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We can write safe software. 
We can write fast software. 

Sometimes 
we need 
both.
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Performance = 
Parallelism

• 384-way ||ism 

• 4-way SIMD 
• 8-way cores 
• 6-times unrolling 
• double buffering
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Roadmap
• SIMD Parallelism 

extensible DSL captures patterns 
verification via graph transformation 
generated library shipping (Cell BE SDK 3.0) 

• Multi-Core Parallelism 
model on ILP 
generation via graph transformation 
linear-time verification 
run time 

• Distant Parallelism 
verification via model checking
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The Road to CoDesign
• Typical Math Function 

• Lookups 

• SIMD Lookup 

• Accurate Table Method 

• Exceptions 

• New Instructions 

• New New Instructions 

• Sigmoid



McMaster - 2019 April 8

SIMD
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weird SIMD



vector n
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Map Loop Overhead

• one arithmetic instruction 
• in/out pointers + induction variable + hint
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Typical Math FunctionCELL SPU Math Library
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Figure 2: Sixteen approximating polynomial segments, above, and the corresponding error in bits,
below.

5.3 Hyperbolic Sine

Hyperbolic sine is defined by

sinhx =
ex � e�x

2
. (10)

It is di�cult to approximate by polynomials over large ranges, because it grows exponentially.
Therfore, for large values we use (10), but for small values of x, such that ex and e�x are close in
value:

(i) precision loss grows as n where x = 2�n, because of similarity, and
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CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the o�set to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from �/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex � e�x

ex + e�x
, (9)

but using this definition for computation would be di⇥cult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1� 2�24) =
8.6643397420981601947, and can be approximated by polynomials in the range [�8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 � 2�24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:
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result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coe�cients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coe�cients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;
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Declarative Assembly
For tanhSPU this requires eight lines of Haskell, which generate 48 machine instructions
and 34 128-bit constants. A higher-order DSL function then generates a code graph in-
cluding loop overhead to implement map tanhSPU sixteen floats at a time, with a 122 in-
struction loop body having an upper-bound 90.7% processor utilization (nearly balancing
instructions from the two execution pipelines).

*****

tanhSPU = use16X2lookup tanhLookup tanhC tanhKeyResult

tanhKeyResult coe�s v = (key, result)
where

key = andc v signBit
polyVal = hornerV coe�s key
isBig = fcmgt key (unfloats4 tanhTreshold)
resultOrOne = selb polyVal (unfloats4 1) isBig
result = selb resultOrOne v signBit

***

Sixteen-way register lookup can be performed for two keys at a time more efficiently
than on two keys separately, so we use a two-way parallel “shared unrolling” of the tanh
function. This is not standard unrolling, in which the loop body is duplicated, because
some of the instructions are shared. By implementing this pattern with a higher-order
function,

tanh = use16X2lookup tanhLookup tanhC tanh’

tanhSPU coe�s v = (key, result)
where

Hyperbolic tangent is an odd function, i.e. tanh(�x) = �tanh(x), and the absolute value of
the argument is used for key generation and polynomial evaluation, obtained by masking
out the signBit bit pattern (of each word element):

key = andc v signBit

This key is used by use16X2lookup to look up coe�s, and to evaluate the resulting polyno-
mials using Horner’s rule:

polyVal = hornerV coe�s key

We also compare (using the floating-point “greater-than” comparison instruction fcmgt)
the key to tanhSaturate, the largest representable number which does not round to 1. This
comparison produces a select mask
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SIMD coefficient lookupSIMD coefficient lookup

s eeeeeeee fffffffffffffffffffffff

sign  exponent            fraction                   4 floats in vector reg

3 msb's of fraction determine 1 of 8 polynomials

Step 1: Rotate 3 msb's into low 5 bits.

s eeeeeeee ffffffffffff...

xxxxxxxx xxxxxxxx xxxxxxxx xxxfffxx

Step 2: Shuffle to replicate into other bytes.

xxxfffxx xxxfffxx xxxfffxx xxxfffxx
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SIMD coefficient lookupSIMD coefficient lookup

Step 3: Select bits, put 0's before, byte index after.

