
Submitted to:
TFPIE 2022 © Pasupathi, Schankula, DiVincenzo, Coker, and Anand

Teaching Interaction using State Diagrams

Padma Pasupathi
McMaster University, Hamilton, Ontario

pasupatp@mcmaster.ca

Christopher W. Schankula
McMaster University, Hamilton, Ontario

schankuc@mcmaster.ca

Nicole DiVincenzo
McMaster University, Hamilton, Ontario

n.divincenzo@hotmail.com

Sarah Coker
McMaster University, Hamilton, Ontario

cokers@mcmaster.ca

Christopher Kumar Anand
McMaster University, Hamilton, Ontario

anandc@mcmaster.ca

To make computational thinking appealing to young learners, initial programming instruction looks
very different now than a decade ago, with increasing use of graphics and robots both real and virtual.
After the first steps, children want to create interactive programs, and they need a model for this.
State diagrams provide such a model, but in the Functional Programming community, there is a lot
of skepticism about explicitly talking about state, perhaps because they associate it with side-effects.

This paper documents the design and implementation of a Model Driven Engineering tool,
SD Draw, that allows even primary-aged children to draw and understand state diagrams, and create
modifiable app templates in the Elm programming language using the model-view-update pattern
standard in Elm programs. We have tested this with grade 4 and 5 students. In our initial test, we
discovered that children very quickly understand the motivation and use of state diagrams using this
tool, and will independently discover abstract states even if they are only taught to model using con-
crete states. To determine whether this approach is appropriate for children of this age we wanted
to know: do children understand state diagrams, do they understand the role of reachability, and are
they engaged by them. We found that they are able to translate between different representations of
state diagram, strongly indicating that they do understand them. We found with confidence p= 0.001
that they do understand reachability by refuting the null hypothesis that they are creating diagrams
randomly. And we found that they were engaged by the concept, with many students continuing to
develop their diagrams on their own time after school and on the weekend.

1 Introduction

McMaster Start Coding (http://outreach.mcmaster.ca) has introduced 25,000 children in Grades
4 to 8 to functional programming in Elm over the last 5 years using socially constructive learning. Dur-
ing the pandemic, we started offering on-line camps with different themes, including camps focussed on
interactive applications. Using human-centered design approach, we interviewed past instructors to iden-
tify gaps and opportunities. We identified the poor translation to the virtual environment of whiteboard
state diagrams and poor functioning of the noisy state diagram game we played in classrooms as gaps,
and a better version of a Model-Driven Engineering (MDE) tool as an opportunity. Our program is built
on lessons, and we have videos1 for self-learners and for use in training mentors. Lesson 8 covers state
diagrams. Pre-pandemic, after teaching using our state-diagram game using a (physical) white board,

1https://www.youtube.com/c/McMasterStartCoding/videos

http://outreach.mcmaster.ca


2 A Longtitled Paper

we helped children use PAL Draw [21], an MDE tool originally developed for advanced developers
who could manipulate Petri nets with embedded state diagrams. Although it is overly complex, children
seemed to enjoy working with it in person, but it was just too awkward to use virtually. Translating game
maps into code is difficult for beginning programmers, and hard for mentors to support virtually.

Nevertheless, there is no reasonable alternative mathematical structure for describing interaction in
simple “adventure” games.

Inspired by the Event-Driven Programming (EDP) and MDE literature, we decided to make a better
tool for state diagramming with support for code generation. The new tool adheres better to Norman’s
principles2, generates complete programs (with working buttons for all transitions), and went through
many iterations internally before we tried to use it with children from Grades 4 and 5. Most of our
outreach activities are time-constrained, so our initial test was restricted to 3.5 hours per class of virtual
instruction, followed by one hour of challenges a week later. Surprisingly, we could answer affirma-
tively all of our questions about student understanding in this short intervention, including statistically
significant results on their understanding of reachability, and the observation that they could both trans-
late between different representations of state diagrams and spontaneously use abstract states states like
“DragonIsDead” or “GameOver” versus concrete states like “Park” or “Mountain” in their diagrams.

We also wanted to think about the place an improved tool could have in our outreach efforts, which
can be summarized by the following research questions:

RQ1 Do grade 4-5 students demonstrate an understanding of State Diagrams by being able to translate
between different representations?

RQ2 Do grade 4-5 students demonstrate equal facility for translating between different representations
of state diagrams?

RQ3 Can grade 4-5 students understand the role of reachability? Assuming that students who did not
understand the role of reachability would generate random graphs, what confidence do we have
that the graphs are more reachable than random graphs?

