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Rig groupoids provide a semantic model of Π, a universal classical reversible programming language over

finite types. We prove that extending rig groupoids with just two maps and three equations about them results

in a model of quantum computing that is computationally universal and equationally sound and complete

for a variety of gate sets. The first map corresponds to an 8
th

root of the identity morphism on the unit 1.

The second map corresponds to a square root of the symmetry on 1 + 1. As square roots are generally not

unique and can sometimes even be trivial, the maps are constrained to satisfy a nondegeneracy axiom, which

we relate to the Euler decomposition of the Hadamard gate. The semantic construction is turned into an

extension of Π, called
√
Π, that is a computationally universal quantum programming language equipped with

an equational theory that is sound and complete with respect to the Clifford gate set, the standard gate set of

Clifford+T restricted to ≤ 2 qubits, and the computationally universal Gaussian Clifford+T gate set.

CCS Concepts: • Theory of computation→ Categorical semantics; Quantum computation theory; •
Software and its engineering→ General programming languages.

Additional Key Words and Phrases: quantum programming language, unitary quantum computing, reversible

computing, equational theory, rig category

ACM Reference Format:
Jacques Carette, Chris Heunen, Robin Kaarsgaard, and Amr Sabry. 2024. With a Few Square Roots, Quantum

Computing is as Easy as Π. In . ACM, New York, NY, USA, 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Just like in the classical case, quantum computing can be built up from booleans and associated

operations. The quantum version of boolean negation is the X gate defined by X |0⟩ = |1⟩ and
X |1⟩ = |0⟩. The quantum circuit model also includes a gate

√
X (also known as the V gate) that is

the “square root of X.” Informally

√
X performs half of the action of the X gate, i.e., if we imagine a

trajectory from |0⟩ to |1⟩ and another trajectory from |1⟩ to |0⟩, then one application of

√
X follows

half the relevant trajectory. The standard approach to model this behaviour is to explicitly express

the intermediate midpoints as complex vectors [Hayes 1995; Satoh et al. 2022]:

√
X |0⟩ = 1 + 𝑖

2

|0⟩ + 1 − 𝑖
2

|1⟩
√
X |1⟩ = 1 − 𝑖

2

|0⟩ + 1 + 𝑖
2

|1⟩

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

POPL’24, January 17–19, 2024, London, UK
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

HTTPS://ORCID.ORG/0000-0001-8993-9804
HTTPS://ORCID.ORG/0000-0001-7393-2640
HTTPS://ORCID.ORG/0000-0002-7672-799X
HTTPS://ORCID.ORG/0000-0002-1025-7331
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


One can verify that:

√
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√
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√
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and similarly that

√
X(

√
X |1⟩) = |0⟩. As is evident in this tiny example, reasoning this way about

quantum programs is overwhelmed by complex numbers and linear algebra.

Our first insight is that we do not need to explicitly represent the intermediate points. All we need

to know about them are two things: (i) they exist, and (ii) they satisfy one critical axiom. Technically,

we demonstrate that the following categorical model is, not only computationally universal for

quantum computing, but also sound and complete for several modes of unitary quantum computing.

Definition of the QuantumModel. The model consists of a rig groupoid (C, ⊗, ⊕,𝑂, 𝐼 ) equipped
with maps 𝜔 : 𝐼 → 𝐼 and V : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 satisfying the equations:

(E1) 𝜔8 = id (E2) V2 = 𝜎⊕ (E3) V ◦ S ◦ V = 𝜔2 • S ◦ V ◦ S
where ◦ is sequential composition, • is scalar multiplication (cf. Def. 5.1), 𝜎⊕ is the symmetry on

𝐼 ⊕ 𝐼 , exponents are iterated sequential compositions, and S : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 is defined as S = id⊕𝜔2
.

In the definition, the rig groupoid C models an underlying reversible classical programming

language. By convention, booleans in this language are represented as values of type 𝐼 ⊕ 𝐼 with one

injection representing false, the other representing true, and the symmetry 𝜎⊕ : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼

Fig. 1. 𝑋𝑍𝑋 and 𝑍𝑋𝑍 rotations
with all angles at 𝜋/2.

representing boolean negation. The quantum model has two

additional morphisms 𝜔 and V. The map 𝜔 is a primitive 8
th
root

of the identity; its semantics is partially specified by (E1). The

map V is the square root of boolean negation; its semantics is

partially specified by (E2). So far, we have postulated the existence

of square roots but without needing to write any actual complex

numbers: they are just morphisms partially specified by (E1) and

(E2). At this point, it would be consistent to choose𝜔 = id but this

would not lead to a universal quantummodel. To understand how

(E3) selects just the “right” square root, we recall that the Euler
decomposition expresses any 1-qubit unitary gate as a product

of a global phase and three rotations along two fixed orthogonal

axes, and that S and V correspond to rotations in complementary

bases (i.e., along orthogonal axes). In that light, axiom (E3) picks

the 𝑍 -basis and the 𝑋 -basis as the two axes and enforces that

decompositions along 𝑍𝑋𝑍 or 𝑋𝑍𝑋 are equal (up to a physically

unimportant global phase). This ensures that it is immaterial

which of S and V rotations is mapped to the 𝑍 - or 𝑋 -basis and

additionally ensures that the angle of the S rotation (induced by

the 𝜔2
in the definition of S) is 𝜋/2. As a helpful illustration, Fig. 1 shows that, with the standard

choice for the computational basis in the 𝑍 -direction, starting from an arbitrary state (near the

North pole in the figure), a sequence of 𝜋/2-𝑋𝑍𝑋 rotations (top) is equivalent to a sequence of

𝜋/2-𝑍𝑋𝑍 rotations (bottom). Were the angle of the 𝑍 -rotation different due to a different choice

of 𝜔 , the two sequences of rotations would not be equivalent.
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This approach reduces reasoning about quantum programs to manipulating the coherence

conditions of rig categories [Laplaza 1972] extended with the axioms (E1), (E2), and (E3). The

calculation that

√
X ◦

√
X = 𝑋 follows by (E2). Many quantum equivalences follow similarly. For

example, the proof that S ◦ S is equivalent to the Z gate defined as id ⊕ 𝜔4
follows by:

S ◦ S = (id ⊕ 𝜔2) ◦ (id ⊕ 𝜔2) = (id ◦ id) ⊕ (𝜔2 ◦ 𝜔2) = id ⊕ 𝜔4 = Z

The proof uses just the coherence conditions of rig categories and is, along with many other results,

formalised in an extension of the agda-categories library [Hu and Carette 2021] included in the

supplementary material
1
.

The equational theory extracted from the semantic model is sound and complete with respect to

arbitrary Clifford circuits, Clifford+T circuits of at most 2 qubits, and arbitrary Gaussian Clifford+T
circuits. These completeness theorems, Thms. 6.5, 6.8, and 6.14, form our main technical results:

• Completeness for Arbitrary Clifford circuits (cf. Thm 6.5). Circuits built from Clifford gates

are important in quantum computing for two related reasons. First, Clifford gates are exactly

those quantum gates that normalise the Pauli matrices, which provide a linear-algebraic basis

for a single qubit. Clifford gates include, and are in fact generated by, H, S, and CX. Second,
although Clifford circuits may “look quantum,” they are in fact efficiently simulatable by a

probabilistic classical computation, by the Gottesman-Knill theorem [Gottesman 1999].

• Completeness for Clifford+T circuits of at most 2 qubits (cf. Thm 6.8). To move beyond classical

probabilistic machines in computational power, other quantum gates need to be considered.

One popular choice is to extend the Clifford set with the T gate. The restriction to ≤ 2 qubits

is a stepping stone to the next result.

• Completeness for Arbitrary Gaussian Clifford+T circuits (cf. Thm 6.10). Another universal

quantum gate set is given by {X,CX,CCX, S,K} [Amy et al. 2020; Bian and Selinger 2021].

Such circuits can be characterised algebraically as those unitary matrices with entries in the

ring Z[ 1
2
, 𝑖] of Gaussian dyadic rationals [Amy et al. 2020].

To summarise, we have developed a vastly simplified axiomatic treatment of quantum computation

using the coherence conditions of rig categories extended with morphisms modeling roots of the

identity and a square root of the symmetry 𝜎⊕ : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 .
This formalism provides, to our knowledge, the first sound and complete equational theory for

a computationally universal unitary quantum programming language. As this approach avoids

imposing specific assumptions about gate sets or implementation details, it could serve to bridge

the gap between quantum programming languages and the various gate sets used in the quantum

circuit model. Further, it could serve as a "theory of equational theories" capable of describing and

analyzing various modes of quantum computing, such as different gate sets, without preference to

any specific approach. While this paper primarily focuses on qubit circuits due to the abundance

of finite presentation results, it does not reflect an inherent limitation or assumption within the

formalism. In fact, we propose that this formalism could be used equally well to represent and

analyse circuits from qudit gate sets (e.g., qutrit Clifford+T [Yeh and Wetering 2022]).

Related work. Our result is distinguished from other calculi based on ZX [Coecke and Duncan

2011], notably ZH [Backens and Kissinger 2019] and PBS/LOv [Clément et al. 2023] in two fun-

damental aspects. First, ZX and ZH describe quantum theory, not quantum computation. That is,

they are complete for all linear maps, not for unitary ones only. Indeed, one of the major problems

associated with the ZX calculus is circuit extraction: to ensure that rewriting a quantum circuit

ends up with a quantum circuit again. This problem is #P-hard [de Beaudrap et al. 2022]. Second,

1
and available at https://github.com/JacquesCarette/SqrtPi
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these calculi do not have universal equational theories, as some of the axiom schemas involve

existential quantifiers, resulting from the Euler decomposition, that cannot be eliminated [Duncan

and Perdrix 2009]. The theory presented here builds on a different line of research that led to

advances in reversible quantum computing (e.g., [Choudhury et al. 2022; Glück et al. 2019; Heunen

and Kaarsgaard 2022; Heunen, Kaarsgaard, and Karvonen 2018]) and equational theories of quan-

tum circuits and unitaries [Bian and Selinger 2021, 2022; Selinger 2015] (see also [Thomsen et al.

2015]) arising from number-theoretic insights (e.g., [Amy et al. 2020; Giles and Selinger 2013]).

Our resulting theory is sound, complete and universal, never considers more general linear maps

(unlike ZH/ZX), and relies only on universally quantified equations (unlike PBS/LOv). Our work

complements the work of Staton [2015], which provides a sound and complete equational theory

of state preparation and measurement (which we do not consider here), but does not consider an

equational theory of unitaries.

Outline. We assume familiarity with category theory (in particular rig categories, monoidal

categories, and string diagrams) and with the fundamentals of quantum computing. We provide a

brief review in the next section for the necessary notation and conventions. Sec 3 motivates the

use of combinator-based languages to reason about quantum circuits. Sec. 4 introduces the formal

syntax of the combinator language

√
Π used as a technical device in this paper. Sec. 5 gives the

denotational semantics of

√
Π in extended rig groupoids. Sec. 6 includes the main technical results

that establish soundness and completeness of

√
Π for a variety of gate sets. Sec. 7 describes the

equational theory in action. The concluding section puts the results in a larger context and discusses

their significance. Some of the proofs are relegated to a longer version of the paper [Carette, Heunen,

et al. 2023].

2 BACKGROUND
We recall here some basics of unitary quantum computing and rig categories.

2.1 Unitary quantum computing
For more details about this topic we refer to textbooks such as [Nielsen and Chuang 2010; Yanofsky

and Mannucci 2008].

