
McMaster - 2019 April 8

Christopher Kumar Anand
Wolfram Kahl

+
McMaster students

Coconut
COde CONstructing User Tool

Robert Enenkel
William O’Farrell

http://ocalgorithms.com

McMaster - 2019 April 8

Award Winner

•2017 - IBM CAS Faculty Fellow of the Year

•2018 - IBM CAS Project of the Year

•why?

•highest ranking in internal IBM patent
reviews

•dramatic acceleration of ML via
instruction set/compiler co-optimization

McMaster - 2019 April 8

Students

 3 ∞

Stephen Adams
Konrad Anand
Tanya Bouman

Simon Broadhead
Kevin Browne

Shiqi Cao
Kriston Costa

Nathan Cumpson
Curtis d’Alves

Michal Dobrogost
Lucas Dutton
Saeed Jahed

Damith Karunaratne

Adele Olejarz
Jessica Pavlin
Adam Schulz

Anuroop Sharma
Sanvesh Srivastava
Wolfgang Thaller
Gordon Uszkay

Christopher Venantius
Paul Vrbik

Sean Watson
James You
Fei Zhao

Umme Salma Gadriwala
Clayton Goes
Gabriel Grant
William Hua
Yumna Irfan
Yusra Irfan

Fletcher Johnson
Wei Li

Stephanie Lin
Nick Mansfield

Mehrdad Mozafari

McMaster - 2019 April 8

We can write safe software.
We can write fast software.

Sometimes
we need
both.

 4

McMaster - 2019 April 8

Performance =
Parallelism

• 384-way ||ism

• 4-way SIMD
• 8-way cores
• 6-times unrolling
• double buffering

 5

Cell BE

McMaster - 2019 April 8

Roadmap
• SIMD Parallelism

extensible DSL captures patterns
verification via graph transformation
generated library shipping (Cell BE SDK 3.0)

• Multi-Core Parallelism
model on ILP
generation via graph transformation
linear-time verification
run time

• Distant Parallelism
verification via model checking

Sc
he

du
lin

g:
 E

xS
SP

½
✔

✔

✔

✔

∞

✔

✔

✔

A
pp

ro
xi

m
at

io
n:

 K
ar

ge
r’s

A

pp
ro

xi
m

at
io

n:
 C

on
tin

uo
us

✔

½

McMaster - 2019 April 8

The Road to CoDesign
• Typical Math Function

• Lookups

• SIMD Lookup

• Accurate Table Method

• Exceptions

• New Instructions

• New New Instructions

• Sigmoid

McMaster - 2019 April 8

SIMD

McMaster - 2019 April 8

weird SIMD

vector n

16 unroll -4 unroll 16 rem unused

pIn count pOut unused a (int add)

rotqbyi 8

store(s)

load(s)

rotqbii 2

rotqby

pIn countpOut unused

2 bits

unusedloop: exit:
hint /

branch

(1) (2)

(3)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

shufb

(4)

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

0
1

0
2

0
3 0 0 0 0

body

vector 2
vector 1

vector n

vector 2
vector 1

McMaster - 2019 April 8

Map Loop Overhead

• one arithmetic instruction
• in/out pointers + induction variable + hint

 10

McMaster - 2019 April 8

Typical Math FunctionCELL SPU Math Library

0

0.2

0.4

0.6

0.8

1

2 4 6 8

–40

–30

–20

–10

0

2 4 6 8

Figure 2: Sixteen approximating polynomial segments, above, and the corresponding error in bits,
below.

5.3 Hyperbolic Sine

Hyperbolic sine is defined by

sinhx =
ex � e�x

2
. (10)

It is di�cult to approximate by polynomials over large ranges, because it grows exponentially.
Therfore, for large values we use (10), but for small values of x, such that ex and e�x are close in
value:

(i) precision loss grows as n where x = 2�n, because of similarity, and

13

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the o�set to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from �/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex � e�x

ex + e�x
, (9)

but using this definition for computation would be di⇥cult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1� 2�24) =
8.6643397420981601947, and can be approximated by polynomials in the range [�8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 � 2�24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coe�cients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coe�cients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the o�set to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from �/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex � e�x

ex + e�x
, (9)

but using this definition for computation would be di⇥cult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1� 2�24) =
8.6643397420981601947, and can be approximated by polynomials in the range [�8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 � 2�24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coe�cients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coe�cients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

Declarative Assembly
For tanhSPU this requires eight lines of Haskell, which generate 48 machine instructions
and 34 128-bit constants. A higher-order DSL function then generates a code graph in-
cluding loop overhead to implement map tanhSPU sixteen floats at a time, with a 122 in-
struction loop body having an upper-bound 90.7% processor utilization (nearly balancing
instructions from the two execution pipelines).

tanhSPU = use16X2lookup tanhLookup tanhC tanhKeyResult

tanhKeyResult coe�s v = (key, result)
where

key = andc v signBit
polyVal = hornerV coe�s key
isBig = fcmgt key (unfloats4 tanhTreshold)
resultOrOne = selb polyVal (unfloats4 1) isBig
result = selb resultOrOne v signBit

Sixteen-way register lookup can be performed for two keys at a time more efficiently
than on two keys separately, so we use a two-way parallel “shared unrolling” of the tanh
function. This is not standard unrolling, in which the loop body is duplicated, because
some of the instructions are shared. By implementing this pattern with a higher-order
function,

tanh = use16X2lookup tanhLookup tanhC tanh’

tanhSPU coe�s v = (key, result)
where

Hyperbolic tangent is an odd function, i.e. tanh(�x) = �tanh(x), and the absolute value of
the argument is used for key generation and polynomial evaluation, obtained by masking
out the signBit bit pattern (of each word element):

key = andc v signBit

This key is used by use16X2lookup to look up coe�s, and to evaluate the resulting polyno-
mials using Horner’s rule:

polyVal = hornerV coe�s key

We also compare (using the floating-point “greater-than” comparison instruction fcmgt)
the key to tanhSaturate, the largest representable number which does not round to 1. This
comparison produces a select mask

McMaster - 2019 April 8(C) 2007 IBM Corp.

