Coconut
COde CONstructing User Tool

Christopher Kumar Anand Robert Enenkel
Wolfram Kahl William O’Farrell
-+

McMaster students

NTERNATIONAL

McMaster - 2019 April 8

http://ocalgorithms.com

Award Winner

® 2017 - IBM CAS Faculty Fellow of the Year
® 2018 - IBM CAS Project of the Year
® why?

® highest ranking in internal IBM patent
reviews

® dramatic acceleration of ML via
instruction set/compiler co-optimization

McMaster - 2019 April 8

3

Stephen Adams St u d e n tS

Konrad Anand Adele Olejarz
Tanya Bouman Umme Salma Gadriwala ~ Jessica Pavlin
Simon Broadhead Clayton Goes Adam Schulz
Kevin Browne Gabriel Grant Anuroop Sharma
Shigi Cao William Hua Sanvesh Srivastava
Kriston Costa Yumna Irfan Wolfgang Thaller
Nathan Cumpson Yusra Irfan Gordon Uszkay
Curtis d’Alves Fletcher Johnson Christopher Venantius
Michal Dobrogost Wei Li Paul Vrbik
Lucas Dutton Stephanie Lin Sean Watson
Saeed Jahed Nick Mansfield James You
Damith Karunaratne ~ Mehrdad Mozafar;i Fei Zhao

00 McMaster - 2019 April 8

We can write safe software.
We can write fast software.

Sometimes
we need

both.

Performance =
Parallelism

Cell Broadband Engine Processor

Cell BE

e 384-way ||ism

* 4-way SIMD
* 3-way cores
e 6-times unrolling BTN VA S BN
e double buffering LI

wielame v Sems Rambuss .' O vieiima
N 's‘-c;yx-'::ob%vvnb;n'ﬁgl'thigi-':g?n' '%:gv‘:

P J K
AR TR VAR YA GRS, B NI
Fag oy
| PP e o | L L
- pErocessory i |
LF SElemeént | " -
1

McMaster - 2019 April 8

N~

Roadmap

o)
-
: O
e SIMD Parallelism o 3
extensible DSL captures patterns gj_)ﬂ-g
1/averification via graph transformation S S
generated library shipping (Cell BE SDK 3.0) e
e Multi-Core Parallelism H 2.8
L ©
model on [LP . E E
generation via graph transformation = é §
linear-time verification = oo
: O L Q.
run time < < <

N

e Distant Parallelism
O0 verification via model checking

McMaster - 2019 April 8

The Road to CoDesign

e Typical Math Function
e Lookups

e SIMD Lookup

e Accurate Table Method
e Exceptions

e New Instructions

e New New Instructions

e Sigmoid

McMaster - 2019 April 8

SIMD

weird SIMD

-2019 April 8

McMaster

Map Loop Overhead

16 unroll

-4 unroll

(5) (1)
\ load(s) \4— pin count
M

vector 1

\\/|ector 2

vector n

\ L / Q rotqbyi+8 \
body
¥/

vector 1
——vecworZ | (7)

4)

N shufb N\

(11)
\ rotqbii 2 \

(10)

2 bits

__

/2

vector n pin

count

6 W 9)

\ store(s) \

hint /
branch

® one arithmetic instruction

(12)
rotqby \
(13) N\

loop: - unused

® in/out pointers + induction variable + hint

10

McMaster - 2019 April 8

Typical Math Function

4 o o
] -~ tanhSPU = usel6X2lookup tanhLookup tanhC tanhKeyResult
0.8 tanhKeyResult coeffs v = (key, result)
: / . _p where
0.6 - e —¢€ key = andc v signBit
7 / tanh($) — polyVal = hornerV coeffs key
0.4 - et + et isBig = fcmgt key (unfloats4 tanhTreshold)
resultOrOne = selb polyVal (unfloats4 1) isBig
0.2 / result = selb resultOrOne v signBit
.

=

—40 -

McMaster - 2019 April 8

SIVIDDrcoelficient 1ookup

sign exponent fraction 4 floats 1n vector reg

S eeeeceeee fTHttHHtttit]s eeeececeece fffffff’ff...

%

Step 2: Shuffle to replicate into other bytes.

XXX XX XXX XX XXX XX XXX

(C) 2007 IBM Corp.

SIViDDrcoeliicient 1ookup

Step 3: Select bits, put 0's before, byte index after.

