
Christopher Kumar Anand
Andrew Curtis

Michal Dobrogost
Maryam Moghadas

Jessica Pavlin
Yuriy Toporovskyy

Wolfram Kahl

High Performance Medical
Image Reconstruction.
What could go wrong?

CSE 4Feb15 - Anand

What can go wrong?

2

• algorithm selection and parameterization

• non-convex objective

• non-convergence (ill-conditioned)

• insufficient signal versus noise

• implementation

• transcription errors

• non-deterministic parallelization

• model does not capture physics (including units)

CSE 4Feb15 - Anand

COCONUT
COde CONstructing User Tool

3

COde CONstructing User Tool
• DSLs embedded in Haskell

• strong types (detect errors in model and code)

• high level
• start with objective function
• differentiate symbolically
• simplify expressions
• recognize recurrence relations
• generate code

• verification
• SIMD & distributed parallelization (private and shared-memory)

• linear-time verification via AVOp model

• algorithm selection and experiment design
• homotope models to maintain convexity
• optimize SNR and bound maximum noise (SSV metric)
• scale regularization to ensure required convergence

CSE 4Feb15 - Anand

Models

4

2.0.1 Model Expressions

The first DSL is the declarative algebraic expression language designed to
look like applied mathematics as used in physical models and optimization
problems. To save trouble later—when e�cient code generation will depend
on not recalculating common subexpressions—each expression is encoded as
a node in a hash table, where each entry is either a basic node (a variable,
di↵erential, or constant) or an operation combining multiple other nodes.
The hash table is implemented using a Haskell IntMap, but this type is
wrapped in classes which hide the implementation from the user. The user
can even work interactively to build up an expression, such as a 3D Fourier
transform, ft(x+ iy) of a complex vector composed of real vectors x and y:

> let x = var3d (16,16,16) "x"

> let y = var3d (16,16,16) "y"

> ft (x +: y)

(FT((x(16,16,16)+:y(16,16,16))))

This DSL has classes for real and complex vector spaces, and instances
of these corresponding to regular hexahedral (cubic) discretizations of one-,
two-, three- and four-dimensional spaces. For example, the x component of
tissue velocity is a field in R3, which we approximate using a discretization
var3d with specified resolution. Another example is the problem-specific
conservation-of-mass regularizer is

massConservation (ThreeD vx , ThreeD vy , ThreeD vz)
= norm2 (conv3Zip1ZM com vx vy vz)

where

com (vX,vY, vZ) = (vX[1 , 0 , 0] � vX[�1 ,0 ,0])
+ (vY[0 , 1 , 0] � vY[0 , �1 ,0])
+ (vZ [0 , 0 , 1] � vZ [0 ,0 , �1])

where conv3ZipZM constructs a stencil computation with assumed zero mar-
gins for out-of-bounds references, norm2 is the norm squared, and we use
familiar array subscript notation for relative indexing of neighbouring val-
ues for the three velocity components.

The result is an environment for constructing term graphs also called
directed acyclic graphs (DAGs), which looks to the mathematician a lot like
expressions appearing in papers and technical reports.

2.0.2 Term Graph Transformations

Once the model is set, it is up to a second set of experts to transform the
declarative expressions, encoded via expression hashes, into a parallel pro-
gram. Simplification, factoring, di↵erentiation and pre-parallelization make

6

tive with respect to the real variable X using a simple recursion through the
DAG as

>> diff (mp ["X"]) (norm2 (ft (x +: y)))

((((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16]))))))

+ (((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))))

but this flat representation is deceptively long as it hides the redundancy
tracked by CEL internally. Di↵erentiating with respect to both real variables

d
��ft(x+ iy)

��
2

.

would double the above length, but not with sharing:

sum

sum

sum

dot

dot

<
<
=
=

ft

ft

+i

+i

dx

dy

x

y

;;

##



;;

##

JJ

33
++

33
++

##

++

33

;;

//

//
33
++

33
++

(5)

which maintains the structure of the e�cient computation graph, but does
not explicitly contain the gradient.

To extract the gradient, we need to put the exterior derivative into a
normal form, which we derive by considering the derivative of the Taylor
series of a function f(X,Y) at (X

0

, Y

0

):

f(X,Y) = f(X
0

, Y

0

)+(X�X

0

)·r
X

f+(Y �Y

0

)·r
Y

f+(higher order), (6)

whose derivative is

df(X,Y) = 0 + dX ·r

X

f + dY ·r

Y

f + (higher order). (7)

If the derivative exists and we can transform the expression for the exterior
derivative into a sum of dot products—with the left-hand arguments of
the dot products being independent exterior di↵erentials, plus higher-order
terms, then the right-hand arguments of the dot products are the desired
gradients.

To produce this normal form, we apply simplification rules which

• transform a dot product containing a sum into a sum of dots

• swap arguments of a dot product with a di↵erential in the right argu-
ment

8

tive with respect to the real variable X using a simple recursion through the
DAG as

>> diff (mp ["X"]) (norm2 (ft (x +: y)))

((((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16]))))))

+ (((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))))

but this flat representation is deceptively long as it hides the redundancy
tracked by CEL internally. Di↵erentiating with respect to both real variables

d
��ft(x+ iy)

��
2

.

would double the above length, but not with sharing:

sum

sum

sum

dot

dot

<
<
=
=

ft

ft

+i

+i

dx

dy

x

y

;;

##



;;

##

JJ

33
++

33
++

##

++

33

;;

//

//
33
++

33
++

(5)

which maintains the structure of the e�cient computation graph, but does
not explicitly contain the gradient.

To extract the gradient, we need to put the exterior derivative into a
normal form, which we derive by considering the derivative of the Taylor
series of a function f(X,Y) at (X

0

, Y

0

):

f(X,Y) = f(X
0

, Y

0

)+(X�X

0

)·r
X

f+(Y �Y

0

)·r
Y

f+(higher order), (6)

whose derivative is

df(X,Y) = 0 + dX ·r

X

f + dY ·r

Y

f + (higher order). (7)

If the derivative exists and we can transform the expression for the exterior
derivative into a sum of dot products—with the left-hand arguments of
the dot products being independent exterior di↵erentials, plus higher-order
terms, then the right-hand arguments of the dot products are the desired
gradients.

