces x in the above

example, the constraints then become f(x) > 5 and f(x) ≤ 5.

Consider the constraint f(x) > 5, for instance. Constraint

solvers usually treat embedded functions in a constraint

as variables. Tracing the function definition is out of their

concerns. A constraint solver will yield, say, f(x) = 6 as a

solution. To find a test case, we need to trace f(x) to get an

assignment of x for f(x) = 6. If no solution can be found

for f(x) = 6 while there actually exists an assignment of x

that satisfies f(x) > 6, test cases are missed.

A function invocation can sometimes be replaced ac-

cording to the definition of the input/output relation of

that function. If all the functions in a constraint could be

replaced properly, the algorithm of finding test cases would

be straightforward. The relations between the input and

output of a function or a subprogram, however, can be far

more complicated: firstly, such relations can be conditional;

secondly, a subprogram can use other subprograms. Hence,

in most situations, removing a function from a constraint is

not as straightforward as replacing f(x) with its function

definition such as x + 1. The question of how to find test

cases from the constraints that contain function invocations

has often been ignored or sidestepped in existing test case

generation techniques. This problem affects all kinds of

code-based and specification-based testing techniques that

need to solve constraints involving embedded functions.

2012 12th International Conference on Quality Software

1550-6002/12 $26.00 © 2012 IEEE

DOI 10.1109/QSIC.2012.32

31



The work presented herein addresses this kind of real

complexity. To explain the approach, tabular-expression-

based specifications [2]–[5] are adopted since tabular ex-

pressions are capable of describing complex I/O relations of

subprograms, and the notation is both readable and precise.

Furthermore, tabular expressions have a proven track record

in mission-critical industrial applications, notably the US

Navy’s A-7 aircraft [6], the Service Evaluation System of

Bell Laboratories [7], [8], and the Darlington Nuclear Power

Station [9] and other real systems like a Dell keyboard

testing program [10] and an Ericsson telecom software

system [11], etc.

This paper is organized as follows: Section II reviews

related work. Section III introduces tabular expressions and

the corresponding testing strategies. Section IV analyzes the

cases in which test cases are missed. Section V presents

our approach. Section VI shows evaluation results of our

approach. Section VII concludes the paper and discusses

future research.

II. RELATED WORK

In program compilation, there is a technique known as

inline substitution [12], [13], which replaces a function

invocation in source code with a modified version of its

function body. It is an optimization technique with the

objective of minimizing execution time of the object code.

It is not appropriate to apply this technique to unit testing

because, firstly, the test obligations for an adequacy criterion

before and after the inline substitution can be different;

secondly, replacing all levels of function calls can make unit

testing too complicated to be practical; and finally, replacing

function calls can be difficult in some situations because

they can occur not only as single statements but also at

any place such as in assignment statements or in conditional

expressions.

Another technique of substitution, known as symbolic
execution [14], has been proposed for symbolic testing

and debugging [14], [15], test case generation [16]–[18],

verification of program (partial) correctness and program

properties [15], [19], invariant generation [20], testing for-

mal specifications [21], and program reduction [22]. It

uses symbolic instead of concrete inputs to run a program.

Research on symbolic execution and symbolic analysis has

been conducted not only in the area of software engineer-

ing but also in the area of programming languages and

compiler technologies in order to facilitate parallelism and

optimization of program code as well as error detection [23],

[24]. To analyze programs involving procedures/functions,

both static techniques (such as inter-procedural symbolic

analysis) and dynamic techniques (such as inter-procedural

tracing of symbolic expressions) have been developed. While

symbolic execution can be applied to generate white-box

test cases, where the program under test involves embedded

function invocations, it has similar limitations as those of

in-line substitution techniques.

A related technique is testability transformation proposed

in [25]. It is a source-code-based transformation that is

aimed at improving the testability of a program without

weakening the test adequacy criterion. It replaces the control

flags in the program. It has been used in evolutionary test

case generation. A further substitution technique used in

evolutionary test case generation is the genetic algorithm

that replaces or exchanges parts of tried test cases [26].

However, none of these substitution techniques take function

invocation into consideration.

In this paper the substitution of function invocations

for the purpose of test case generation is considered. The

proposed algorithm does not intend to find the complete so-

lution to the constraint solving problems in software testing;

instead, it is a partial solution that should be seen as a first

step in resolving this issue. The substitution is not performed

in program source code but in the test case constraints

that fulfill certain testing criteria. Finding solutions to the

transformed constraints are left to constraint solvers, which

is beyond the scope of this paper. This algorithm has been

used in ESTP, a testing platform developed in our laboratory

to support tabular-expression-based testing [27].

III. INTRODUCTION TO TABULAR EXPRESSIONS

This section will describe the characteristics of tabular

expressions. It will then examine two different strategies for

generating test case constraints from such expressions.

A. Tabular expressions

A tabular expression is an indexed set [28] of grids, and a

grid is an indexed set of predicate expressions or evaluation
expressions [4]. An evaluation expression is evaluated if its

corresponding predicate expressions are true with respect to

an input assignment. Predicate expressions and evaluation

expressions can be tabular themselves, i.e., defined in sep-

arate tables. Many table types have been defined and can

be transformed into each other [4], [29], [30]. In this paper,

two types of tables are used: normal and inverted. It is also

required that all the programs specified by these tables be

deterministic.

