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What can go wrong?

¢ algorithm selection and parameterization
® non-convex objective
¢ non-convergence (ill-conditioned)
e insufficient signal versus noise
¢ implementation
® transcription errors
e non-deterministic parallelization

e model does not capture physics (including units)
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COCONUT

COde CONstructing User Tool

e DSLs embedded in Haskell

® strong types (detect errors in model and code)

e high level
e start with objective function
e differentiate symbolically
e simplify expressions

e verification
distributed parallelization (private and shared-memory)
e /inear-time verification via AVOp model

e algorithm selection and experiment design

e optimize SNR and bound maximum noise (SSV metric)
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Models

define variables

> let x = var3d (16,16,16) "x"

> let y = var3d (16,16,16) "y"

> ft (x +: y)
(FT((x(16,16,16)+:y(16,16,16))))

define an objective function to minimize

}Lﬁ(aj iy)HQ

and take it’s derivative

>> diff (mp ["X"]) (norm2 (ft (x +: y)))
(CC(Re(FT((d(X[16][16][16]1)+:0.0[16,16,16]1)))) . (Re(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16] [16]+:Y[16][16][16]1))))))
+ (((Im(FT((d(X[16] [16] [16])+:0.0[16,16,16]1)))) . (Im(FT((X[16] [16] [16]1+:Y[16]1[16]1[161)))))
+ ((Im(FT((d(X[16][16][16]1)+:0.0[16,16,16]1)))) . (Im(FT((X[16][16]1[16]1+:Y[16][16]1[161)))))))
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more complicated
models

® e.g., conservation of mass in material
transport models is a function

massConservation (ThreeD vx,ThreeD vy, ThreeD vz)
= norm2 ( conv3ZiplZM com vx vy vz )

where
com (vX,vY,vZ) = (vX[1,0,0] — vX
+ (vY[0,1,0] — vY
+ (vZ[0,0,1] — vZ

—1,0,0
0,—1,0]

0,0, —1

)
)
)
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what was that d(X),
and where’s V1{?

e d(X) is a vector of differential forms
e comes from implicit derivative

® we can extract Vf by simplifying
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simplify rules

e commute d(x) to LHS of dot
® move linear operators to RHS via adjoint

Left 1 ?‘ght Left 1 f{‘ght
n R ft (+i0)
ft o (430) 5
((;“‘0) (40) dz ft —
o T (440)
X
Left | f{‘ght Left 1 ?‘ght
dz (+10) ft !
R (+i0)
ft R
(+:0) ft
x (+:0)
X
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simplification DSL

[X *. (y *. 2) |.~~> (X ¥ y) * zZ
0 * X L~~> 0

O *. X L~~> 0

,ft (invFt 2z) S~~> 7

etc.

e natural algebraic simplification rules
e distinguishes scaling and multiplication
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Type Checking
(|| work)

with stronger typing, compilers find
more mistakes

in C, all dynamic arrays (float*) look
alike

e others check size and dimension
® we can do better



Arrays of Samples
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Arrays of Samples

number of samples
dimension

frame of reference
resolution (including units)
units of measurement
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Formalization

e in Haskell types define

e physical units
® array size and dimension
® frame of reference

canalSample?2

DiscretizationlD

(F ?CanalFrame” )
(NAT 12)

[ float |0.02 | ]
Meter

| Double]
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2.5

11
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No instance for
(Add

(DiscretizationlD
(F ”CanalFrame”)

| ® array sizes match, so

try to add them ...

(NAT 12)

(FLOAT ’Pos ("E_- 2))

(SIUnit (’'M (’S 0) ('Kg 0) (A 0) ('Mol 0) (’K 0))
[ Double )

(DiscretizationlD
(F ”CanalFrame”)
(NAT 12)

(FLOAT Pos@(’E_ 2))
(SIUnit (’ 0) (’Kg 0) (A 0) ('Mol 0) (’K 0))

[ Double |
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Type Inference Across
Linear Operations

e e.g., Fourier Transforms easy to break
e Nyquist Sampling Theorem, etc.

e frame of reference

e resolution (including units)

® units of measurement

nnnnnnnnnnnnnnn
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Classy Proofs