To produce this normal form, we apply simplification rules which

• transform a dot product containing a sum into a sum of dots

• swap arguments of a dot product with a di↵erential in the right argu-
ment

8

define variables

define an objective function to minimize

and take it’s derivative

CSE 4Feb15 - Anand

more complicated
models

5

2.0.1 Model Expressions

The first DSL is the declarative algebraic expression language designed to
look like applied mathematics as used in physical models and optimization
problems. To save trouble later—when e�cient code generation will depend
on not recalculating common subexpressions—each expression is encoded as
a node in a hash table, where each entry is either a basic node (a variable,
di↵erential, or constant) or an operation combining multiple other nodes.
The hash table is implemented using a Haskell IntMap, but this type is
wrapped in classes which hide the implementation from the user. The user
can even work interactively to build up an expression, such as a 3D Fourier
transform, ft(x+ iy) of a complex vector composed of real vectors x and y:

> let x = var3d (16,16,16) "x"

> let y = var3d (16,16,16) "y"

> ft (x +: y)

(FT((x(16,16,16)+:y(16,16,16))))

This DSL has classes for real and complex vector spaces, and instances
of these corresponding to regular hexahedral (cubic) discretizations of one-,
two-, three- and four-dimensional spaces. For example, the x component of
tissue velocity is a field in R3, which we approximate using a discretization
var3d with specified resolution. Another example is the problem-specific
conservation-of-mass regularizer is

massConservation (ThreeD vx , ThreeD vy , ThreeD vz)
= norm2 (conv3Zip1ZM com vx vy vz)

where

com (vX,vY, vZ) = (vX[1 , 0 , 0] � vX[�1 ,0 ,0])
+ (vY[0 , 1 , 0] � vY[0 , �1 ,0])
+ (vZ [0 , 0 , 1] � vZ [0 ,0 , �1])

where conv3ZipZM constructs a stencil computation with assumed zero mar-
gins for out-of-bounds references, norm2 is the norm squared, and we use
familiar array subscript notation for relative indexing of neighbouring val-
ues for the three velocity components.

The result is an environment for constructing term graphs also called
directed acyclic graphs (DAGs), which looks to the mathematician a lot like
expressions appearing in papers and technical reports.

2.0.2 Term Graph Transformations

Once the model is set, it is up to a second set of experts to transform the
declarative expressions, encoded via expression hashes, into a parallel pro-
gram. Simplification, factoring, di↵erentiation and pre-parallelization make

6

• e.g., conservation of mass in material
transport models is a function

CSE 4Feb15 - Anand

what was that d(X),
and where’s ∇f?

6

• d(X) is a vector of differential forms

• comes from implicit derivative

• we can extract ∇f by simplifying

CSE 4Feb15 - Anand

simplify rules

7

• commute d(x) to LHS of dot

• move linear operators to RHS via adjoint

• transform a dot product whose left argument is a linear function ap-
plied to a term containing a di↵erential, by popping the linear function
from the left argument and applying its adjoint to the right argument

and apply additional transformations which are tied to the specific represen-
tation of special operations, and are beyond the scope of this paper. The key
point is that we can view the arguments of the dot product as two stacks and
we keep popping linear operations o↵ one and pushing their adjoints onto the
other. Because some operations are defined on complex values while the dot
product is only defined for real values, some linear operations do not have
simple adjoints and must be replaced by sums of real and imaginary parts,
etc. In the following example, we look at the pop/push operations after the
other simplifications have finished, and use the operator (+i0) to mean the
embedding of a real value into a complex value by adding a zero imaginary
part. This is a simplification of the actual procedure, which interleaves the
application of di↵erent rules, and also recombines the real and imaginary
parts after the pop/push operations to avoid multiple applications of the
Fourier Transform.

For the real/x part of the term graph (5), the pop/push proceeds as

Left "
<
ft

(+i0)

dx

·

Right
#
<
ft

(+i0)

x

7!

Left "
ft

(+i0)

dx ·

Right
#
(+i0)

<
ft

(+i0)

x

7!

Left "
(+i0)

dx

·

Right
#
ft

�1

(+i0)

<
ft

(+i0)

x

7!

Left "
dx

·

Right
#
<
ft

�1

(+i0)

<
ft

(+i0)

x

The resulting term graph (including imaginary part) is

sum

scale

scale

2

dot

dot

dx

<

<

ft

�1

ft

�1

+i

+i

0

<

=
ft +i

x

y

77

''
&&
88

//

//

&&
88

//

//

//

//

//

88
&&
//

//

''
77 //

77

''

(8)
Being a simple example, the full set of transformations would also iden-

tify the adjoints < and (+i0), as well as ft and ft�1 as inverses and collapse
the right-hand side to the single term x. This does not happen for interesting
models, e.g., including under sampling.

9

CSE 4Feb15 - Anand

simplification DSL

8

• natural algebraic simplification rules

• distinguishes scaling and multiplication

[x *. (y *. z) |.~~> (x * y) *. z
,0 * x |.~~> 0
,0 *. x |.~~> 0
,ft (invFt z) |.~~> z
etc.

CSE 4Feb15 - Anand

Type Checking  
(|| work)

9

• with stronger typing, compilers find
more mistakes

• in C, all dynamic arrays (float*) look
alike

• others check size and dimension

• we can do better

CSE 4Feb15 - Anand

Arrays of Samples

10

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

CSE 4Feb15 - Anand

Arrays of Samples

11

• number of samples

• dimension

• frame of reference

• resolution (including units)

• units of measurement

CSE 4Feb15 - Anand

Formalization

12

• in Haskell types define
• physical units
• array size and dimension
• frame of reference

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

Figure 3. Sampling of height of water in a canal

Disc r e t i za t i on1D [1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8]

canalSample2 : : D i s c r e t i za t i on1D (F ”CanalFrame”)
(NAT 12)
[f l o a t | 0 .02 |]
Meter
[Double]

canalSample2 =
Di s c r e t i z a t i on1D [1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8]

Trying to add those two samplings to each other
> canalSample1 U.+ canalSample2

will cause a compile time error:
No instance f o r

(Add
(Di s c r e t i z a t i on1D

(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 1 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

(D i s c r e t i z a t i on1D
(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 2 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

The error message indicates that the discretizations have di↵erent types and adding
them is not a valid operation. Ideally, we would prefer the error message to say
the sample spacing needs to be identical but it would not be di�cult for a domain
expert to understand this error.