1) Normal table: The two-dimensional normal table in

Fig. 1 shows the specification of a function that calculates

the price of a product according to its type and quantity.

An equivalent conventional mathematical expression for this

function is also given.

• The program takes two input variables: q (quantity) and

t (type), where q is an integer and the domain of t is

{V A, V C, V E} (denoted by VTYPE ).

• The specification table contains three grids: T [0], T [1],

and T [2]. T [1] and T [2] are header grids and contain

only predicate expressions. T [0] is the main grid and

contains only evaluation expressions.
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• The index sets for T [1] and T [2] are the same, namely

{0, 1, 2}; the index set for T [0] is {0, 1, 2} × {0, 1, 2}.
• Both T [1] and T [2] must be proper, i.e., one and only

one predicate expression in each of these grids is

evaluated to true with respect to an assignment of q
and t in their domains.

T [0][i, j] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2 is evaluated with

respect to an assignment if and only if both T [1][i] and T [2][j]

are evaluated to true with respect to that assignment.
2) Inverted table: The table in Fig. 2 is a two-dimensional

inverted table showing the specification of a program that

calculates the commission according to the sales by a

salesperson.

The following features can be observed:

• The program takes four input variables: qa, qc, qe,

and r, where qa, qc, and qe (quantity) are integers,

and the domain of r is {NON EU , EU} (denoted by

REGION ).

• The expressions in the grids T [0] and T [1] are predi-

cate expressions. The expressions in the grid T [2] are

evaluation expressions.

• T [1] and each row of T [0] must be proper.

In T [2], T [2][j] for 0 ≤ j ≤ 2 is evaluated only when

T [1][0] ∧ T [0][0, j] or T [1][1] ∧ T [0][1, j] is evaluated to true
with respect to an assignment. The function Sales in Fig. 2

is defined in a conventional mathematical expression, which

uses the function Price. It itself is used in the table for the

function Commission.

These two tables together with the other tables in the

appendix comprise the specification of program Level. This

program grades the promotion levels for a salesperson based

on sales amount.

B. Tabular-expression-based testing strategies

Two testing strategies have previously been proposed

based on tabular expressions, namely the partition method

[31] and the interesting point selection strategy [32]. Both

generate test cases by exploiting the domain division in the

tabular structure.

The partition method requires that each cell in the main

grid be tested at least once. The total number of test case

constraints for a two-dimensional normal or inverted table

is given by the number of defined cells in the main grid.

For example, to test the cell T [0][0, 2] in the specification

Commission, a test case that satisfies the constraint (r �=
EU) ∧ (Sales(qa, qc, qe) > 4800) can be used.

The interesting point selection strategy uses boundary

values given in the tables for stress testing. For example, for

the specification table in Fig. 2, this strategy can create a test

case constraint such as (r �= EU)∧(Sales(qa, qc, qe) = 4800).

In the above examples, the test case constraints created

with these two strategies both contain functions. For con-

sistency, we will use the partition method in all further

examples in this paper. Table I shows the sets of test case

constraints for Price and Commission with the partition

method.

IV. CONCEALED TEST CASES

When a test case constraint contains functions, the fol-

lowing algorithm is a straightforward solution that is used

to search for test cases.

(1) Evaluate all the functions with constant parameters

and replace them with the evaluation values.

(2) Treat the functions with variable parameters as vari-

ables and use a constraint solver to get an assignment

to these functions.

(3) Trace the definitions of these functions and find an

assignment to the input variables of these functions.

(4) If no assignments of the input variables are found to

fulfill the assignment to these functions, go to (2) to

try another assignment.

However, as stated below, the algorithm does not ex-

ecute efficiently and can miss valid test cases. Take the

following constraint from Table I as an example: (r �=
EU) ∧ (Sales(qa, qc, qe) > 4800). Since constraint solvers

treat the function Sales(qa, qc, qe) as a variable, one so-

lution a constraint solver may give for this constraint is

〈Sales(qa, qc, qe) = 4801, r = NON EU〉. This solution

does not actually determine the values of qa, qc, and qe.

Further processing is needed to find their values such that

Sales(qa, qc, qe) = 4801. Since Sales contains the function

Price, which is defined in another table, we must search

that table to find the values of qa, qc, and qe such that

Price(qa, V A)× qa+ Price(qc, V C)× qc+ Price(qe, V E)×
qe = 4801. Unfortunately, according to the definition of

Price, such values do not exist. As a result, no assignments

to the input variables are found. In other words, test cases

are missed. The only way to handle the situation is to assign

the function Sales another value by searching for the next

solution to the constraint and try again. This process has

to be repeated until an assignment is found or no further

assignments are possible.

There is also another problem with this algorithm. Consid-

er the following constraint: (r �= EU) ∧ (Sales(qa, qc, qe)/2

+Sales(qe+qa−qe, qc, qe)/2 > 4800). Since Sales(qa, qc, qe)

and Sales(qe + qa − qe, qc, qe) are treated as separate vari-

ables, then probably assigned different values, such as

Sales(qa, qc, qe) = 4800 and Sales(qe + qa − qe, qc, qe) =

4802, even though they are equivalent. When that happens,

no solution can ever be found. However, test cases do exist

for this constraint (e.g., 〈qa = 30, qc = 60, qe = 99, r =

NON EU〉).