SIMD coefficient lookupSIMD coefficient lookup

s eeeeeeee fffffffffffffffffffffff

sign exponent fraction 4 floats in vector reg

3 msb's of fraction determine 1 of 8 polynomials

Step 1: Rotate 3 msb's into low 5 bits.

s eeeeeeee ffffffffffff...

xxxxxxxx xxxxxxxx xxxxxxxx xxxfffxx

Step 2: Shuffle to replicate into other bytes.

xxxfffxx xxxfffxx xxxfffxx xxxfffxx

McMaster - 2019 April 8(C) 2007 IBM Corp.

SIMD coefficient lookupSIMD coefficient lookup

Step 3: Select bits, put 0's before, byte index after.

000fff00 000fff01 000fff10 000fff11

Step 4: For each k=0,1,...,degree of polynomial

 Shuffle to get a[k] = coeff of x^k for each of 4

 polynomials in parallel.

 p0 p1 p2 p3

 p4 p5 p6 p7

4 bytes

fff determines which of p0,...,p7 is selected

 p0

McMaster - 2019 April 8

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Low Level DSL
• declarative assembly
• support functions
• polynomial approximation
• table lookup in registers

• verify assertions @ compile time
• compile time computation

• user extensible

 14

McMaster - 2019 April 8

• Literate Haskell

• code inside LaTeX

• machine ops

• patterns

 15

v

pre

mkResult

0
coeffs

2
w

mkKey
1

key

1

result

2

1

2

Figure 8. mkKeyResult example

v1

pre

mkResult

0

v2

pre

mkResult

0

coeffs1

2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs

0

result1

1

w2

mkKey

1

key2

1

result2

2

1 2

0
1

Figure 9. use16X2lookup applied

6. Cube Root

The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(−1)sign 2e (1 + frac) "→ (−1)sign 2q 2r/3 f(1 + frac) (3)

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approxi-
mation of (x)1/3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSPU :: forall v ◦ (SPUType v, HasJoin v) ⇒ v → v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrtExp = selb signMant
(join $ map (λf → f expDiv3shift16 7)

[shli, rotqbii])
(unwrds4 $ 2 ↑ 31 − 2 ↑ 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expDiv3shift16 :: v
expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shufB1 expDiv3shift16 $
(padLeftTo 4 shufb0x00 ◦ (:[])) =<<[2, 6 . .]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values

20, 21/3, 22/3.

oneOrCbrt2 :: v
oneOrCbrt2 = selb (unfloats4 1) (whatIsThis 1)

(cgti remainder (2 ↑ 6))

cbrtRem :: v
cbrtRem = selb oneOrCbrt2 (whatIsThis 2)

(cgti remainder (2 ↑ 7))

whatIsThis k = unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (k / 3)

Combine the byte containing the sign bit with the bytes with the

mantissa of 1, 21/3, 22/3.

signMant = shufB v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 222, 221, 220 and form a lookup
key, then use it to look up length expCoeffs24bits coefficients
from register values constructed using the polynomial coefficients
expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxDiv3 at top level; we used it above at its general type.

approxDiv3 :: (SPUType v) ⇒ v → v
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

expBias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxDiv3 at type
Val → Val, where Val is the interpreter type for SPU vectors.

cbrtAssert :: Bool
cbrtAssert = List.and

[divMod i 3 ≡ extractDivMod (approxDiv3 $ bias i)
| i ← [expBias − 255 . . expBias]]

where

bias :: Integer → Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of

: v1 : v2 : → (v1 − expBias, div v2 64)
→ error "impossible"

7. Other Features

In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

v

pre

mkResult

0
coeffs

2
w

mkKey
1

key

1

result

2

1

2

Figure 8. mkKeyResult example

v1

pre

mkResult

0

v2

pre

mkResult

0

coeffs1

2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs

0

result1

1

w2

mkKey

1

key2

1

result2

2

1 2

0
1

Figure 9. use16X2lookup applied

6. Cube Root

The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(−1)sign 2e (1 + frac) "→ (−1)sign 2q 2r/3 f(1 + frac) (3)

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approxi-
mation of (x)1/3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSPU :: forall v ◦ (SPUType v, HasJoin v) ⇒ v → v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrtExp = selb signMant
(join $ map (λf → f expDiv3shift16 7)

[shli, rotqbii])
(unwrds4 $ 2 ↑ 31 − 2 ↑ 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expDiv3shift16 :: v
expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shufB1 expDiv3shift16 $
(padLeftTo 4 shufb0x00 ◦ (:[])) =<<[2, 6 . .]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values

20, 21/3, 22/3.

oneOrCbrt2 :: v
oneOrCbrt2 = selb (unfloats4 1) (whatIsThis 1)

(cgti remainder (2 ↑ 6))

cbrtRem :: v
cbrtRem = selb oneOrCbrt2 (whatIsThis 2)

(cgti remainder (2 ↑ 7))

whatIsThis k = unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (k / 3)

Combine the byte containing the sign bit with the bytes with the

mantissa of 1, 21/3, 22/3.

signMant = shufB v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 222, 221, 220 and form a lookup
key, then use it to look up length expCoeffs24bits coefficients
from register values constructed using the polynomial coefficients
expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxDiv3 at top level; we used it above at its general type.

approxDiv3 :: (SPUType v) ⇒ v → v
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

expBias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxDiv3 at type
Val → Val, where Val is the interpreter type for SPU vectors.

cbrtAssert :: Bool
cbrtAssert = List.and

[divMod i 3 ≡ extractDivMod (approxDiv3 $ bias i)
| i ← [expBias − 255 . . expBias]]

where

bias :: Integer → Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of

: v1 : v2 : → (v1 − expBias, div v2 64)
→ error "impossible"

7. Other Features

In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

McMaster - 2019 April 8

Compile-Time
Assertions

 16

v

pre

mkResult

0
coeffs

2
w

mkKey
1

key

1

result

2

1

2

Figure 8. mkKeyResult example

v1

pre

mkResult

0

v2

pre

mkResult

0

coeffs1

2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs

0

result1

1

w2

mkKey

1

key2

1

result2

2

1 2

0
1

Figure 9. use16X2lookup applied

6. Cube Root

The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(−1)sign 2e (1 + frac) "→ (−1)sign 2q 2r/3 f(1 + frac) (3)