As we mentioned, another powerful feature in our type system is the FT class
which is defined by:
class FT a b | a ! b , b ! a where

f t : : a ! b
invFt : : b ! a

To implement an instance, we assert the preconditions required by the Discretization1D

constructor:
14

CSE 4Feb15 - Anand13

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

Figure 3. Sampling of height of water in a canal

Disc r e t i za t i on1D [1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8]

canalSample2 : : D i s c r e t i za t i on1D (F ”CanalFrame”)
(NAT 12)
[f l o a t | 0 .02 |]
Meter
[Double]

canalSample2 =
Di s c r e t i z a t i on1D [1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8]

Trying to add those two samplings to each other
> canalSample1 U.+ canalSample2

will cause a compile time error:
No instance f o r

(Add
(Di s c r e t i z a t i on1D

(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 1 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

(D i s c r e t i z a t i on1D
(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 2 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

The error message indicates that the discretizations have di↵erent types and adding
them is not a valid operation. Ideally, we would prefer the error message to say
the sample spacing needs to be identical but it would not be di�cult for a domain
expert to understand this error.

As we mentioned, another powerful feature in our type system is the FT class
which is defined by:
class FT a b | a ! b , b ! a where

f t : : a ! b
invFt : : b ! a

To implement an instance, we assert the preconditions required by the Discretization1D

constructor:
14

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

• array sizes match, so
try to add them …

CSE 4Feb15 - Anand

Type Inference Across
Linear Operations

14

• e.g., Fourier Transforms easy to break

• Nyquist Sampling Theorem, etc.

• frame of reference

• resolution (including units)

• units of measurement

CSE 4Feb15 - Anand

Classy Proofs

15

• Properties are Classes

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

Figure 3. Sampling of height of water in a canal

Disc r e t i za t i on1D [1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8]

canalSample2 : : D i s c r e t i za t i on1D (F ”CanalFrame”)
(NAT 12)
[f l o a t | 0 .02 |]
Meter
[Double]

canalSample2 =
Di s c r e t i z a t i on1D [1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8]

Trying to add those two samplings to each other
> canalSample1 U.+ canalSample2

will cause a compile time error:
No instance f o r

(Add
(Di s c r e t i z a t i on1D

(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 1 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

(D i s c r e t i z a t i on1D
(F ”CanalFrame”)
(NAT 12)
(FLOAT ’Pos 2 (’ E 2))
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
[Double])

The error message indicates that the discretizations have di↵erent types and adding
them is not a valid operation. Ideally, we would prefer the error message to say
the sample spacing needs to be identical but it would not be di�cult for a domain
expert to understand this error.

As we mentioned, another powerful feature in our type system is the FT class
which is defined by:
class FT a b | a ! b , b ! a where

f t : : a ! b
invFt : : b ! a

To implement an instance, we assert the preconditions required by the Discretization1D

constructor:
14

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

instance Times D9 D9 D8 D1 where

For multiplying two type-level numbers, e.g., two numbers of type Size, we needed to
implement the type-level addition of 3 to 20 digits. Here, we present such additional
classes for adding 3 digit numbers. Other classes have the similar implementations:

class Add3 a1 a2 a3 sh s l | a1 a2 a3 ! sh , a1 a2 a3 ! s l where

instance (Add2 a1 a2 a1a2h a1a2l , Add2 a1a2 l a3 a1a2la3h a1a2a3l ,
Add2 a1a2h a1a2la3h D0 a1a2a3h)) Add3 a1 a2 a3 a1a2a3h a1a2a3l
where

We used multi-parameter type classes together with functional dependencies so that
by knowing all input digits (a1 a2 a3 a4) we can infer the type of both the low and
the high digits of the result.

To present the implementation of a class for multiplying two type-level numbers (of
type SIZE), we present the smaller version that is responsible for multiplying two
SIZE3 numbers, which captures all of the important ideas. We start by sketching
the multiplication of 3 digits by 3 digits to show the required constraints for their
multiplication class.

f2 f1 f0

e2 e1 e0

– – – – [e0 ⇤ f0]h [e0 ⇤ f0]l
– – – [e0 ⇤ f1]h [e0 ⇤ f1]l –
– – [e0 ⇤ f2]h [e0 ⇤ f2]l –
– – – [e1 ⇤ f0]h [e1 ⇤ f0]l –
– – [e1 ⇤ f1]h [e1 ⇤ f1]l – –
– [e1 ⇤ f2]h [e1 ⇤ f2]l – – –
– – [e2 ⇤ f0]h [e2 ⇤ f0]l – –
– [e2 ⇤ f1]h [e2 ⇤ f1]l – – –

[e2 ⇤ f2]h [e2 ⇤ f2]l – – – –
g2 g1 g0

For the first digit of result ‘g0’, there is just one term to be counted, which is the
low digit of ‘e0⇥f0’, and this can be implemented using the Times class. The second
digit of result ‘g1’ is obtained by adding the high digit of ‘e0 ⇥ f0’, the low digit of
‘e0 ⇥ f1’, and the low digit of ‘e1 ⇥ f0’ which can be implemented using the ’Add3’
class. The third digit is the result of adding five di↵erent known terms which is
implemented using Add5 class. Continuing in this way, we arrive at the definition:

class MultD3 f2 f1 f0 e2 e1 e0 g2 g1 g0 |
f 2 f 1 f0 e2 e1 e0 ! g2 ,
f 2 f1 f0 e2 e1 e0 ! g1 ,
f 2 f1 f0 e2 e1 e0 ! g0 where

instance (Times f0 e0 p00h p00l , Times f1 e0 p10h p10l ,
Times f2 e0 D0 p20l , Times f0 e1 p01h p01l ,
Times f1 e1 D0 p11l , Times f2 e1 D0 D0 ,
Times f0 e2 D0 p02l , Times f1 e2 D0 D0 ,
Times f2 e2 D0 D0 ,
Add3 p00h p10l p01l c1h c1l ,
Add5 p20l p01h p11l p02l c1h D0 c2 l)

) MultD3 f2 f1 f0 e2 e1 e0 c2 l c 1 l p00l where

We implemented arithmetic for three- and ten-digit numbers in this way and defined
a MultD class such that each size-specific multiply would be an instance of this class.