000 00 000 01 000 10 000

-<—4 bytes—»

determines which of p0,...,p7 1s selectggmo7 IBM Corp.

|l ow Level DSL

e declarative assembly
® support functions
e polynomial approximation
e table lookup in registers
e verify assertions @ compile time
e compile time computation

SIMD patterns

® user extensible

14 T McMaster - 2019 April 8

6. Cube Root

The rest of this section is an unedited example of literate source
code.

Cube Root is defined to be the unique real cube root with the
same sign as the input. We calculate it using

(—1)%8" 2¢ (1 + frac) — (—1)"" 27 27/3 f(1 4 frac) (3)
where g and r are integers such that

e=3xq+r, 0<r<3, 4)

and f(x) is a 1p/igecewise order-three polynomial minimax approxi- . l_ i te rate H a S ke I I

mation of (x)"/° on the interval [1, 2).
Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the

values which can occur as a result of extracting the exponent bits . .
for the input float. If you modify the code you must modify the ‘ CO d e l n S I d e I_ aTeX
assertion.

cbrtSPU :: forall vo (SPUType v, HasJoin v) = v — v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

¢ machine ops

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent (‘ p atte r n S

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of

the cube root of the remainder of the exponent division. .
| | coeffs = lookup8Word (22, 20) expCoeffs24bits v
signCbrtExp = selb signMant

oS map (o e o) Evaluate the polynomial on the fractional part.

(unwrds4$2 1731 — 27 23)

evalPoly = hornerV coeffs frac

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v
15 McMaster - 2019 April 8

16

Compile-Time
Assertions

cbrtAssert :: Bool
cbrtAssert = List.and
[divMod i 3 = extractDivMod (approxDiv3 $ bias i)
| i < |expBias — 255 . . expBias]]
where
bias :: Integer — Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of
:vl:v2: — (vl — expBias, div v2 64)
_ — error "impossible"

e simulate special instructions interactively

e verify assertions @ compile time

McMaster - 2019 April 8

Multiple Instances

.. DSL

ﬁ

instance 1nstance

4

SPUSIim / ghci
interactive
development

A
codegraph

pretty Exssp
printer x

17

‘ visualization \

McMaster - 2019 April 8

REG1037 REG4213 REG4112 REG4 8

2, 0 1

<9 REG33 5

%REGSZZ REG325 REGS126 M y/

16 43 44 11

REG5021 REG2350 REG2451 REG1239 REGA47 16

N\

REG54 144

REG32 148

REG34 2

REG53 74 REG28 55 REG27 54

1 Jo P L L

REG37 132

REG54 115 >%/ %[y rotmal 14 \\rotqbylo REG3 93

N4

—
REGA49 18 ﬂ W

andbi f28/ REG31 156

6

REG1744 REG330 REG44 15

REG37 71

REG39 68

O A . .=”
10
<158 <157 v

¥
TN L

- 0

=

gl

REG13 40

sl o
0

z zzzzzz REG46 103 W
REGS 95

REG36 131

REG11 38

REG38 129

W g

25 cycles
loop: fma
shufb
cflts
shufb
fnms
hbr

fma
rotqgbyi
fma
1qd

fm
rotgbyi
selb
frest
fma
rotgbii
a

shufb
fm
shufb
rotmai
rotqgbyi
fi
rotgbyi
fnms
shufb
fma
shufb
csflt
rotqgbyi
fm
rotgbii
andbi
rotqby
a

shufb
fnms
shufb
cgtbi
shufb
fma
stqd
fnms
xXor

Xor
lnop
fma

$55, $47, $47, $12
$37, $23, $24, $50
$54, $31, 14

$38, $25, $26, $50
$31, $10, $41, $42
jump, $4

$53, $3, $51, $52
$42, $32, 0

$51, $5, $40, $37

$32, 0($33)
$5, $47, $47
$34, $33, 8
$50, $16, $48,
$37, $55

$52, $46, $38,
$38, $33, 2
$45, $54, $9
$40, $19, $20,
$3, $36, $46
$54, $14, $15, $50
$48, $45, -14

$46, $47, O

$36, $55, $37

$45, $45, 0

$47, $7, $41, $31
$35, $21, $22, $50
$40, $5, $54, $40
$39, $27, $28, $50
$41, $48, 0

$54, $4, 0

$31, $32, $8

$48, $45, 2

$37, $49, 128

$4, $4, $38

$33, $33, $30

$49, $43, $43, $29
$38, $55, $36, $13
$30, $30, $30, $6
$43, $48, -1

$48, $44, $44, $17
$40, $5, $40, $35
$53, 0($34)
$42, $11, $41,
$44, $45, $43
$45, $39, $37

$18

$45

$50

$42

$36,
$54

$38, $36, $36

18

Figure 5. Scheduled assembly code graph for tanSPU.