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approxi-
mation of (x)1/3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrtAssert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSPU :: forall v ◦ (SPUType v, HasJoin v) ⇒ v → v
cbrtSPU v = assert cbrtAssert "cbrtSPU" result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrtExp = selb signMant
(join $ map (λf → f expDiv3shift16 7)

[shli, rotqbii])
(unwrds4 $ 2 ↑ 31 − 2 ↑ 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expDiv3shift16 :: v
expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shufB1 expDiv3shift16 $
(padLeftTo 4 shufb0x00 ◦ (:[])) =<<[2, 6 . .]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values

20, 21/3, 22/3.

oneOrCbrt2 :: v
oneOrCbrt2 = selb (unfloats4 1) (whatIsThis 1)

(cgti remainder (2 ↑ 6))

cbrtRem :: v
cbrtRem = selb oneOrCbrt2 (whatIsThis 2)

(cgti remainder (2 ↑ 7))

whatIsThis k = unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (k / 3)

Combine the byte containing the sign bit with the bytes with the

mantissa of 1, 21/3, 22/3.

signMant = shufB v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 222, 221, 220 and form a lookup
key, then use it to look up length expCoeffs24bits coefficients
from register values constructed using the polynomial coefficients
expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxDiv3 at top level; we used it above at its general type.

approxDiv3 :: (SPUType v) ⇒ v → v
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

expBias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxDiv3 at type
Val → Val, where Val is the interpreter type for SPU vectors.

cbrtAssert :: Bool
cbrtAssert = List.and

[divMod i 3 ≡ extractDivMod (approxDiv3 $ bias i)
| i ← [expBias − 255 . . expBias]]

where

bias :: Integer → Val
bias i = unwrds4 $ i + expBias
extractDivMod w = case bytes w of

: v1 : v2 : → (v1 − expBias, div v2 64)
→ error "impossible"

7. Other Features

In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

• simulate special instructions interactively

• verify assertions @ compile time

:: DSL

SPUSim/ghci

interactive

development

codegraph

.c
.s

ExSSPpretty

printer

instanceinstance

visualization

McMaster - 2019 April 8

Multiple Instances

 17

McMaster - 2019 April 8 18

REG33 0

1 REG30 1

2

REG34 2

stqd 0
2

REG4 3

3

<>4

bi jump

0

REG33 5

a

0

rotqbyi 8

rotqbii 2

lqd 0
1

REG30 6

1

shufb

0 1

REG4 8

hbr jump
1

rotqbyi 0

<>9

0

REG32 10

rotqbyi 0

REG31 11

cflts 14REG41 12

fnms
1

fnms
1

REG42 13

2

REG43 14

shufb
0 1

REG44 15

shufb

0 1

REG47 16

rotqbyi 0

fma
0 1

fm

0 1

REG48 17

selb
1

REG49 18

andbi 128

REG36 19

fm

0

REG5 20

fma
0

REG50 21

shufb

2

shufb
2

REG40 22

1

REG45 23

fma

2

REG46 24

1

0

REG3 25

fma

0

REG51 26

1

REG52 27

2

<>28

23

<>29

24

<>30

0

<>31

0

REG4 32

rotqby
0

REG6 33

2

REG7 34

0

REG8 35

fm

1

REG9 36

a

1

REG10 37

0

REG11 38

fnms
0

REG12 39

2

REG13 40

fnms

2

REG14 41

shufb

0

REG15 42

1

REG16 43

0

REG17 44

2

REG18 45

2

REG19 46

shufb

0

REG20 47

1

REG21 48

shufb
0

REG22 49

1

REG23 50

0

REG24 51

1

REG25 52

0

REG26 53

1

REG27 54

shufb

0

REG28 55

1

REG29 56

2

REG35 57

fma

2

REG37 61

2

REG38 65

1

REG39 68

xor

0

REG37 71

1

REG53 74

1

REG45 83

rotqbii 2

xor

0

REG42 85

2

REG52 91

22

REG51 92

21

REG3 93

20

REG50 94

16

2

2

2

2

REG5 95

15fma 0

0

REG36 96

14

REG54 97

1

REG40 98

17

REG49 99

13

REG48 100

12

REG47 101

11

REG46 103

19

REG45 104

18

REG44 105

10

REG43 106

9

1

REG42 107

8

REG41 108

7

1

REG40 111

1

REG40 112

2

REG54 115

1

REG48 122

cgtbi -1

REG38 129

fma

0

REG36 131

1

1 2

REG37 132

fi
1

REG55 133

frest

0

0

REG31 136

2

REG48 141

csflt 0

REG45 142

rotqbyi 0

rotmai -14

REG54 144

0

REG32 148

5

0

REG38 149

1

REG31 156

6

<>157<>158

4

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18 19

20 2122

23

24

25

26

27

28

29

30

31

32

33

3435

36

37

38

39 40

4142

43 44

45 46

4748

49

0 1

01

Figure 5. Scheduled assembly code graph for tanSPU.

25 cycles
loop: fma $55, $47, $47, $12

shufb $37, $23, $24, $50
cflts $54, $31, 14
shufb $38, $25, $26, $50
fnms $31, $10, $41, $42
hbr jump, $4
fma $53, $3, $51, $52
rotqbyi $42, $32, 0
fma $51, $5, $40, $37
lqd $32, 0($33)
fm $5, $47, $47
rotqbyi $34, $33, 8
selb $50, $16, $48, $18
frest $37, $55
fma $52, $46, $38, $45
rotqbii $38, $33, 2
a $45, $54, $9
shufb $40, $19, $20, $50
fm $3, $36, $46
shufb $54, $14, $15, $50
rotmai $48, $45, -14
rotqbyi $46, $47, 0
fi $36, $55, $37
rotqbyi $45, $45, 0
fnms $47, $7, $41, $31
shufb $35, $21, $22, $50
fma $40, $5, $54, $40
shufb $39, $27, $28, $50
csflt $41, $48, 0
rotqbyi $54, $4, 0
fm $31, $32, $8
rotqbii $48, $45, 2
andbi $37, $49, 128
rotqby $4, $4, $38
a $33, $33, $30
shufb $49, $43, $43, $29
fnms $38, $55, $36, $13
shufb $30, $30, $30, $6
cgtbi $43, $48, -1
shufb $48, $44, $44, $17
fma $40, $5, $40, $35
stqd $53, 0($34)
fnms $42, $11, $41, $42
xor $44, $45, $43
xor $45, $39, $37
lnop
fma $36, $38, $36, $36

