
Coconut:
A Tool for Verifiable, High-Performance
Image and Signal Processing

Christopher Kumar Anand, anandc@mcmaster.ca
Wolfgang Thaller, Gordon Uszkay,
Computing and Software, McMaster University

Abstract

Coconut is a tool for rapid development of safe, high per-
formance signal processors, e.g. medical imagers. Domain
specialists contribute via tailored formal specification lan-
guages. A high-level mathematical language provides an
extensible type system and multi-deterministic expressions
(joins) for defining relationships and attributes of physical
systems. A declarative assembly language allows user input
to algorithm and instruction selection. We have observed
hundred-fold efficiency improvements from prototyped sym-
bolic model transformations. Factoring parallel execution
into a simple formal synchronization language plus atomic
(serial) computations makes it easier to prove that the par-
allelization is correct.
Of most interest to this workshop, are the efficiency im-
provements which result from combining high-level problem
structure with low-level device-specific information. This
is expecially useful for architectures with rich instruction
sets, but straightforward implementations giving control to
the user. That is why we are targeting PowerPC + Al-
tivec / VMX, and CELL SPU ISAs. Using our patterns
for efficient inlined evaluation of special functions using Al-
tivec/VMX, we have measured a 30 times improvement for
sine/cosine pair (i.e. complex exponential) vector calcula-
tions over Apple-supplied libc. We are working with IBM
Toronto to bring these improvements to SPU implementa-
tions of MASS, the vendor-supplied math library. For single
precision, we expect an overall three-fold improvement over
the existing optimized library.
We are starting to see the benefit of having a flexible, open
compiler for doing rapid prototyping of programming lan-
guage concepts and compiler experiments. For example, a
multiloop is a novel control structure which leverges branch
hints to turn upredictable nested control structures into op-
timal modulo schedules. We use advanced Magnetic Reso-
nance spiral image reconstruction to illustrate the concept,
the view to the user provided by our declarative assembly
language, and the performance we get from our prototype
modulo scheduler. Having an interpreter for SPU declar-
ative assembler embedded in the functional programming
language Haskell, enabled us not only to rapidly prototype
the multiloop, but to develop a number of computational
patterns, which can then be abstracted into inline functions
or code transformations. These include the efficent evalua-
tion of splines, special functions, outer products, and loop
iteration without arithmetic, and a fused three-dimensional
partial Fourier Transform. The mechanics of doing this in
an interpretable functional language makes it easy to unit
test not just functions, but code transformations.
Of course, new control constructs wouldn’t be useful without
corresponding instruction schedulers, and we’re quite happy
with our current scheduler which is within two percent of the
theoretical lower bounds for the complicated 5K instruction
MRI example.

Coconut Architecture

A Coconut program consists of a set of high level specifica-
tions organized into reusable modules (a), and a single I/O
frame (b). These are written in HUSC, our mathematical
specification language. These modules are parsed into fully
typed abstract syntax graphs, and proof obligations for the
module (d). The I/O frame specifies storage models and
assertions for relations with hardware. Modules imported
by the frame are merged by graph rewriting (e.g., function
inlining, dead code elimination). Parsing of a first defini-
tion of this language, together with type inferencing using
a mixture of Constraint Handling Rules and Prologue has
been implemented and is being tested.

Image
Formation

Module

Fourier
Transform

Module

I/O Frame:
ADC input
to image

DB

...

...

Attributed
Syntax
Graphs
Proof

Obligations

Attributed
Syntax
Graphs
Proof

Obligations

Attributed
Syntax
Graphs
Proof

Obligations

Attributed
Syntax
Graphs
Proof

Obligations

parseparseparse

solve constraint
systems

imports

rewrite using graph
grammars and

nondeterminism

Attributed
Syntax
Graphs
Proof

Obligations

Attributed
Syntax
Graphs
Proof

Obligations
[],...,

factor into
baklava + banana

+ waivers

serialize

Waiver
forms

banana
functions

Coarse
Dataflow
Graph

assembly
language

library

CocoNet

assembly
language

library

 streamed via aux network

DSP
patterns

loaded
once

schecule
instructions

baklava
byte codes

calls

(a) (b)

(c)

(d)

(e)

(f)
(g)

(h)

(i)

(j)

(k)

(l)

(m)
(n)

(o)

(p)

(q)

I/O

(r)

At the next stage, (h), the ASGs must be rewritten in terms
of ASGs containing only implementable edges (i.e. machine
instructions and combinators encapsulating high-level con-
trol flow of representable data types). This rewriting is non-
deterministic, and depends on a database of rewrite rules en-
compassing both DSP patterns and assembly-language frag-
ments, (g). Currently, we are developing patterns directly in
the lower-level declarative assembly language, and as ASG
manipulation procedures written in Haskell, bypassing this
important module. Finding the right level of abstraction
is important, so we want a lot of examples before we start
designing.
Although the rewriting is nondeterministic, resulting in mul-
tiple ASGs , we only show one ASG flowing out of this list of
possibilities to (j) where the ASG is factored into coarse and
fine-grained code graphs. This factorization is akin to the
identification of basic blocks by conventional compilers, but
in this case we want to identify large code chunks with serial
execution, which can be expressed in a subset of the banana
language (l), which consists of functions containing declar-
ative assembly and a limited number of control-flow com-
binators, with known efficient implementations in assembly
language. The multiloop, described below, is the first novel
combinator. Identifying such control-flow patterns will grow