Figure 6. tanSPU.s

McMaster - 2019 April 8

19

Instruction Scheduling

e Explicitly Staged Software
Pipelining (ExSSP)

¢ Min-Cut to Chop into
Stages

e Principled Graph EXSSP
Transformation

e supports control flow
(MultiLoop)

Software Pipelining

L

e hide latency

e same length loop body

21

MultiLoop

2

P

hintable computed
branch

McMaster - 2019 April 8

22

Min-Cut Preparation

known above

T ® cutinto
B stages
lookin
\\(‘for nev% ® One by one
_____ v cut
S ® minimize live

M registers
knownbelowv/ """""

D

e McMaster - 2019 April 8

23

Bad Cut

known above

.
—
h——
LY
N
==
-
=

known below

!
A
beo_ ® c produced
N in later
N stage
c ./

(i: e c used in

l earlier
Y\ o [hadau stage
6/

e McMaster - 2019 April 8

24

Transformation

known above

known below

collapse assigned

nodes and edges
become nodes

weight 1 production
edges

Weight 00
consumption edges
weight oo
backwards edges

McMaster - 2019 April 8

97 % Optimal
Schedules

® Cell SPU was a great machine
® 1238 registers
® two pipelines
® simple dispatch rules
® in-order exection

® complete, public documentation

100

50

20

13
10

26

4X Faster

than

Coconut s
simdmath + xic [

C |

Cog?CoghSin WSinflan UanSanfor s Osply U e Cxp e“pa%po]é}ao;]gg ’ngéowg%og“o w9y by cil9dSqrfln Slng Qe ‘0 Ay

McMaster - 2019 April 8

Challenges = Opportunities

out-of-order execution

complex dispatch rules

not enough registers

developed two other approaches:
® based on Karger’s min-cut
® an “approximation algorithm”

® based on continuous optimization

McMaster - 2019 April 8

Multi-Core =
ILP Take 2

Instruction Level Multi-Core
Parallelism Parallelism
CPU Chip
Execution Unit Core
Load/Store Instruction DMA
Arithmetic Instruction Computationa
Kernel
Register Buffer / Signal

29

The Catch: Soundness

® on CPUs hardware maintains OOE
® instructions execute out of order
e hardware hides this from software
e ensures order independence
® in our Multi-Core virtual CPU
e compiler inserts synchronization
® soundness up to software
® uses asynchronous communication

McMaster - 2019 April 8

30

Asynchronous

® no locks
e |ocking is a multi-way operation
® a |ock is only local to one core
e incurs long, unpredictable delays
® use asynchronous messages
e matches efficient hardware

McMaster - 2019 April 8

31

Unit ID SPE1 SPE3 SPE5 SPE7
Lhrre L. Memor
PPE | . % Y s Y 11" |IOIF_1|<> FlexiO |
<> > |
____________ w | !
sy @ o, |
e <«
§:8 | MICa—— f 5 lI0IE_o|«> FlexIO |
| | I
______ — V4 V3 $2 ¢1 :______________: OUI |
RAM RAM
SPEO SPE2 SPE4 SPEG6
Unit ID SPE1 SPE3 SPE5 SPE7
i s s : (:O M
PPE 6 = T ~ Y 11: IOIF_1 |«> FlexIO :
«—> <« > |
______ —|_ T T T % : :
| LD ’i P 0 Iy |
§:8 o mc L A A ~ oIF_o|«> FlexiO |
| 14 3 2 T1 | I
R — R v v v ot u
RAM RAM
SPEO SPE?2 SPE4 SPEG

McMaster - 2019 April 8

core 1 core 2 core 3 core 4 core)

h(g(f(x)))