V. THE FUNCTION SUBSTITUTION METHOD

This section introduces an approach to processing a con-

straint that contains functions.
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Price(int q, VTYPE t) ≡
T [2]

t = V A t = V C t = V E

q ≤ 30 20 26 32
30 < q ≤ 60 18 24 30

q > 60 16 22 28
T [1] T [0]

Price(q, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

20 if q ≤ 30 ∧ t = V A
26 if q ≤ 30 ∧ t = V C
32 if q ≤ 30 ∧ t = V E
18 if 30 < q ≤ 60 ∧ t = V A
24 if 30 < q ≤ 60 ∧ t = V C
30 if 30 < q ≤ 60 ∧ t = V E
16 if q > 60 ∧ t = V A
22 if q > 60 ∧ t = V C
28 if q > 60 ∧ t = V E

Figure 1. A normal table (Price)

Commission(int qa, int qc, int qe, REGION r) ≡
T [2]

Sales(qa, qc, qe)× 0.1 Sales(qa, qc, qe)× 0.15 Sales(qa, qc, qe)× 0.2

r �= EU Sales(qa, qc, qe) ≤ 3000 3000 < Sales(qa, qc, qe) ≤ 4800 Sales(qa, qc, qe) > 4800
r = EU Sales(qa, qc, qe) ≤ 2800 2800 < Sales(qa, qc, qe) ≤ 4500 Sales(qa, qc, qe) > 4500
T [1] T [0]

Commission(qa, qc, qe, r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sales(qa, qc, qe)×0.1 if r �= EU ∧ Sales(qa, qc, qe) ≤ 3000
∨ r = EU ∧ Sales(qa, qc, qe) ≤ 2800

Sales(qa, qc, qe)×0.15 if r �= EU ∧ 3000 < Sales(qa, qc, qe) ≤ 4800
∨ r = EU ∧ 2800 < Sales(qa, qc, qe) ≤ 4500

Sales(qa, qc, qe)×0.2 if r �= EU ∧ Sales(qa, qc, qe) > 4800
∨ r = EU ∧ Sales(qa, qc, qe) > 4500

Sales(int qa, int qc, int qe) = Price(qa, V A)× qa+ Price(qc, V C)× qc+ Price(qe, V E)× qe

Figure 2. An inverted table (Commission)

Table I
THE SETS OF TEST CASE CONSTRAINTS WITH THE PARTITION METHOD

Table Set of test case constraints with the partition method
Price(q, t) {(q ≤ 30) ∧ (t = V A), (q ≤ 30) ∧ (t = V C), (q ≤ 30) ∧ (t = V E), (30 <

q ≤ 60) ∧ (t = V A), (30 < q ≤ 60) ∧ (t = V C), (30 < q ≤ 60) ∧ (t =
V E), (q > 60) ∧ (t = V A), (q > 60) ∧ (t = V C), (q > 60) ∧ (t = V E)}

Commision(qa, qc, qe, r) {(r �= EU) ∧ (Sales(qa, qc, qe) ≤ 3000), (r �= EU) ∧ (3000 <
Sales(qa, qc, qe) ≤ 4800), (r �= EU) ∧ (Sales(qa, qc, qe) > 4800), (r =
EU)∧ (Sales(qa, qc, qe) ≤ 2800), (r = EU)∧ (2800 < Sales(qa, qc, qe) ≤
4500), (r = EU) ∧ (Sales(qa, qc, qe) > 4500)}

A. Functions in two categories
Let us consider the following conditions of a function in

a constraint:

(1) the function is defined either in conventional mathe-

matical expressions or in tabular expressions,

(2) the function is not defined recursively, either directly

or indirectly, and

(3) the variables of the function are simple variables, i.e.,

they do not refer to other expressions.

If a function meets the above conditions, it is a category A
function; otherwise it is a category B function. Our approach

removes category A functions in constraints by transforming

those constraints into equivalent ones that do not contain

category A functions. If a constraint contains only category

B functions, the approach will not be applied. If a constraint

contains both category A and category B functions, then all

the category A functions can be removed, and the category

B functions will remain.

This approach makes it easier to generate test cases

from constraints given that category A functions account

for a very large portion of functions in the real world.

After applying this approach, the number of functions in

constraints will be reduced (in this case the only remaining

functions belong to category B) or become zero (in this case

no category B functions are involved). In either case, finding

solutions to the resultant constraints is simplified. Further

discussions on constraint solving, however, are beyond the

scope of this paper.

B. Substitution completeness

Let us consider a constraint f(x) > 5, where f(x) =

1000x+5 and x is an integer. If we do not replace f(x) with

its definition 1000x + 5, the solution to f(x) > 5 is usually

f(x) = 6. However, we cannot find a value of x such that

1000x + 5 = 6. Hence, we have to try successive solutions,

for example, f(x) = 7, 8, . . . , until we reach f(x) = 1005.
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However, if we replace f(x) with its definition 1000x + 5

first, the constraint becomes 1000x+ 5 > 5. Then a solution

x = 1 is obtained immediately.

In the above example, f(x) is a simple linear function but

in practice, function definitions are often more complicated.