In addition, we defined an special case:
32

CSE 4Feb15 - Anand

Proofs are Instances

16

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

instance Times D9 D9 D8 D1 where

For multiplying two type-level numbers, e.g., two numbers of type Size, we needed to
implement the type-level addition of 3 to 20 digits. Here, we present such additional
classes for adding 3 digit numbers. Other classes have the similar implementations:

class Add3 a1 a2 a3 sh s l | a1 a2 a3 ! sh , a1 a2 a3 ! s l where

instance (Add2 a1 a2 a1a2h a1a2l , Add2 a1a2 l a3 a1a2la3h a1a2a3l ,
Add2 a1a2h a1a2la3h D0 a1a2a3h)) Add3 a1 a2 a3 a1a2a3h a1a2a3l
where

We used multi-parameter type classes together with functional dependencies so that
by knowing all input digits (a1 a2 a3 a4) we can infer the type of both the low and
the high digits of the result.

To present the implementation of a class for multiplying two type-level numbers (of
type SIZE), we present the smaller version that is responsible for multiplying two
SIZE3 numbers, which captures all of the important ideas. We start by sketching
the multiplication of 3 digits by 3 digits to show the required constraints for their
multiplication class.

f2 f1 f0

e2 e1 e0

– – – – [e0 ⇤ f0]h [e0 ⇤ f0]l
– – – [e0 ⇤ f1]h [e0 ⇤ f1]l –
– – [e0 ⇤ f2]h [e0 ⇤ f2]l –
– – – [e1 ⇤ f0]h [e1 ⇤ f0]l –
– – [e1 ⇤ f1]h [e1 ⇤ f1]l – –
– [e1 ⇤ f2]h [e1 ⇤ f2]l – – –
– – [e2 ⇤ f0]h [e2 ⇤ f0]l – –
– [e2 ⇤ f1]h [e2 ⇤ f1]l – – –

[e2 ⇤ f2]h [e2 ⇤ f2]l – – – –
g2 g1 g0

For the first digit of result ‘g0’, there is just one term to be counted, which is the
low digit of ‘e0⇥f0’, and this can be implemented using the Times class. The second
digit of result ‘g1’ is obtained by adding the high digit of ‘e0 ⇥ f0’, the low digit of
‘e0 ⇥ f1’, and the low digit of ‘e1 ⇥ f0’ which can be implemented using the ’Add3’
class. The third digit is the result of adding five di↵erent known terms which is
implemented using Add5 class. Continuing in this way, we arrive at the definition:

class MultD3 f2 f1 f0 e2 e1 e0 g2 g1 g0 |
f 2 f 1 f0 e2 e1 e0 ! g2 ,
f 2 f1 f0 e2 e1 e0 ! g1 ,
f 2 f1 f0 e2 e1 e0 ! g0 where

instance (Times f0 e0 p00h p00l , Times f1 e0 p10h p10l ,
Times f2 e0 D0 p20l , Times f0 e1 p01h p01l ,
Times f1 e1 D0 p11l , Times f2 e1 D0 D0 ,
Times f0 e2 D0 p02l , Times f1 e2 D0 D0 ,
Times f2 e2 D0 D0 ,
Add3 p00h p10l p01l c1h c1l ,
Add5 p20l p01h p11l p02l c1h D0 c2 l)

) MultD3 f2 f1 f0 e2 e1 e0 c2 l c 1 l p00l where

We implemented arithmetic for three- and ten-digit numbers in this way and defined
a MultD class such that each size-specific multiply would be an instance of this class.

In addition, we defined an special case:
32

Type-Safety for Inverse Imaging Problems Moghadas, Toporovskyy & Anand

instance (
AssertDualFrames frame1 frame2 , Frame frame1 , Frame frame2 ,
I sF l oa t s tepS ize2 , I sF l oa t s tepS ize1 , ToFloat numSamp ⇠ numSampF,

and encode the Nyquist criterion:
MultNZ s t epS i z e1 numSampF t0 ,
MultNZ t0 s t epS i z e2 t1 ,
t1 ⇠ FLOAT Pos 1 (E 0)

))
FT (Di s c r e t i z a t i on1D frame1 numSamp s t epS i z e1 rangeU [Complex Double])

(D i s c r e t i z a t i on1D frame2 numSamp s t epS i z e2 rangeU [Complex Double])
where

f t (D i s c r e t i z a t i on1D x) = (Di s c r e t i z a t i on1D $ FFT. f f t x)
invFt (D i s c r e t i z a t i on1D x) = (Di s c r e t i z a t i on1D $ FFT. i f f t x)

where ↵t and i↵t come from the pure�↵t package. Two parameters of that type class
represent a discretized function and its FT. Using the multi-parameter type classes
together with functional dependency, it is possible to infer the type of the FT of a
discretized function if it knows the type of the discretized function itself and vice
versa. In the instance definition, there are some important constraints on the two
parameters of the FT class which are related to FT properties. First, the number of
samples in those two parameters should be the same, which is encoded by clarifying
the same numSamp for those discretized parameters. Second, the discretized functions
(class parameters) are related to two dual frames, and this duality must be asserted
by the user. The most subtle constraint is encoded via two instances of the MultNZ

class. This constraint specifies that the product of the first two parameters should
be equal to the third parameter. To allow for type inferencing, we must also assert
that the multiplication is nonzero. Since equation (9) involves a triple product, we
need two multiplications to assert it.