RQ4 Are grade 4-5 students engaged by state diagrams and their applications to adventure games?

RQ5 Do grade 4-5 students understand abstract and concrete states equally well? Will students pre-
sented with concrete states generalize to abstract states without prompting?

The remaining sections will explain our methods for this design iteration, including app design, cur-
riculum design and evaluation through observation and challenges; results of the challenges and analysis
of the children’s state diagrams; discussion of the results leading to proposed future work.

2 Background

In this section we provide background of our program as well as relevant research on which we built our
tool and instruction.

2.1 McMaster Start Coding Program

This McMaster University Outreach Program has been operating for the past decade. A mainly volunteer
group of undergraduate and graduate students develop lesson plans and deliver free workshops to schools,

2For a discussion of these principles and an analysis of the new app see [20].



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 3

public libraries, and community centres in the Hamilton, Ontario, Canada area [17]. During the COVID-
19 pandemic, the program has shifted online and has taught a record number of students. Since 2016, we
have taught over 22,000 students in nearly 1,000 classrooms. The goal of the program is to foster interest
and ability in STEM subjects through coding, especially for those groups who are underrepresented in
STEM subjects, such as girls and underprivileged youth.

To support these workshops, we have developed several tools, including:

1. An open-source Elm graphics library, GraphicSVG [22].

2. An online mentorship and Elm compilation system incorporating massive collaborative program-
ming tasks, including the Wordathon3 and comic book storytelling4.

3. A curriculum for introducing graphics programming designed to prepare children for algebra [9].

4. A type- and syntax-error-free projectional iPad Elm editor, ElmJr [18].

2.2 Functional Programming

Functional programming [13] is a value-oriented programming paradigm, consisting of functions. Func-
tions consume and produce values. There are no loops, and conditional expressions replace conditional
statements, but functions are first-class values and can, e.g., be passed as parameters. There are two
variations in functional programming languages: (1) typed or not and (2) eager or lazy. These variations
lead to differences in programming style.

Many non-functional programming languages are adopting functional features, including Scala,
Swift and Python.

Krishnamurthi et al [13] agree with the common perception that writing programs in imperative pro-
gramming languages is much easier as the state provides convenient communication channels between
parts of a program, but this makes reasoning and debugging harder, whereas on the other hand func-
tional programming has the opposite affordances. Students studying object-oriented programming are
taught different skills and programming styles which reveal that the way of approaching programming
and problem-solving differs in students studying different paradigms. Functional programming students
perform better by having high level structures and and composing solutions out of simpler functions than
object-oriented students who try solving the entire problem in a single traversal of data. They also use
built-in/higher order functions to implement subtasks which performed multiple passes over input data
and had to release unwanted memory for intermediate data. Functional programming students create
short functions for specific tasks, which create intermediate data. They also use filter and map rather
than loops and non-general library functions. Thus, we should expect that a student who learns Java after
learning functional programming may well program with different patterns than a student whose prior
experience was entirely imperative.

Note that our experience is that functional programming with appropriate supports is easier for Grade
4 to 8 students.

2.3 Elm Language

Elm (https://elm-lang.org) is a functional language designed for the development of front-end web
applications [7], and sold to front-end developers as a way of avoiding the many software quality issues

3http://outreach.mcmaster.ca/#wordathon2019
4http://outreach.mcmaster.ca/#comics2019

https://elm-lang.org


4 A Longtitled Paper

which plague JavaScript programs. Its syntax, based on Haskell, is intentionally simple. For example,
it has no support for user-defined type classes. In addition to strictly enforcing types, the Elm compiler
also forces programmers to follow best practices, such as disallowing incomplete case coverage in case
expressions. Elm apps use a model-view-update pattern in which users write pure functions and the
run-time system handles side effects without the need for advanced concepts. Elm code compiles to
JavaScript simplifying deployment and visualization.

While many consider that functional programming should be reserved for expert users, many of the
features useful for experts (strict types, pure functions) are very useful for beginners. In addition to
the practical implications of compiling to JavaScript, Elm’s combination of simple syntax, strict typing,
and purity which matches students’ pre-existing intuition about math proves to be an asset to our pro-
gram. These features allow the development of tools and curricula which would not otherwise be easy
or possible in an imperative language with side effects such as Python.

Figure 1: The interface of our web-based state diagram editor, with a diagram representing navigation
through a school. (A) allows users to add states or make a state the starting state. (B) has functions for
recentering the screen, zooming and a help page. (C) allows states and transitions to be deleted. (D)
provides undo / redo and code generation functionality. In the diagram, states are represented by circles
with arrows (going from wide to narrow) representing transitions from one state to another. The green
state is the starting state of the diagram.