000fff00 000fff01 000fff10 000fff11

Step 4: For each k=0,1,...,degree of polynomial

               Shuffle to get a[k] = coeff of x^k for each of 4

               polynomials in parallel.

        p0                p1                p2                p3

        p4                p5                p6                p7

4 bytes

fff determines which of p0,...,p7 is selected

     p0
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Low Level DSL
• declarative assembly 
• support functions 
• polynomial approximation 
• table lookup in registers 

• verify assertions @ compile time 
• compile time computation 

• user extensible
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• Literate Haskell 

• code inside LaTeX 

• machine ops 

• patterns
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Figure 9. use16X2lookup applied

6. Cube Root

The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(−1)sign 2e (1 + frac) "→ (−1)sign 2q 2r/3 f(1 + frac) (3)

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approxi-
mation of (x)1/3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSPU :: forall v ◦ (SPUType v, HasJoin v) ⇒ v → v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrtExp = selb signMant
(join $ map (λf → f expDiv3shift16 7)

[shli, rotqbii ])
(unwrds4 $ 2 ↑ 31 − 2 ↑ 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expDiv3shift16 :: v
expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shufB1 expDiv3shift16 $
(padLeftTo 4 shufb0x00 ◦ (:[ ])) =<<[2, 6 . . ]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values

20, 21/3, 22/3.

oneOrCbrt2 :: v
oneOrCbrt2 = selb (unfloats4 1) (whatIsThis 1)

(cgti remainder (2 ↑ 6))

cbrtRem :: v
cbrtRem = selb oneOrCbrt2 (whatIsThis 2)

(cgti remainder (2 ↑ 7))

whatIsThis k = unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (k / 3)

Combine the byte containing the sign bit with the bytes with the

mantissa of 1, 21/3, 22/3.

signMant = shufB v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 222, 221, 220 and form a lookup
key, then use it to look up length expCoeffs24bits coefficients
from register values constructed using the polynomial coefficients
expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxDiv3 at top level; we used it above at its general type.

approxDiv3 :: (SPUType v) ⇒ v → v
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

expBias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxDiv3 at type
Val → Val, where Val is the interpreter type for SPU vectors.

cbrtAssert :: Bool
cbrtAssert = List.and

[divMod i 3 ≡ extractDivMod (approxDiv3 $ bias i)
| i ← [expBias − 255 . . expBias ]]

where

bias :: Integer → Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of

: v1 : v2 : → (v1 − expBias, div v2 64)
→ error "impossible"

7. Other Features

In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support
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Cube Root is defined to be the unique real cube root with the
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6. Cube Root

The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(−1)sign 2e (1 + frac) "→ (−1)sign 2q 2r/3 f(1 + frac) (3)

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approxi-
mation of (x)1/3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSPU :: forall v ◦ (SPUType v, HasJoin v) ⇒ v → v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrtExp = selb signMant
(join $ map (λf → f expDiv3shift16 7)

[shli, rotqbii ])
(unwrds4 $ 2 ↑ 31 − 2 ↑ 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expDiv3shift16 :: v
expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shufB1 expDiv3shift16 $
(padLeftTo 4 shufb0x00 ◦ (:[ ])) =<<[2, 6 . . ]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values

20, 21/3, 22/3.

oneOrCbrt2 :: v
oneOrCbrt2 = selb (unfloats4 1) (whatIsThis 1)

(cgti remainder (2 ↑ 6))

cbrtRem :: v
cbrtRem = selb oneOrCbrt2 (whatIsThis 2)

(cgti remainder (2 ↑ 7))

whatIsThis k = unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (k / 3)

Combine the byte containing the sign bit with the bytes with the

mantissa of 1, 21/3, 22/3.

signMant = shufB v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 222, 221, 220 and form a lookup
key, then use it to look up length expCoeffs24bits coefficients
from register values constructed using the polynomial coefficients
expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxDiv3 at top level; we used it above at its general type.

approxDiv3 :: (SPUType v) ⇒ v → v
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

expBias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxDiv3 at type
Val → Val, where Val is the interpreter type for SPU vectors.

cbrtAssert :: Bool
cbrtAssert = List.and

[divMod i 3 ≡ extractDivMod (approxDiv3 $ bias i)
| i ← [expBias − 255 . . expBias ]]

where

bias :: Integer → Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of

: v1 : v2 : → (v1 − expBias, div v2 64)
→ error "impossible"

7. Other Features

In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

• simulate special instructions interactively 

• verify assertions @ compile time
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Figure 5. Scheduled assembly code graph for tanSPU.