While this definition is limited to one dimension, we can encode the same rela-
tionship in multiple dimensions. Similarly to the way multi-dimensional FTs are
usually implemented, we construct multi-dimensional frames by composing single-
dimensional, orthogonal frames. To each dimension is associated the value’s step
size, number of samples, and unit:
in f ixr 5 :>
data CompositeFrame xs where

F0 : : CompositeFrame ’ []
(:>) : : (F sym , NAT x , FLOAT sn y ex , Proxy (SIUnit m s kg amp mol k))

! CompositeFrame xs
! CompositeFrame

(’ (sym , NAT x , FLOAT sg y ex , SIUnit m s kg amp mol k) ’ : xs)

In the one dimensional example, the parameters were phantom type variables;
however, due to a feature of the current type checker, we must have a concrete
representation of the structure of the composite frame.

The dimension of the data within the a discretization must match the dimension
of the frame. We can compute the exact type of the data from the CompositeFrame:
type family Dimension (n : : k) (f : : ⇤ ! ⇤) (v : : ⇤) : : ⇤ where

Dimension ’ [] f a = a
Dimension (x ’ : xs) f a = f (Dimension xs f a)

For example, Dimension ’[x,y] [] (Complex Double) is [[Complex Double]]. Then the
discretization is defined simply as:
data Di s c r e t i z a t i o n xs vec va l where

Di s c r e t i z a t i o n : : CompositeFrame xs

15

CSE 4Feb15 - Anand

Readable Errors

17

• type inference fails on modelling errors

• ghc loves to throw up thousand-line errors

• we tamed it

CAS-14-04-CA Type-Safety for Inverse Imaging Problems

The data type T is not exported, so a user can never pass it to any of the above
type functions and the constraint can never be satisfied. This is necessary because
closed type families must have at least one clause.

The type Assert is a useful synonym: if the condition is true, Assert is satisfied.
Otherwise it is equal to err, a constraint which is never satisfied.

type Assert bool e r r = I f bool Always e r r

Now we redefine our original example:

type AssertDualUnits a b = Assert (a : ⇤ : b ⌘ ? Un i t l e s s) (DualUnits a b)

class (Frame a , Frame b , AssertDualUnits (BaseUnit a) (BaseUnit b)
)) AssertDualFrames a b | a ! b , b ! a

instance AssertDualFrames (F ”BadFrame1”) (F ”BadFrame0”) where

which now produces the error:

No instance f o r (DualUnits
(SIUnit (’M 1) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0))
(SIUnit (’M 0) (’ S 0) (’Kg 0) (’A 0) (’Mol 0) (’K 0)))

The type error now indicates what types have caused the error. It also tells the
user that conceptually they have declared dual frames which physically should not
be dual, since their units are not dual.

4. Conclusion

To be useful, a type system for mathematical models should:

(1) use syntax compatible with the usual notation used by domain experts,
(2) detect significant errors which do occur in practice, and
(3) produce error messages which domain experts will understand.

We think all domain experts would agree that implementing computation involv-
ing Fourier Transforms is error prone and some errors can be di�cult to detect,
but dangerous, producing downstream errors such as to flipped images. Using our
encoding of physical properties, all known erroneous applications of the Discrete
Fourier Transform are detected at compile time and, moreover, many can be com-
pletely eliminated by letting the compiler use type inferencing to derive properties.

It would be impossible to provide a system entirely consistent with the usual
notation of experts in this area because applied mathematics does not have consis-
tent notation. Using an embedded language–even embedded in Haskell, which is
among the fittest to the purpose–imposes limitations on the syntax, but we think we
have made intelligible choices. Also producing intelligible error messages is more
challenging; we admit that some error messages will require additional explana-
tion for domain experts but we feel that the strengths of the system outweigh this
shortcoming.

If we could ask for further support to increase the utility of embedded DSL
o↵ering strong typing, we would ask for additional arithmetical support; division
being helpful in our case. Also, an easier way to intercept types and type errors
to provide hints at their interpretation, or even suggestions for fixing errors, would
make it practical to provide increasing levels of type safety in embedded DSLs.

Given the tools we do have, there remains a lot of work to complete our vi-
sion of a system of types capable of capturing modelling errors in inverse imaging
problems, even just MRI problems. Some work is routine, but much of it requires

24

CSE 4Feb15 - Anand

Multi-Core =  
ILP Reinvented

Instruction Level
Parallelism

Multi-Core
Parallelism

CPU Chip
Execution Unit Core

Load/Store Instruction DMA

Arithmetic Instruction
Computational

Kernel
Register Buffer / Signal

CSE 4Feb15 - Anand

The Catch: Soundness

• on CPUs hardware maintains OOE

• instructions execute out of order

• hardware hides this from software

• ensures order independence

• in our Multi-Core virtual CPU

• compiler inserts synchronization

• soundness up to software

• uses asynchronous communication

19

CSE 4Feb15 - Anand

Asynchronous

• no locks

• locking is a multi-way operation

• a lock is only local to one core

• incurs long, unpredictable delays

• use asynchronous messages

• matches efficient hardware

20

CSE 4Feb15 - Anand

Async Signals

x

1

1

SendSignal

WaitData

WaitSignal
SendData

N
o
 r

ea
d
s

o
r

w
ri

te
s

to
 b

u
ff
er

u
n
ti
l
p
a
st

b
a
rr

ie
r

W
a
it
D

a
ta

N
o
 w

ri
te

s
to

b
u
ff
er

 u
n
ti
l

D
M

A

co
m

p
le

ti
o
n

is
 c

o
n
fi
rm

ed

WaitDMA

.

.

.
other

operations
.
.
.

.

.

.
other

operations
.
.
.R

eo
rd

er

W
in

do
w

R
eo

rd
er

W

in
do

w

H
az

ar
d

CSE 4Feb15 - Anand

Multi-Core Language
AtomicVerifiableOperations

Computation operation bufferList
do a computation with local

data

SendData localBuffer remoteBuffer tags
start DMA to send local data

off core

WaitData localBuffer tag
wait for arrival of DMAed

data

WaitDMA tag
wait for locally controlled

DMA to complete

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive

Loop n π body body; π(body); π(π(body))…

AtomicVerifiableOperationsAVOps

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

CSE 4Feb15 - Anand

locally Sequential
Program

• total order for instructions

• easier to think in order

• send precedes wait(s)
23

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

CSE 4Feb15 - Anand

NOT sequential

• can execute out of order

24

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

CSE 4Feb15 - Anand

does NOT imply  
order independent

25

CSE 4Feb15 - Anand

Linear-Time Verification

• must show

• results are independent of execution order

• no deadlocks

• need to keep track of all possible states

• linear in time = one-pass verifier

• constant space

• = max possible states at each instruction

26

CSE 4Feb15 - Anand

Impact

• no parallel debugging !!