2.4 Related Work

Our background research aimed to identify prior work in the area of using state diagrams to teach com-
puter science to K-12 students, as well as a more sweeping review of coding education and how it relates
to other types of literacies.



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 5

2.4.1 Visual Learning and Education

Based on the keywords used, there seemed to be more literature on learning through drawing than learn-
ing through writing in relation to STEM. Ainsworth and Scheiter [1] were able to list advantages of
drawing: i) limits abstraction ii) exploits “perceptual processes by grouping relevant information” iii)
draws on problem-solving instead of memory, iv) provides focus for joint attention/group collaboration,
v) increases attention, and vi) activates prior knowledge [5]. Park et al [19] also states that learning
through drawings not only takes different perspectives into consideration but also exposes the child to
other subject domains (such as math and literacy) when working in groups. To add, those who used
learning-by-drawing scored higher on a test based on comprehension [23]. Chang [5] found that when
a child and an adult are partners in learning through drawing, that communication was associated with
healthy language development and enabled the children to listen, think, and then speak. Interestingly,
Cheng and Beal [6] found that while students who drew had a significantly higher cognitive load than
those who studied pictures, students were more willing to learn with provided pictures than drawing
themselves. That being said, Kunze and Cromely [14] also noted that drawing-to-learn was slightly less
effective in “early secondary [i.e., children who are around 12-15] than in the bulk of literature.”

2.4.2 Coding, Literacy, and State Diagrams

When it comes to child development and coding, looking at coding as a language was heavily empha-
sized. Again using Piaget’s work, many believe that coding can change the way we think and experience
the world around us [4]. Coding in itself is seen as a language [4]. Goldenberg and Carter [10] believe
that computer programming is just as important as English and should be taught in elementary school.
Monteiro et al [16] also suggest that “programming can be the third language that both reduces barriers
and provides the missing expressive and creative capabilities children need.” Coding is a mix of English
and math as the words allow for interaction with feedback [10]. These two authors also bring up im-
portant facts when looking at programming as a language: “students can construct viable arguments and
critique the reasoning with others, it eases the process of beginning with concrete examples and abstract-
ing regularity, perseverance, using the proper tools strategically, and being precise.” Finally, and akin to
English, coding also involves problem-solving, a manipulation of a language, and symbols to create a
shareable product [10].

As discussed previously in [4], previous systems for teaching coding based on Science, Technology,
Engineering and Math (STEM) did not account for the intellectual maturation of school-age children.
“Coding as Another Language (CAL)” considers coding development alongside language and literacy
development. Using similar stages to those of learning reading and writing (emergent, coding and decod-
ing words, fluency, new knowledge, multiple perspective, purposefulness), CAL uses literacy as both a
parallel to develop programming curricula and a tool. Knowledge-constructing concept maps can allow
for mental mapping of written stories and allow for a newer and easier method for students to record
their ideas before starting the writing process Anderson-Inman and Horney [2]. State diagrams mimic
mind-mapping, a commonly used method of brainstorming in literacy teaching. Previous studies and
curriculum formed around these standards have shown that it is very possible for students to have a basic
understanding of coding upon leaving elementary school [25], similar to their level of reading and writ-
ing when entering high school. Recent studies show that lessons in coding can also be useful in teaching
mathematics at the elementary level [24]. By teaching computational thinking, or the thinking of a
computer scientist, at a young age, students are provided with a deeper understanding of mathematical
relationships necessary to perform algebra and calculus in later grades.



6 A Longtitled Paper

2.5 Using Event-Driving Programming in Education

As Lukkarinen et al [15] state in their literature on EDP in programming education, event-driven pro-
gramming and computer programming are two separate entities; programming relies on organizational

charcteristics whereas EDP focuses on behavioural characteristics. For example, while computer pro-
gramming is more procedural and object orientated, EDP forces the programmer to consider the conse-
quences of the user’s actions and how to react to them [15]. That being said, the main takeaway is that
EDP and computer programming are two different concepts and therefore require two separate ways of
teaching. On a similar note, they also display the challenges of challenges of EDP within their literature
review: it is hard to trace the computer programming from beginning to end which affects students abili-
ties to fully understand, EDP has been linked to negative transfer effects when associated with event and
non-event oriented programming environments, and “students who learn to program in an event-fashion
do not develop some algorithmic skills that other students will have” [15]. Finally, in terms of challenges,
they state that no attempt has been made to alleviate these issues within EDP and learning.