Closed quantum systems are modelled mathematically by complex Hilbert spaces 𝐻 , which are

complex vector spaces with an inner product ⟨−|−⟩ that are complete as metric spaces (with respect

to the metric induced by the inner product). For example, a one-qubit system is represented by C2
,

with vectors |0⟩ = ( 1
0
) and |1⟩ = ( 0

1
) representing the two classical states. Hilbert spaces 𝐻 and 𝐾

can be combined to form new ones using the direct sum 𝐻 ⊕ 𝐾 and tensor product 𝐻 ⊗ 𝐾 : these
can be seen as analogues of sum types and product types in the sense that C𝑛 ⊕ C𝑚 � C𝑛+𝑚 and

C𝑛 ⊗ C𝑚 � C𝑛𝑚 .
Every linear map 𝑓 on a Hilbert space is associated with a (Hermitian) adjoint 𝑓 † satisfying

⟨𝑓 𝜙 |𝜓 ⟩ =
〈
𝜙
��𝑓 †𝜓 〉. The discrete time evolution of closed quantum systems is described by unitaries,

which are linear isomorphisms𝑈 satisfying𝑈 −1 = 𝑈 †
. Some important examples of unitaries on

C2
include the Hadamard gate H, the X gate (the quantum analogue of the classical not gate), and

the phase gates Z, S, and T, given by the matrices:

H = 1√
2

(
1 1

1 −1
)

X =
(
0 1

1 0

)
Z =

(
1 0

0 −1
)

S =
(
1 0

0 𝑖

)
T =

(
1 0

0
1+𝑖√
2

)
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Any unitary𝑈 acting on𝐻 can be extended to a controlled variant acting on C2 ⊗𝐻 , given in matrix

form by the block diagonal matrix (
𝐼 0

0 𝑈

)
where 𝐼 is the identity on 𝐻 . This controlled-𝑈 will apply𝑈 to 𝐻 only if the given qubit was in the

state |1⟩; otherwise it will do nothing. For example, the controlled-𝑋 gate CX is given by

CX =

(
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

)
Similar to classical hardware description, low-level quantum computations can be described at the

level of qubits and gates using quantum circuits, which we describe in further detail in Sec. 3, save

for one crucial definition concerning when a quantum gate set can be said to be universal:

Definition 2.1 (Computational universality [Aharonov 2003]). A set of quantum gates 𝐺 is said to

be strictly universal if there exists a constant 𝑛0 such that for any 𝑛 ≥ 𝑛0, the subgroup generated by
𝐺 is dense in SU(2𝑛). The set 𝐺 is said to be computationally universal if it can be used to simulate

to within 𝜖 error any quantum circuit which uses 𝑛 qubits and 𝑡 gates from a strictly universal set

with only polylogarithmic overhead in (𝑛, 𝑡, 1/𝜖).

2.2 Rig categories
We refer to [Awodey 2010; Heunen and Vicary 2019] for more on (monoidal) categories, and to

[Johnson and Yau 2021] for a recent textbook on rig categories and their applications.

A category C is an algebraic structure capturing typed processes: a category consists of some

types (objects)𝑋,𝑌, 𝑍 and some processes (morphisms) 𝑓 , 𝑔, ℎ such that each process 𝑓 is assigned an
input type (domain) 𝑋 and an output type (codomain) 𝑌 , written 𝑓 : 𝑋 → 𝑌 . Processes 𝑓 : 𝑋 → 𝑌

and 𝑔 : 𝑌 → 𝑍 can be composed to form a new process 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 in such a way that

composition is associative and unital (i.e., every object𝑋 is associated with an identity id𝑋 : 𝑋 → 𝑋

such that 𝑓 ◦ id𝑋 = 𝑓 = id𝑌 ◦ 𝑓 for all 𝑓 : 𝑋 → 𝑌 ). Thus, categories describe theories of processes

that can be composed in sequence: if a morphism 𝑓 has an inverse 𝑓 −1 such that 𝑓 ◦ 𝑓 −1 = id and

𝑓 −1 ◦ 𝑓 = id, we say that 𝑓 is an isomorphism. A category which contains only isomorphisms is

called a groupoid.
A symmetric monoidal category (C, ⊗, 𝐼 ) is a category that also permits parallel composition of

objects and morphisms: whenever one has objects 𝑋 and 𝑌 , there exists an object 𝑋 ⊗ 𝑌 ; similarly,

morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 →𝑊 give rise to 𝑓 ⊗ 𝑔 : 𝑋 ⊗ 𝑍 → 𝑌 ⊗𝑊 . Further, we require

that there is a distinguished object 𝐼 and families of isomorphisms (indexed by objects 𝑋,𝑌, 𝑍 )

𝜆⊗ : 𝐼 ⊗𝑋 → 𝑋 and 𝜌⊗ : 𝐼 ⊗𝑋 → 𝑋 (the unitors); 𝛼⊗ : (𝑋 ⊗𝑌 ) ⊗𝑍 → 𝑋 ⊗ (𝑌 ⊗𝑍 ) (the associator);
and 𝜎⊗ : 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋 (the symmetry), satisfying some equations (see, e.g., [Heunen and Vicary

2019, Chapter 1]).

A rig category (or bimonoidal category) (C, ⊗, ⊕, 𝐼 ,𝑂) is a category which is symmetric monoidal

in two different ways, such that one monoidal structure distributes over the other. Precisely, it is a

category such that (C, ⊗, 𝐼 ) and (C, ⊕,𝑂) are both symmetric monoidal categories, and there are

families of isomorphisms (indexed by objects 𝑋,𝑌, 𝑍 ) 𝛿𝐿 : 𝑋 ⊗ (𝑌 ⊕ 𝑍 ) → (𝑋 ⊗ 𝑌 ) ⊕ (𝑋 ⊗ 𝑍 ) and
𝛿𝑅 : (𝑋 ⊕ 𝑌 ) ⊗ 𝑍 → (𝑋 ⊗ 𝑍 ) ⊕ (𝑌 ⊗ 𝑍 ) (the distributors) and 𝛿𝐿

0
: 𝑂 ⊗𝑋 → 𝑂 and 𝛿𝑅

0
: 𝑋 ⊗𝑂 → 𝑂

(the annihilators), subject again to some equations (see [Laplaza 1972]). A rig category which is

simultaneously a groupoid is called a rig groupoid. The category Unitary of finite-dimensional

Hilbert spaces and unitaries forms a rig groupoid with its tensor product ⊗ and direct sum ⊕.

3 REASONING ABOUT QUANTUM CIRCUITS WITH COMBINATORS
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|𝑞0 ⟩ • • •

|𝑞1 ⟩ • •

|𝑞2 ⟩
√
𝑋

√
𝑋

† √
𝑋

Fig. 2. Quantum circuit for CCX.

The lingua franca of quantum computing is that of quantum

circuits. Like boolean circuits consisting of bit-carrying wires

connecting boolean gates, quantum circuits consist of wires car-

rying qubits connecting quantum gates. For example, the circuit

in Fig. 2 has 5 controlled unitary gates acting on 3 qubits. In order,

the first three gates are: controlled-

√
X (aka CSX), controlled-not

(aka CX), and controlled-inverse-

√
X (aka CSXdg).

3.1 Circuits as Matrices
Quantum circuits have a canonical reading as complex matrices. The quantum gates stand for

specific unitary matrices which are combined by matrix multiplication when gates are composed

sequentially, and by tensor product when gates are composed in parallel. For example, the controlled

gates used in the circuit above denote the following matrices:

CSX = 1

2

(
2 0 0 0

0 2 0 0

0 0 −1+𝑖 −1−𝑖
0 0 −1−𝑖 −1+𝑖

)
CX =

(
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

)
CSXdg = 1

2

(
2 0 0 0

0 2 0 0

0 0 −1−𝑖 −1+𝑖
0 0 −1+𝑖 −1−𝑖

)
which when all multiplied following the layout of the circuit produce:

©­­­«
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

ª®®®¬
The reader may recognise the resulting matrix as the denotation of the Toffoli (aka CCX) gate [Tof-
foli 1980]. Indeed the equivalence of CCX to the circuit in Fig. 2 is an instance of the Sleator-

Weinfurter [1995] construction. Evidently, one way to establish the equivalence is to reduce both

circuits to a common matrix. If such a low-level algebraic manipulation is undesirable, a high-level,

but informal proof, would proceed by case analysis on the possible values of 𝑞0𝑞1:

• if both 𝑞0𝑞1 are 0, then no control gate is activated and the circuit behaves like the identity;

• if one of 𝑞0𝑞1 is 1 and the other is 0, then both

√
X and its inverse are activated and the circuit

is again equivalent to the identity;

• if both 𝑞0𝑞1 are 1, then two instances of

√
X are activated which negates 𝑞2.

To summarise, the circuit in Fig. 2 negates 𝑞2 exactly when both 𝑞0𝑞1 are 1, which is exactly the

behaviour of the Toffoli gate. We will formalise this example using our calculus in Sec. 7.

3.2 Circuits as Rig Morphisms
It is relatively easy to find some collection of local rewrite rules that are sound for quantum circuits

composed of particular gate sets. It is much harder to find a complete collection that guarantee

that any equivalent quantum circuits can be transformed to one another. We solve this problem as

follows. First, we build on the completeness result for classical reversible circuits [Choudhury et al.

2022] by including all the coherence conditions for rig categories as a foundation for reasoning

about the classical subset of gates (e.g., X, CX, CCX, etc.) To reason about the purely quantum gates

(e.g.,
√
X, H, T, etc.) we build on a collection of insights explained below.

The first insight is to not worry about gates at all but instead exploit the rig groupoid structure

that provides two constructors ⊕ and ⊗ that behave in a distributive way, like + and × in the

rig of natural numbers. The ⊕ construct, which is not present in formalisms such as the ZX-

calculus [Coecke and Duncan 2011] provides a way to build quantum gates from first principles by

exploiting the fact that a qubit is a two-dimensional additive structure 1 ⊕ 1. For example, the rig

structure provides, among others, the natural isomorphisms 𝜆⊗ : 𝐼 ⊗ 𝐴 → 𝐴, 𝜎⊕ :𝐴 ⊕ 𝐵 → 𝐵 ⊕ 𝐴,

6



and 𝛿𝑅 : (𝐴 ⊕ 𝐵) ⊗ 𝐶 → (𝐴 ⊕ 𝐶) ⊗ (𝐵 ⊕ 𝐶) which can be used to define gates as follows. First, we

isolate two patterns Mat and Ctrl to construct simple gates and their controlled versions:

Mat ::= 𝜆⊗ ⊕ 𝜆⊗ ◦ 𝛿𝑅 : (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 → 𝐴 ⊕ 𝐴
Ctrl𝑚 ::=Mat−1 ◦ (id ⊕𝑚) ◦Mat : (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 → (𝐼 ⊕ 𝐼 ) ⊗ 𝐴

The definition of Ctrl above is parametric in𝑚 : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 , enabling the definitions of the

classical gates:

X ::= 𝜎⊕ : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼
CX ::= Ctrl X : (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 )

CCX ::= Ctrl CX : (𝐼 ⊕ 𝐼 ) ⊗ ((𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 )) → (𝐼 ⊕ 𝐼 ) ⊗ ((𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ))
These patterns would also provide controlled versions of single qubit quantum gates if we managed

to express them. To that end, we use the insight that, by the Euler decomposition, single qubit

quantum gates can be expressed as a product 𝜙 · 𝑃𝑄𝑃 ′, where 𝜙 is a phase, 𝑃 and 𝑃 ′ are rotations
in one basis, and 𝑄 is a rotation in a complementary basis. Thus, the categorical framework “only”

needs to express phase gates in two complementary bases such as the canonical 𝑍 and 𝑋 bases; it

turns out that this is relatively straightforward once the framework includes roots of unity and a

square root of 𝜎⊕ . Each root of unity 𝜔 directly provides phase gate id ⊕ 𝜔 in the Z-basis; phase
gates in the X-basis are obtained by the change of basis induced by H which itself can be defined

using roots of unity and the square root of 𝜎⊕ (cf. Fig. 8). The technical challenge is that square

roots are not unique, so for example postulating some V such that V ◦ V = 𝜎⊕ is not sufficient to

determine V. Axiom (𝐸3), however, is sufficient to completely determine all the required square

roots. The final product is an equational theory that provides (formalisable) proofs for circuit

equivalences that only require a modest extension of conventional categorical reasoning.

4 A UNIVERSAL QUANTUM LANGUAGE:
√
Π

We present the syntax of

√
Π, whose underlying language is the classical reversible language Π

that is universal for reversible computing over finite types and whose semantics is expressed in the

rig groupoid of finite sets and bijections [James and Sabry 2012] . After reviewing the design of Π
we introduce the extension

√
Π.