Let us consider, for instance, the constraint (r �= EU) ∧
(Price(qa, V A)× qa+Price(qc, V C)× qc+Price(qe, V E)×
qe > 4800), where the specification of Price is given in

Fig. 1. If we randomly select a combination of three prices

for the products V A, V C, and V E from the table shown

in Fig. 1 (e.g., prices in the first row of the main grid) to

replace the three occurrences of the function Price in the

constraint, the constraint then becomes (r �= EU) ∧ (20 ×
qa+ 26× qc+ 32× qe > 4800).

To satisfy this constraint, at least one variable qa, qc, or

qe must be assigned a value greater than 61. However, the

prices 20, 26, and 32 for V A, V C, and V E are applicable

only when the quantity of each product is less than or equals

30.

The approach presented herein handles this problem in a

different way through function substitution.

Definition 1 (Substitution completeness). Let fc and tc be
two constraints, where fc contains category A functions and
tc is transformed from fc by following certain function sub-
stitution rules. The substitution of the functions is complete
in transforming fc to tc if and only if:

(1) tc contains no category A functions, and
(2) tc and fc are equivalent, i.e., if t is a solution to tc, it

must be a solution to fc, and vice versa.

Two definitions are given below in the context of tabular-

expression-based specifications.

(1) A formal function is a table or a conventional mathe-

matical expression in a program specification, similar

to a function definition in a programming language.

Its syntax is: f(type1 p1, type2 p2, . . ., typen pn),

where p1, p2, . . . , pn are formal parameters, to which

normal variable naming conventions apply.

(2) An actual function is one that appears in a test case

constraint, similar to a function invocation in a pro-

gramming language. Its syntax is: f(a1, a2, . . . , an),

where a1, a2, . . ., an are actual parameters, ai with

1 ≤ i ≤ n can be

a) a constant,

b) a variable,

c) an actual function, or

d) an expression that comprises constant(s), vari-

able(s), and/or actual function(s).

C. Function substitution

In this paper, a test case constraint is defined as a logical

expression that comprises simple predicates. The definition

of simple predicate in this paper is an extension of that given

by Tai [33]. A simple predicate is

1) a Boolean variable or its negation,

2) a Boolean valued function or its negation, or

3) a relational expression of the form e1 op1 e2 op2 . . .

opn−1 en, where n > 1, opi, i = 1, 2, . . . , n − 1, is

a relational operator, and ej , j = 1, 2, . . . , n, is an

arithmetic expression involving constants, variables,

and/or actual functions.

We use the same mathematical representations as in

tabular expressions so opi can be ‘<’, ‘=’, ‘>’, ‘≤’, ‘≥’,

or ‘�=’.

If all simple predicates are represented as Boolean vari-

ables, then a test case constraint is considered to be a

Boolean expression. Usually, the solutions to a constraint

are found in two steps: first, determine the truth values of

these Boolean variables such that the Boolean expression is

evaluated to true; then for a combination of truth values, find

the assignments to those variables in the simple predicates.

If the function substitution in each simple predicate is

complete, the function substitution in the test case constraint

is complete.

Let s and m be non-negative integers with s ≥ 0
and m ≥ 1. We use R(v1, v2, . . . , vs, f1, f2, . . . , fm) to

denote a simple predicate involving variables and category

A functions, where

• v1, v2, . . ., vs are variables excluding those appearing

in the actual parameters of the functions,

• f1, f2, . . . , fm are the occurrences of all the category

A functions,

• fk and fk′ for 1 ≤ k, k′ ≤ m and k �= k′ can be

duplicated, and fk can also be a function with only

constant actual parameters.

The predicate after the transformation is denoted by

R(v1, v2, . . . , vs, . . . , vs′), where s′ ≥ 1, v1, v2, . . ., vs′ are

all the variables in the predicate.

To satisfy the first condition of substitution complete-

ness, the substitutions starting from R(v1, v2, . . . , vs,

f1, f2, . . . , fm) must end at a predicate of the form

R(v1, v2, . . . , vs, . . . , vs′). Under the assumption that no cat-

egory A functions are defined recursively, function substitu-

tions can be repeated until no category A functions remain.

To satisfy the second condition, R(v1, v2, . . . , vs, f1, f2, . . . ,

fm) and R(v1, v2, . . . , vs, . . . , vs′) must be equivalent.

Let R(v1, v2, . . . , vs, o, f2, . . . , fm) denote the simple pred-

icate obtained from R(v1, v2, . . . , vs, f1, f2, . . . , fm) with f1
replaced with o. Then we have Theorem 1.

Theorem 1. R(v1, v2, . . . , vs, f1, f2, . . . , fm) is equivalent to
(R(v1, v2, . . . , vs, o

1
1, f2, . . . , fm)∧ c11) ∨ (R(v1, v2, . . . , vs, o

2
1,

f2, . . . , fm) ∧ c21) ∨ · · ·∨(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fm)∧cn1 )

if the equivalent conventional mathematical expression of f1
is

f1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

o11 if condition c11 holds true
o21 if condition c21 holds true
...

...
on1 if condition cn1 holds true
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where ok1 and ck1 for 1 ≤ k ≤ n in (R(v1, v2, . . . , vs, o
1
1,

f2, . . . , fm) ∧ c11) ∨ (R(v1, v2, . . . , vs, o
2
1, f2, . . . , fm) ∧ c21) ∨

· · ·∨(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fm)∧cn1 ) are ok1 and ck1 in f1

with its formal parameters replaced by actual parameters.