:1>—

further
computation

-
| 2 —

\/
McMaster - 2019 April 8

Async Signals

barrier WaitData

McMaster - 2019 April 8

Multi-Core Language

: . . do a computation with local
Computation operation bufferlList P

data
SendData /ocalBuffer remoteBuftfer tags start DMA to send local data
off core
WaitData /ocalBuffer tag wait for arrél\;f‘[la of DMAed

wait for locally controlled

WaitDMA tag DMA to complete

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive

McMaster - 2019 April 8

35

locally Sequential
Program

index core 1 core 2 core 3
1 long computation
2 | SendSignal s — ¢2
3 WaitSignal s
4 computation
5 SendSignal s — ¢2
6 WaitSignal s

e total order for instructions
® casier to think in order
® send precedes wait(s)

McMaster - 2019 April 8

NOT sequential

index core 1 core 2 core 3
2 | SendSignal s — ¢2
5 SendSignal s — ¢2

second signal overlaps the first, only one registered

1 long computation
3 WaitSignal s
4 computation
no signal 1s sent, so the next WaitSignal blocks
6 WaitSignal s

® can execute out of order

McMaster - 2019 April 8

does NOT imply
order independent

index core 1 core 2 core 3

1 long computation
5 SendSignal s — ¢2
3 WaitSignal s

computation
4 using

wrong assumptions

2 | SendSignal s — ¢2
6 WaitSignal s

37

McMaster - 2019 April 8

38

| inear-Time Verification

® must show
® results are independent of execution order
¢ no deadlocks
e need to keep track of all possible states
® [inear in time = one-pass verifier
® constant space
® i.e. possible states at each instruction

McMaster - 2019 April 8

39

Proof State

e state of buffers (valid, waiting for DMA, ...)

active signals

dollows ma
@n(%cz) C

-- n -==---CQ-----
v \4 v
€1 Co C

records last instruction on core 1 known to
complete before the last instruction on core 2
completing before instruction n

McMaster - 2019 April 8

40

Algorithm

® maintain the state one instruction at a time
e flag indeterminate states as errors

Proof

e show that any indeterminacy and/or deadlock
would have been flagged

McMaster - 2019 April 8

41

Impact

e no parallel debugging !!

® every optimization trick used for ILP can be
adapte

e ready for algorithm “skeletons”
® e.g. map, reduce
® enables optimization for power reduction:

e replace caching with data in-flight

McMaster - 2019 April 8

Memory Lookup

* cood
e scales to higher precision
* uses other units

e bad

e doesn’t scale to wider SIMD

Accurate Table Method

e [] =round to floating point

¢ in each interval find

c = |c]

|1/c —[1/c]| < ulp

* [oose very little precision on range
reduction and restoration

Multiplicative Reduction

Accurate Table
e unifies AT method

» log, loglp, ...
» exp, expml, ...

B SDK even

e faster

25

Better

function | max error (ulps)
exp 1.55
exp2 1.66
expml 1.80
exp2ml 1.29
log 1.78 ® close to correctly
log1p L.79 rounded
log21p 1.11
log?2 1.00
acosh 2.01
asinh 2.20
atanh 1.46

McMaster - 2019 April 8

Exceptions

e special case (e.g., log (-1))
e extra computation
e branch

e predication

Problems

® hard to schedule

® exceptions slow and don’t scale

New |nstructions

e 2 lookups (LS / odd)

e lookupForReduce
/ lookupForRestore

- \ / * fmaX (FPU /VPU)
e @ 12-bit exponent

I / e no subnormals

| * non-standard
exceptions

Exceptions

® all handled in-line

® special lookup values

function| mnormal >0 subnormal > 0 +00 —00 +0 <0
recip 2267 2;8 ?7 (?)saturated 0, 0 0, 0 0, *oo _2267 _Q;G
—e e/2 —e 2 e/2
sqrt. | 2, 27 2T 2 0, 0o 0, NaN | 0, 0 0, NaN
rsqrt | 2o, 2O 2R 2 0, 0 0, NaN | 0, oo 0, NaN
log2 | 2—, e+log,c 2_6:52, e—52+log,c | 0, oo 0, NaN | 0, —o0 0, NaN
exp2 c, 20 .2¢ 0, 1 0, oo | NaN, 0 0, 1 c, 271.2¢

McMaster - 2019 April 8

fmaX (extended fma)

+ext | finite | —oo | oo | NaN
finite C C C 0
—00 C C 0 0
C 0 C 0
NaN C C C 0
* oxct finite | —o0 00 NaN
+0 +0f | +0f | +0f | =+of
finite£ 0 C 2 2 2
—00 —oof | —0of | —cof | —cof
00 ool oof oof oo’
NaN NaN’ | NaN’ | NaN’ | NaN/

® override
exceptions
® st argument
extended
® 12-bit
exponent
® no subnormals

McMaster - 2019 April 8

input

. 51gn|exp mant

52

\ 4

dropLeadingZeros
7 V@
® .~

numZeros+1 o)

) lower 10

v
leading12Mant

add Ox7ff

12 bit lookup

switch .