jump: bi $54

Figure 6. tanSPU.s

3.4 Using this Definition

As we will explain in Sect. 4, we can now use tanhSPU to calculate
the application of tanh to each floating-point number in two four-
tuples within GHCi. we use lists at the interface, coerce the type
with idSim to an interpretable instance, and need to pack and
unpack between Float lists and vectors:

(floats ‘prod‘ floats) $ tanhSPU

(idSim $ unfloats [0.1, 0.2, 0.3, 0.4], unfloats [1 . . 4])

The class functions unfloats and floats pack and unpack Haskell
Doubles into SPU register values, and idSim coerces the result to
the interpretable instance.

This capability is extremely convenient for testing the numeric
properties of a function definition like that of tanhSPU; for the

direct test above, one would compare the resulting numbers with
the results of the Haskell library function

map tanh ([0.1, 0.2, 0.3, 0.4] ++ [1 . . 4 :: Float])

We also have special testing wrappers for such functions which
eliminate the explicit interaction with the type system at the in-
terface, filter and tabulate results.

For SPU assembly code generation, the function tanhSPU is
used at a different type, as will be explained in Sect. 4.2 below, to
generate a code graph in the sense of [9]. In the context of a vector
math library, a second-order function containing loop overhead
corresponding to Haskell’s Array.map (see Sect. 7) is applied to
tanhSPU before conversion to a code graph.

From this point on, code generation is a matter of graph ma-
nipulation, and several types of debug output are available in graph

5 2007/6/16

McMaster - 2019 April 8

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Instruction Scheduling

 19

• Explicitly Staged Software
Pipelining (ExSSP)

• Min-Cut to Chop into
Stages

• Principled Graph
Transformation

• supports control flow
(MultiLoop)

McMaster - 2019 April 8

Software Pipelining

• hide latency

• same length loop body
 20

McMaster - 2019 April 8

MultiLoop

 21

n1

1

2

2

n

hintable computed

branch

A

b

a

B

C

D

c

d e

e

known above

known below

looking
for new
cut

McMaster - 2019 April 8

Min-Cut Preparation

 22

• cut into
stages

• one by one

• minimize live
registers

McMaster - 2019 April 8

Bad Cut

• c produced
in later
stage

• c used in
earlier
stage

 23

bad cut

A

b

a

B

C

D

c

d e

e

known above

known below

McMaster - 2019 April 8

Transformation

 24

A

b

a

B

C

D

c

d e

e

known above

known below

s

t

collapse assigned

b

B

C

c

d e

nodes and edges
become nodes

1.0

1.0

1.0

1.0

weight 1 production
edges

b

1.0

B

C

c

d e

∞

1.0

∞

1.0

∞

1.0

∞

t

weight ∞

consumption edges

b

1.0

B

C

c

d e

∞

1.0

∞

1.0

∞

1.0

∞

∞

∞

∞

∞

t

weight ∞

backwards edges

McMaster - 2019 April 8

97% Optimal
Schedules

•Cell SPU was a great machine

•128 registers

•two pipelines

•simple dispatch rules

•in-order exection

•complete, public documentation

McMaster - 2019 April 8

4X Faster 
than C

 26

McMaster - 2019 April 8

Challenges = Opportunities

• out-of-order execution

• complex dispatch rules

• not enough registers

• developed two other approaches:

• based on Karger’s min-cut

• an “approximation algorithm”

• based on continuous optimization

McMaster - 2019 April 8

Multi-Core =  
ILP Take 2

Instruction Level
Parallelism

Multi-Core
Parallelism

CPU Chip
Execution Unit Core

Load/Store Instruction DMA

Arithmetic Instruction
Computational

Kernel
Register Buffer / Signal

McMaster - 2019 April 8

The Catch: Soundness

• on CPUs hardware maintains OOE

• instructions execute out of order

• hardware hides this from software

• ensures order independence

• in our Multi-Core virtual CPU

• compiler inserts synchronization

• soundness up to software

• uses asynchronous communication

 29

McMaster - 2019 April 8

Asynchronous

• no locks

• locking is a multi-way operation

• a lock is only local to one core

• incurs long, unpredictable delays

• use asynchronous messages

• matches efficient hardware

 30

Programming Handbook

Cell Broadband Engine

BE_Handbook_BE_Overview.fm.1.0

April 19, 2006

Overview of the Cell Broadband Engine Processor

Page 33 of 876

1. Overview of the Cell Broadband Engine Processor

This handbook presents both an overview and considerable detail about the extensive program-

ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first

implementation of a new family of multiprocessors conforming to the Cell Broadband Engine
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony,

Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-

tronics devices such as game consoles and high-definition televisions, the architecture has been

designed to enable fundamental advances in processor performance. These advances are

expected to support a broad range of applications in both commercial and scientific fields.

This handbook is written for the complete range of programmers, including those developing

applications (user programs), libraries, device drivers, middleware, compilers, and operating

systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents

examples of both basic and advanced programming concepts for single-instruction, multiple-data

(SIMD) vector applications and the system software that supports such applications.

The handbook is system-independent, making no assumptions about development-tool or oper-

ating-system environments, other than the C/C++ language environment. The examples are

chosen to highlight the general principals required for CBE-processor programming, such that an

experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later

in this chapter and in subsequent chapters.