Finally, in this literature review, we learned the most used software tools when teaching and learning
EDP. They found that Java was the most popular language with App Inventor, C++, and Scratch. Other
tools for Java include DoodlePad and Squint Library [15].

They questioned if any empirical results were recorded, to which they concluded that no pedagogical
method (i.e., ways we teach EDP through abstract concepts or through video games for example). How-
ever, they cautions researchers to view EDP and learning as more than “merely claiming in passing that
some method or tool caused students to learn and giving some counts as statistics.”

2.5.1 State Diagrams in Computer Science Education

Several authors have used state diagrams to introduce computer science and coding concepts at both the
K-12 and university level. Czejdo and Bhattacharya [8] discuss lessons using state diagrams to allow
students to describe complex behaviours for robots, which then generated Python code to control the
robots. They noted that the robots increased the students’ engagement with the concepts and that the
diagrams allowed the students to program more complex behaviours than would have been possible
without them.

Kamada [11] similarly used state diagrams to program behaviours of on-screen characters, for exam-
ple programming a virtual fire truck to seek out water and then put out fires. They noted that “Enthusiastic
children often run into the combinatorial explosion of states and transitions. Then it is the time for them
to move on to the structured programming languages where they can use variables to represent states,”
which is aligned with our experience and is discussed in later in this paper. They also noted that “In some
disappointing cases, a series of states are simply chained as if they continue forever” [11], which is not
something we observed in our albeit small study. This, however, is continued with the following state-
ment: “We had better not recommend computer science to those children,” with which we fundamentally
disagree. We believe that this should instead be considered a teachable moment for the students and an
area of improvement for the delivered lesson, instead of jumping to the rash decision that this indicates a
fundamental lack of ability to be a computer scientist.

In contrast to the statement by Kamada [11], Ben-Ari [3] instead states that “The science-teaching
literature shows that performance is no indication of understanding. CSE research like Madison’s, which
elicits the internal structures of the student, is far more helpful than research that measures performance
alone and then draws conclusions on the success of a technique. A student’s failure to construct a viable
model is a failure of the educational process, even if the failure is not immediately apparent.” Thus, in our



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 7

Figure 2: From the state diagram in Figure 1, a basic Elm application can be generated using the Graph-
icSVG library. Shown here are the four different “pages” the app can be in, one for each state in the
diagram. Each place is given by default a basic title text and buttons for each transition, with the ap-
propriate logic to transition to the correct state when clicked. Students can use existing knowledge from
previous lessons to design graphics for each page, or even change the buttons themselves.

evaluations we must keep in mind that failures for students to apply state diagrams should be considered
as important lessons for us as researchers in how to improve our lessons in the future.

3 State Diagrams

The state diagrams of note in this work are a type of non-deterministic finite state automaton (NFA),
which contains a set of states, transitions and a function mapping from one state to another through
directed transitions. In NFAs, there is no requirement that every state have every possible transition in
the alphabet coming out of it. Unlike the formal definition given in [12], our diagrams do not have final
states as they represent programs which continue to respond to user input until closed.

3.1 Graphical Representation and Tool

A state diagram can be represented graphically using a diagram where states are defined as labeled circles
with transitions drawn as labeled arrows which define legal movements from state to state. Figure 1
shows an example state diagram representing the navigation of a school.

In order to facilitate the creation of state diagrams, we have created a tool using the Elm language
with a server backend written using IHP5 in Haskell, which currently allows diagrams to be saved to
a server and accessed later by logging in. Our state diagram tool allows students to easily draw their
state diagrams by defining states and then attaching them with transitions. Each state and transition can
given a name where no pair of states or state and transitions can be named the same. Transitions can be
named the same provided that no state has two transitions with the same name coming from it. Other
invariants needed later for code generation are enforced, such as restricting state names to include only
alphanumeric characters starting with a capital letter.

5https://github.com/digitallyinduced/ihp



8 A Longtitled Paper

3.1.1 Code Generation

With Elm’s algebraic data types, generating the code from a state diagram is straightforward. The set of
possible transitions is mapped to a Msg type and the set of possible states is mapped to the State type.
For instance, for the diagram shown in Figure 1, the data types generated are respectively:

type Msg = Tick Float GetKeyState

| GoInside

| EnterMusicRoom

| LeaveMusicRoom

| EnterGym

| EnterHallway

| TakeEmergencyExit

| GoOutside

type State = Outside

| Hallway

| MusicRoom

| Gym

Care must be taken not to generate duplicate transitions in the case where the same name is used
for multiple transition arrows. The Tick message is platform-specific and sends the current time and
keystrokes every 1/30th of a second, for easily making animations and taking keyboard input.

