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Basic idea: the complexity of a string is the length of the shortest
Turing machine which writes exactly that string on output and
halts.

Definition 2 For a given universal Turing machine φ, the com-
plexity Cφ of x conditional to y is defined by

Cφ(x|y) = min{length(p) : φ(〈y, p〉) = x},

This is universal in the following exact sense:

Theorem 1 (Kolmogorov) For all universal Turing machines ψ
and φ,

|Cψ(y|x)− Cφ(y|x)| ≤ cψ,φ
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Kolmogorov Complexity

We fix a universal Turing machine φ, and then

Definition 3 The (unconditional) Kolmogorov Complexity C(x)

of a string x is φ(x|ε).

Problems:

• C(x) is not computable! But it is approximable

• KC is an asymptotic theory
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Minimum Description Length (MDL)

KC can be rewritten as

C(x) = min
p,y | φ(p)(y)=x

length(p) + length(y)

where φ is a universal interpreter, p is a program and y is a binary

string. p is a model for the regularities in x.

Instead of minimizing over all programs (models), MDL fixes an

effectively enumerable class of models M over which to minimize.



Biform Theories

• A biform theory is a triple T = (K, L,Γ) where:

– K is an admissible background logic

– L is a language of K

– Γ is a set of formuloids of L called the axiomoids of T

• The axiomoids are used to specify:

– The basic objects and concepts of T

– The basic deduction and computation rules of T

• T can be viewed as being simultaneously an algorithmic

theory and an axiomatic theory. Many more details in

the paper and references.



Formuloids

• A formuloid is a pair θ = (Π,M) where:

– Π is a transformer from L to L

– M is a function that maps each E ∈ dom(Π) to a formula

of L

• M is intended to give the meaning of applying Π to an

expression E

– For many formuloids, M(E) is E = Π(E)

– The span of θ is: {M(E) | E ∈ dom(Π)}

• The algorithmic meaning of θ is its transformer

• The axiomatic meaning of θ is its span
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Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

• the language L contains the syntactic representation of a
Turing complete programming language,

• there exists a total length function length : L→ N compatible
with the subexpression relation,

• all formuloids θ = (Π,M) are such that the function M is
expressible in L,

• Γ is finite, and the domains of the axiomoids of Γ are finitely
representable,

• Γ always contains at least the axiomoid corresponding to the
identity transformer,

• we are given an equivalence relation ∼ on L, which is inter-
preted as a means the same thing as relation.

Such theories are called reflexive.
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Length in context

Consider a lattice T of reflexive theories, where meet and join are
given by intersection and union of sets of axiomoids, with the ad-
ditional restriction that if Γi ⊆ Γj then Tj must be a conservative
extension of Ti.

Given an expression e of L, let theory(e) be the smallest theory
Ti of T such that e = e is a theorem of Ti. This is not trivial –
1
0 = 1

0 is usually not a theorem!

Given a transformer Θ = (Π,M) such that e ∼M(e), theory(e,Π)
is the smallest theory such that e = Π(e) is a theorem.

lengthT(e) = length(e) + length(theory(e))
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Simplifying

Given a reflexive theory lattice T and a recursively enumerable

sequence of transformers 〈Π1,Π2, . . .〉 which are all known to pre-

serve equivalence, then simplify(e) = ei such that lengthT(ei) is

minimal amongst all ej = Πj(e).

Intuitively, this means that an expression is considered short only

if it itself is relatively short, but that also the description of the

theory behind that expression is also short.

More concretely, this says that if your base theory is that of

expanded polynomials, but you also have a theory of terminat-

ing hypergeometrics built on top of that, then you will prefer

expanded polynomials for “small” degrees, and eventually will

prefer to see a hypergeometric expression instead.
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Examples and magic numbers

Example 1 When is the expression 2n (for n > 0 integer) simpler
than the integer 2n?
Using a self-delimiting binary encoding, then in the same theory,
whenever n > 7.

Example 2 When is the expression ChebyshevT(n, x) simpler
than the corresponding expanded polynomial, where T consists
of the theory T1 of expanded polynomials and the conservative
extension T2 defining Chebyshev polynomials?
Using a self-delimiting binary encoding, then whenever n > C
where

C =
1

2

√
2ba

√
W−1(

2a

b
exp−2c/b), (1)

and a depends on the encoding of constants in T1, b on the
difference of encoding constants in T1 and T2, and c is essentially
lengthT(T2)− lengthT(T1).



Implementation

This is not quite how it is done in Maple. . .



Implementation

This is not quite how it is done in Maple. . . but it is not incompatible!



Implementation

This is not quite how it is done in Maple. . . but it is not incompatible!

CompSeq, constants, infinity, @@, @, limit, Limit, max, min, po-

lar, conjugate, D, diff, Diff, int, Int, sum, Sum, product, Product,

RootOf, hypergeom, pochhammer, Si, Ci, LerchPhi, Ei, erf, erfc,

LambertW, BesselJ, BesselY, BesselK, BesselI, polylog, dilog,

GAMMA, WhittakerM, WhittakerW, LegendreP, LegendreQ, In-

verseJacobi, Jacobi, JacobiTheta, JacobiZeta, Weierstrass, trig,

arctrig, ln, radical, sqrt, power, exp, Dirac, Heaviside, piecewise,

abs, csgn, signum, rtable, constant
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Further work

Two conjectures:

• LLL is a global MDL minimizer

• PSQL and Hermite-Pade are local MDL minimizers.