Figure 1-1. Cell Broadband Engine Overview

RAM RAM

XIO

XIO

PPE

MIC

IOIF_1

IOIF_0

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

EIB

FlexIO

1234

5

6

0

11

10987

FlexIO

Unit ID

BEI Cell Broadband Engine Interface

EIB Element Interconnect Bus

FlexIO Rambus FlexIO Bus

IOIF I/O Interface

MIC Memory Interface Controller

PPE PowerPC Processor Element

RAM Resource Allocation Management

SPE Synergistic Processor Element

XIO Rambus XDR I/O (XIO) cell

B
E

I

McMaster - 2019 April 8

Memory
Bound

 31

Programming Handbook

Cell Broadband Engine

BE_Handbook_BE_Overview.fm.1.0

April 19, 2006

Overview of the Cell Broadband Engine Processor

Page 33 of 876

1. Overview of the Cell Broadband Engine Processor

This handbook presents both an overview and considerable detail about the extensive program-

ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first

implementation of a new family of multiprocessors conforming to the Cell Broadband Engine
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony,

Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-

tronics devices such as game consoles and high-definition televisions, the architecture has been

designed to enable fundamental advances in processor performance. These advances are

expected to support a broad range of applications in both commercial and scientific fields.

This handbook is written for the complete range of programmers, including those developing

applications (user programs), libraries, device drivers, middleware, compilers, and operating

systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents

examples of both basic and advanced programming concepts for single-instruction, multiple-data

(SIMD) vector applications and the system software that supports such applications.

The handbook is system-independent, making no assumptions about development-tool or oper-

ating-system environments, other than the C/C++ language environment. The examples are

chosen to highlight the general principals required for CBE-processor programming, such that an

experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later

in this chapter and in subsequent chapters.

Figure 1-1. Cell Broadband Engine Overview

RAM RAM

XIO

XIO

PPE

MIC

IOIF_1

IOIF_0

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

EIB

FlexIO

1234

5

6

0

11

10987

FlexIO

Unit ID

BEI Cell Broadband Engine Interface

EIB Element Interconnect Bus

FlexIO Rambus FlexIO Bus

IOIF I/O Interface

MIC Memory Interface Controller

PPE PowerPC Processor Element

RAM Resource Allocation Management

SPE Synergistic Processor Element

XIO Rambus XDR I/O (XIO) cell

B
E

I

Comp
Bound

McMaster - 2019 April 8

f(x)

x

f(x)

g(f(x))

g(f(x))

h(g(f(x)))

h(g(f(x)))

1

2

y

1

1

1

1

2

core 1 core 2 core 3 core 4 core 5

further
computation

McMaster - 2019 April 8

Async Signals

x

1

1

SendSignal

WaitData

WaitSignal
SendData

N
o
 r

ea
d
s

o
r

w
ri

te
s

to
 b

u
ff
er

u
n
ti
l
p
a
st

b
a
rr

ie
r

W
a
it
D

a
ta

N
o
 w

ri
te

s
to

b
u
ff
er

 u
n
ti
l

D
M

A

co
m

p
le

ti
o
n

is
 c

o
n
fi
rm

ed

WaitDMA

.

.

.
other

operations
.
.
.

.

.

.
other

operations
.
.
.R

eo
rd

er

W
in

do
w

R
eo

rd
er

W

in
do

w

H
az

ar
d

McMaster - 2019 April 8

Multi-Core Language

Computation operation bufferList
do a computation with local

data

SendData localBuffer remoteBuffer tags
start DMA to send local data

off core

WaitData localBuffer tag
wait for arrival of DMAed

data

WaitDMA tag
wait for locally controlled

DMA to complete

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

McMaster - 2019 April 8

locally Sequential
Program

• total order for instructions

• easier to think in order

• send precedes wait(s)
 35

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

McMaster - 2019 April 8

NOT sequential

• can execute out of order

 36

Nested Code Graphs for Multi-Core Parallelism 23

index core 1 core 2 core 3
1 long computation
2 SendSignal s � c2
3 WaitSignal s
4 computation
5 SendSignal s � c2
6 WaitSignal s

Remember that each core executes independently of the other cores, except
where explicit wait instructions block execution until some kind of commu-
nication (signal, change in data tag, DMA) is confirmed to have completed.
Therefore, in this case the most likely instruction completion order has core 3
executing the SendSignal as soon as it is queued, allowing the signal to be sent
before core 2 has received the core 1’s signal and cleared the signal hardware:

index core 1 core 2 core 3
2 SendSignal s � c2
5 SendSignal s � c2

second signal overlaps the first, only one registered
1 long computation
3 WaitSignal s
4 computation

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, completion of the SendSignal means that the signal has been
initiated by the sender, and reception may be delayed, so the signal from core
3 could even arrive before the signal from core 1. In either case, neither signal
will arrive after the first WaitSignal, so the second WaitSignal will wait forever,
and this program execution will not terminate.

The problem is caused because there are no signals or data transmissions
enforcing completion of instruction 5 to follow completion of instruction 3.

This example, when considered as part of a longer program, also demon-
strates a possible safety violation with the valid completion order:

index core 1 core 2 core 3
1 long computation
5 SendSignal s � c2
3 WaitSignal s

4
computation

using
wrong assumptions

2 SendSignal s � c2
6 WaitSignal s

McMaster - 2019 April 8

does NOT imply  
order independent

 37

McMaster - 2019 April 8

Linear-Time Verification

• must show

• results are independent of execution order

• no deadlocks

• need to keep track of all possible states

• linear in time = one-pass verifier

• constant space

• i.e. possible states at each instruction

 38

McMaster - 2019 April 8

Proof State
• state of buffers (valid, waiting for DMA, ...)

• active signals

• Φollows map  
 
 
 
 
 

• records last instruction on core 1 known to
complete before the last instruction on core 2
completing before instruction n

 39

©n(c1,c2)

c1 c2

n

c

Φ

McMaster - 2019 April 8

Algorithm

• maintain the state one instruction at a time

• flag indeterminate states as errors  
 
 
 
 
 
 

• show that any indeterminacy and/or deadlock
would have been flagged

 40

Proof

McMaster - 2019 April 8

Impact

• no parallel debugging !!