The update function is also generated based on the structure of the diagram which includes the
logic for transitioning from state to state. Since all transitions are put into the singular algebraic data
type Msg as constructors, there is no type-level safety for restricting which messages can be sent from
which states. Instead, this logic is generated in the update, which pattern matches on the current state to
determine which state to go to and defaults to keeping the current state the same if the message is sent
from a state where it should not be according to the diagram. There is, of course, nothing stopping the
users from modifying the code so as to no longer match the diagram, but generally beginners do not need
to understand the update function to start creating their games.

Below is a snippet of the update function generated for the example in Figure 1:

update msg model =

case msg of

GoInside ->

case model.state of

Outside ->

{ model | state = Hallway }

otherwise ->

model

The view function is generated to display the correct state when in that state, as well as pre-
populating each place with a basic text field to identify the current state and basic buttons for transi-
tioning from state to state. Using knowledge from previous workshops, students can add graphics to
each “page” of the app or change the buttons into more interesting objects, such as door handles or
levers. See Figure 2 for an example of how the compiled code looks by default.



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 9

3.1.2 Adding Graphics with Elm

Once the code is generated, students can compile the code to get a bare-bones app with titles for each
state and buttons representing each transition out of that place. Figure 2 shows the generated app for
the example in Figure 1. Students can use their existing graphics knowledge to create pictures and/or
animations for each place.

4 Design

This section discusses the design of the lesson and the challenges given to students.

4.1 Lesson Design

We developed a lesson plan prior to teaching the Grade 4 students and radically simplified it when
teaching Grade 5 group based on feedback from the classroom teacher. For Grade 4, we introduced
the concept of a state diagram using the Moo-Quack game (see [9]). Here, the instructor shows a state
diagram in which the states are animal noises and transitions number of raised arms. Students are often
confused at first but catch on quickly when classmates start making animal noises. We then explained
the concepts of a states (places) and transitions (actions) using examples drawn in our tool of states of
matter, Canadian provincial land borders, and school navigation (see Figure 1). Finally, we showed the
children how to generate and run the code in a game slot in our Web IDE. We then split the class into
groups, assigned each to a breakout room, and challenged them to make their own game.

We then received feedback from the classroom teachers. For the Grade 5 class, we focused on
presenting state diagrams as the map of a concrete adventure game and used the vocabulary of “places”
and “ways.” From there, we split the children up into groups and asked each group to chose one person to
edit the map while sharing their screen, and we gave them a Google Slides template to use in identifying
tasks and then assigning them to group members. One of the teachers asked them to think about the scale
of their game in terms of enjoyment in reading a story. We found that if it is too long, people will lose
interest.

After class, we were able to retrieve the state diagrams, and approximately assign them to the two
grades (i.e., Grade 4 and 5). Due to the fact our program uses randomly generated logins, we do not keep
identifying information, and many of the students continued working on their state diagram after class,
we expected to report on the two classes as a whole. Statistics on the state diagrams are reported below.

4.2 Challenge Design

We visited the Grade 5 students the next week for an additional hour and gave them four challenges to
measure the impact of our teaching on their understanding on state diagrams and their ability to translate
from one representation/implementation to another. Each challenge had two variations; the first one,
based on the state diagram in Figure 1, contained only concrete place names. The second variation had
abstract states: a closed box with scratching, an open box with a dragon flying around, and a closed box.
The challenges were to:

1. Draw a state diagram using our tool from an English paragraph:
a Your task is to make a state diagram to help a new classmate find their way around inside your

school. The classmate starts Outside. From the Outside, they can go inside to the Hallway.
From the Hallway, they can enter the Music Room. From the Music Room they can leave



10 A Longtitled Paper

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Nu
m

be
r o

f T
ra

ns
iti

on
s

Number of States

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Re
ac

ha
bl

e 
St

at
es

Total States

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ab
st

ra
ct

 S
ta

te
s

Concrete States

Figure 3: (left) A scatter plots of the numbers of transitions and number of states for each diagram.
The line y = x is plotted as a dashed line, and y = 1.5x plotted as a dotted line. Points below y = x

indicate more states than transitions and a disconnected graph. The points near the x-axis are likely
abandoned diagrams. Points near y = x indicate diagrams with close to one transition per state, e.g. a
tree. Points above y = x indicate more complex games with multiple paths. (middle) A scatter plot of
reachable versus total states in students’ diagrams. Points on the diagonal (y = x) indicate that all states
are reachable from the starting state. The points on the line y = 1 probably correspond to abandoned
diagrams, since only the starting state is reachable. (right) A scatter plot of concrete versus versus states
in students’ diagrams. The dotted line has slope �2.9 which suggests that the effort required to add an
concrete state is three times the cost of adding an abstract state.