4.1 The Core Language: Π
In reversible boolean circuits, the number of input bits matches the number of output bits. Thus,

a key insight for a programming language of reversible circuits is to ensure that each primitive

operation preserves the number of bits, which is just a natural number. The algebraic structure of

natural numbers as the free commutative semiring (or, commutative rig), with (0, +) for addition,
and (1,×) for multiplication then provides sequential, vertical, and horizontal circuit composition.

Generalising these ideas, a typed programming language for reversible computing should ensure

that every primitive expresses an isomorphism of finite types, i.e., a permutation.

The syntax of the language Π, shown in Fig. 3, captures this concept. Type expressions 𝑏 are

built from the empty type (0), the unit type (1), the sum type (+), and the product type (×). A
type isomorphism 𝑐 : 𝑏1 ↔ 𝑏2 models a reversible circuit that permutes the values in 𝑏1 and 𝑏2.

These type isomorphisms are built from the primitive identities iso and their compositions. The

Π-isomorphisms are not ad hoc: they correspond exactly to the laws of a rig operationalised into

invertible transformations [Carette, James, et al. 2022; Carette and Sabry 2016] which have the

types in Fig. 4. Each line in the top part of the figure has the pattern 𝑐1 : 𝑏1 ↔ 𝑏2 : 𝑐2 where 𝑐1
and 𝑐2 are self-duals; 𝑐1 has type 𝑏1 ↔ 𝑏2 and 𝑐2 has type 𝑏2 ↔ 𝑏1.
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𝑏 ::= 0 | 1 | 𝑏 + 𝑏 | 𝑏 × 𝑏 (value types)

𝑡 ::= 𝑏 ↔ 𝑏 (combinator types)

iso ::= id | swap+ | assocr+ | assocl+ | unite+𝑙 | uniti+𝑙 | absorbl | factorzr (isomorphisms)

| swap× | assocr× | assocl× | unite×𝑙 | uniti×𝑙 | dist | factor
𝑐 ::= iso | 𝑐 o

9
𝑐 | 𝑐 + 𝑐 | 𝑐 × 𝑐 (combinators)

Fig. 3. The syntax of Π.

id : 𝑏 ↔ 𝑏 : id
swap+ : 𝑏1 + 𝑏2 ↔ 𝑏2 + 𝑏1 : swap+

assocr+ : (𝑏1 + 𝑏2) + 𝑏3 ↔ 𝑏1 + (𝑏2 + 𝑏3) : assocl+

unite+𝑙 : 0 + 𝑏 ↔ 𝑏 : uniti+𝑙
swap× : 𝑏1 × 𝑏2 ↔ 𝑏2 × 𝑏1 : swap×

assocr× : (𝑏1 × 𝑏2) × 𝑏3 ↔ 𝑏1 × (𝑏2 × 𝑏3) : assocl×

unite×𝑙 : 1 × 𝑏 ↔ 𝑏 : uniti×𝑙
dist : (𝑏1 + 𝑏2) × 𝑏3 ↔ (𝑏1 × 𝑏3) + (𝑏2 × 𝑏3) : factor

absorbl : 𝑏 × 0 ↔ 0 : factorzr

𝑐1 : 𝑏1 ↔ 𝑏2 𝑐2 : 𝑏2 ↔ 𝑏3

𝑐1 o

9
𝑐2 : 𝑏1 ↔ 𝑏3

𝑐1 : 𝑏1 ↔ 𝑏3 𝑐2 : 𝑏2 ↔ 𝑏4

𝑐1 + 𝑐2 : 𝑏1 + 𝑏2 ↔ 𝑏3 + 𝑏4
𝑐1 : 𝑏1 ↔ 𝑏3 𝑐2 : 𝑏2 ↔ 𝑏4

𝑐1 × 𝑐2 : 𝑏1 × 𝑏2 ↔ 𝑏3 × 𝑏4

Fig. 4. Types for Π combinators

ctrl 𝑐 = dist o

9
id + (id × 𝑐) o

9
factor

1 : 1 ↔ 1 = id

x : 2 ↔ 2 = swap+

cx : 2 × 2 ↔ 2 × 2 = ctrl swap+

ccx : 2 × 2 × 2 ↔ 2 × 2 × 2 = ctrl cx

Fig. 5. Derived Π constructs.

The instance of id at type 1 ↔ 1 plays an important role as it will induce scalars; it is given the

distinguished name 1 when used as a scalar value. To see how this language expresses reversible

circuits, we first define types that describe sequences of booleans (2𝑛). We use the type 2 = 1 + 1 to

represent booleans with the left injection representing false and the right injection representing

true. Boolean negation (the x-gate) is straightforward to define using the primitive combinator

swap+. We can represent 𝑛-bit words using an 𝑛-ary product of boolean values. To express the

cx- and ccx-gates we need to encode a notion of conditional expression. Such conditionals turn

out to be expressible using the distributivity and factoring identities of rigs as shown in Fig. 5.

An input value of type 2 × 𝑏 is processed by the dist operator, which converts it into a value of

type (1 × 𝑏) + (1 × 𝑏). Only in the right branch, which corresponds to the case when the boolean

is true, is the combinator 𝑐 applied to the value of type 𝑏. The inverse of dist, namely factor is
applied to get the final result. Using this conditional, cx is defined as ctrl x and the Toffoli ccx
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gate is defined as ctrl cx. Because Π can express the Toffoli gate and can generate ancilla values

of type 1 as needed, it is universal for classical reversible circuits.

Theorem 4.1 (Π Expressivity). Π is universal for classical reversible circuits, i.e., boolean bijections
2𝑛 → 2𝑛 (for any natural number 𝑛).

4.2 Classical Completeness
A crucial fact for the rest of the paper is the existence of an equational theory for Π that is sound

and complete for the permutation semantics. The equations for the theory were collected in a

second level of Π syntax as level-2 combinators [Carette and Sabry 2016]. Each level-2 combinator

is of the form 𝑐1 ↔2 𝑐2 for appropriate 𝑐1 and 𝑐2 of the same type 𝑏1 ↔ 𝑏2 and asserts that 𝑐1
and 𝑐2 denote the same bijection. For example, among the large number of equations, we have the

following level-2 combinators dealing with associativity:

assoc#l : c1 # (c2 # c3) ↔2 (c1 # c2) # c3
assoc#r : ((c1 # c2) # c3) ↔2 (c1 # (c2 # c3))
assocl+l : ((c1 + (c2 + c3)) # assocl+) ↔2 (assocl+ # ((c1 + c2) + c3))
assocl+r : (assocl+ # ((c1 + c2) + c3)) ↔2 ((c1 + (c2 + c3)) # assocl+)

Theorem 4.2 (Π Full Abstraction and Adeqacy [Choudhury et al. 2022]). The equational
theory of Π expressed using the level-2 combinators ↔2 is sound and complete with respect to its
semantics in the weak symmetric rig groupoid of finite sets and permutations.

As a consequence, we may use any classical reversible circuit identity (i.e., any identity involving

only rig terms in the category of finite sets and permutations) without explicit proof, as such a proof

can be reconstructed using the theorem above. In particular, we will freely use the classical identities

below involving various combinations of CX and SWAP gates (which can all be straightforwardly

verified by explicit computation):

• •
=

• •
(P1)

• •
• • • =

× ×
× • ×

(P2)

× ×
× ×

•
= • • •

• •

(P3)

• • •
• • •

• • •
=

(P4)

• • •
• • •

• • •
=

(P5)

• •
•

=

×
×

(P6)
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Syntax

iso ::= · · · | v | vi | w | wi (isomorphisms)

Types

v : 2 ↔ 2 : vi

w : 1 ↔ 1 : wi

Equations
(E1) v

2 ↔2 x

(E2) w
8 ↔2 1

(E3) v
o

9
(id +w

2) o

9
v ↔2 uniti×𝑙 o

9
w

2 × ((id +w
2) o

9
v

o

9
(id +w

2)) o

9
unite×𝑙

Fig. 6. The
√
Π extension of Π.

4.3 Adding Square Roots
The remarkable fact is that all it takes for a programming language to be universal for quantum

computing with a sound and complete equational theory is the modest extension to Π in Fig. 6.

The extension consists of a square root v of x and an 8
th
root w of the identity combinator 1. To

maintain reversibility, we add not just these square roots but their inverses vi and wi as well. The

semantics of the new combinators is partially specified by Eqs. (E1) and (E2). From these equations

and the original level-2 combinators, we can derive properties of the inverses, e.g.:

x ↔2 v
o

9
v (by 2-reversibility)

vi
o

9
x

o

9
x ↔2 vi

o

9
v

o

9
v

o

9
x (by compatibility)

vi ↔2 v
o

9
x (by inverses and unit)

1 ↔2 w
8

(by 2-reversibility)

wi
o

9
1 ↔2 wi

o

9
w

8
(by compatibility)

wi ↔2 w
7

(by inverses and unit)

As discussed earlier, Eqs. (E1) and (E2) do not completely determine the meaning of the new

combinators, however. In particular, they do not exclude the trivial square root w = 1. To get a

non-trivial semantics, we also impose Eq. (E3).

5 DENOTATIONAL SEMANTICS
By design, Π has a natural model in rig groupoids [Carette and Sabry 2016; Choudhury et al. 2022].

Indeed, every atomic isomorphism of Π corresponds to a coherence isomorphism in a rig category,

while sequencing corresponds to composition, and the two parallel compositions are handled by

the two monoidal structures. Inversion corresponds to the canonical dagger structure of groupoids.

This interpretation is summarised in the top part of Fig. 7.

5.1 Postulating Square Roots
We will postulate the existence of certain square roots to a rig groupoid to obtain models of

√
Π.

Ideally, there would be a universal categorical construction that formally adjoins 𝑛th roots of

specified (endo)morphisms to a given (rig) category. The traditional way in commutative algebra to

adjoin a square root of 𝑟 to a ring 𝑅 is to first move to the polynomial ring 𝑅 [𝑥] in one variable 𝑥 ,

and then to quotient out the ideal generated by 𝑥2 − 𝑟 to force 𝑥2 = 𝑟 . This method is fraught with

problems in the categorical case, because there is no analogue of the polynomial ring, no good

analogue of quotients by ideals, and because it only works for endomorphisms.
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Types
J0K = 𝑂 J1K = 𝐼

J𝑏1 + 𝑏2K = J𝑏1K ⊕ J𝑏2K J𝑏1 × 𝑏2K = J𝑏1K ⊗ J𝑏2K

Π Terms
JidK = id J𝑐1 o

9
𝑐2K = J𝑐2K ◦ J𝑐1K

J𝑐1 + 𝑐2K = J𝑐1K ⊕ J𝑐2K J𝑐1 × 𝑐2K = J𝑐1K ⊗ J𝑐2K

Jassocr+K = 𝛼⊕ Jassocl+K = 𝛼−1
⊕

Juniti+𝑙K = 𝜆−1⊕ Junite+𝑙K = 𝜆⊕
Jassocr×K = 𝛼⊗ Jassocl×K = 𝛼−1

⊗
Juniti×𝑙K = 𝜆−1⊗ Junite×𝑙K = 𝜆⊗
Jswap+K = 𝜎⊕ Jswap×K = 𝜎⊗

JdistK = 𝛿𝑅 JfactorK = 𝛿−1
𝑅

JabsorblK = 𝛿0 JfactorzrK = 𝛿−1
0

√
Π Terms

JwK = 𝜔 JwiK = 𝜔7

JvK = V JviK = V3

Fig. 7. Semantics of Π in rig groupoids (C, ⊗, ⊕,𝑂, 𝐼 ) and of
√
Π in models of

√
Π.

Another way to formally adjoin a square root of 𝐴
𝑓
→ 𝐵 is to add a new object and two new

morphisms 𝐴
1/2 𝑓
→ •

𝑓 1/2

→ 𝐵, to take the free category on the resulting directed graph, and then

quotient out composition that already existed in the base category, as well as quotienting out

𝑓 ∼ 𝑓 1/2 ◦ 1/2 𝑓 . This does work in arbitrary categories, satisfies a universal property, and can

be applied to arbitrary sets of morphisms 𝑓 simultaneously. The new square roots automatically

interact well with inverses in groupoids. However, to respect rig structure we would have to take

free combinations of ⊕ and ⊗, and the benefit of the universal property would be lost to bureaucracy.
Instead of pursuing general constructions, we will therefore simply postulate what we need of a

categorical model. It will be clear that at least one model exists.