Proof: To prove R(v1, v2, . . . , vs, f1, f2, . . . , fm) is

equivalent to (R(v1, v2, . . . , vs, o
1
1, f2, . . . , fm) ∧ c11)∨

(R(v1, v2, . . . , vs, o21, f2, . . . , fm) ∧ c21) ∨ · · · ∨
(R(v1, v2, . . . , vs, o

n
1 , f2, . . . , fm) ∧ cn1 ), we need to show that

a solution to either is a solution to both.

Assume t is a solution to R(v1, v2, . . . , vs, f1, f2, . . . , fm),

that is, R is true with respect to t. Since f1 is a function in the

constraint, f1 must be evaluated to a value with respect to t.

Therefore, t must evaluate one of c11, c21, . . . , cn1 to true (oth-

erwise f1 is not defined). Let us assume ck1 with 1 ≤ k ≤ n

holds true with respect to t, then because the corresponding

output of f1 for ck1 is ok1 , R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm) must

hold true. Hence, R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm) ∧ ck1 also

holds true. This means that (R(v1, v2, . . . , vs, o
1
1, f2, . . . , fm)∧

c11) ∨ · · · ∨ (R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm) ∧ ck1) ∨ · · · ∨

(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fm) ∧ cn1 ) must evaluate to true.

In other words, t is a solution to (R(v1, v2, . . . , vs, o
1
1, f2, . . . ,

fm)∧ c11)∨ · · · ∨ (R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm)∧ ck1)∨ · · · ∨

(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fm) ∧cn1 ).

If (R(v1, v2, . . . , vs, o
1
1, f2, . . . , fm) ∧ c11 ) ∨ (R(v1, v2, . . . ,

vs, o21, f2, . . . , fm) ∧ c21) ∨ · · · ∨ (R(v1, v2, . . . , vs, on1 , f2,

. . . , fm) ∧ cn1 ) is true with respect to t, one or more

disjunctive terms in this constraint must be true with respect

to t. Since it is assumed that the program specified by

the table is deterministic, only one of the conditions c11,

c21, . . . , and cn1 can be evaluated to true at any one time.

Hence, the disjunctive terms in the above constraint cannot

be true simultaneously. Only one term can be true. If we

let this term be (R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm) ∧ ck1) with

1 ≤ k ≤ n, then because ok1 is the output of f1 with

respect to the assignment that satisfies ck1 , t also satisfies

R(v1, v2, . . . , vs, f1, f2, . . . , fm). In other words, t is a solution

to R(v1, v2, . . . , vs, f1, f2, . . . , fm).

The following example illustrates the above theorem. As-

sume R(v1, v2, . . . , vs, f1, f2, . . . , fm) is 20 < Price(q1, t1) <

30. Hence, f1 is Price(q1, t1), m = 1, and s = 0. It is known

from Fig. 1 that there are nine evaluation expressions (i.e.,

n = 9) and o11, o21, . . ., o91 are 20, 26, 32, 18, 24, 30, 16, 22, and

28, respectively. (R(v1, v2, . . . , o11, f2, . . . , fm) ∧ c11) ∨ (R(v1,

v2, . . . , o21, f2, . . . , fm) ∧ c21) ∨ . . . ∨ (R(v1, v2, . . . , on1 , f2, . . . ,

fm) ∧ cn1 ) is then (R(o11)∧c11)∨(R(o21)∧c21)∨· · ·∨(R(o91)∧c91),
i.e., ((20 < 20 < 30) ∧ (q1 ≤ 30) ∧ (t1 = V A)) ∨ ((20 <

26 < 30) ∧ (q1 ≤ 30) ∧ (t1 = V C)) ∨ ((20 < 32 <

30) ∧ (q1 ≤ 30) ∧ (t1 = V E)) ∨ ((20 < 18 < 30) ∧ (30 <

q1 ≤ 60) ∧ (t1 = V A)) ∨ ((20 < 24 < 30) ∧ (30 < q1 ≤
60) ∧ (t1 = V C)) ∨ ((20 < 30 < 30) ∧ (30 < q1 ≤ 60) ∧ (t1 =

V E)) ∨ ((20 < 16 < 30) ∧ (q1 > 60) ∧ (t1 = V A)) ∨ ((20 <

22 < 30) ∧ (q1 > 60) ∧ (t1 = V C)) ∨ ((20 < 28 < 30) ∧ (q1 >

60) ∧ (t1 = V E)). This constraint can be simplified to

((q1 ≤ 30)∧(t1 = V C))∨((30 < q1 ≤ 60)∧(t1 = V C))∨((q1 >

60) ∧ (t1 = V C)) ∨ ((q1 > 60) ∧ (t1 = V E)). It is equivalent

to 20 < Price(q1, t1) < 30.

Theorem 1 specifies the substitution of a single function in

a constraint. In practice, a constraint may contain more than

one function, and a function definition may involve multiple

levels of nested functions (see the function Level in the

appendix). However, by repeatedly applying Theorem 1 to

every simple predicate in the constraint, the functions can

be removed one by one until no more category A functions

remain.

Corollary 1. If a constraint contains two duplicated func-
tions, the constraint obtained by replacing the duplicated
functions separately is equivalent to that with the duplicated
functions replaced simultaneously.

Proof: Assume f1 and fw with 1 < w ≤ m are du-

plicates in the constraint R(v1, v2, . . . , vs, f1, f2, . . . , fw, . . . ,

fm) and they have the same definition as f1 in Theorem 1.