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 11

and go back into the Hallway. From the Hallway they can also enter the Gym. From the
Gym they can leave the Gym and go back to the Hallway, or in an emergency they can take
the emergency exit to go back Outside. Your classmate cannot enter the school through the
emergency exit.

b You are designing a state diagram for a video game about a dragon. The game starts with
a Closed Chest, with a scratching noise inside. The player can open the chest, which will
cause a dragon to start flying around. The player can then close and open the chest as many
times as they want, but the dragon will still be flying around and the chest will remain empty.
There are many correct answers: remember, just do your best!

2. Draw a state diagram using our tool from English bullet points.

a • One place you can be is Outside.
• One place you can be is in the Hallway.
• One place you can be is in the Music Room.
• One place you can be is in the Gym.
• From Outside you can go inside to the Hallway.
• From the Hallway you can go back Outside.
• From the Hallway you can also go into the Music Room.
• From the Music Room you can go back into the Hallway.
• From the Hallway you can also go into the Gym.
• From the Gym you can go back into the Hallway.
• From the Gym you can also go through the emergency exit to go back Outside.
• You cannot enter through the emergency exit.
• You start Outside.

b • One thing that can happen in the game is the chest is open and a dragon flies out of it.
• One thing that can happen in the game is the chest is closed but the dragon is still flying.
• If the chest is closed and you hear a scratching sound, you can open the chest.
• If the chest is open and the dragon is flying, you can close the chest, but the dragon will

still be flying.
• If the chest is closed and the dragon is flying, you can open the chest again.
• The dragon never enters the chest again.
• The game starts with the closed chest with the scratching noise.

3. Describe a state diagram using English based on a diagram drawing using our tool.

4. Draw a state diagram using our tool given a generated (and compiled) game, e.g. Figure 2.

5 Results

The detailed result analysis of the above challenges are discussed here. The median results are high-
lighted here. Students who learned state diagrams based on adventure game came up with better dia-
grams than the other students. The statistical analysis are based on some of the factors like number of
states and transitions used in a diagram, abstract names and concrete names for states, and reachability
of states through transitions.



12 A Longtitled Paper

Figure 4: Median results for challenges 1a (left) and 1b (right).

5.1 Quantitative Analysis of State Diagrams

Figure 3 shows a scatter plots of (left) the total number of transitions versus states. (middle) reachable
vs total states, and (right) abstract versus concrete states. Consistent with our observation that many
diagrams were abandoned after students realized that only one of the diagrams created by their group
could be used in the next step, we note a cluster of disconnected diagrams, but otherwise the diagrams
indicate strong understanding of and engagement with the material. There was widespread adoption of
abstract states, even though most students were only taught to think about and create concrete states. In
fact, the most productive groups produced many more abstract than concrete states.

To answer RQ3, we have tested the hypothesis that the diagrams created come from the distribution
of randomly generated diagrams. To use the Anderson-Darling single-sample test, we need to know the
cumulative probability distribution (CDF) for the number of states reachable from the starting state. We
approximate this discrete by generating random diagrams. Using the empirical CDF, we can randomly
generate samples of diagrams and evaluate the Anderson-Darling statistic to approximate its distribution,
and estimate the p-value for the child-created diagrams.

In Tables 1, 2, and 3, we display the probability distribution for reachability for each diagram with
respect to the number of states and transitions in the diagram. Considering that the initial state is always
reachable, the minimum reachability is one. Given a random state diagram, we calculate the reachability
using Dijkstra’s algorithm. We approximate the probability distribution function for the number of states
reachable from the initial state using a normalized histogram. Before computing the Anderson-Darling
test, we note that the histograms for randomly generated diagrams are not consistent with the distribution
of student-generated diagrams. In Table 1, we see the probabilities for the diagrams with 11 states, as
well as the observed reachability in the five diagrams created by students. In the first three rows, the
maximum probability for any observed reachability is 1% (rounded to the nearest percent). Although
the probability of full reachability grows with the number of transitions, it is never high. The maximum
probability for full reachability is in the third row of Table 2, for diagrams with 9 states and 19 transitions,
at 18%. In Table 3, we show two cases with large numbers of states and transitions, which illustrate that
for larger diagrams, a large number of states are needed to make reachable graphs at all likely to arise
randomly.