Definition 5.1. Given a scalar 𝑠 : 𝐼 → 𝐼 and amorphism 𝑓 : 𝑋 → 𝑌 , define the scalar multiplication
of 𝑓 by 𝑠 on the left, written 𝑠 • 𝑓 , as 𝜆⊗ ◦ 𝑠 ⊗ 𝑓 ◦ 𝜆−1⊗ : 𝑋 → 𝑌 . One similarly defines scalar

multiplication on the right, 𝑓 • 𝑠 , by replacing left unitors in the above by right unitors.

Definition 5.2. A model of
√
Π consists of a rig category (C, ⊗, ⊕,𝑂, 𝐼 ) equipped with maps

𝜔 : 𝐼 → 𝐼 and V : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 satisfying the equations:
(E1) 𝜔8 = id,

(E2) V2 = 𝜎⊕ ,
(E3) V ◦ S ◦ V = 𝜔2 • S ◦ V ◦ S
where S : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 is given by S = id ⊕ 𝜔2

.

This model is strong enough to express the standard gate set of Clifford+T. It is not a minimal

universal model, however: for example, the (computationally universal) gate set of Gaussian

Clifford+T only requires a fourth root of unity, i.e., the use of𝜔 : 𝐼 → 𝐼 with𝜔8 = id can be replaced

by 𝑖 : 𝐼 → 𝐼 with 𝑖4 = id while still retaining computational universality.
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Name Signature Meaning
𝑖 𝐼 → 𝐼 𝜔2

−1 𝐼 → 𝐼 𝜔4

−𝑖 𝐼 → 𝐼 𝜔6

X 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝜎⊕
𝑃 (𝑠) 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 (for 𝑠 : 𝐼 → 𝐼 ) id ⊕ 𝑠
Z 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝑃 (−1)
S 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝑃 (𝑖)
T 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝑃 (𝜔)
H 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝜔 • X ◦ S ◦ V ◦ S ◦ X
K 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 𝜔−1 • H

Midswap (𝐴 ⊕ 𝐵) ⊕ (𝐶 ⊕ 𝐷) → (𝐴 ⊕ 𝐶) ⊕ (𝐵 ⊕ 𝐷) 𝛼−1
⊕ ◦ (id ⊕ 𝛼⊕) ◦ (id ⊕ (𝜎⊕ ⊕ id)) ◦

(id ⊕ 𝛼−1
⊕ ) ◦ 𝛼⊕

Mat (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 → 𝐴 ⊕ 𝐴 𝜆⊗ ⊕ 𝜆⊗ ◦ 𝛿𝑅
Ctrl𝑚 (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 → (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 given𝑚 : 𝐴 → 𝐴 Mat−1 ◦ (id ⊕𝑚) ◦Mat
nCtrl𝑚 (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 → (𝐼 ⊕ 𝐼 ) ⊗ 𝐴 given𝑚 : 𝐴 → 𝐴 Mat−1 ◦ (𝑚 ⊕ id) ◦Mat
SWAP (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) 𝜎⊗
CX (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) Ctrl X
CZ (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) Ctrl Z
CCX (𝐼 ⊕𝐼 )⊗ ((𝐼 ⊕𝐼 )⊗ (𝐼 ⊕𝐼 )) → (𝐼 ⊕𝐼 )⊗ ((𝐼 ⊕𝐼 )⊗ (𝐼 ⊕𝐼 )) Ctrl CX

Fig. 8. Shorthands for some maps in models of
√
Π.

Proposition 5.3. The rig groupoid Unitary of finite-dimensional Hilbert spaces and unitaries is a
model of

√
Π.

Proof. Choosing 𝜔 = exp(𝑖𝜋/4) and V = H( −1 0

0 𝑖 )H (with H the usual Hadamard gate, i.e.,
H = 1√

2

( 1 1

1 −1 )), it is verified by straightforward calculation that the three equations are satisfied. □

Wewill considerUnitary to be the standard model of

√
Π. A semantics of

√
Π can, more generally,

be given in any model satisfying Def. 5.2 by interpreting all the “classical” morphisms as in Π, and
additionally interpreting the additional combinators as shown at the bottom of Fig. 7.

Definition 5.4 (Models). We use J−K to denote the interpretation of a

√
Π term in an arbitrary

model of

√
Π, and L−M to denote its interpretation in the standard model Unitary.

In this way, given

√
Π terms 𝑐1 and 𝑐2, we can only ever establish J𝑐1K = J𝑐2K if this holds from

the axioms of models of

√
Π alone. On the other hand, we can establish L𝑐1M = L𝑐2M by any means

sound for unitaries (e.g., matrix computation, circuit rewriting rules, ZX-calculus derivations, etc.).

5.2 RepresentingQuantum Gates
Let (C, ⊗, ⊕,𝑂, 𝐼 ) be a model of

√
Π. We demonstrate that, in any such model, all the familiar

quantum gates can be represented internally as shown in Fig. 8. We can combine these gates into

circuits using the tensor product and composition as usual. For example, the circuit

•
𝐻 𝐻

is represented by the morphism id ⊗ H ◦ Ctrl X ◦ id ⊗ H in a model of

√
Π. Besides familiar gates,

Fig. 8 also defines the convenient map Mat which is so named because it can be seen as a way
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to construct maps from matrix representations. This powerful technique was implicitly used in

the definition of Ctrl-gates in Sec. 3.2. More generally, we think of 𝑔 as an abstract block matrix
representation of 𝑓 when 𝑔 ◦Mat = Mat ◦ 𝑓 , as this means in turn that Mat−1 ◦ 𝑔 ◦Mat = 𝑓 .
It is straightforward to confirm that the internal gates correspond to their usual definitions in

Unitary, the standard model of

√
Π. Here, we focus on properties that are valid in every model.

We begin by establishing some basic facts about scalars (morphisms 𝐼 → 𝐼 ) in a rig (or, more

generally, monoidal) category.

Proposition 5.5. Let 𝑠 and 𝑡 be scalars and 𝑓 and 𝑔 be morphisms.
(i) 𝑠 ◦ 𝑡 = 𝑡 ◦ 𝑠 ,
(ii) if 𝑠2 = 𝑡 then 𝑠−1 = 𝑡−1 ◦ 𝑠
(iii) 𝑠 • 𝑓 = 𝑓 • 𝑠
(iv) 1 • 𝑓 = 𝑓 ,
(v) 𝑠 • (𝑡 • 𝑓 ) = (𝑠 ◦ 𝑡) • 𝑓 ,
(vi) 𝑠 • (𝑓 ⊕ 𝑔) = (𝑠 • 𝑓 ) ⊕ (𝑠 • 𝑔),
(vii) 𝑠 • (𝑔 ◦ 𝑓 ) = (𝑠 • 𝑔) ◦ 𝑓 ,
(viii) 𝑠 • (𝑔 ◦ 𝑓 ) = 𝑔 ◦ (𝑠 • 𝑓 ).
Proof. All but the second property are shown in the literature, e.g., [Heunen and Vicary 2019].

For (ii), we see that 𝑡−1 ◦ 𝑠 ◦ 𝑠 = 𝑡−1 ◦ 𝑡 = id𝐼 and 𝑠 ◦ 𝑡−1 ◦ 𝑠 = 𝑡−1 ◦ 𝑠 ◦ 𝑠 = 𝑡−1 ◦ 𝑡 = id𝐼 using

commutativity of scalars, so 𝑠−1 = 𝑡−1 ◦ 𝑠 follows by unicity of inverses. □

The next three lemmas establish basic properties of the internal gates and scalars. Their proofs

can be found in the archived version [Carette, Heunen, et al. 2023].

Lemma 5.6. Let 𝑠 and 𝑡 be scalars.
(i) −12 = id and 𝑖2 = −1,
(ii) X2 = id,
(iii) P(𝑠)2 = P(𝑠2),
(iv) P(𝑠)−1 = P(𝑠−1),
(v) P(𝑠) ◦ P(𝑡) = P(𝑠 ◦ 𝑡) = P(𝑡) ◦ P(𝑠),
(vi) P(𝑠) ◦ X ◦ P(𝑠) = 𝑠 • X,
(vii) X ◦ V = V ◦ X,
(viii) CX2 = id,
(ix) CZ2 = id,
(x) CCX2 = id,
(xi) X ◦ P(𝑠) = 𝑠 • P(𝑠−1) ◦ X.
Lemma 5.7. Let 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑋 → 𝑋 , and ℎ : 𝑋 → 𝑋 be maps, and 𝑠 and 𝑡 be scalars. Then:
(i) Mat ◦ (id𝐼⊕𝐼 ⊗ 𝑓 ) = (𝑓 ⊕ 𝑓 ) ◦Mat,
(ii) Mat ◦ SWAP = Midswap ◦Mat,
(iii) SWAP ◦Mat−1 = Mat−1 ◦Midswap,
(iv) Mat ◦ (𝑓 ⊗ id𝐼⊕𝐼 ) = Midswap ◦ (𝑓 ⊕ 𝑓 ) ◦Midswap ◦Mat,
(v) SWAP ◦ Ctrl P(𝑠) ◦ SWAP = Ctrl P(𝑠),
(vi) Ctrl P(𝑠) ◦ Ctrl P(𝑡) = Ctrl P(𝑡) ◦ Ctrl P(𝑠),
(vii) Ctrl P(𝑠) ◦ (id𝐼⊕𝐼 ⊗ P(𝑡)) = (id𝐼⊕𝐼 ⊗ P(𝑡)) ◦ Ctrl P(𝑠),
(viii) Mat ◦ (X ⊗ id𝐼⊕𝐼 ) = 𝜎⊕ ◦Mat,
(ix) Mat ◦ (P(𝑠) ⊗ id𝐼⊕𝐼 ) = (id𝐼⊕𝐼 ⊕ (𝑠 • id)) ◦Mat.
(x) Ctrl 𝑔 ◦ Ctrl ℎ = Ctrl(𝑔 ◦ ℎ)
Lemma 5.8. Any model of

√
Π satisfies H ◦ X ◦ H = Z and H ◦ Z ◦ H = X.
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𝜔 · 𝐴 = 𝐴 · 𝜔 (A1) 𝐴0𝐵1 = 𝐴1𝐵0 (A2)

𝜔8
= id (A3) H2

= id (A4)

S4 = id (A5) SHSHSH = 𝜔 · id (A6)

• •
• •

= (A7)
𝑆 •

•
=

• 𝑆

•
(A8)

•

𝑆 •
=

•

• 𝑆
(A9)

𝐻 𝑆 𝑆 𝐻 •

•
=

• 𝐻 𝑆 𝑆 𝐻

• 𝑆 𝑆
(A10)

•

𝐻 𝑆 𝑆 𝐻 •
=

• 𝑆 𝑆

• 𝐻 𝑆 𝑆 𝐻
(A11)

• •

• 𝐻 •
=

• 𝑆

𝑆 𝐻 • 𝑆 𝐻 𝑆
· 𝜔−1

(A12)

• 𝐻 •

• •
=

𝑆 𝐻 • 𝑆 𝐻 𝑆

• 𝑆
· 𝜔−1

(A13)

Fig. 9. A sound and complete equational theory of ≤ 2-qubit Clifford circuits due to Selinger [2015]. What
we call (A3)–(A13) refer to relations (C1)–(C11) in the original paper by Selinger [2015] (equations (A1) and
(A2) become relevant once we consider ≤ 2-qubit Clifford+T circuits [Bian and Selinger 2022]). Note that we
swap the order of (A12) and (A13) compared to the original presentation by Selinger [2015].

6 SOUNDNESS AND COMPLETENESS
We present our main technical development:

√
Π is equationally sound and complete for a variety of

gate sets, including the computationally universal Gaussian Clifford+T [Amy et al. 2020]. This is

expressed in terms of a series of full abstraction results, showing that fragments of

√
Π are fully

abstract for certain classes of unitaries.

To our knowledge, this is the first presentation of a computationally universal quantum pro-

gramming language with a sound and complete equational theory.