First, we replace these two functions separately. Assume

f1 is replaced first. After f1 is replaced, the constraint

is transformed to (R(v1, v2, . . . , vs, o
1
1, f2, . . . , fw, . . . , fm) ∧

c11) ∨ (R(v1, v2, . . . , vs, o
2
1, f2, . . . , fw, . . . , fm) ∧ c21) ∨ · · · ∨

(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fw, . . . , fm) ∧ cn1 ), where o11, o21,

. . . , on1 are the evaluation expressions and c11, c21, . . . , cn1 are

the corresponding conditions for each evaluation expression.

To then replace fw in (R(v1, v2, . . . , vs, o
1
1, f2, . . . , fw, . . . ,

fm) ∧ c11) ∨ (R(v1, v2, . . . , vs, o
2
1, f2, . . . , fw, . . . , fm) ∧ c21)

∨ · · · ∨ (R(v1, v2, . . . , vs, on1 , f2, . . . , fw, . . . , fm) ∧ cn1 ),

we need to replace fw in each disjunctive term R(v1, v2,

. . . , vs, o
k
1 , f2, . . . , fw, . . . , fm) ∧ ck1 for 1 ≤ k ≤ n. Since f1

and fw are duplicates, we can use the same specification for

f1 to replace fw. Therefore, after fw is replaced, the con-

straint R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fw, . . . , fm)∧ ck1 , 1 ≤ k ≤

n, becomes (R(v1, v2, . . . , vs, o
k
1 , f2, . . . , o

1
1, . . . , fm)∧ck1∧c11)∨

(R(v1, v2, . . . , vs, o
k
1 , f2, . . . , o

2
1, . . . , fm)∧ck1∧c21)∨· · ·∨(R(v1,

v2, . . . , vs, o
k
1 , f2, . . . , o

k
1 , . . . , fm) ∧ ck1 ∧ ck1) ∨ · · · ∨ (R(v1, v2,

. . . , vs, o
k
1 , f2, . . . , o

n
1 , . . . , fm)∧ ck1 ∧ cn1 ) for 1 ≤ k ≤ n. Since

ci1∧cj1 = false for i �= j and ci1∧ci1 = ci1, the above constrain-

t can be simplified as R(v1, v2, . . . , vs, o
k
1 , f2, . . . , o

k
1 , . . . ,

fm) ∧ ck1 for 1 ≤ k ≤ n. Hence, the resultan-

t constraint is (R(v1, v2, . . . , vs, o
1
1, f2, . . . , o

1
1, . . . , fm) ∧ c11)

∨ (R(v1, v2, . . . , vs, o
2
1, f2, . . . , o

k
1 , . . . , fm) ∧ c21) ∨ · · · ∨

(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , o

n
1 , . . . , fm) ∧ cn1 ).

If we replace f1 and fw simultaneously in R(v1,

v2, . . . , vs, f1, f2, . . . , fm), by applying Theo-

rem 1, we can directly get the resultant constrain-

t (R(v1, v2, . . . , vs, o
1
1, f2, . . . , o

1
1, . . . , fm) ∧ c11) ∨ · · · ∨

(R(v1, v2, . . . , vs, ok1 , f2, . . . , ok1 , . . . , fm) ∧ ck1) ∨ . . . ∨
(R(v1, v2, . . . , vs, o

n
1 , f2, . . . , o

n
1 , . . . , fm) ∧ cn1 ).

The following example illustrates that the predicates ob-

tained from simultaneous substitutions and from sequential

substitutions are equivalent. Consider a constraint 2×f(x) <

f(x)× g(x). Here f(x) occurs twice. Suppose the outputs of
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f(x) are o1 and o2 under conditions c1 and c2, respectively. If

the two occurrences of f(x) are replaced simultaneously, we

obtain ((2×o1 < o1×g(x))∧ c1)∨ ((2×o2 < o2×g(x))∧ c2).

If the two occurrences of f(x) are replaced sequentially,

after the first substitution we get ((2 × o1 < f(x) × g(x)) ∧
c1) ∨ ((2 × o2 < f(x) × g(x)) ∧ c2); and after the second

substitution we get ((2×o1 < o1×g(x))∧c1∧c1)∨((2×o1 <

o2 × g(x)) ∧ c2 ∧ c1) ∨ ((2 × o2 < o1 × g(x)) ∧ c1 ∧ c2) ∨
((2 × o2 < o2 × g(x)) ∧ c2 ∧ c2), which is reduced to

((2 × o1 < o1 × g(x)) ∧ c1) ∨ ((2 × o2 < o2 × g(x)) ∧ c2)

(since c2 ∧ c1 is false).

Corollary 2. If the actual parameters in a function are all
constants, they can be taken as variables in the substitution
without the loss of test cases.

Proof: Assume f1 has the same definition as that in

Theorem 1 and this function has only constant param-

eters in the constraint R(v1, v2, . . . , vs, f1, f2, . . . , fm). If

the constant parameters evaluates ck1 with 1 ≤ k ≤ n

true, then the value of f1 is ok1 . If f1 is replaced with

ok1 , the resultant constraint is R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm).