• every optimization trick used for ILP can be
adapted

• ready for algorithm “skeletons”

• e.g. map, reduce

• enables optimization for power reduction:

• replace caching with data in-flight

 41

McMaster - 2019 April 8

Memory Lookup

• good

• scales to higher precision

• uses other units

• bad

• doesn’t scale to wider SIMD

McMaster - 2019 April 8

Accurate Table Method
• [] = round to floating point

• in each interval find

• loose very little precision on range
reduction and restoration

c = [c]
|1/c − [1/c] | ⋘ ulp

McMaster - 2019 April 8

Multiplicative Reduction
Accurate Table

•unifies AT method

‣ log, log1p, …

‣ exp, expm1, …

• faster

8 · C.K. Anand and A. Sharma

0

5

10

15

20

25

30

acosh atanh expm1 log1p

SDK even SDK odd new even new odd

Fig. 1. Five functions initially implemented as part of the Cell BE SDK 3.1, and reimplemented
using the methods of this paper. The SPU has two pipelines, so the expected cycle time after
inlining/unrolling is the the number of instructions in the more crowded pipeline. Shown are the
number of instructions per double precision input for both odd and even pipelines, and both the
released versions, and the new versions implemented for this paper.

MASS (Mathematical Acceleration Subsystem) versions, as distributed in the Cell
BE SDK 3.1. The results, shown in Figure 1, show an average 70% expected perfor-
mance improvement. To eliminate the e�ect of in-lining and instruction scheduling,
these results are the instruction counts for the pure functions alone (no loop over-
head or array referencing). To reach this level of performance, careful thought must
go into instruction selection, and it is impossible to say that the implementations
are equally e⇥cient, but in both cases, significant e�orts were made to tune per-
formance. The complete code used to generate the current versions are available
in the appendices, and the other versions are available in C-language form in the
SDK.

Although the forward hyperbolic functions use exponentials, in the same way that
the inverse hyperbolic functions use logarithms, we did not generate new versions of
those functions because the SPU has weak double precision reciprocal performance,
and reciprocals are required to take advantage of the new 2x � 1 approach.

5. ACCURACY

We tested each of the functions by simulating execution using Coconut for at least
10000 inputs over the full range, and compared the results to computations carried
out in Maple with precision of 500 significant digits.

The accuracy is acceptable for a high-performance library, see Table I, but it
is likely that accuracy would be improved by searching for polynomials with bet-
ter rounding behaviour using the procedure outlined in [Brisebarre et al. 2006] or
even by searching through combinations of table values and candidate polynomials,
although it is not clear whether the larger search space could be restricted to a
reasonable size in some way. This is a question for further research.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

McMaster - 2019 April 8

Better

•close to correctly
rounded

Faster Exponential and Logarithm · 9

function max error (ulps)
exp 1.55
exp2 1.66

expm1 1.80
exp2m1 1.29

log 1.78
log1p 1.79
log21p 1.11
log2 1.00
acosh 2.01
asinh 2.20
atanh 1.46

Table I. Accuracy, as represented by maximum error in ulps.

6. CONCLUSION

We have demonstrated considerable performance improvements by using a novel
accurate table approach to calculating log(1 + x) and ex � 1, and functions eval-
uated using these functions. The most significant improvement is a more than
doubling of the performance of log(1 + x). Significant improvements can be ex-
pected for all SIMD architectures, and probably on VLIW (very large instruction
word) architectures as well.

By unifying the use of tables in this way, we hope that we are laying the founda-
tion for the inclusion of accurate tables in multi-core hardware, where the cost of
including such tables would be reduced both by the reduced number of such tables
and by the possibility of sharing the tables among multiple cores. This would sig-
nificantly increase the opportunities for in-lining of such e�cient implementations
by compilers, and is a topic which should be pursued by manufacturers.

REFERENCES

Anand, C. K. and Kahl, W. 2009. An optimized cell be special function library generated by
coconut. IEEE Transactions on Computers 0, 0, preprint.

Brisebarre, N., Muller, J.-M., and Tisserand, A. 2006. Computing machine-e�cient poly-
nomial approximations. ACM Trans. Math. Softw. 32, 2, 236–256.

Gal, S. 1986. Computing elementary functions: A new approach for achieving high accuracy
and good performance. In Proceedings of the Symposium on Accurate Scientific Computations.
Springer-Verlag, London, UK, 1–16.

Gal, S. and Bachelis, B. 1991. An accurate elementary mathematical library for the ieee floating
point standard. ACM Trans. Math. Softw. 17, 1, 26–45.

Gustavson, F. G., Moreira, J. E., and Enenkel, R. F. 1999. The fused multiply-add in-
struction leads to algorithms for extended-precision floating point: applications to java and
high-performance computing. In CASCON ’99: Proceedings of the 1999 conference of the
Centre for Advanced Studies on Collaborative research. IBM Press, 4.

Muller, J.-M. 2006. Elementary Functions: Algorithms and Implementation, 2nd Revised Edi-
tion ed. Springer.

Story, S., Tak, P., and Tang, P. 1999. New algorithms for improved transcendental functions
on ia-64. In ARITH ’99: Proceedings of the 14th IEEE Symposium on Computer Arithmetic.
IEEE Computer Society, Washington, DC, USA, 4.

Tang, P.-T. P. 1989. Table-driven implementation of the exponential function in ieee floating-
point arithmetic. ACM Trans. Math. Softw. 15, 2, 144–157.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

McMaster - 2019 April 8

Exceptions

• special case (e.g., log (-1))

• extra computation

• branch

• predication

McMaster - 2019 April 8

Problems

•hard to schedule

•exceptions slow and don’t scale

McMaster - 2019 April 8

fma

lookupForReduce

fma

fmaX

lookupForRestore

input

result

fm(a)

po
ly

no
mi

al

fma

postLookupReduce

fma

fmaX

postLookupRestore

input

result

fm(a)

po
ly

no
mi

al

preLookup

gather

gather

New Instructions
• 2 lookups (LS / odd)
• lookupForReduce
• lookupForRestore

• fmaX (FPU /VPU)
• 12-bit exponent
• no subnormals
• non-standard

exceptions

McMaster - 2019 April 8

Exceptions

•all handled in-line

•special lookup values

McMaster - 2019 April 8

fmaX (extended fma)