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 13

States Transitions Probability Distribution Function Observed

11 13 10,11

11 14 11

11 16 11

11 21 11

Table 1: Probability Distribution functions for the number of reachable states based on simulation of
4000 random diagrams with 11 states. The observed column has the number of reachable states in the
students’ state diagrams with 11 states and its corresponding transitions.

The formula for calculating the Anderson-Darling test statistic is,

A
2 =�n�S, (1)

S =
n

Â
i=1

(((2i�1)÷ (n))[logF(Yi)+ log(1�F(Yn +1� i))]). (2)

where, A is the Anderson-Darling test statistic, F is the Cumulative Distribution Function, and n is the
number of elements(diagrams). This statistic measures the match between a sample and a distribution.
To use this test statistic, we need a sample of diagrams from one distribution. We have at most two
diagrams with the same number of states and transitions, but we can reduce our confidence level by
assuming that the diagrams with 11 states and 13, 14 and 16 transitions all have 16 transitions, and hence
come from one distribution. The CDF F is displayed in the third row of Table 1, but to compute the next
steps we used 40K samples to get a better approximation of the true distribution. In Figure 5, we show
the distribution of test statistics for 4000 sets of 4 randomly generated diagrams, and the test statistic



14 A Longtitled Paper

States Transitions Probability Distribution Function Observed

9 12 9

9 14 9

9 19 9

Table 2: Probability Distribution functions for the number of reachable states based on simulation of
4000 random diagrams with 9 states. The observed column has the number of reachable states in the
students’ state diagrams with 9 states and its corresponding transitions.

States Transitions Probability Distribution Function Observed

23 38 23

30 33 29

Table 3: Probability Distribution functions for the number of reachable states based on simulation of
4000 random diagrams with 23 and 30 states. The observed column has the number of reachable states
in the students’ state diagrams with 23 and 30 states and its corresponding transitions.

for the sequence of reachabilities 10,11,11,11, i.e., 33.8. Since this is an empirical distribution based
on 4000 samples, and the test statistic for these four diagrams is well outside the distribution, we are
confident that p < 0.001, refuting the null hypothesis based on four diagrams. In the future, it would be
good to calculate the confidence value for the full set of diagrams by using Fisher’s combined probability



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 15

test to combine the p values for each set of diagrams with a common number of states and transitions.

Figure 5: Anderson-Darling Test Statistic Distribution for 4 diagrams each with 11 states and 16 transi-
tions, approximated using 4000 randomly generated sets of 4 diagrams. The horizontal axis shows A

2,
the Anderson-Darling test statistic, and the vertical axis shows the probability. The black triangle shows
the test statistic for the 4 diagrams produced by children with 11 states and 16 or fewer transitions (33.8).
Since 4000 sets were used to generate the histogram, and 33.8 is well outside the randomly generated
tests, we estimate that the confidence value p < 0.001.

5.2 Qualitative Analysis of Challenges

We report the results of the challenges qualitatively because (1) to understand where we needed to im-
prove instruction without asking for too much student time we had 3-5 students completing each chal-
lenge, (2) we asked some children to write paragraphs, and (3) we asked some children to create state
diagrams. In all cases, we could identify a “median” response, which we report here.

In the concrete school challenges, we found confusion about whether the emergency exit was a state
or a transition, as seen in Figure 4 when translating from a paragraph description. Whereas given a
point-form description, they were less likely to leave off or add additional states or transitions, as seen in
Figure 6.

When asked to describe the state diagram in English, most students hesitated to get started, but then
used narrative to thread together a description. Many students asked “when should I stop?” because
they realized that the narrative could go on forever due to a cycle, giving a glimpse into how they were
systematically analyzing the diagrams. Our median response for Challenge 3a was: You start outside the

school. If you go inside through the door, you’ll be at the hallway. Here, you can access all the different

rooms or exit the hallway to go back outside. The music room is the room labeled “music,” and you

can enter and exit it through the door. From the hallway, you can also enter the gym room, and exit it

back through the door. If you are in the gym and there is an emergency, you can take the emergency exit

instead of running back to the hallway and exiting that way. There is no emergency exit in the music

room, since there is nowhere to go after you leave. There was not median response to the final challenge
due to miscommunication about the need to work individually.

The abstract dragon-in-a-box challenge was more difficult, but they did best when translating a work-
ing app into a diagram, see Figure 6, perhaps because they did not have to think about the semantics of
the abstract situation. When they had to reason about the English description, they were uncertain, but
still seemed to understand the basic definitions and task, see Figures 4 and 6.