If we substitute the function according to Theorem 1,

the resultant constraints is (R(v1, v2, . . . , vs, o
1
1, f2, . . . ,

fm) ∧ c11)∨ (R(v1, v2, . . . , vs, o
2
1, f2, . . . , fm) ∧ c21) ∨ · · · ∨

(R(v1, v2, . . . , vs, o
n
1 , f2, . . . , fm) ∧ cn1 ) where c11, . . . , ck1 ,

. . . , cn1 can be evaluated with the constant parameter-

s. Since the constant parameters evaluate ck1 to true
and all others to false, this constraint is simplified as

R(v1, v2, . . . , vs, o
k
1 , f2, . . . , fm), which is the same as the

constraint where the function is directly evaluated.

If all the actual parameters of a function are either

constants or constant expressions, the function itself can

be evaluated and replaced with a constant. The result thus

obtained is equivalent to that using Theorem 1, where

constant parameters are handled in the same way as

variable parameters. Consider, for instance, the example

Price(20, V A) < 19. Let us directly evaluate this function

first. With 〈q = 20, t = V A〉, T [1][0] and T [2][0] (see

Fig. 1) will be satisfied, so we get Price(20, V A) = 20.

Hence, Price(20, V A) < 19 is reduced to 20 < 19. Using

Theorem 1, the same result can be obtained as follows.

The predicate after the substitution of Price(20, V A) is

((20 < 19) ∧ (20 < 30) ∧ (V A = V A)) ∨ ((18 < 19) ∧ (30 ≤
20 < 60) ∧ (V A = V A)) ∨ ((16 < 19) ∧ (20 ≥ 60) ∧ (V A =

V A)) ∨ ((26 < 19) ∧ (20 < 30) ∧ (V A = V C)) ∨ ((24 <

19) ∧ (30 ≤ 20 < 60) ∧ (V A = V C)) ∨ ((22 < 19) ∧ (20 ≥
60) ∧ (V A = V C)) ∨ ((32 < 19) ∧ (20 < 30) ∧ (V A =

V E)) ∨ ((30 < 19) ∧ (30 ≤ 20 < 60) ∧ (V A = V E)) ∨ ((28 <

19) ∧ (20 ≥ 60) ∧ (V A = V E)). Since “V A = V C”,

“V A = V E”, “30 ≤ 20 < 60”, and “20 ≥ 60” are all false,

and “20 < 30” and “V A = V A” are both true, the above

expression is reduced to 20 < 19.

If the relationship of input and output is not conditional,

the function definition can directly substitute for the actual

function. Consider the example in Fig. 2. The function

Sales(qa, qc, qe) in the constraints can be directly replaced

by Price(qa, V A)×qa+Price(qc, V C)×qc+Price(qe, V E)×
qe.

VI. EFFECTIVENESS AND EFFICIENCY

The development team at the Software Quality Research

Laboratory developed a testing platform (ESTP) supporting

tabular-expression-based testing [27]. This platform consists

of three tools: a test data generator, a mutant generator, and a

test report analyzer. Two third-party software systems were

used: Maple 11.0 from Maple Computer Algebra System

Inc. and BoNus 2.4 from the Chinese Academy of Science.

The function substitution method presented in this paper was

used in this platform. Using the platform, we were able to

perform some experiments to verify the effectiveness and

efficiency of this method.

A. Effectiveness

In this section, the effectiveness of the algorithm, when

applied to the examples in this paper, is discussed. Since the

Price function does not use other functions, it was ignored

here. For the functions Commission, Bonus and Level, their

implementations were tested using three testing methods:

the partition method [31], decision table-based testing [34],

and the basic meaningful impact strategy [35]. These testing

methods have been extended to generate test cases based on

tabular expressions [36]. Details of these testing methods are

omitted in this paper since the methods themselves have no

impact on the effectiveness of the algorithm.

In this experiment, for every testing method, we created

two sets of test cases for each function based on their

tabular specifications. One set was created without function

transformation; another was created after the constraints

were transformed. Both sets were then used to test the

implementations from the tabular specifications. Mutation
analysis was used to compare the fault-detection effec-

tiveness before and after the function transformations. A

mutation operator describes a kind of syntactic change to

a program. The mutant generator in the ESTP platform

implemented 20 mutant operators (Table II). It generates

mutants by applying these mutant operators. If a mutant

produces a different result from the original program for

a test case, this mutant is called a killed mutant. A mutation
score is defined as the number of killed mutants divided

by the number of non-equivalent mutants. This definition

is used to verify the effectiveness of an individual testing

method. However, the objective of this experiment was

to compare the effectiveness of two test case sets. The

denominators in the mutation scores are the same for both,

regardless of whether the number of non-equivalent mutants

or the total number of mutants was used. Therefore, in our
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Table II
MUTATION OPERATORS

Name Definition
OCOR Cast operator replacement or type replacement
SMVB Move a brace up or down
SSOM Exchange the sequence of the statements in the same

level
SSDL Delete a simple statement
SCBR Replace “break” by “continue” or replace “continue”

by “break”
SCBM Remove “continue” or “break” to the outer or inner

level
SICC Insert semicolon after “if”, “while”, or “for”
SSCB Delete or add the “break” in “switch” statement
EARA Replace an arithmetic assignment operator “+ =”,

“− =”, “=”, “& =”, “<<=”, “| =”, “∗ =” by
another legal assignment operator

EORO Replace a binary operator by another legal operator
EVRV Replace a variable by another variable of the same

type
ERRV Replace a reference by a variable of the same type
EVRC Replace a variable or a constant by a positive value,

a negative value, and 0. If it is a string constant,
replace it by a constant string and an empty string

EURU Replace a unary operator by another unary operator
EADV Add or delete a variable
EADP Add or delete a pair of parenthesis in an arithmetic

expression
EADU Add or remove a unary operator
EACE Add a positive constant and a negative constant to

the end of an expression
ELCN Negate the whole logical expression
EEAI Exchange the index of an array with multiple dimen-

sions

experiments, a mutation score was defined as the number

of killed mutants divided by the total number of mutants
(rather than non-equivalent mutants). This revised definition

does not affect the comparison results. Table III shows the

numbers of mutants created for these three functions using

the mutant generator.