# 25 cycles
loop: fma $55, $47, $47, $12

shufb $37, $23, $24, $50
cflts $54, $31, 14
shufb $38, $25, $26, $50
fnms $31, $10, $41, $42
hbr jump, $4
fma $53, $3, $51, $52
rotqbyi $42, $32, 0
fma $51, $5, $40, $37
lqd $32, 0($33)
fm $5, $47, $47
rotqbyi $34, $33, 8
selb $50, $16, $48, $18
frest $37, $55
fma $52, $46, $38, $45
rotqbii $38, $33, 2
a $45, $54, $9
shufb $40, $19, $20, $50
fm $3, $36, $46
shufb $54, $14, $15, $50
rotmai $48, $45, -14
rotqbyi $46, $47, 0
fi $36, $55, $37
rotqbyi $45, $45, 0
fnms $47, $7, $41, $31
shufb $35, $21, $22, $50
fma $40, $5, $54, $40
shufb $39, $27, $28, $50
csflt $41, $48, 0
rotqbyi $54, $4, 0
fm $31, $32, $8
rotqbii $48, $45, 2
andbi $37, $49, 128
rotqby $4, $4, $38
a $33, $33, $30
shufb $49, $43, $43, $29
fnms $38, $55, $36, $13
shufb $30, $30, $30, $6
cgtbi $43, $48, -1
shufb $48, $44, $44, $17
fma $40, $5, $40, $35
stqd $53, 0($34)
fnms $42, $11, $41, $42
xor $44, $45, $43
xor $45, $39, $37
lnop
fma $36, $38, $36, $36

jump: bi $54

Figure 6. tanSPU.s

3.4 Using this Definition

As we will explain in Sect. 4, we can now use tanhSPU to calculate
the application of tanh to each floating-point number in two four-
tuples within GHCi. we use lists at the interface, coerce the type
with idSim to an interpretable instance, and need to pack and
unpack between Float lists and vectors:

(floats ‘prod‘ floats) $ tanhSPU

(idSim $ unfloats [0.1, 0.2, 0.3, 0.4], unfloats [1 . . 4])

The class functions unfloats and floats pack and unpack Haskell
Doubles into SPU register values, and idSim coerces the result to
the interpretable instance.

This capability is extremely convenient for testing the numeric
properties of a function definition like that of tanhSPU; for the

direct test above, one would compare the resulting numbers with
the results of the Haskell library function

map tanh ([0.1, 0.2, 0.3, 0.4] ++ [1 . . 4 :: Float ])

We also have special testing wrappers for such functions which
eliminate the explicit interaction with the type system at the in-
terface, filter and tabulate results.

For SPU assembly code generation, the function tanhSPU is
used at a different type, as will be explained in Sect. 4.2 below, to
generate a code graph in the sense of [9]. In the context of a vector
math library, a second-order function containing loop overhead
corresponding to Haskell’s Array.map (see Sect. 7) is applied to
tanhSPU before conversion to a code graph.