12 bit lookup

. (n) Atm
FENT
\< 5 <

expP 1

‘ / concatenate bit

ObIl111111 low

L

concatenate bit

e (last 10 bits)

add Ox3ff

/ i

e

add

switch .

T
11

lookup output

complement bits

0 o

bits in data path

add/subtract, right-justified inputs

unless stated

\ . — drop carry /ustedE
s lel2|m51]

pa

ddLeftJustified,
drop carry .
=
74

14

dropUpTo22Leading-
ZerosAnd 1 RoundT052

zeros or according to second
(length) argument

subtract from /
0X3ff +10 moreThan22Zeros subs 0b10..0

select one of two inputs or ‘
immediate according to logical input

N 22 mp
I::> rotate bits, either to clear leading /

subs ObO O

subs 0b0..0

\

(not shown for exceptions)

recommended lookup/retreive
boundary requiring 46 bit storage

subs Ox7ff 52

. s |ell |m52
retreive output

Bittlow
log

table lookup
-
count leadin
Zeros
+

12 bit adds

McMaster - 2019 April 8

Add Gather

input

lookupForReduce

fmaX
"""" l
fma I
,_‘ []
(U .
- [|
& . 1
(o] ' |
o ' !
> [:
— ')
2 v
\/ : lookupForRestore
fma | ’/////
______ \
fm(a)
result

52

,—| []

('[j .

- [

] ' |

(0] ' 1

=] ' !

> ' :