Table III
NUMBER OF MUTANTS FOR EACH FUNCTION

Function Number of Mutants
Commission 333
Bonus 147
Level 252

Our experiments showed that none of the mutation scores

were changed after the transformations for Bonus and Level.

For the Commission function, however, the mutation scores

of all three testing methods increased significantly after the

transformations (Table IV). This owed to the fact that the test

cases that were missed before the transformation were found

after the transformations. Among the three testing methods,

the basic meaningful impact strategy is considered to be

the strongest with the partition method being the weakest.

However, the advantage of the basic meaningful impact

strategy over the partition method was not clear prior to

the transformation.

B. Efficiency

In addition to the “test cases missing” problem, treating

functions as variables can cause several other problems.

Firstly, a tool is needed to check if a function has constant

parameters. If all the parameters are constants, the function

cannot be treated as a variable. Secondly, an expression

evaluator is required to evaluate the functions with constant

parameters. Thirdly, since two equivalent functions must

take the same value, a semantic checking tool is required

to find equivalent functions. Unfortunately, it is for practical

purposes impossible in most cases to determine whether two

functions have equivalent actual parameters. Without seman-

tic checking, a constraint solver can assign two equivalent

functions different values. The process of searching input

values of the functions cannot succeed as it is impossible to

produce different outputs for two equivalent functions with

the same inputs.

These problems are avoided in the implementation of our

approach, where duplicated functions are replaced indepen-

dently, and functions with constant actual parameters are

handled in the same way as other functions. This greatly

simplifies the implementation, and the mechanics of function

substitution is reduced to pure text processing. No expression

evaluator or semantic checker is needed. The transformation

itself is independent of other tools or techniques. Although

the resultant constraints can be long, further simplifications

are usually possible. Using the evalb and BooleanSimplify
logic functions supplied by Maple, long constraints can be

considerably shortened. For example, the long constraint

obtained from Price(20, V A) < 19 was simplified to false
after being processed through Maple.

In most cases, the time needed for the simplification of the

constraints was acceptable. Initially there was an exponential

growth in the execution time of the algorithm that was

related to an increase in primitive constraints. For example,

on an iMac with a 2 GHz PowerPC G5 CPU and 2GB RAM,

it took less than 1 second to process a constraint involving

10 primitive predicates, 4 minutes to process a constraint

involving 271 primitive predicates, and 4 hours to process

a constraint involving 910 primitive predicates. However,

an optimization of the Maple code reduces the processing

time for the constraint involving 910 primitive predicates to

21 seconds. The sizes of the constraint expressions and the

complexity of the embedded functions shown in the case

study are indeed comparable to those of medium-sized real-

world specifications. This means that the method is feasible

for real-world software.

VII. CONCLUSION AND FUTURE WORK

This paper discussed the practical issues of finding solu-

tions to test case constraints that contain functions as well

as variables. These issues have been largely ignored in the
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Table IV
MUTATION SCORES BEFORE AND AFTER TRANSFORMATIONS (COMMISSION)

Testing method Before transformation After transformation
The partition method 0.177 0.649
Decision table-based testing 0.177 0.703
The basic meaningful impact strategy 0.177 0.763

past but they are always present in test case generation.

They should be considered regardless of the testing strategy

used, otherwise the effectiveness and efficiency of the testing

strategy can be compromised. It is for this reason that we

have developed a function substitution method that 1) pre-

serves the space of constraint solutions after transformation,

2) does not require semantic checking, and 3) uses only

text processing tools. Although this technique can generate

long constraints, such constraints can be greatly simplified

through the use of commercial tools. The substitution tech-

nique can be incorporated into many testing methods even

if they are not based on tabular expressions (e.g., [37]). This

approach helps improve the completeness of test cases and,

hence, enhance confidence in the test results. Although the

focus of this research is on unit testing, the approach can be

readily applied to other levels of testing.

The execution time of the presented technique can be

greatly improved through Maple code optimization. It is

expected that more problems can be met when the system

under test becomes larger. Further improvement can be

made by working closely with Maple’s technical team. The

improvement helps apply the method to programs that have

more complicated and deeper levels of function invocations.

Moreover, we have started research on the processing of test

case constraints for non-deterministic programs.

APPENDIX

Fig. 3 and Fig. 4 are the specifications of Bonus and

Level, respectively.

Bonus(int c, REGION r) ≡
T [2]

c < 1000 1000 ≤ c < 1500 c ≥ 1500

r �= EU 0 c× 1.5% c× 2%
r = EU 0 30 50
T [1] T [0]

Figure 3. Specification of Bonus
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