• every optimization trick used for ILP can be
adapted

27

CSE 4Feb15 - Anand

But…

• assumes you have signals

• what about shared memory?

• still lock-free synchronization?

• let’s try it on x86

28

CDPW14 - Anand

Single-Reader, Single-
Writer AVOp Ring Buffers

(SRSWARB)
����

���

��	

�	

��	

�
��
��	

��	

��	

�������������

���
��
������������������������
��
�����������������������
��
������������������������
��
�����������������������
��
��	����	�������	�������	
��
����������������� �
����
��
����������������� �
���
��
����������������� �
����
��
����������������� �
���
��
��	����	�������	��� �
�	

����

���

������������	

����

���

������������

����

���
����

���

����

����

���

�������������

�������������

���������

����

���

����

����

���

����

����

���

����

�
��
����

����

����

�
��
����

����

����

!"�����#"�$

%&'��(�
���

CSE 4Feb15 - Anand

Limit Hazards

• AVOps can only conflict if they can fit in
the Ring Buffers at the same time

• on each core, AVOps are sequential,
therefore safe

• reads on different cores are safe

• while write AVOp is on a core, check
that no other core reads or writes

30

CSE 4Feb15 - Anand

Nest Step

• signals across nodes

• SRSWARB system for multicore

• new system for GPU

31

CSE 4Feb15 - Anand

Details ...

32

Curriculum Vitae, Christopher Kumar Anand

O. Lifetime Publications

The principal author’s names are underlined on each of the entries below. No name is underlined for
equal contributions. Names of students I supervised are in bold.

i) Peer Reviewed

a) Books

[1] Christopher Anand, Paul Baird, Eric Loubeau, John Wood, editors, Harmonic morphisms of
metric graphs, in Harmonic morphisms, harmonic maps and related topics, Pitman (2000).

b) Contributions to Books

[2] Michal Dobrogost, Christopher Anand, Wolfram Kahl, Verified Multicore Parallelism using
Atomic Verifiable Operations, accepted for publication in Multicore Technology: Architecture, Re-

configuration and Modeling, Muhammad Yasir Qadri and Stephen J. Sangwine (eds), CRC Press.,
2013, 107–151.

[3] Christopher Kumar Anand, Wolfram Kahl, Synthesising and Verifying Multi-Core Parallelism
in Categories of Nested Code Graphs; “Process Algebra for Parallel and Distributed Processing
(Algebraic Languages in Specification-Based Software Development)”, eds. Michael Alexander
and William Gardner, Chapman and Hall/CRC, 2008, 3–45.

[4] Christopher Anand, Harmonic morphisms of metric graphs, in Anand, Baird, Loubeau, Wood
(eds.), Harmonic morphisms, harmonic maps and related topics, (2000) 109–112.

c) Journal Articles (23 publications)

[5] Kevin Browne and Christopher Anand and Elizabeth Gosse, Gamification and serious game
approaches for adult literacy tablet software, Entertainment Computing, 5 (2014) 135–146.
dx.doi.org/10.1016/j.entcom.2014.04.003

[6] Christopher K Anand, Alex D Bain, Andrew Thomas Curtis, Zhenghua Nie Designing Optimal
Universal Pulses Using Second-Order, Large-Scale, Nonlinear Optimization, J. Magn. Reson.
219 (2012) 61–74. http://dx.doi.org/10.1016/j.jmr.2012.04.004

[7] Kevin Browne, Christopher Anand, An empirical evaluation of user interfaces for a mobile
video game, Entertainment Computing, 3 (2011) 1–10. dx.doi.org/10.1016/j.entcom.2011.06.001

[8] Christopher Kumar Anand, PhD, Alex D Bain, Sean C Watson, Use of Continuous Optimiza-
tion Methods to Find Carbon Links in 2D INADEQUATE Spectra, J. Magn. Reson. 210 (2011)
146–150. http://dx.doi.org/10.1016/j.jmr.2011.02.018

[9] Christopher K. Anand, Stephen J. Stoyan, Tamás Terlaky, Energy-Optimizing the gVERSE RF
Pulse Sequence: An Evaluation of Two Competitive Software Algorithms, Algorithmic Opera-
tions Research. 6 (2011) 1–19.

[10] Alex D. Bain, Christopher Kumar Anand, Zhenghua Nie, Exact Solution of the CPMG Pulse Se-
quence with Phase Variation Down the Echo Train: Application to R2 Measurements, J. Magn.
Reson. 209 (2011) 183–194, DOI 10.1016/j.jmr.2011.01.009.

[11] Christopher K. Anand and Anuroop Sharma: Unified Tables for Exponential and Logarithm
Families, TOMS 37 (2010).

Page 11 of 22 4 September 2014

Curriculum Vitae, Christopher Kumar Anand

Christopher K. Anand, Paul M. Margosian, Michael R. Thompson, 2003.
This patent describes a method to improve the detection of a bolus of contrast agent as it ar-
rives in anatomy of interest. My contribution was to use an indefinite time-series of small field
of view volume images to detect the bolus, in such a way that the last lines of k-space collected
to detect the bolus are also used to reconstruct a high-resolution volume after triggering. Per-
formance can be improved by collecting multiple lines of k-space per excitation and using two
compatible segmentations of k-space for the detection and high-resolution phases.

[50] US Patent 6,414,487: Time and memory optimized method of acquiring and reconstructing
multi-shot 3D MRI data,
Christopher K. Anand, James A. Halamek, C. Michael Steckner, 2002.
This patent presents a method of organizing data collection and reconstruction for multi-echo
sequences using 3D Cartesian k-space sampling. The purpose of the reorganization is to reduce
the maximum amount of memory required to reconstruct a given volume, which would enable
reconstruction computers with limited memory to reconstruct larger volumes faster.