in importance over time as branch-prediction misses become
more expensive, and as user-directed instruction fetch be-
comes more common.
All functions have a common, variable-argument binary in-
terface with arguments passed on a “movable stack”, op-
timized for remote procedure calls and command streams.
These functions are scheduled (n) using a relatively expen-
sive modulo scheduler into pipelined assembly code (o) in
a simple binary module format, and loaded onto the target
computer cluster (p) before program execution.
The coarse dataflow graph contains the scheduled assem-
bly functions as special edges, collapsed from identified sub-
graphs in the previous factoring, together with a limited
set of combinators representing concurrent dataflow (m).
These graphs are serialized (r) into a stream of function
calls, communication, synchronization and sequencing prim-
itives called baklava, whose simple grammar and seman-
tics make stream generation, manipulation, state-machine
processing, and verification easier. These instructions are
streamed through the run-time system, CocoNet (p). We
are currently using rewriting logics to implement pre-run-
time verification that the parallelization (which occurred in
(h)), is correct, i.e., that the parallel program produces a re-
sult (no deadlocks), which is independent of timing. In addi-
tion, all memory allocation is done at compile time (again in
(h)), which allows pre-run-time verification of performance
requirements and makes the run-time simple to verify by
hand. We have a prototype parallelizer which annotates an
abstract code graph for MRI reconstruction with resource
assignments and generates baklava.
In addition to the compiled functions, and interpreted baklava
stream, we will also factor out a complete set of proof obliga-
tions. This includes all of the assumptions about algorithm
behaviour beyond the capability of the type inferencer to
prove, e.g., appropriateness of discrete approximations to
continuous functions, and all input and output specifica-
tions. These obligations could be output as waivers of re-
sponsibility (k) for insuring that these statements are true.

Modulo Scheduling the Multiloop

Semantically, a multiloop is equivalent to a loop contain-
ing conditional execution. For performance reasons we im-
plement it as a sequence of versioned loop bodies without
conditional execution. In addition to the desired computa-
tion, each loop body calculates the next version of the loop
body to execute. This transformation makes sense when the
conditionals are not statically predictable, and are too ex-
pensive to predict at run time. In the case of the CELL SPU
ISA, multiloops can be implemented using branch hints to
reduce or eliminate delays caused by instruction fetching.
Multiloops can be unrolled when the loop bodies are not
sufficiently long for branch hinting to be effective. Unrolling
by a factor of N increases the number of versions of the loop
body from w to wN , however, so must be done with caution.
As with simple loops, modulo scheduling can be used to re-
duce code size, and increase efficiency. It is especially impor-
tant for large loops with many versions. We are implement-
ing a modulo scheduler with heuristics tuned to scheduling
large multiloops. One way such structures arise is when
a computation, which is the composition of several opera-
tions on an array or stream of elements, is implemented as
a loop. In our case, the loop will be generated after ma-

nipulating the abstract mathematical specifications, but in
conventional imperative languages, the loop is likely to be
coded as a series of loops which are fused by the compiler.
Our test problem comes from next-generation MRI. Cor-
rected spiral resampling is one part of a Non-Uniform Fourier
Transform strategy in which samples of a function, R3 → C,
at arbitrary points in R3 are convolved with a continuous
kernel and accumulated at a regular grid of points, to pro-
duce the usual input for a 3D-FFT. Think of it as a loop
fused out of parts: current position calculation, modulo re-
duction to determine alignment with the grid, sine/cosine
calculation, complex multiplication, three by four 8-segment
spline calculations to evaluate the kernel, an outer product
(4×4×4), complex addition of outer-product with a backing
store. A naive implementation would require 128 load/store
operations/cycles per input value just to read and write the
backing store. By caching the backing store in registers,
and rotating it as necessary to reduce load/store overhead,
and effectively using the SIMD capabilities to compute posi-
tional data, sine/cosine pairs and outer products efficiently,
we can reduce the codegraph significantly.
By introducing different cases of the multiloop according to
all allowed motions with respect to the backing-store, and
incorporating alignement state with respect to the backing-
store, we end up with a combined code graph of 5K instruc-
tions, 54 cases, and lower-bound cycle times of between 104
and 133 per iteration, determined by the number of SPU
pipeline0 (arithmetic) operations. There are two shortest
cases corresponding to non movement, which are also the
hottest cases.
My student, Wolfgang Thaller, has made a lot of progress
on a modulo scheduler for multiloops. The current sched-
uler implements several published modulo scheduling algo-
rithms, and several new ideas needed to schedule multiloops.
Ignoring register allocation–which given the 128 registers
on a CELL SPU, we thought of as a lower priority–he has
been able to schedule the entire test case with expected effi-
ciency within two percent of the theoretical minimum. Run-
ning time for the scheduler is several hours on a single 2.5
GHz PowerPC 970, using the pure, lazy functional language
Haskell, and C++ for the innermost search loop. Unfor-
tunately, the current register allocation exceeds 128 archi-
tected registers for the test case, so he is implementing a
more complicated register allocation.

Mixing Assembler and Functional Programming

Faced with the practical problem of trying to make good
use of the rich CELL SPU ISA, I found it necessary to make
frequent small experiments, to see how old design patterns
adapt to a new ISA, and to try new ideas. Eventually, these
design patterns will be captured as code transformations
in Coconut, but first they must be discovered and tested.
Having a declarative assembly language embedded in the
lazy functional language, and the option of interpretation
or code generation, has accelerated this discovery process,
and makes the transition from writing specific code to writ-
ing generic code seamless. For example, moving loop in-
duction calculations from arithmetic pipeline 0 operations
to pipeline 1 permutations was developed in this way. The
outer product mentioned above was actually developed us-
ing string permutations representing subexpressions, sorted
lexicographically, and then translated into SPU instructions.