•override
exceptions

•1st argument
extended
•12-bit

exponent

•no subnormals

McMaster - 2019 April 8

Bitflow
(log)

table lookup
+

 count leading
zeros

+
12 bit adds

input

sign exp mant

dropLeadingZeros

numZeros+1

12 bit lookup

lowExpBit0b1111111111

add

switch

~

s e12 m51

lookup output

s e11 m52

retreive output

subs 0x7ff

>=1

exp

add 1

expP1

adjustedE

switch

e (last 10 bits)

subs 0b10..0

subs 0b0..0

12 bit lookup

bitRot

rotatePad10L22RWith

add 0x7ff

low10Bits ~

add 0x3ff

switch

concatenate bit

xor

add drop carry

addLeftJustified,

 drop carry

dropUpTo22Leading-

ZerosAnd1RoundTo52

subtract from

0x3ff + 10 moreThan22Zeros

subs 0b0..0

<1

isNot12

concatenate bit

51

74

74

74

30

31

52

52

52

11

11

11
52

12

~

22

complement bits

bits in data path

add
add/subtract, right-justified inputs

unless stated

rotate bits, either to clear leading

zeros or according to second

(length) argument

select one of two inputs or

immediate according to logical input

(not shown for exceptions)

(c)

(b)

(d)

(e)

(f)

(g)

recommended lookup/retreive

boundary requiring 46 bit storage

lower 10

11

(h)

(i)

(j)

(k)

6

leading12Mant

4

(a)

(p)

(r)

(o)

(l)

(m)

(n)

(q)

(s)

(t)

(u)

(v)

5

McMaster - 2019 April 8

Add Gather
• lots of processors

have them

• use values in
SIMD slots as
indices

• reduces
implementation
cost

• reduces testing

 52

fma

lookupForReduce

fma

fmaX

lookupForRestore

input

result

fm(a)

po
ly

no
mi

al

fma

postLookupReduce

fma

fmaX

postLookupRestore

input

result

fm(a)

po
ly

no
mi

al

preLookup

gather

gather

McMaster - 2019 April 8

BIT

⋁
0

BIT
1
BIT
2

BIT
3

BIT

⋁
0

BIT

1

BIT

2

BIT
3

BIT

⋁
0

BIT
1

BIT
2

BIT

⋀
1

⋁
0

⋀
1

BIT
1

⋀ 1

⋀ 1

BIT

2

⋀ 1

⋀
1

BIT

3

⋀
1

⋀
1

BIT

⋁ 0

⋀
1

⋀
1

BIT
1

⋀
1

⋀
1

BIT
2

⋀
1

⋀
1

BIT

3

⋀
1

⋀
1

BIT

⋁ 0

⋀
1

⋀
1

BIT

1

⋀ 1

⋀ 1

BIT
2

⋀ 1

⋀
1

BIT
3

⋀ 1

⋀
1

BIT

⋁ 0

⋀
1

BIT
1

⋀
1

BIT
2

⋀
1

BIT
3

⋀
1

BIT

⋁ 0

⋀
1

BIT
1

⋀
1

BIT
2

⋀
1

BIT
3

⋀
1

BIT

⋁ 0

⋀ 1

BIT

1

⋀
1

BIT
2

⋀
1

BIT
3

⋀
1

BIT

⋁ 0

⋀ 1

BIT
1

⋀
1

BIT
2

⋀
1

BIT

3

⋀
1

BIT

⋁ 0

⋀ 1

BIT

1

⋀
1

BIT
2

⋀
1

BIT
3

⋀
1

BIT

⋁ 0

⋀
1

⋀ 1

BIT
1

⋀
1

⋀
1

BIT
2

⋀
1

⋀
1

BIT

3

⋀
1

⋀
1

BIT

⋁
0

⋀
1

⋀
1

BIT

1

⋀
1

⋀
1

BIT
2

⋀
1

⋀
1

BIT

3

⋀
1

⋀
1

BIT

⋁ 0

⋀
1

⋀ 1

BIT
1

⋀
1

⋀ 1

BIT

2

⋀
1

⋀ 1

BIT
3

⋀
1

⋀ 1

BIT

⋁ 0

⋀
1

BIT
1

⋀
1

BIT
2

⋀1

BIT
3

⋀
1

BIT

⋀
1

BIT

⋀
1

BIT

⋀
1

BIT

⋀
1

BIT

⊻
0

BIT
1

BIT
2

BIT

⊻

⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0⋀
0

⋀
0

⋀ 0 ⋀ 0⋀
0

BIT
0 0 0

0 0000
00 00

BIT

⋁ 0

BIT

⊻ 0 ⊻
0

BIT
1

1

BIT

2

BIT

3

BIT

⋀0

⋀
1

BIT

⊻ 0 ⊻
0

BIT
1

1

BIT
2

BIT

3

BIT
1

BIT

⊻

⋀ 0

⋀ 0

0 00⋀
0

0
00

0 000 00
0

0
00 00 00

BIT

0

⋀ 0

0000 0 000
00 000 0000

0 00
0 00

0

0 00 0
0

0
0 0

0
0 0

0
0 000

00 00

BIT

⋁
0

BIT

⊻
0

⊻
0

BIT
11

BIT

2

BIT
3

BIT
1

BIT
1

BIT

⊻ ⋀
0

⋀ 0

⋀0⋀
0

⋀
0

⋀ 0 ⋀
0

⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0 ⋀
0

⋀ 0 ⋀
0

⋀ 0 ⋀ 0 ⋀
0

⋀ 0 ⋀ 0 ⋀
0

⋀ 0⋀ 0⋀ 0⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

BIT

⋀
0

⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

⋀
0

⋀
0

⋀
0

⋀0⋀ 0 ⋀
0

⋀ 0 ⋀ 0⋀ 0 ⋀ 0⋀ 0 ⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0⋀ 0⋀ 0 ⋀
0