[51] US Patent 6,411,089: Two-dimensional phase-conjugate symmetry reconstruction for 3d spin-
warp, echo-planar and echo-volume magnetic resonance imaging,
Christopher K. Anand, Paul M. Margosian, Francis H. Bearden, 2002.
This patent describes the reconstruction of images from partial k-space data using the fact that
after low-frequency corrections, k-space data is usually conjugate-symmetric. The innovation
is in novel segmentations of k-space.

ii) Not Peer Reviewed

e) Proceedings articles

[52] Christopher Anand, Jacques Carette, Alexandre Korobkine, Target Detection using Maple Code
Generation, Proceedings of the Maple Summer Workshop July 11–14, Waterloo, Ontario (2004)
13 pages.

vi) Unpublished Documents

a) Technical Reports (18 publications)

[53] Anuroop Sharma, Christopher Kumar Anand, A Domain-Specific Architecture for Elementary
Function Evaluation, CAS-14-06-CA.

[54] Jessica L M Pavlin and Christopher Kumar Anand, Symbolic Generation of Parallel Solvers for
Inverse Imaging Problems, CAS-14-05-CA.

[55] Maryam Moghadas, Yuriyy Toporovskyy, Christopher Kumar Anand, Type-Safety for Inverse
Imaging Problems, CAS-14-04-CA.

[56] Christopher Kumar Anand and Anuroop Sharma: Unified Tables for Exponential and Loga-
rithm Families, AdvOL2009/02. (Same as [11].)

[57] Christopher Kumar Anand, Wolfram Kahl, “Synthesising and Verifying Multi-Core Parallelism
in Categories of Nested Code Graphs”, SQRL Report 50, 2008. Earlier version of chapter [3].

[58] Jacques Carette, Spencer Smith, John McCutchan, Christopher Anand, Alexandre Korobkine,
Model Manipulation as Part of a Better Development Process for Scientific Computing Code,
SQRL Report 49, 2008. Earlier version of paper [29].

Page 15 of 22 4 September 2014

CSE 4Feb15 - Anand

It Works !

• used to generate, from the objective
function, a multi-core (shared memory)
image reconstruction software for
parallel Magnetic Resonance Imaging
for AllTech Medical Systems America

33

MRI
• Image values & tissue contrast depends on how

the experiment is conducted

• Qualitative and quantitative

34

CSE 4Feb15 - Anand

Quantum Mechanical
Foundation of MRI

slide contents tunnelled away

35

Signal and Contrast
• Sample magnetization M - vector

• Evolves in time —> Bloch Equation

• Controllable by application of RF and magnetic
fields:

B0

M

t = 0, 1, 2, 3, 4, 5

Precession

• main field B0 acts on moment M
• same as gravity acting on spinning top

B0

M

t = 0, 1, 2, 3, 4, 5

dM

dt
= M �B0

Exercise 1. Write equations for perpendicular components (Mx and My).

Solve. What constant determines the rate of rotation?

6

Bloch Equations

d
dt

�

⇤
Mx
My
Mz

⇥

⌅ =

�

⇤
�R2 �⌦0 bi
⌦0 �R2 �br
�bi br �R1

⇥

⌅

�

⇤
Mx
My
Mz

⇥

⌅ +

�

⇤
0
0

R1 ⇥Me

⇥

⌅

Goal of an Inversion Pulse:

M0(⌦0) =

�

⇤
0
0
1

⇥

⌅��������⇤
? soft pulse

�

⇤
0
0
�1

⇥

⌅ = Mtp(⌦
0),

⇧⌦0 ⌅ [���/2,+��/2]

a selective pulse
a non-selective pulse (our goal)

Zhenghua Nie (McMaster University) Pulse Design MOPTA Aug 08 9 / 25

36

Controls and Data

big uniform magnet

medium linear electro-magnets

radio-frequency coils

gradient
driving
current

rf in

rf out

37

Controls

Data

computer talks to nuclei

MRI Experiment

Create Signal Generate
Contrast Acquire Data

Reconstruct
Images Postprocess

38

MRI Experiment

Create Signal Generate
Contrast Acquire Data

Reconstruct
Images Postprocess

39

• Unlike x-ray/CT, PET, or Microscopy, we don’t
capture projections or reflections of the incident
waves

ph
ot
od
et
ec
to
rs

X-ra
y

rotates

photodetectors•photodetectors•pho
tod
ete

cto
rs
•p
ho
to
de
te
ct
or
s•
ph
oto

de
tec
tors•p

hotodetectors•photodetectors•

radioactive
tracer

decay

Data Acquisition

40

K-Space
• Via some Nobel prize winning work:

• Modulate phase of magnetization in space &
measure DFT. — frequency domain

41

k-space

42

Optimze data collection for 3d MRI

we pare the constraints down to a minimum, and rely on the fact that unless con-
strained to intersect, they will not. We show that the

3. Magentic Resonance Imaging

In magnetic resonance imaging, we measure radio-frequency magnetic fields cre-
ated by the resonances of one or more nuclei in the object, usually hydrogen (mostly
water) in people. Measurable resonance occurs because the object is placed in a
large homogeneous field, and excited by the momentary application of oscilating
transverse fields. For a very readable, and complete account of how we create the
signals, and the complications which arrive, see [?]. Being radio-frequency signals,
we cannot measure them with line-of-sight devices (as opposed to x-ray and nuclear-
decay-product imaging), and must use devices a lot like radio antennae, commonly
called coils. The measurements we make with these coils are not localized, but con-
tain contributions from every nuclei in the object. In the simplest case, the uniform
coil, we collect data which is simply the sum of the magnetic fields produced by
each nucleus. Non-uniform coils have geometrically-varying sensitivities, and the
measured signal is the dot product of a sensitivity field with the field created by
the nuclei. The signals are in fact real, but by working in a rotating frame of refer-
ence close to the resonant frequency, we can encode both relative frequencies and
phases by using complex valued fields and signals. For the fields, this is equivalent
to putting a complex structure on the plane perpendicular to the direction of the
large homogeneous field.