From this point on, code generation is a matter of graph ma-
nipulation, and several types of debug output are available in graph

5 2007/6/16
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Instruction Scheduling
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• Explicitly Staged Software 
Pipelining (ExSSP) 

• Min-Cut to Chop into 
Stages 

• Principled Graph 
Transformation 

• supports control flow 
(MultiLoop)
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Software Pipelining

• hide latency 

• same length loop body
 20
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MultiLoop
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Min-Cut Preparation
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• cut into 
stages 

• one by one 

• minimize live 
registers
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Bad Cut

• c produced 
in later 
stage 

• c used in 
earlier 
stage
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Transformation
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97% Optimal 
Schedules

•Cell SPU was a great machine 

•128 registers 

•two pipelines 

•simple dispatch rules 

•in-order exection 

•complete, public documentation
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4X Faster 
than C
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Challenges = Opportunities

• out-of-order execution 

• complex dispatch rules 

• not enough registers 

• developed two other approaches: 

• based on Karger’s min-cut 

• an “approximation algorithm” 

• based on continuous optimization 
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Multi-Core =  
ILP Take 2

Instruction Level 
Parallelism

Multi-Core 
Parallelism

CPU Chip
Execution Unit Core

Load/Store Instruction DMA 

Arithmetic Instruction
Computational 

Kernel
Register Buffer / Signal
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The Catch:  Soundness

• on CPUs hardware maintains OOE 

• instructions execute out of order 

• hardware hides this from software 

• ensures order independence 

• in our Multi-Core virtual CPU 

• compiler inserts synchronization 

• soundness up to software 

• uses asynchronous communication

 29
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Asynchronous

• no locks 

• locking is a multi-way operation 

• a lock is only local to one core 

• incurs long, unpredictable delays 

• use asynchronous messages 

• matches efficient hardware

 30
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1. Overview of the Cell Broadband Engine Processor

This handbook presents both an overview and considerable detail about the extensive program-

ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first 

implementation of a new family of multiprocessors conforming to the Cell Broadband Engine 
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony, 

Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-

tronics devices such as game consoles and high-definition televisions, the architecture has been 

designed to enable fundamental advances in processor performance. These advances are 

expected to support a broad range of applications in both commercial and scientific fields. 

This handbook is written for the complete range of programmers, including those developing 

applications (user programs), libraries, device drivers, middleware, compilers, and operating 

systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents 

examples of both basic and advanced programming concepts for single-instruction, multiple-data 

(SIMD) vector applications and the system software that supports such applications. 

The handbook is system-independent, making no assumptions about development-tool or oper-

ating-system environments, other than the C/C++ language environment. The examples are 

chosen to highlight the general principals required for CBE-processor programming, such that an 

experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later 

in this chapter and in subsequent chapters. 
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Async Signals
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Multi-Core Language

Computation operation bufferList
do a computation with local 

data

SendData localBuffer remoteBuffer tags
start DMA to send local data 

off core

WaitData localBuffer tag
wait for arrival of DMAed 

data

WaitDMA tag
wait for locally controlled 

DMA to complete 

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive



Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

McMaster - 2019 April 8

locally Sequential 
Program

• total order for instructions 

• easier to think in order 

• send precedes wait(s)
 35
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index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s
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NOT sequential

• can execute out of order
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index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s
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does NOT imply  
order independent
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Linear-Time Verification

• must show   

• results are independent of execution order 

• no deadlocks 

• need to keep track of all possible states 

• linear in time = one-pass verifier 

• constant space 

• i.e. possible states at each instruction

 38
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Proof State
• state of buffers (valid, waiting for DMA, ...) 

• active signals 

• Φollows map  
 
 
 
 
 
  

• records last instruction on core 1 known to 
complete before the last instruction on core 2 
completing before instruction n

 39
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Algorithm

• maintain the state one instruction at a time  

• flag indeterminate states as errors  
 
 
 
 
 
 

• show that any indeterminacy and/or deadlock 
would have been flagged 

 40

Proof
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Impact

• no parallel debugging !! 

• every optimization trick used for ILP can be 
adapted 

• ready for algorithm “skeletons”  

• e.g. map, reduce 

• enables optimization for power reduction:   

• replace caching with data in-flight

 41
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Memory Lookup

• good 

• scales to higher precision 

• uses other units 

• bad 

• doesn’t scale to wider SIMD
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Accurate Table Method
• [ ] = round to floating point 

• in each interval find 

• loose very little precision on range 
reduction and restoration

c = [c]
|1/c − [1/c] | ⋘ ulp
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Multiplicative Reduction 
Accurate Table

•unifies AT method 

‣ log, log1p, … 

‣ exp, expm1, … 

• faster

8 · C.K. Anand and A. Sharma

0
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30

acosh atanh expm1 log1p

SDK even SDK odd new even new odd

Fig. 1. Five functions initially implemented as part of the Cell BE SDK 3.1, and reimplemented
using the methods of this paper. The SPU has two pipelines, so the expected cycle time after
inlining/unrolling is the the number of instructions in the more crowded pipeline. Shown are the
number of instructions per double precision input for both odd and even pipelines, and both the
released versions, and the new versions implemented for this paper.