6.1 ≤ 2-qubit Clifford Circuits
We begin by proving that models of

√
Π satisfy the sound and complete equational theory of

≤ 2-qubit Clifford circuits shown in Fig. 9. Clifford circuits are those which can be formed using

the gates {CZ, S,H} and the scalar 𝜔 = 𝑒𝑖𝜋/4.

Definition 6.1. In a model of

√
Π, a representation of a Clifford circuit is any morphism which can

be written in terms of morphisms from the sets {𝜔, S,H,CZ} and {𝛼⊗, 𝛼−1
⊗ , 𝜆⊗, 𝜆−1⊗ , 𝜌⊗, 𝜌

−1
⊗ , 𝜎⊗},

composed arbitrarily in parallel (using ⊗) and in sequence (using ◦). A representation of a ≤ 2-qubit

Clifford circuit is one with signature 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 or (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ).

Note that this definition permits both scalar multiplication by powers of𝜔 (since this is formulated

using the coherence isomorphisms) and use of the SWAP gate (since this is precisely 𝜎⊗). This
result relies on the generators and relations for Clifford circuits due to Selinger [2015], which we

prove are all satisfied in any model of

√
Π:

(A1) 𝜔 • 𝑓 = 𝑓 • 𝜔 for all 𝑓 follows by Prop. 5.5 (iii).

(A2) That (𝑓 ⊗ id) ◦ (id ⊗ 𝑔) = (id ⊗ 𝑔) ◦ (𝑓 ⊗ id) follows by bifunctoriality of ⊗.
(A3) 𝜔8 = id follows immediately by (E1).

(A4) We derive

H ◦ H = (𝜔 • X ◦ S ◦ V ◦ S ◦ X) ◦ (𝜔 • X ◦ S ◦ V ◦ S ◦ X) (def. H)
= 𝜔2 • X ◦ S ◦ V ◦ S ◦ X ◦ X ◦ S ◦ V ◦ S ◦ X (Prop. 5.5)
= 𝜔2 • X ◦ S ◦ V ◦ S ◦ S ◦ V ◦ S ◦ X (X2 = id)
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= 𝜔2 • X ◦ (𝜔−2 • V ◦ S ◦ V) ◦ (𝜔−2 • V ◦ S ◦ V) ◦ X (𝐸3)
= 𝜔−2 • X ◦ V ◦ S ◦ V ◦ V ◦ S ◦ V ◦ X (Prop. 5.5)
= 𝜔−2 • X ◦ V ◦ S ◦ X ◦ S ◦ V ◦ X (𝐸2)
= 𝜔−2 • X ◦ V ◦ (𝜔2 • X) ◦ V ◦ X (Lem. 5.6 (vi))
= X ◦ V ◦ X ◦ V ◦ X (Prop. 5.5)
= X ◦ X ◦ V ◦ V ◦ X (Lem. 5.6 (vii))
= X ◦ X ◦ X ◦ X (𝐸2)
= id (X2 = id)

(A5) S4 = (id ⊕ 𝑖)4 = (id ⊕ 𝜔2)4 = id
4 ⊕ 𝜔8 = id ⊕ id = id by bifunctoriality and (E1).

(A6) We compute

(S ◦ H)3 = (S ◦ (𝜔 • X ◦ S ◦ V ◦ S ◦ X))3 (def. H)
= (𝜔 • S ◦ X ◦ S ◦ V ◦ S ◦ X)3 (Prop. 5.5)
= (𝜔 • (𝜔2 • X) ◦ V ◦ S ◦ X)3 (Lem. 5.6 (vi))
= (𝜔3 • X ◦ V ◦ S ◦ X)3 (Prop. 5.5)
= (𝜔3 • X ◦ V ◦ S ◦ X) ◦ (𝜔3 • X ◦ V ◦ S ◦ X) ◦ (𝜔3 • X ◦ V ◦ S ◦ X) (expand)
= 𝜔9 • X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X (Prop. 5.5)
= 𝜔 • X ◦ V ◦ S ◦ V ◦ S ◦ V ◦ S ◦ X ((𝐸1), X2 = id)
= 𝜔 • X ◦ (𝜔2 • S ◦ V ◦ S) ◦ S ◦ V ◦ S ◦ X (𝐸3)
= 𝜔3 • X ◦ S ◦ V ◦ S ◦ S ◦ V ◦ S ◦ X (Prop. 5.5)
= 𝜔3 • X ◦ S ◦ V ◦ S ◦ X ◦ X ◦ S ◦ V ◦ S ◦ X (X2 = id)
= 𝜔 • (𝜔 • X ◦ S ◦ V ◦ S ◦ X) ◦ (𝜔 • X ◦ S ◦ V ◦ S ◦ X) (Prop. 5.5)
= 𝜔 • (H ◦ H) (def. H)
= 𝜔 • id (𝐴4)

(A7) By Lem. 5.6 (ix).

(A8) We have

Ctrl Z ◦ (S ⊗ id) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (S ⊗ id) (Lem. 5.7 (v))

= SWAP ◦ Ctrl Z ◦ (id ⊗ S) ◦ SWAP (naturality SWAP)
= SWAP ◦ (id ⊗ S) ◦ Ctrl Z ◦ SWAP (Lem. 5.7(𝑣𝑖𝑖))
= (S ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= (S ⊗ id) ◦ Ctrl Z (Lem. 5.7 (v))

(A9) By Lem. 5.7 (v).

(A10) Since S ◦ S = Z and H ◦ S ◦ S ◦ H = H ◦ Z ◦ H = X by Lems. 5.6 and 5.8, it suffices to show

Ctrl Z ◦ (X ⊗ id) = X ⊗ Z ◦ Ctrl Z. This follows by

Ctrl Z ◦ (X ⊗ id) = Mat−1 ◦ (id ⊕ Z) ◦Mat ◦ (X ⊗ id) (def. Ctrl)
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= Mat−1 ◦ (id ⊕ Z) ◦ 𝜎⊕ ◦Mat (Lem. 5.7(𝑣𝑖𝑖𝑖))
= Mat−1 ◦ 𝜎⊕ ◦ (Z ⊕ id) ◦Mat (naturality 𝜎⊕)
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ id) ◦Mat (Lem. 5.7(𝑣𝑖𝑖𝑖))
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ (Z ◦ Z)) ◦Mat (Z2 = id)
= (X ⊗ id) ◦Mat−1 ◦ (Z ⊕ Z) ◦ (id ⊕ Z) ◦Mat (bifunctoriality ⊕)
= (X ⊗ id) ◦ (id ⊗ Z) ◦Mat−1 ◦ (id ⊕ Z) ◦Mat (Lem. 5.7(𝑖))
= (X ⊗ Z) ◦Mat−1 ◦ (id ⊕ Z) ◦Mat (bifunctoriality ⊗)
= X ⊗ Z ◦ Ctrl Z (def. Ctrl)

(A11) Similarly, since it has already been established that H ◦ S ◦ S ◦H = X and S ◦ S = Z, it suffices

to show Ctrl Z ◦ (id ⊗ X) = Z ⊗ X ◦ Ctrl Z:
Ctrl Z ◦ (id ⊗ X) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (id ⊗ X) (Lem. 5.6(𝑣))

= SWAP ◦ Ctrl Z ◦ (X ⊗ id) ◦ SWAP (naturality SWAP)
= SWAP ◦ X ⊗ Z ◦ Ctrl Z ◦ SWAP (𝐴10)
= Z ⊗ X ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= Z ⊗ X ◦ Ctrl Z (Lem. 5.6(𝑣))

(A12) See the archived version [Carette, Heunen, et al. 2023].

(A13) This relation follows by the above since

𝜔−1 • ((S ◦ H ◦ S) ⊗ S) ◦ Ctrl Z ◦ ((H ◦ S) ⊗ id)
= 𝜔−1 • ((S ◦ H ◦ S) ⊗ S) ◦ SWAP ◦ Ctrl Z ◦ SWAP ◦ ((H ◦ S) ⊗ id) (Lem. 5.7 (v))
= 𝜔−1 • SWAP ◦ (S ⊗ (S ◦ H ◦ S)) ◦ Ctrl Z ◦ (id ⊗ (H ◦ S)) ◦ SWAP (naturality SWAP)
= SWAP ◦ (𝜔−1 • ((S ⊗ (S ◦ H ◦ S)) ◦ Ctrl Z ◦ (id ⊗ (H ◦ S))) ◦ SWAP (Prop. 5.5)
= SWAP ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl Z ◦ SWAP (𝐴12)
= SWAP ◦ Ctrl Z ◦ SWAP ◦ SWAP ◦ (id ⊗ H) ◦ Ctrl Z ◦ SWAP (SWAP involutive)
= SWAP ◦ Ctrl Z ◦ SWAP ◦ (H ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= Ctrl Z ◦ (H ⊗ id) ◦ Ctrl Z (Lem. 5.7 (v))

These derivations lead us, as a first step, to full abstraction for ≤ 2-qubit Clifford circuits.

Theorem 6.2 (Full abstraction for ≤ 2-qbit Clifford). Let 𝑐1 and 𝑐2 be
√
Π terms represent-

ing Clifford circuits of at most two qubits. Then J𝑐1K = J𝑐2K iff L𝑐1M = L𝑐2M.

Proof. The identities (A3)–(A13) are complete for ≤ 2-qubit Clifford circuits by [Selinger 2015,

Prop. 7.1] (see Remark 7.2 regarding the special case of ≤ 2-qubit circuits), and have been shown

above to hold in any model of

√
Π. □

6.2 𝑛-qubit Clifford Circuits
To extend Thm. 6.2 to Clifford circuits with an arbitrary number of qubits, it suffices by a result of

Selinger [2015] to prove just four identities (shown in Fig. 10). Interestingly, by showing that models

of

√
Π admit a few circuit rewriting rules and applying these, we will see that the heavy lifting of
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•
• •
•

=

•
• •
• (B1)

• 𝐻 • • 𝐻 •

• 𝐻 • 𝐻 • 𝐻 • 𝐻 •

𝐻 • 𝐻

=

𝐻 • 𝐻

• 𝐻 • 𝐻 • 𝐻 • 𝐻 •

• 𝐻 • • 𝐻 •
(B2)

• 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻

• 𝐻 • 𝐻 • • 𝐻 • 𝐻 • • 𝐻 • 𝐻 •

• • •
=

(B3)

• • •

• 𝐻 • 𝐻 • • 𝐻 • 𝐻 • • 𝐻 • 𝐻 •

• 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻

=
(B4)

Fig. 10. The 3-qubit identities of Clifford circuits due to Selinger [2015] which, together with (A3)–(A13) of
Fig. 9, form a sound and complete equational theory of Clifford circuits.

these four identities can be done entirely by classical reasoning. This lets us exploit the soundness
and completeness of Π with respect to its permutation semantics, which greatly simplifies these

proofs.

Recall that we interpret controlled gates in

√
Π using theCtrlmacro, such that, e.g., a controlled-X

gate
•
becomes Ctrl X. If we’re interested in a controlled gate where the target line is above rather

than below, we can simply conjugate it by a swap, e.g.,

• =
× • ×
× × .

Thus a “bottom-controlled” X is interpreted in

√
Π as SWAP ◦ Ctrl X ◦ SWAP. We first collect some

useful additional properties of Ctrl 𝑋 and Ctrl Z.

Lemma 6.3. The following identities hold in any model of
√
Π:

(i) id ⊗ H ◦ Ctrl X ◦ id ⊗ H = Ctrl Z,
(ii) H ⊗ id ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ H ⊗ id = Ctrl Z,
(iii) id ⊗ H ◦ Ctrl Z ◦ id ⊗ H = Ctrl X,
(iv) H ⊗ id ◦ Ctrl Z ◦ H ⊗ id = SWAP ◦ Ctrl X ◦ SWAP,
(v) H ⊗ id ◦ Ctrl X ◦ H ⊗ id = id ⊗ H ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ id ⊗ H

Proof. See the archived version [Carette, Heunen, et al. 2023]. □

These have direct interpretations as circuit identities, which we will use to simplify (B1)–(B4).