— ' |

(o] ' |

oy :
! . postLookupRestore
| fma | /
I \

fm(a)
result

lots of processors
have them

use values in
SIMD slots as
indices

reduces
implementation
cost

reduces testing

McMaster - 2019 April 8

64 input bits

BIT

BIT

A

BIT
0

57 51 48 19 8 49 16 2 % T P N
53 48 5 3
BIT BIT BIT BIT ‘fllT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT | —BIT BIT BIT, BIT BIT BIT BIT_ BIT BIT BIT
2 i 3 2
4 4 . I 3
v v v v v / v v
BIT BIT BIT BIT ~ BIT BIT BIT :i:: BIT
/\ 1 0 0
1
v v v ﬁ\ BIT Ly
BIT BIT. BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
2 4 2 e 1 4 o
v v / 7\\ oAl TV v BIT BIT
BIT BIT BIT BIT <] I [BIT BIT BIT
1 1 4 = NN P 4 1
0, 0,
A A A A A v[Tv[TA A A A Al Y] TA A A A A A AlTA A SIA
BIT BIT BIT BIT BIT BIT BIT BIT BIT, BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
1
A A A ATIATIATTATPAT AT A AIATOATPAT A ATPATTA A IAFT IAFT IATTATTATAT AT TATTATTA TA ATIA AATTIATTATTA A A AT TA] A
81 (B BT BT BT BITZ BT BT BIT BT BT BT BT _BIT BIT BT “ BT “ BT “ BT BT BIT T BIT BT~ BT BT BT BT BT BT BT BIT BT BIT BT BT BT BT AT BT)\, BT |\ s Br_Bfm
1 0 0
0 1 1
V] v v v] v VIV VIV vET v v v VIV VET v v v] [v] v v vlv] v v v v v] v v v]Tv v] [v v v viTv v
3 T
BIT BIT BI'I; BIT BIT BIT BIT BI“I' BI;I' B\;I' BIT BIT BIT BIT. BIT Blg BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
: ; 5 + T i 4
v
BIT BIT BT [ATPATPATPA[TA A A Al TA ATTA A A ATATATTATTATTA]TA ALTATTAT T A A BT JA||A BT BT |A A
5
¥ 7
BIT BIT BIT BT BT BT BIT BT BIT A BT BIT BT BT BIT BT BT BT BT BT BT BT BIT BIT BIT BIT BIT BIT BIT BIT BIT
0
1
A AIALTA ALTA AL TA BT [A AOIA AT A ATALZ A A TAFT A ATTTARR AR A A ART AL BT A A A
BIT BIT BIT BIT BIT BIT BIT BIT BIT B|'1|' BIT BIT BIT BIT 1 BIT Blt‘r BIT BIT BIT BIT BIT BIT BIT BIT BIT Bﬂl; Blg BI'OI' BITO BIT BIT r BIT
o T 0, 0, 1 0 9 Q 1 T { g 1 A
v v v v[Tv v v v v[Tv v|Tv v v vITv]Tv v viTv v vIiTviv v v v] [v
BIT BIT BIT BIT BT
1
BIT BIT A BIT A
BIT BIT BIT BIT BIT BIT
BIT BIT BIT v BIT BIT
BIT BIT BIT, BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
1 1 \ .l 1 \ 1 1
3 Fiio—u I t 0, 1
A ATTA AlTA ALTAL [x] [A A A Al TA A A AL TA
BIT) (BT BT_ BT BIT BT BT BIT BIT * BIT BIT BIT BIT BIT) BT BIT
) al
0,
A AOA A A A A A IATTA]TA A A A A
BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
d 10 0 0 d 10 0 1
1 0 1 0 0
v v] v v v vV v] v VIV v 1 v
BIT BIT
BIT BIT BIT
4 BIT BIT BIT BIT BIT Blg BIT BIT BIT BIT BIT 4 Blt‘l'
1
0,
A AOA A A ALTATTATTA] [A]TA vI]TA A A = A
BT BT T BT BT _BIT BIT - BIT BT BT BT BT BIT BIT BIT BIT BIT
1
0 0,
A A A A A A A ALIATIATTAL AT A AlTBT A A
; =
BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
110 Al 0 0
9 g Q 7 1 1
V] v] v v] v v v]Tv v VT V[T v v[lv v
BIT, BIT
BIT BIT v
BT BIT BT BT BIT BIT BT < BIT BIT BIT BIT BIT BIT
J 1 " . 0 1 1 1 i
A A A ALTA A Al IA] Al Y A A A A A
BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
) 0 1o o
AlTA A A AlTA ALIATTIALTA] B A AlTIA A
BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT
0 01 0 0 0 1
{ 0 0
v v v v M vV v v v VIV v v

N

BIT

A

\

BIT

BIT
0

BIT

BIT

BIT

BIT

BIT
0

\

BIT

BIT

BIT

BIT ~ BIT
>
v]Tv
BIT
A
BIT
04
v

BIT

BIT

BIT

BIT

BIT

BIT BIT BT BIT BT BT BT BT BT_BIT BT BT BT BT BT BT BT BT BT BT BT BT BT
10 0! 0 ! 0 ! 1 0 1 1 1
BIT BIT BIT BIT BT BT BIT BT BIT BIT BIT BIT
5: A L Y
49 0
64 bits output

McMaster - 2019 April 8

BIT

54

height (gates in series)

N o =

13
15
17
19
21
23

recip Pre

20 40 60

width (gates in parallel)

80

McMaster - 2019 April 8

55

height (gates in series)

N o =

13
15
17
19
21
23

recip Reduce

25 50 75

width (gates in parallel)

100

McMaster - 2019 April 8

56

height (gates in series)

N o =

13
15
17
19
21
23

recip Restore

30 60 90

width (gates in parallel)

120

McMaster - 2019 April 8

Numbers of Gates

B Pre B ForReduce W ForRestore

5000
3750
2500

1250

exp recip div sgrt

McMaster - 2019 April 8

'nput

fma (*)

vperm expPreLookup

fs gather
fm expPo tLookupReduce

fmax gather

fma

result

Sigmoid

l + e
e used in ML (learning)

® uses exp + recip

e compiler-discoverable
optimizations

® merge -1 and log,(e)
® fm + fa -> fma

® many times faster

McMaster - 2019 April 8

L ess than Sum of Parts

e for functions like sigmoid
e faster for all previous reasons

e code is inlinable (no func
overhead)

Conclusions

® new Instructions
e much faster
® not too many gates
e |et's build it!

¢ context matters

e software is still written by people

e understanding their history helps

McMaster - 2019 April 8