MASS (Mathematical Acceleration Subsystem) versions, as distributed in the Cell
BE SDK 3.1. The results, shown in Figure 1, show an average 70% expected perfor-
mance improvement. To eliminate the e�ect of in-lining and instruction scheduling,
these results are the instruction counts for the pure functions alone (no loop over-
head or array referencing). To reach this level of performance, careful thought must
go into instruction selection, and it is impossible to say that the implementations
are equally e⇥cient, but in both cases, significant e�orts were made to tune per-
formance. The complete code used to generate the current versions are available
in the appendices, and the other versions are available in C-language form in the
SDK.

Although the forward hyperbolic functions use exponentials, in the same way that
the inverse hyperbolic functions use logarithms, we did not generate new versions of
those functions because the SPU has weak double precision reciprocal performance,
and reciprocals are required to take advantage of the new 2x � 1 approach.

5. ACCURACY

We tested each of the functions by simulating execution using Coconut for at least
10000 inputs over the full range, and compared the results to computations carried
out in Maple with precision of 500 significant digits.

The accuracy is acceptable for a high-performance library, see Table I, but it
is likely that accuracy would be improved by searching for polynomials with bet-
ter rounding behaviour using the procedure outlined in [Brisebarre et al. 2006] or
even by searching through combinations of table values and candidate polynomials,
although it is not clear whether the larger search space could be restricted to a
reasonable size in some way. This is a question for further research.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Better

•close to correctly 
rounded

Faster Exponential and Logarithm · 9

function max error (ulps)
exp 1.55
exp2 1.66

expm1 1.80
exp2m1 1.29

log 1.78
log1p 1.79
log21p 1.11
log2 1.00
acosh 2.01
asinh 2.20
atanh 1.46

Table I. Accuracy, as represented by maximum error in ulps.

6. CONCLUSION

We have demonstrated considerable performance improvements by using a novel
accurate table approach to calculating log(1 + x) and ex � 1, and functions eval-
uated using these functions. The most significant improvement is a more than
doubling of the performance of log(1 + x). Significant improvements can be ex-
pected for all SIMD architectures, and probably on VLIW (very large instruction
word) architectures as well.

By unifying the use of tables in this way, we hope that we are laying the founda-
tion for the inclusion of accurate tables in multi-core hardware, where the cost of
including such tables would be reduced both by the reduced number of such tables
and by the possibility of sharing the tables among multiple cores. This would sig-
nificantly increase the opportunities for in-lining of such e�cient implementations
by compilers, and is a topic which should be pursued by manufacturers.
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Exceptions

• special case (e.g., log (-1) ) 

• extra computation 

• branch 

• predication



McMaster - 2019 April 8

Problems

•hard to schedule 

•exceptions slow and don’t scale
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Exceptions

•all handled in-line 

•special lookup values
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fmaX (extended fma)

•override 
exceptions 

•1st argument 
extended 
•12-bit 

exponent 

•no subnormals
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Add Gather
• lots of processors 

have them 

• use values in 
SIMD slots as 
indices 

• reduces 
implementation 
cost 

• reduces testing
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Sigmoid

• used in ML (learning) 

• uses exp + recip 

• compiler-discoverable 
optimizations 

• merge -1 and 

• fm + fa -> fma 

• many times faster
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Less than Sum of Parts

• for functions like sigmoid 

• faster for all previous reasons 

• code is inlinable (no func 
overhead)
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Conclusions
• new instructions 

• much faster 

• not too many gates 

• let’s build it! 

• context matters 

• software is still written by people 

• understanding their history helps