Corollary 6.4. The following circuit identities hold in any model of
√
Π:

(i)
•

𝐻 𝐻
=

•
• ,

(ii)
𝐻 𝐻

•
=

•
• ,

(iii)
•

𝐻 • 𝐻
=

•
,

(iv)
𝐻 • 𝐻

• = • ,

(v)
𝐻 • 𝐻

=
𝐻 • 𝐻

,

(vi)
𝑈 ×

×
=

×

× 𝑈
and

×

𝑈 ×
=

× 𝑈

×
for any gate 𝑈 .
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Proof. Points (i)–(v) hold by Lem. 6.3, while (vi) is naturality of SWAP. □

We can now tackle the four 3-qubit rules for Clifford circuits, named (C12)–(C15) in the presen-

tation of Selinger [2015], which we call (B1)–(B4).

(B1) This rule is can be derived using the circuit identities and classical completeness.

•
• •
•

=

𝐻 𝐻 • 𝐻 𝐻

• •
𝐻 𝐻 • 𝐻 𝐻

(A4)

=

𝐻 𝐻

• •
𝐻 𝐻

(Cor. 6.4)

=

𝐻 𝐻

• •
𝐻 𝐻

(P1)

=

•
• •
•

(Cor. 6.4)

Notice how the essential argument of this proof is the classical identity (P1).

(B2) We refer to the archived version [Carette, Heunen, et al. 2023].

(B3) As above.

(B4) We derive

• • •

• 𝐻 • 𝐻 • • 𝐻 • 𝐻 • • 𝐻 • 𝐻 •

• 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻

=

• • •

𝐻 𝐻 • 𝐻 • 𝐻 • 𝐻 𝐻 • 𝐻 • 𝐻 • 𝐻 𝐻 • 𝐻 • 𝐻 • 𝐻 𝐻

• 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻 • 𝐻

(A4)

=

• • •

𝐻 • • • 𝐻

• • •

(Cor. 6.4)

= 𝐻 𝐻

(P5)

=

(A4)

From this follows an equational completeness result for Clifford circuits of arbitrary size.

Theorem 6.5 (Full abstraction for Clifford circuits). Let 𝑐1 and 𝑐2 be
√
Π terms representing

Clifford circuits of arbitrary size. Then J𝑐1K = J𝑐2K iff L𝑐1M = L𝑐2M.

Proof. The identities (A3)–(A13) and (B1)–(B4) are complete for Clifford circuits of arbitrary

size by Selinger [2015, Thm. 7.1], and have been shown above to hold in any model of

√
Π. □

18



T2 = S (A14) (THSSH)2 = 𝜔 · id (A15)

𝑇 •

•
=

• 𝑇

•
(A16)

• 𝐻 • 𝐻 𝑇

𝐻 • 𝐻 •
=

• 𝐻 • 𝐻

𝑇 𝐻 • 𝐻 •
(A17)

•
𝑇 𝐻 𝑇 −1 𝑇 𝐻 𝑇 −1 =

•
𝑇 𝐻 𝑇 −1 𝑇 𝐻 𝑇 −1 (A18)

•
𝑇 𝐻 𝑇 𝐻 𝑇 −1 𝑇 𝐻 𝑇 −1 𝐻 𝑇 −1 =

•
𝑇 𝐻 𝑇 𝐻 𝑇 −1 𝑇 𝐻 𝑇 −1 𝐻 𝑇 −1 (A19)

• 𝐻 𝑇 𝐻

𝐻 𝑇 𝐻 •
=

𝐻 𝑇 𝐻 •

• 𝐻 𝑇 𝐻
(A20)

Fig. 11. The remaining identities which, along with (A1)–(A13) of Fig. 9, form a sound and complete equational
theory of ≤ 2-qubit Clifford+T circuits [Bian and Selinger 2022].

6.3 ≤ 2-qubit Clifford+T
We extend Thm. 6.2 to show that models of

√
Π are sound and complete for all ≤ 2-qubit Clifford+T

circuits. We do this by showing the remaining identities of Bian and Selinger [2022] (see Fig. 11),

which, together with (A1)–(A13) from Sec. 6.1, are equationally sound and complete for ≤ 2-qubit

Clifford+T circuits. Recall that Clifford+T circuits are those which can be formed using the scalar 𝜔

and gates {S,H,CZ, T}. This leads us to the following definition of representations of Clifford+T

circuits in models of

√
Π:

Definition 6.6. In a model of

√
Π, a representation of a Clifford+T circuit is anymorphismwhich can

be written in terms of morphisms from the sets {𝜔, S,H,CZ, T} and {𝛼⊗, 𝛼−1
⊗ , 𝜆⊗, 𝜆−1⊗ , 𝜌⊗, 𝜌

−1
⊗ , 𝜎⊗},

composed arbitrarily in parallel (using ⊗) and in sequence (using ◦). A representation of a ≤ 2-qubit

Clifford+T circuit is one with signature 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 or (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ) → (𝐼 ⊕ 𝐼 ) ⊗ (𝐼 ⊕ 𝐼 ).

We start by showing an equivalence of representations of negatively controlled gates, as the

definition of nCtrl in Fig. 8 may be considered non-standard. One usually thinks of a negatively

controlled gate as a positively controlled one conjugated by X on the control line, and we show that

our definition nCtrl is a convenient reduced form for stating this. Bian and Selinger [2022] uses yet

another representation of negatively controlled X and H, which we also show to be equivalent.

Lemma 6.7 (Negative control). Let 𝑓 : 𝑋 → 𝑋 be a map in a rig category. Then
(i) nCtrl 𝑓 = X ⊗ id ◦ Ctrl 𝑓 ◦ X ⊗ id,
(ii) nCtrl 𝑓 = Ctrl 𝑓 ◦ id ⊗ 𝑓 when 𝑓 is involutive.

Proof. See the archived version [Carette, Heunen, et al. 2023]. □

We are now ready to derive the remaining identities.

(A14) By Lem. 5.6 and definition of S and T, T2 = P(𝜔)2 = P(𝜔2) = S.
(A15) We derive

(T ◦ H ◦ S ◦ S ◦ H)2 = (T ◦ H ◦ Z ◦ H)2 (S2 = Z)
= (T ◦ X)2 (Lem. 5.8)
= T ◦ X ◦ T ◦ X (expand)
= (𝜔 • X) ◦ X (Lem. 5.6)
= 𝜔 • (X ◦ X) (Prop. 5.5)
= 𝜔 • id (X2 = id)
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(A16) This is a special case of commutativity of phase gates:

Ctrl Z ◦ (T ⊗ id) = SWAP ◦ Ctrl Z ◦ SWAP ◦ (T ⊗ id) (Lem. 5.7)
= SWAP ◦ Ctrl Z ◦ (id ⊗ T) ◦ SWAP (naturality SWAP)
= SWAP ◦ (id ⊗ T) ◦ Ctrl Z ◦ SWAP (Lem. 5.7)
= (T ⊗ id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (naturality SWAP)
= (T ⊗ id) ◦ Ctrl Z (Lem. 5.7)

(A17) By first applying circuit identities from Cor. 6.4, this identity amounts to showing that

• 𝑇

•
=

•

𝑇 •

We then derive this:

(T ⊗ id) ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X
= (T ⊗ id) ◦ Ctrl X ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ((Ctrl X)2 = id)
= (T ⊗ id) ◦ (id ⊗ H) ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (Lem. 6.3)
= (id ⊗ H) ◦ (T ⊗ id) ◦ Ctrl Z ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (bifunctoriality ⊕)
= (id ⊗ H) ◦ Ctrl Z ◦ (T ⊗ id) ◦ (id ⊗ H) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (𝐴16)
= (id ⊗ H) ◦ Ctrl Z ◦ (id ⊗ H) ◦ (T ⊗ id) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (bifunctoriality ⊕)
= Ctrl X ◦ (T ⊗ id) ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X (Lem. 6.3)
= Ctrl X ◦ (T ⊗ id) ◦ SWAP (P6)

= Ctrl X ◦ SWAP ◦ (id ⊗ T) (naturality SWAP)
= Ctrl X ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ (id ⊗ T) (P6)

= SWAP ◦ Ctrl X ◦ SWAP ◦ Ctrl X ◦ (id ⊗ T) ((Ctrl X)2 = id)

(A18) As noted by Bian and Selinger [2022], this identity and the next are both of the form

•

𝑈 𝑊

=

•

𝑊 𝑈

for some𝑈 : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 and𝑊 : 𝐼 ⊕ 𝐼 → 𝐼 ⊕ 𝐼 . This is because
id ⊗ 𝑔−1 ◦ nCtrl 𝑓 ◦ id ⊗ 𝑔

= id ⊗ 𝑔−1 ◦Mat−1 ◦ (𝑓 ⊕ id) ◦Mat ◦ id ⊗ 𝑔 (definition nCtrl)
= Mat−1 ◦ (𝑔−1 ⊕ 𝑔−1) ◦ (𝑓 ⊕ id) ◦ (𝑔 ⊕ 𝑔) ◦Mat (Lem. 5.7 (i))
= Mat−1 ◦ ◦((𝑔−1 ◦ 𝑓 ◦ 𝑔) ⊕ (𝑔−1 ◦ 𝑔) ◦Mat (bifunctoriality ⊕)
= Mat−1 ◦ ((𝑔−1 ◦ 𝑓 ◦ 𝑔) ⊕ id) ◦Mat (𝑔 invertible)

In other words, conjugating a negatively controlled 𝑓 -gate by 𝑔 on the target line yields a

negatively controlled 𝑔−1 ◦ 𝑓 ◦ 𝑔-gate (idem for positively controlled gates). Thus, it suffices

to show that positively controlled gates commute with negatively controlled gates.

Ctrl 𝑓 ◦ nCtrl 𝑔
= Mat−1 ◦ (id ⊕ 𝑓 ) ◦Mat ◦Mat−1 ◦ (𝑔 ⊕ id) ◦Mat (definition Ctrl, nCtrl)
= Mat−1 ◦ (id ⊕ 𝑓 ) ◦ (𝑔 ⊕ id) ◦Mat (Mat invertible)
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𝑖4[ 𝑗 ] = id (D1) 𝑖 [𝑘 ]𝑋 [ 𝑗,𝑘 ] = 𝑋 [ 𝑗,𝑘 ]𝑖 [ 𝑗 ] (D10)

X2[ 𝑗,𝑘 ] = id (D2) X[𝑘,𝑙 ]X[ 𝑗,𝑘 ] = X[ 𝑗,𝑘 ]X[ 𝑗,𝑙 ] (D11)

K8[ 𝑗,𝑘 ] = id (D3) X[ 𝑗,𝑙 ]X[𝑘,𝑙 ] = X[𝑘,𝑙 ]X[ 𝑗,𝑘 ] (D12)

K[𝑘,𝑙 ]X[ 𝑗,𝑘 ] = X[ 𝑗,𝑘 ]K[ 𝑗,𝑙 ] (D13)

𝑖 [ 𝑗 ]𝑖 [𝑘 ] = 𝑖 [𝑘 ]𝑖 [ 𝑗 ] (D4) K[ 𝑗,𝑙 ]X[𝑘,𝑙 ] = X[𝑘,𝑙 ]K[ 𝑗,𝑘 ] (D14)

𝑖 [ 𝑗 ]X[𝑘,𝑙 ] = X[𝑘,𝑙 ]𝑖 [ 𝑗 ] (D5) K[ 𝑗,𝑘 ]𝑖
2

[𝑘 ] = X[ 𝑗,𝑘 ]K[ 𝑗,𝑘 ] (D15)

𝑖 [ 𝑗 ]K[𝑘,𝑙 ] = K[𝑘,𝑙 ]𝑖 [ 𝑗 ] (D6) K[ 𝑗,𝑘 ]𝑖
3

[𝑘 ] = 𝑖 [𝑘 ]K[ 𝑗,𝑘 ]𝑖 [𝑘 ]K[ 𝑗,𝑘 ] (D16)

X[ 𝑗,𝑘 ]X[𝑙,𝑚] = X[𝑙,𝑚]X[ 𝑗,𝑘 ] (D7) K[ 𝑗,𝑘 ]𝑖 [ 𝑗 ]𝑖 [𝑘 ] = 𝑖 [ 𝑗 ]𝑖 [𝑘 ]K[ 𝑗,𝑘 ] (D17)

X[ 𝑗,𝑘 ]K[𝑙,𝑚] = K[𝑙,𝑚]X[ 𝑗,𝑘 ] (D8) K2[ 𝑗,𝑘 ]𝑖 [ 𝑗 ]𝑖 [𝑘 ] = id (D18)

K[ 𝑗,𝑘 ]K[𝑙,𝑚] = K[𝑙,𝑚]K[ 𝑗,𝑘 ] (D9) K[ 𝑗,𝑘 ]K[𝑙,𝑚]K[ 𝑗,𝑙 ]K[𝑘,𝑚] = K[ 𝑗,𝑙 ]K[𝑘,𝑚]K[ 𝑗,𝑘 ]K[𝑙,𝑚] (D19)

Fig. 12. The sound and complete equational theory of Gaussian dyadic rational unitaries due to [Bian and
Selinger 2021].