® Properties are Classes

class FT a b
ft :: a —
invEt b

class MultD3

|
b
_>

A

A

f2
2
f2

%

f1
f1
f1
f1

b,

t0
10
f0
t0

b — a where

e2 el e0 g2 gl g0
e2 el e0 — g2,
e2 el e0 — gl
e2 el e0 — g0 where
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Proofs are Instances

instance (
AssertDualFrames framel frame2, Frame framel, Frame frame2,
IsFloat stepSize2 , IsFloat stepSizel , ToFloat numSamp ~ numSampF,

and encode the Nyquist criterion:

MultNZ stepSizel numSampF tO,
MultNZ t0 stepSize2 t1,
t1l ~ FLOAT Pos 1 (E 0)

) =
FT (DiscretizationlD framel numSamp stepSizel rangeU [Complex Double])
(DiscretizationlD frame2 numSamp stepSize2 rangeU [Complex Double])

where
ft (DiscretizationlD x) = (DiscretizationlD §$ FFT. fft x)

invFt (DiscretizationlD x) = (DiscretizationlD $ FFT.ifft x)

instance ( Times fO0 e0 p00h pO00l, Times fl1 e0 plOh pl0l,
Times f2 e0 DO p201, Times fO el pOlh pO1l,
Times fl1 el DO plll, Times f2 el DO DO,
Times fO e2 DO p021, Times fl1 e2 DO DO,
Times f2 e2 DO DO,
Add3 pOOh p10l1 pO0O1ll clh cl1l,
Add5 p20l pOlh plll p02l clh DO c21)

= MultD3 f2 f1 fO e2 el e0 c21 cl1ll p00l where
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Readable Errors

e type inference fails on modelling errors
® ohc loves to throw up thousand-line errors
® we tamed it

No instance for (DualUnits
(SIUnit (’M (’S 0) (’Kg 0) (A 0) (Mol 0) ('K 0))
(SIUnit (’M (’S 0) ('Kg 0) (A 0) ('Mol 0) (’K 0)))
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Multi-Core =
ILP Reinvented

Instruction Level Multi-Core
Parallelism Parallelism
CPU Chip
Execution Unit Core
Load/Store Instruction DMA

Computational

Arithmetic Instruction
Kernel

Register Buffer / Slgnal

nnnnnnnnnnnnn
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The Catch: Soundness

e on CPUs hardware maintains OOE
® instructions execute out of order
e hardware hides this from software
e ensures order independence
® in our Multi-Core virtual CPU
e compiler inserts synchronization
® soundness up to software
® uses asynchronous communication
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Asynchronous

® no locks
e |ocking is a multi-way operation
e a |lock is only local to one core
e incurs long, unpredictable delays
® use asynchronous messages
e matches efficient hardware
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Async Signals

ier WaitData

barr

nnnnnnnnnnnnnnn



Multi-Core Language
AVOps

Computation operation bufferlList

do a computation with local

data
SendData /ocalBuffer remoteBuffer tags start DMA to send local data
off core
WaitData /ocalBuffer tag wait for arrcll\?[L of DMAed

WaitDMA tag

wait for locally controlled
DMA to complete

SendSignal core signal

send a signal to distant core

WaitSignal signal

wait for signal to arrive

Loop n & body

body; n(body); n(n(body))...
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locally Sequential
Program

index core 1 core 2 core 3
1 long computation
2 | SendSignal s — ¢2
3 WaitSignal s
4 computation
5 SendSignal s — ¢2
6 WaitSignal s

e total order for instructions
® casier to think in order
® send precedes wait(s)
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NOT sequential

index core 1 core 2 core 3
2 | SendSignal s — ¢2
5 SendSignal s — ¢2

H~ Qo —

no signal 1s sent,

long computation
WaitSignal s
computation

so the next WaitSig

WaitSignal s

second signal overlaps the first, only one registered

nal blocks

® can execute out of order

24
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does NOT imply
order independent

index core 1 core 2 core 3

1 long computation
5 SendSignal s — ¢2
3 WaitSignal s

computation
4 using

wrong assumptions

2 | SendSignal s — ¢2
6 WaitSignal s

25
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|l inear-Time Verification

® must show
e results are independent of execution order
e no deadlocks
e need to keep track of all possible states
e [inear in time = one-pass verifier
® constant space
® = max possible states at each instruction
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Impact

e no parallel debugging !!