⋀ 0 ⋀ 0 ⋀
0

BIT

1

BIT

⋁
0

BIT

1

BIT
1

BIT
1

BIT

⋁ 0

BIT

1

BIT

⋁
0

BIT

1

BIT

1

BIT
1

BIT

⊻ ⋀0⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0⋀ 0⋀ 0 ⋀
0

⋀0⋀
0

⋀
0

⋀ 0⋀ 0⋀ 0⋀ 0 ⋀
0

⋀ 0 ⋀
0

⋀ 0

BIT

⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0⋀ 0⋀ 0⋀ 0 ⋀
0

⋀
0

⋀ 0⋀ 0 ⋀
0

⋀ 0⋀ 0⋀ 0 ⋀
0

⋀
0

⋀
0

⋀
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

1
BIT

1

BIT

1

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT
1

⋁ 1⋁ 1 ⋁
1

⋁
1

⋁
1

⋁ 1 ⋁
1

⋁ 1 ⋁
1

⋁ 1 ⋁
1

⋁
1

⋁ 1 ⋁
1

⋁
1

⋁ 1 ⋁ 1⋁ 1⋁ 1 ⋁
1

⋁
1

⋁
1

⋁
1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT

⊻ 0

⋀
1

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT
1

1 BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

⋀
1

BIT

⋁ 0

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT
1

1

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT
2

⋀
1

BIT

⋁
0

BIT

1

BIT
1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT
1

1

BIT

1

BIT

1

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT

3

⋀
1

BIT

⊻ ⋀
0

⋀
0

⋀ 0⋀ 0 ⋀
0

⋀0⋀
0

⋀
0

⋀
0

⋀ 0⋀ 0⋀ 0 ⋀0⋀
0
⋀

0
⋀ 0

BIT

0000

⋀
0

⋀ 0⋀ 0⋀ 0 ⋀
0

⋀
0

⋀ 0 ⋀
0

⋀
0

⋀ 0 ⋀ 0⋀ 0

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT

1

1

BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT

⊻ 0

⋀
1

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

1

BIT
1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

⋀
1

BIT

⊻ ⋀
0

⋀ 0 ⋀
0

⋀
0

⋀
0

⋀ 0 ⋀
0

⋀
0

⋀ 0 ⋀ 0 ⋀0⋀ 0 ⋀
0

⋀ 0

BIT
00

⋀
0

⋀ 0 ⋀
0

⋀
0

⋀
0

⋀ 0 ⋀
0

⋀ 0 ⋀ 0⋀ 0 ⋀
0

⋀ 0

BIT

⋁ 0

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁0

BIT
0

BIT
1

1
BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁0

BIT
0

BIT
1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

1

BIT

1

BIT

⊻

BIT

⊻ ⋀0⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0 ⋀ 0⋀ 0 ⋀
0

⋀ 0 ⋀
0

⋀ 0

BIT

⋀
0

⋀
0

⋀
0

⋀
0

⋀ 0 ⋀
0

⋀ 0 ⋀ 0 ⋀ 0 ⋀
0

⋀ 0 ⋀
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT

1

1
BIT

1

BIT

1

BIT

⋁
0

BIT

⋁
0

BIT

1

BIT

1

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT

1

BIT

⋁
0

BIT

⋁0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

BIT
1

BIT

64 bits output
48

BIT

⋁
0

BIT

⋁ 0

BIT

⋁0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

BIT
1

BIT

49

BIT

⋁
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

BIT
1

BIT

50

BIT

⋁
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

BIT
1

BIT
51

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

1
BIT

1

BIT
1

BIT
1

BIT
52

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT

1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

BIT
1

BIT
53

BIT

⋁
0

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

BIT
1

BIT
54

BIT

⋁
0

BIT

⋁ 0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT

1

BIT
1

BIT
55

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1
BIT

1

BIT
1

BIT
1

BIT

56

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT
1

BIT

1

BIT

1

BIT

1

BIT

1

BIT
1

1
BIT

1

BIT
1

1

BIT

1

BIT
1

BIT
1

BIT
57

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT
1

1

BIT

1

BIT
1

BIT
1

BIT
58

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT

⋁
0

BIT
0

BIT
1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT

1

BIT
1

BIT
1

BIT
59

64 input bits
1 2 3 4 5 6 789 10 1112 13 14

1516 171819
20212223

2425 2627
282930 31

32333435
36

3738 39
40

414243
44

45 46 4748 495051
5253 5455 56

57
5859

60616263

McMaster - 2019 April 8 54

1
3
5
7
9

11
13
15
17
19
21
23

0 20 40 60 80

recip Pre

width (gates in parallel)

he
ig

ht
 (g

at
es

 in
 s

er
ie

s)

McMaster - 2019 April 8 55

1
3
5
7
9

11
13
15
17
19
21
23

0 25 50 75 100

recip Reduce

width (gates in parallel)

he
ig

ht
 (g

at
es

 in
 s

er
ie

s)

McMaster - 2019 April 8 56

1
3
5
7
9

11
13
15
17
19
21
23

0 30 60 90 120

recip Restore

width (gates in parallel)

he
ig

ht
 (g

at
es

 in
 s

er
ie

s)

McMaster - 2019 April 8

Numbers of Gates

0

1250

2500

3750

5000

log exp recip div sqrt

Pre ForReduce ForRestore

McMaster - 2019 April 8

Sigmoid

• used in ML (learning)

• uses exp + recip

• compiler-discoverable
optimizations

• merge -1 and

• fm + fa -> fma

• many times faster

1
1 + e−x

log2(e)

fma

expPostLookupReduce

fmaX

expPostLookupRestore

input

fma (**)

po
ly

no
mi

al

expPreLookup

gather

gather

recipPostLookupReduce

recipPostLookupRestore

result

fma

po
ly

no
mi

al

recipPreLookup

gather

gather

fma

fma

fma

fmaX

fma

fma (*)

vperm

fs

fms

McMaster - 2019 April 8

Less than Sum of Parts

• for functions like sigmoid

• faster for all previous reasons

• code is inlinable (no func
overhead)

McMaster - 2019 April 8

Conclusions
• new instructions

• much faster

• not too many gates

• let’s build it!

• context matters

• software is still written by people

• understanding their history helps