= Mat−1 ◦ (𝑔 ⊕ id) ◦ (id ⊕ 𝑓 ) ◦Mat (bifunctoriality ⊕)
= Mat−1 ◦ (𝑔 ⊕ id) ◦Mat ◦Mat−1 ◦ (id ⊕ 𝑓 ) ◦Mat (Mat invertible)
= nCtrl 𝑔 ◦ Ctrl 𝑓 (definition Ctrl, nCtrl)

(A19) As above.

(A20) See the archived version [Carette, Heunen, et al. 2023].

Summing up:

Theorem 6.8. Let 𝑐1 and 𝑐2 be
√
Π terms representing Clifford+T circuits of at most two qubits.

Then J𝑐1K = J𝑐2K iff L𝑐1M = L𝑐2M.

Proof. (A1)–(A20) are sound and complete for Clifford+T circuits of at most two qubits [Bian

and Selinger 2022], and have been shown to hold in any model of

√
Π (see also Thm. 6.2). □

6.4 Unitaries with entries in Z[ 1
2
, 𝑖]

We now show that models of

√
Π are equationally sound and complete for unitaries with entries

from the ring Z[ 1
2
, 𝑖] (i.e., the ring of integers extended with 1

2
and 𝑖). We call these Gaussian dyadic

rational unitaries. It was shown by Amy et al. [2020] that every circuit in the computationally

universal Gaussian Clifford+T gate set has an exact representation as a unitary matrix with entries

in Z[ 1
2
, 𝑖]. A sound and complete equational theory for these unitaries was given by Bian and

Selinger [2021] (see Fig. 12). In other words, these unitaries are enough to approximate any other

finite quantum computation to any desired degree of error, and they can be reasoned about using a

sound and complete equational theory.

In this section, we show that this equational theory is subsumed by that of

√
Π. Then we show

that the easy direction of [Amy et al. 2020] can also be internalised in models of

√
Π, thus proving

equational soundness and completeness for Gaussian Clifford+T circuits.

Unlike the previous results, which concerned circuits (formed using ⊗), this result concerns
only matrices (formed using ⊕). This also means that the presentation (in Fig. 12) is quite different.

Gaussian dyadic rational unitaries are generated by 𝑖 , X, and K, where K is a variant of the Hadamard

gate given by K = 𝜔−1 • H2
. In Fig. 12, these are additionally given indices, assumed distinct,

2
Note the slight discrepancy in the literature that Bian and Selinger [2021] take K = 𝜔−1 • H while Amy et al. [2020] use

K = 𝜔 • H. However, since one definition is inverse to the other, and𝑈𝑛 (Z[ 1
2
, 𝑖 ] ) is closed under inversion, the particular

choice doesn’t matter so long as it is done consistently.
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corresponding to the component(s) that the generator is applied to. When proving these identities,

we further assume indices to start from 1 and to be consecutive in the order written. We are free to

do so since we can simply conjugate by the appropriate permutation to make it so (recalling that Π
can express all permutations). Likewise, we will assume identities to be minimal, and only consider

the case that uses the number of distinct indices; any other case reduces to this by appending

an identity morphism as necessary using the direct sum and conjugating by a permutation. For

example, in the context on an 𝑛 × 𝑛 unitary (i.e., a morphism 𝐼⊕𝑛 → 𝐼⊕𝑛 , where 𝐼⊕𝑛 is taken as

usual to mean the 𝑛-fold direct sum of 𝐼 with itself), X[2,3] is taken to mean id𝐼 ⊕ X ⊕ id𝐼 ⊕𝑛−3 (up to

associativity). To form X[2,4] would require us to conjugate this by the permutation swapping the

third and fourth components.

Definition 6.9. In a model of

√
Π, a representation of a Gaussian dyadic rational unitary is any mor-

phismwhich can bewritten in terms ofmorphisms from the sets {𝑖,K} and {𝛼⊕, 𝛼−1
⊕ , 𝜆⊕, 𝜆−1⊕ , 𝜌⊕, 𝜌

−1
⊕ ,

𝜎⊕}, composed arbitrarily in parallel (using ⊕) and in sequence (using ◦).
Note that the above definition permits the use of X since X = 𝜎⊕ by definition. It is additionally

important to realise that the notion of parallel composition is different between the above the

previous definitions concerning circuits, as this uses the direct sum ⊕ for parallel composition

whereas the circuits used the tensor product ⊗.
We show that the identities of Fig. 12 are all satisfied in any model of

√
Π.

(D1) 𝑖4 = (𝜔2)4 = 𝜔8 = id by (E1).

(D2) X2 = 𝜎2⊕ = id by the rig axioms.

(D3) We start by seeing that

K2 = (𝜔−1 • H) ◦ (𝜔−1 • H) (def. K)
= (𝜔−1 ◦ 𝜔−1) • H ◦ H (Prop. 5.5)
= (𝜔7 ◦ 𝜔7) • id (A4)

= (𝜔8 ◦ 𝜔6) • id (◦ associative)
= 𝜔6 • id (E1)

and so 𝐾8 = (𝐾2)4 = (𝜔6 • id)4 = 𝜔24 • id = (𝜔8 ◦ 𝜔8 ◦ 𝜔8) • id = id by (E1) and Prop. 5.5.

(D4–9) These are all instances of bifunctoriality for ⊕, i.e., (𝑓 ⊕ id) ◦ (id ⊕ 𝑔) = (id ⊕ 𝑔) ◦ (𝑓 ⊕ id).
(D10) We have

(id ⊕ 𝑖) ◦ X = (id ⊕ 𝑖) ◦ 𝜎⊕ (definition X)
= 𝜎⊕ ◦ (𝑖 ⊕ id) (naturality 𝜎⊕)
= X ◦ (𝑖 ⊕ id) (definition X)

(D11) We show the more general case for any 𝑓 , from which this identity follows as the case of

𝑓 = X. Marking lines in the string diagram by indices, we see that this is nothing but

f

f
=

j k l

j k l

which follows by invertibility of the symmetry.
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(D12) Likewise, we show the more general case for any 𝑓 , from which this identity will follows as

the case where 𝑓 = X. Marking lines in the string diagram by indices, we get

f

f

=

j k l j k l

f

=

j k l

which follows by (respectively) naturality and invertibility of the symmetry.

(D13) This follows by the generalised form of (D11) with 𝑓 = K.
(D14) This follows by the generalised form of (D12) with 𝑓 = K.
(D15) We have

K ◦ Z = K ◦ Z ◦ H ◦ H (A4)

= K ◦ Z ◦ H ◦ (𝜔 • K) (definition H)
= (𝜔 • K) ◦ Z ◦ H ◦ K (Prop. 5.5)
= H ◦ Z ◦ H ◦ K (definition H)
= X ◦ K (Lem. 5.8)

(D16) We reduce

K ◦ Z ◦ S = X ◦ K ◦ S (D15)

= X ◦ X ◦ S ◦ V ◦ S ◦ X ◦ S (definition K)
= S ◦ V ◦ S ◦ X ◦ S (X involutive)
= S ◦ V ◦ (𝑖 • X) (Lem. 5.6 (vi))
= 𝑖 • S ◦ V ◦ X (Prop. 5.5)

and

S ◦ K ◦ S ◦ K = S ◦ X ◦ S ◦ V ◦ S ◦ X ◦ S ◦ X ◦ S ◦ V ◦ S ◦ X (definition K)
= (𝑖 • X) ◦ V ◦ S ◦ X ◦ (𝑖 • X) ◦ V ◦ S ◦ X (Lem. 5.6 (vi))
= 𝑖2 • X ◦ V ◦ S ◦ X ◦ X ◦ V ◦ S ◦ X (Prop. 5.5)
= −1 • X ◦ V ◦ S ◦ V ◦ S ◦ X (X involutive)
= −1 • X ◦ V ◦ (−𝑖 • V ◦ S ◦ V) ◦ X (E3)

= −1 ◦ −𝑖 • X ◦ V ◦ V ◦ S ◦ V ◦ X (Prop. 5.5)
= 𝑖 • X ◦ X ◦ S ◦ V ◦ X (E2)

= 𝑖 • S ◦ V ◦ X (X involutive)
so K ◦ Z ◦ S = 𝑖 • S ◦ V ◦ X = S ◦ K ◦ S ◦ K.

(D17) It follows that

K ◦ (𝑖 ⊕ 𝑖) = K ◦ (𝑖 • (id ⊕ id)) (Prop. 5.5)
= 𝑖 • K ◦ id (bifunctoriality ⊕)
= 𝑖 • K (Prop. 5.5)
= 𝑖 • (id ⊕ id) ◦ K (bifunctoriality ⊕)
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= (𝑖 ⊕ 𝑖) ◦ K (Prop. 5.5)
(D18) We derive

K2 ◦ (𝑖 ⊕ 𝑖) = K2 ◦ (𝑖 • (id ⊕ id)) (Prop. 5.5)
= 𝑖 • K2 (Prop. 5.5)
= 𝑖 • (𝜔−1 • H) ◦ (𝜔−1 • H) (definition K)
= 𝑖 ◦ 𝜔−1 ◦ 𝜔−1 • H ◦ H (Prop. 5.5)
= 𝑖 ◦ −𝑖 • id (A4)

= id (E1)

(D19) This final identity turns out to be an instance of bifunctoriality of the tensor product in

disguise, as shown in the archived version [Carette, Heunen, et al. 2023].

We obtain yet another equational completeness result:

Theorem 6.10 (Full abstraction for Gaussian dyadic rational unitaries). Let 𝑐1 and 𝑐2 be√
Π terms representing unitaries with entries in the ring Z[ 1

2
, 𝑖]. Then J𝑐1K = J𝑐2K iff L𝑐1M = L𝑐2M.

Proof. Identities (D1)–(D19) form a sound and complete equational theory for Gaussian dyadic

rational unitaries [Bian and Selinger 2021]. □

6.5 Gaussian Clifford+T Circuits
We mentioned in Sec. 6.4 the one-to-one correspondence (due to [Amy et al. 2020]) between circuits

in the (computationally universal) Gaussian Clifford+T gate set {X,CX,CCX,K, S} and Gaussian
dyadic rational unitaries.

Definition 6.11. In a model of

√
Π, a representation of a Gaussian Clifford+T circuit is anymorphism

which can be written in terms of morphisms from the sets {X,CX,CCX,K, S} and {𝛼⊗, 𝛼−1
⊗ , 𝜆⊗, 𝜆−1⊗ ,

𝜌⊗, 𝜌−1⊗ , 𝜎⊗}, composed arbitrarily in parallel (using ⊗) and in sequence (using ◦).

We argue that we can reason about Gaussian Clifford+T circuits in models of

√
Π by reasoning

about their matrices, using the coherence theorem for rig categories. Recall that a bipermutative
category is a rig category where both symmetric monoidal structures are strict, and the annihilators

and right distributor are all identities. (The explicit definition can be found in [May 1977].)

The coherence theorem for rig categories can be stated in terms of bipermutative categories as

follows:

Theorem 6.12. Any rig category is rig equivalent to a bipermutative category.