® every optimization trick used for ILP can be
adapte
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But...

® assumes you have signals
e what about shared memory?
o still lock-free synchronization?
o let's try it on x86
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Single-Reader, Single-

riter AVOp Ring

SRSWARB

Dispatch

AVOp Stream
Core4:c 63=a 63*b 63
Core 3:c 47=a 47 *b 47
ing —»Core 2: ¢_31=a_31*b_31
Core1:c 15=a 15*b 15
Core0:c 0 =a 0 *b 0
Core4:z 63=x 63 +y 63
Core 3:z 47 =x_47 +y 47
Core2:z 31=x_31+y 31
Core1:z 15=x_15+y 15
Core0:z 0 =x 0 +y O
Dispatcher

Worker Core 4

Worker Core 0

Worker Core 1

Worker Core 3

next

Worker Core 2

Buffers
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L imit Hazards

¢ AVOps can only conflict if they can fit in
the Ring Buffers at the same time

® on each core, AVOps are sequential,
therefore safe

® reads on different cores are safe

e while write AVOp is on a core, check
that no other core reads or writes
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Nest Step

® signals across nodes
o SRSWARB system for multicore

® new system for GPU
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Detalils ...

Michal Dobrogost, Christopher Anand, Wolfram Kahl, Verified Multicore Parallelism using
Atomic Verifiable Operations, accepted for publication in Multicore Technology: Architecture, Re-
configuration and Modeling, Muhammad Yasir Qadri and Stephen J. Sangwine (eds), CRC Press.,
2013, 107-151.

Christopher Kumar Anand, Wolfram Kahl, Synthesising and Veritying Multi-Core Parallelism
in Categories of Nested Code Graphs; “Process Algebra for Parallel and Distributed Processing
(Algebraic Languages in Specification-Based Software Development)”, eds. Michael Alexander
and William Gardner, Chapman and Hall/CRC, 2008, 3—45.

Jessica L M Pavlin and Christopher Kumar Anand, Symbolic Generation of Parallel Solvers for
Inverse Imaging Problems, CAS-14-05-CA.

Maryam Moghadas, Yuriyy Toporovskyy, Christopher Kumar Anand, Type-Safety for Inverse
Imaging Problems, CAS-14-04-CA.
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It Works !

e used to generate, from the objective
function, a multi-core (shared memory)
image reconstruction software for
parallel Magnetic Resonance Imaging
for AllTech Medical Systems America
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MR

* Image values & tissue contrast depends on how
the experiment is conducted

* Qualitative and gquantitative




Quantum Mechanical
Foundation of MRI

slide contents tunnelled away

nnnnnnnnnnnnnnn



Signal and Contrast

e Sample magnetization M - vector

B, /4 f #\ \ \ \

t=0,1,2,3.4,5
* Evolves in time —> Bloch Equation

dM
—~ = M x By
dt

e Controllable by application of RF and magnetic

fields:
g [ M —R, —QY  bi M, 0
| M| = QY —R, —br My, |+ 0
"\ M, —bi br —R M, Ry x M,

36



Controls and Data

Controls

gradient

driving AN
current
A\\ \\\/ big uniform magnet
r . {; p
:;.:-.‘__-'-._- . medium linear electro-magnets
e
\/

computer talks to nuclel

radio-frequency coils

Data
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MRI Experiment

Create Signal

Generate

Contrast

Y

Acquire Data

Reconstruct
Images

38

Postprocess




MRI Experiment

Create Signal = f-=------ >

Generate
Contrast

Reconstruct
Images

39

Acquire Data

Postprocess




Data Acquisition

* Unlike x-ray/CT, PET, or Microscopy, we don’t
capture projections or reflections of the incident
waves

XO(S-photodete o

/| eyepiece

! [ i/objective

:_m sample

£ light source -
“““ mirror,or illuminator

radioactive
tracer

0 0
rotates 4d.s,0100109°
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K-Space
* Via some Nobel prize winning work:

 Modulate phase of magnetization in space &
measure DFT. — frequency domain

Log(abs(FT()))

Relative Magnetization




linear phase
variation

spatial
information
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K-space properties

* Nyquist, my friend. Sample rate ~ kspace spacing

ui‘llé !u '!'