Geometric encoding is achieved by inducing transient linear variations in strength
on the homogeneous field. Linear variations in field produce linear variations in
resonant frequency, which over time create linear phase variations, as a function
of position. If � : R3 � C is the original transverse magnetic field, the new field
will be exp(i⇤x, k⌅)�(x) where x ⇥ R3 and k ⇥ R3�, the element of the dual space
corresponding to the accumulated phase. It follows that the measured signal

s(t) =
�

R3
ei⇥x,k(t)⇤�(x)dx,

is a sampling of the Fourier Transform of the object’s original magnetization.
For any given trajectory k(t), we have a linear transformation Map(R3, C) �
Map(R, C), and if it is invertible, we can reconstruct the original magnetization
from the measurements.

Early MR image reconstruction was constrained by the cost of computation,
and focussed on making data better fit existing fast hardware, and later software
Fourier transforms. Data collection was forced to be regular, and sampled on rect-
angular grids (first in two and later in three dimensions). Even the first image
reconstructions based on non-trivial inverse problems, e.g. phase contrast symme-
try [?], assumed regular rectangular data sampling, as did the first parallel imaging
schemes. Regular sampling is the classic discretization considered in signal process-
ing. It represents an approximation in a finite-dimensional vector space of an object
in an infinite-dimensional function space. Such representations may be inadequate
because the do not sample widely enough; or they do not sample closely enough. In
the first case, the reconstructed image is the sum of low-spatial-frequency Fourier
basis functions, and fine detial will not be represented. In the second case, the

3

sampled
Fourier

Transform
linear phase

variation

model
✤ each sample

point gives
spatial
information

K-space properties
• Nyquist, my friend. Sample rate ~ kspace spacing

mri-q.com 43

http://mri-q.com

Receiver Elements
• In addition to phase modulation for k-space

sampling, data is acquired via multiple receivers

• spatial coverage

• improved signal

• spatial encoding

44

Parallel Imaging By Example

45

Aliasing &
FOV Reduction!

Original formulation:
SENSE

Parallel Imaging by Example
• How do we recover the underlying magnetization?

• Recall: multiple receivers

• Consider two overlapping voxels 
and receivers a & b

• Signal from a and b ~

• Only works for nice aliasing

sa = ca ·m1 + ca ·m2

sb = cb ·m1 + cb ·m2

46

Forward Problem
• Extending the previous example, more general

image acquisition process:

• measurement =  
 k-encoding * FT * receive sensitivity * magnetization

Mi = k · FT · Si · ⇢0, i = 1 . . . nC

47

Inverse Problem ?
• Reduction factor of 4:  

Vastly different practical performance thanks to  
receiver profiles.

• How do we measure which will be better before
running the MRI?

48

Expected reconstruction error!

Geometry-
factor

• Gold standard metric for
assessing effect of under
sampling patterns on the
resultant image

• Estimates difficulty of un-
aliasing pairs/sets of spatial
overlapping voxels

• n values. What is important? 
 mean? max? 95%le?

49Preussman, MRM 2001

Dense aliasing
• For non-standard grids the aliasing

patterns and G-factor are
complicated, because signal can
alias anywhere

• No simple DFT relation

50

Problem with Gold

• takes too long to mine (hours or days)

• bad for environment

51

New Approach
• Estimate largest and smallest magnitude singular

values of M

• Physical interpretations

• Smallest singular value: SSV Metric 
 — worst case noise amplification from reconstruction

• Largest singular value: 
 — maximum of 1 with proper scaling.

• Large/small ~ condition #

Mi = k · FT · Si · ⇢0, i = 1 . . . nC

52

SSV Metric Method
• M is rectangular!  

 Form normal system MHM and find  
min/max eigenvalues —>

• kHk is really just zeroing of non-sampled locations

• Might affect convergence if SSV is small already

• Can include regularization:

• ARPACK + FFTW

�min = �2
min

MHM =
N

coilsX

i

CH
i · iFT · kH · k · FT · Ci

(MHM +R)⌫ = �⌫

53

Assessing SSV
• Compute slow G-factor metrics, L2 error, and SSV

for a family of well know sampling grids

54

Good as Gold
• Compute slow G-factor metrics, L2 error, and SSV

for a family of well know sampling grids

• Get same ranking in a few seconds

55

SSV Metric Results
• SSV ranks candidate sampling patterns very similarly

to gold standard metrics

• orders of magnitude faster ~ seconds-minutes

• Doesn’t require image values,  
 just receivers and pattern

• Trade off: loss of spatial information that G-factor
and simulation L2 error provides

• opens door for optimization!

56

App 1: How Random?
• Combinatorial nightmare

• Random sampling —> incoherent aliasing “noise”  
 —> CS techniques

Uniform Random R=9 Poisson Disk
57

58

App 2: Why low k-space?
• folklore: always sample centre

• more “energy” at centre of k-
space

• low res is easy—> compact
coil support, so sample more
at high k

• Test: Generate patterns with varying density at centre

numMid

59

Results:
• Centre sampling predominantly affects Largest

singular value

60

SSV

• SSV is a fast metric for experiment designs

• demonstrated on:  
 1) Assessing Random patterns  
 2) Assessing effects of densely sampling k0

• fast enough to use to optimize experiment design

61

Coconut Project
• common sources of error fixable

• transcription of model

• wrong frame of reference

• Heisenbugs

• lots of little bugs left

• can effectively estimate SNR

• use this to ensure statistical validity

62

CSE 4Feb15 - Anand

Thanks

63∞

Stephen Adams
Curtis d’Alves
Kevin Browne

Shiqi Cao
Nathan Cumpson

Saeed Jahed
Damith Karunaratne

Clayton Goes

Anuroop Sharma
Sanvesh Srivastava
Wolfgang Thaller
Gordon Uszkay

Christopher Venantius
Paul Vrbik
Fei Zhao

Robert Enenkel

IBM Centre for Advanced Studies, CFI, OIT, MITACS,
NSERC, OCA Inc. and Apple Canada for research support.

Gabriel Grant
William Hua

Fletcher Johnson
Wei Li

Nick Mansfield
Maryam Moghadas
Mehrdad Mozafari

Adam Schulz

Bonus: 3D sampling
• We said lines of k-space are “free”

• In 2D: we choose which lines to sample

• In 3D, we have a 2D transverse plane of possible locations

256

256

64