Proof. See [May 1977, VI, Prop. 3.5]. □

We can use this theorem to make the rig structure in any model of

√
Π bipermutative. This is very

handy since we notice that in a bipermutative category, the isomorphismMat : (𝐼 ⊕ 𝐼 ) ⊗𝐴 → 𝐴⊕𝐴
is the identity, as it is composed of the right distributor and some unitors; similarly, Midswap :

(𝐴 ⊕ 𝐵) ⊕ (𝐶 ⊕𝐷) → (𝐴 ⊕𝐶) ⊕ (𝐵 ⊕𝐷) is id ⊕ 𝜎⊕ ⊕ id (we don’t need to worry about associativity

due to strictness). Since in a general model of

√
Π we have

CX = Ctrl X = Mat−1 ◦ (id ⊕ X) ◦Mat,

in a bipermutative model of

√
Π we have CX = id ⊕ X; and CCX = (id ⊕ (id ⊕ X)). As

SWAP = Mat−1 ◦Mat ◦ SWAP = Mat−1 ◦Midswap ◦Mat
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by invertibility of Mat and Lem. 5.7, we have that SWAP = Midswap = id ⊕ X ⊕ id in the

bipermutative case, so even swapping two circuit lines reduces to applying X. As such, X, CX, CCX,
K, S, and SWAP are all Gaussian dyadic rational unitaries in a bipermutative model of

√
Π. This is

the key observation in obtaining equational soundness and completeness for Gaussian Clifford+T

circuits (as it was for classical reversible circuits as well [Choudhury et al. 2022]).

We will need a small lemma. Let SWAPASSOC : (𝐼 ⊕ 𝐼 ) ⊗ ((𝐼 ⊕ 𝐼 ) ⊗𝐴) → (𝐼 ⊕ 𝐼 ) ⊗ ((𝐼 ⊕ 𝐼 ) ⊗𝐴)
denote the natural isomorphism 𝛼⊗ ◦ SWAP ⊗ id ◦ 𝛼−1

⊗ .

Lemma 6.13. In any model of
√
Π, we have

(Mat ⊕ Mat) ◦Mat ◦ SWAPASSOC = Midswap ◦ (Mat ⊕ Mat) ◦Mat.

Proof. See the archived version [Carette, Heunen, et al. 2023]. □

Theorem 6.14 (Full abstraction for Gaussian Clifford+T circuits). Let 𝑐1 and 𝑐2 be
√
Π

terms representing Gaussian Clifford+T circuits. Then J𝑐1K = J𝑐2K iff L𝑐1M = L𝑐2M.

Proof. Let 𝑐1, 𝑐2 : (𝐼 ⊕ 𝐼 )⊗𝑛 → (𝐼 ⊕ 𝐼 )⊗𝑛 . By coherence, we may assume every model of

√
Π in

sight to be bipermutative.

As noted above, the gates of the Gaussian Clifford+T gate set are all representations of Gaussian

dyadic rational unitaries in this bipermutative model: X and K are so directly, and S = id ⊕ 𝑖 ,
CX = id ⊕ X and CCX = id ⊕ (id ⊕ X) are so too by closure under direct sums. To see that the

tensor product of two representations is also a representation, it suffices to show that tensoring by

identities on (𝐼 ⊕ 𝐼 )⊗𝑚 on either side preserves this property, since we have (𝑓 ⊗ id) ◦ (id⊗𝑔) = 𝑓 ⊗𝑔:
• By Lem. 5.7, tensoring by id𝐼⊕𝐼 on the left yields id𝐼⊕𝐼 ⊗ 𝑓 = Mat−1 ◦ (𝑓 ⊕ 𝑓 ) ◦Mat, so in the

bipermutative case id𝐼⊕𝐼 ⊗ 𝑓 = 𝑓 ⊕ 𝑓 , which is again a representation of a Gaussian dyadic

rational unitary unitary when 𝑓 is, by closure under direct sum. But then we can repeat this

process𝑚 − 1 times to tensor by id(𝐼⊕𝐼 )⊗𝑚 .
• By naturality, 𝑓 ⊗ id(𝐼⊕𝐼 )⊗𝑚 = 𝜎⊗ ◦ id(𝐼⊕𝐼 )⊗𝑚 ⊗ 𝑓 ◦ 𝜎⊗ , so this reduces to the case above since

(in the bipermutative case, using Lems. 6.13 and 5.7) the symmetry 𝜎⊗ on (𝐼 ⊕ 𝐼 )⊗𝑝 ⊗ (𝐼 ⊕ 𝐼 )⊗𝑞
is nothing but a series of direct sums of identities and ⊕-symmetries on 𝐼 ⊕ 𝐼 (i.e., X gates).

Finally, since representations of Gaussian dyadic rational unitaries are also closed under composition,

it follows that any representation of a Gaussian Clifford+T circuit in a bipermutative category is

directly also a representation of a Gaussian dyadic rational unitary.

From this it follows for terms 𝑐1 and 𝑐2 representing Gaussian Clifford+T circuits that J𝑐1K = J𝑐2K
iff they are equal as representations of Gaussian dyadic rational unitaries, which in turn happens

(by Thm. 6.10) iff they are equal as actual unitaries inUnitary (so specifically as Gaussian Clifford+T
circuits), i.e., iff L𝑐1M = L𝑐2M. □

7 CIRCUIT EQUIVALENCES
As a supplement to this paper, we have developed an Agda library

3
and used it to formalise some of

our results. We discuss its use in proving the Sleator-Weinfurter decomposition of CCX mentioned

in Sec. 3, as well as keys aspects of the implementation.

7.1 Decomposing CCX

In the previous section, we noted that every gate in the Gaussian Clifford+T gate set has a “matrix

representation”, i.e., that it can be written as Mat−1 ◦ 𝑔 ◦ Mat for some 𝑔 that only uses K, X, 𝑖 ,
direct sums and composition. To prove the correctness of the Sleator-Weinfurter decomposition

3
available from https://github.com/JacquesCarette/SqrtPi
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(see Fig. 2 on page 6), we will use a common technique: find the matrix form of each gate, compose

them to form the circuit, and use elementary reasoning to take care of the rest.

The first step seems simple given that each elementary gate has a matrix representation, but

additional work is required in the case of multi-qubit circuits. This is because the exact positioning

of the gate alters its representation. For example, to find the matrix representation of a CX applied

to the top two qubits of a three qubit circuit, we apply it instead to the bottom two qubits and apply

SWAP gates to “rewire” the circuit appropriately, as in

•
=

× ×
×× • ××
× ×

This form allows us to use Lems. 5.7 and 6.13 to find its matrix representation, which turns out

(with a bit of work) to be

Mat−1 ◦ (Mat−1 ⊕ Mat−1) ◦ (id ⊕ 𝜎 𝐼⊕𝐼 ,𝐼⊕𝐼⊕ ) ◦ (Mat ⊕ Mat) ◦Mat .

We use the same technique to find the matrix representation of the remaining gates in the circuit

and compose them, yielding (after removing a number of superfluous Mat−1 ◦Mat)

Mat−1 ◦ (Mat−1 ⊕ Mat−1) ◦ (id ⊕ (V ⊕ V)) ◦ (id ⊕ 𝜎 𝐼⊕𝐼 ,𝐼⊕𝐼⊕ ) ◦ ((id ⊕ V−1) ⊕ (id ⊕ V−1)) ◦
(id ⊕ 𝜎 𝐼⊕𝐼 ,𝐼⊕𝐼⊕ ) ◦ ((id ⊕ V) ⊕ (id ⊕ V)) ◦ (Mat ⊕ Mat) ◦Mat

Expanding out and applying naturality of 𝜎⊕ , invertibility of V, and bifunctoriality a few times

show that this is equivalent to our previous definition of CCX, i.e.

Mat−1 ◦
(
id ⊕

(
Mat−1 ◦ (id ⊕ 𝑋 ) ◦Mat

) )
◦Mat.

An Agda program implementing the formal proof can be found in the supplementary material. The

equational proofs are reasonably readable by humans (much more so than tactic proofs would be)

but not so enlightening that including them here would be warranted.

7.2 Agda implementation
Presented with the choice of working in the syntax of

√
Π (Sec. 4) or in its generic models (Def. 5.2),

we chose to work in the latter for purely practical considerations: the library agda-categories
already contains a wealth of reasoning combinators for both categories and monoidal categories

that we would have to reproduce in the syntax of the language. Furthermore, it also has proofs of

useful results, such as Kelly’s various coherence lemmas, and defines useful extra combinators like

“middle exchange” (our Midswap). As we would have had to reproduce all of that, this seemed like

a simple choice.

However, everything in agda-categories is weak, so that we have to worry about units and

association in our formal proofs. Doing this manually is overwhelmingly tedious. Luckily, there

are a lot of combinators already defined that make this essentially bearable. The translation from

the proofs presented in the paper, which ignore associativity altogether, does require some care.

We have not yet had a chance to formalise everything. We did formalise all of Sec. 5, all results

in Sec. 6.1, Lem. 6.3 of Sec. 6.2, Lem. 6.7, and (A14) to (A17) in Sec. 6.3. We foresee no additional

difficulties for other parts, except that many of the later equations are larger. Going at “full speed,”

a proof like that of Sleator-Weinfurter takes a little over an hour of dedicated work. However,

identities like (B1)–(B4) and (A20) are likely to take several hours each.

We did not find any errors in any of the paper proofs while formalising them. We did find several

cross-referencing errors (i.e., the wrong lemma justifying the step had been written down), which

were subsequently corrected. Interestingly, we did find an error in agda-categories itself: it was

missing some coherences for RigCategory. This error has been fixed in the library.
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We did find that some classical coherences used in the proofs of Lem. 5.5 and 5.6 were signifi-

cantly more work to prove than the diagrammatic sketches let on. Three of the sub-parts of these

“preliminary lemmas” accounted for more than a day’s work each.

Nevertheless, we conclude that doing categorical meta-theory for quantum programming lan-

guages absolutely can be formalised at a reasonable cost.

8 CONCLUDING REMARKS
In this paper we have studied square roots from a purely axiomatic perspective. We have shown

that with a remarkably small extension to the classical reversible programming language Π, one can
obtain a language which is computational universal as well as sound and complete for a variety of

modes of unitary quantum computing. A key feature of our approach (also found in other successful

calculi such as the ZX-calculus) is the treatment of gates as white boxes that can be decomposed

and recomposed during rewriting. This is in contrast to the circuit based approach that treat gates

as black boxes. For example, while a circuit theory will allow one to derive that TT = S, it is
unable to provide justification for this in terms of the definitions of S and T. On the other hand, our

approach reduces this equation to the bifunctoriality of ⊕ and the definition of S and T. This style
of reasoning is very close to the kind of semi-formal reasoning used to justify matrix equalities

(employed, e.g., in [Bian and Selinger 2022] to justify their relations).

Physically, square roots are a key feature of quantum hardware. To understand this point, we

briefly delve under the computational abstraction to the level of energy flow. At that level, the

quantum mechanical description of a system is expressed using a Hamiltonian that is continuous

in time (and assumed here to be time independent). Given a Hamiltonian 𝐻 and some initial state

|𝜓 (0)⟩, the state of the system at a subsequent time 𝑡 is given by:

|𝜓 (𝑡)⟩ = 𝑒−𝑖𝐻𝑡 |𝜓 (0)⟩
In the circuit model of quantum computing, the quantity 𝑒−𝑖𝐻𝑡 denotes a unitary 𝑈 that is im-

plemented by a gate or collection of gates. Mathematically, it is clearly legitimate to decompose

𝑈 = 𝑒−𝑖𝐻𝑡 into
√
𝑈 ◦

√
𝑈 = 𝑒−𝑖𝐻𝑡/2 ·𝑒−𝑖𝐻𝑡/2. This decomposition has a simple operational realisation:

if the application of 𝑈 requires an energy pulse lasting 𝑘 units of time, then applying the pulse

for 𝑘/2 units implements

√
𝑈 [Arute et. al. 2019, VII.F.2]. It turns out that the classical comput-

ing abstraction generally does not allow such decompositions, whereas quantum computing is

distinguished by this feature.

The fact that a function and its square root operate at different time scales suggests evidence

for the widely-believed exponential speedup that distinguishes quantum from classical computing.

Taking this idea further, it is arguably the case that more and more square roots, for example by

providing additional roots of unity, would unlock additional speedup opportunities. We consider a

formal investigation of these connections to be an important direction of future work.
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