" .
-. -
T ————

mri-g.com



http://mri-q.com

Recelver Elements

* |n addition to phase modulation for k-space
sampling, data is acquired via multiple receivers

e spatial coverage
* mproved signal

* spatial encoding




ParaHe\ Imagmg By Example

Relative Magnetiza Log( a ()))
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Aliasing &
FOV Reduction!

Original formulation:
SENSE




Parallel Imaging by Example

How do we recover the underlying magnetization?

Recall: multiple recelvers

Consider two overlapping voxels
and receivers a & b

Signal from a and b ~
Sq = Cq M1 + Cq * Mo

Sp = Cp M1 1 Cp - M2

Only works for nice aliasing
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Forward Problem

* Extending the previous example, more general
Image acquisition process:

°* measurement =
k-encoding * FT * receive sensitivity * magnetization

M;=k-FT-S;-py, i=1...nC

4




Inverse Problem 7

e Reduction factor of 4:

Vastly different practical performance thanks to

receiver profiles.
 How do we measure which will be better before
running the MRI? Expected reconstruction error!

48




Geometry-
factor

2.0
* (Gold standard metric for
assessing effect of under
sampling patterns on the " s

resultant image

* Estimates difficulty of un-
aliasing pairs/sets of spatial *°
overlapping voxels

* nvalues. What is important? s.o
mean”? max? 95%le”

Preussman, MRM 2001 49
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9

lasin

Dense al

* For non-standard grids the aliasing

patterns and G-factor are

complicated, because signal can

alias anywhere

 No simple DFT relation




Problem with Gold

e takes too long to mine (hours or days)

e pad for environment
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New Approach

Estimate largest and smallest magnitude singular
values of M My=Fk-FT-S; py, i=1...nC

Physical interpretations

Smallest singular value: SSV Metric
— worst case noise amplification from reconstruction

Largest singular value:
— maximum of 1 with proper scaling.

Large/small ~ condition #

52



SSV Metric Method

M Is rectangular!

Form normal system M™M and find

min/max eigenvalues —>

Ncoils

2

)\min — Omin

MPM =Y CI-iFT-k" - k-FT-C;

kHk is really just zeroing of non-sampled locations

Might affect convergence it SSV is small already

Can include regularization:

ARPACK + FFTW

53
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Assessing SSV

 Compute slow G-factor metrics, L2 error, and SSV
for a family of well know sampling grids

b16.0 b1 0 b1 1  b1.10 b1 11 b1 12 b1 13 bl 14

b1_15 b1_2 b1_3 b1_4 b1_5 b1_6 b1_7

P e T

b1_9 b2_0 b2_1 b2_2 b2_3 b2_4 b2_5

b2_7 b4 0 b4_1 b4 2 b4_3 b8_0 b8_1
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Good as Gold

 Compute slow G-factor metrics, L2 error, and SSV
for a family of well know sampling grids

 Get same ranking in a few seconds
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SSV Metric Results

SSV ranks candidate sampling patterns very similarly
to gold standard metrics

orders of magnitude faster ~ seconds-minutes

Doesn’t require image values,
just receivers and pattern

Trade off: loss of spatial information that G-factor
and simulation L2 error provides

opens door for optimization!
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App 1: How Random?

e Combinatorial nightmare

« Random sampling —> incoherent aliasing "noise”
—> CS techniques
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App 2: Why low k-space”?

* folklore: always sample centre

e more “energy” at centre of k-
space

* |low res Is easy—> compact
coll support, so sample more
at high k

e Jest: Generate patterns with varying density at centre
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Results:

Centre sampling predominantly affects Largest
singular value
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SOV

 SSV is a fast metric for experiment designs
 demonstrated on:
1) Assessing Random patterns
2) Assessing effects of densely sampling kO

e fast enough to use to optimize experiment design
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Coconut Project

» common sources of error fixable
o transcription of model
* wrong frame of reference
» Heisenbugs
* |ots of little bugs left
 can effectively estimate SNR

* use this to ensure statistical validity
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Bonus: 3D sampling

 We said lines of k-space are “free”
e |n 2D: we choose which lines to sample

* |n 3D, we have a 2D transverse plane of possible locations

<€ > <€ >
A

200
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