16 A Longtitled Paper

Figure 6: Median results for challenges 2a (top left), 2b (top right) and 4b (bottom).

Going the other way, they again showed their understanding of the concept, but felt the need to add
narrative bridges, perhaps because we used narrative in our descriptions, or because that is how they
understand them. Our median solution: You start with a chest, and you hear a faint scratching noise

inside. If you run away, you will find that the room has no escape, and you have to open the chest. When

you open the chest, The dragon flies out, and all you have to do is to close the chest, and you win. The
inclusion of narrative elements to explain properties of the state diagram was surprising and shows their
understanding of the state diagram model. In this response, you will find that the room has no escape

shows that they understand how the diagram models the allowable transitions at a given place. The
addition of and you win shows another common observation we saw with their responses: the student
adding their pre-existing knowledge of video games to their responses, whether or not that information
is encoded in the diagram, which in this case it is not.

6 Discussion of Results

The primary purpose of this study was to test the tool and pedagogy of teaching state diagrams. Identified
future work is presented in this section.

One of the more interesting results of the classes was that the students began to differentiate between
concrete states (places one could go) and abstract states (new states of being), and apply different levels
of both. For example, in a game where a character can enter a barn, he finds a dragon. The character can
transition to a new state by feeding the dragon. The barn itself would be a concrete state, as it is a place
the character can enter. The fed dragon would be an abstract state, as you cannot return to the state of the
dragon being unfed. Both types of states were given in the examples provided in class; however, it was
never explained that there might be a difference between the two.

Once the results of what the students had created was reviewed, it was hypothesized that they could



Pasupathi, Schankula, DiVincenzo, Coker, and Anand 17

be sorted by complexity in two forms: number of states and transitions, and number of concrete and
abstract transitions. The results showed few games of moderate complexity, instead showing that students
favoured either high complexity or low complexity. Students who used more abstract states also had
higher rates of states and transitions, while those with more concrete states had less states and transitions.
Further research might be able to explain why this trend was seen.

It was also noted, when checking in on the state diagrams created by the students, that some con-
tinued their work after the classes had ended. Though these results were not analyzed due to the small
participation number, it seemed that those who showed more complexity by using abstract states and a
higher number of states and transitions overall, were the same students who continued working on their
projects in their own time. This showed the investment the students had in their stories that had not been
predicted. As mentioned previously, the ability to visually map out ideas through concept mapping or
state diagrams has been shown to improve the efficiency of a student’s writing. However, this finding also
suggests the potential for higher engagement, interest and initiative when learning to code, and create
culminating projects fusing coding and other curriculum areas.

6.1 Limitations

Firstly, our results are based on approximately 38 diagrams from a total of 70 students from an enrich-
ment program. While we cannot draw conclusions about the general school population, our experience
in piloting curriculum with this group over 15 years suggests that this new activity will also work in all
classrooms, and for longer engagements.

Secondly, we did not follow the same lesson plan when teaching the Grade 4s as when teaching
the Grade 5s. After one lesson with the Grade 4 students, a streamlined teaching plan was used for the
Grade 5 students, with the main differences being the skipping of explanations of state prior to designing
a game together, and the reiteration of the importance of choosing one team member to share their screen
while creating one shared state diagram. Because we use anonymized accounts, we cannot segregate and
compare their results. Similarly, Grade 5s are both more mature and cognitively advanced than Grade
4s, and therefore the difference in how they were taught on days one and two of this study may have
contributed to the differences within our results rather than it being their age or grade. That being said,
a more concrete and tailored lesson plan for both grades would be helpful in increasing reliability and
validity.

Finally, the online platform we used was not compatible with tablets (i.e., a small number of iPads),
and students used a range including Chromebooks, with and (mostly) without mice. The lack of control
around which device was being used may affect whether a concrete or abstract diagram was created, but
device heterogeneity is more common than not in the classrooms we visit.

7 Conclusions and Future Work

Our initial motivations for this work were (1) the positive reaction of children to our previous tool,
PAL Draw, and (2) questions raised after our TFPIE 2017 presentation about the advisability of dis-
cussing state with novice functional programmers. We are satisfied that this proof-of-concept is ready for
universal use in our own outreach program, and we hope that positive answers to our research questions
(below) will help convince other educators of the wisdom of using explicity, graphical state diagrams to
teach interaction to children learning a functional language.

RQ1 Do grade 4-5 students demonstrate an understanding of State Diagrams by being able to translate



18 A Longtitled Paper

between different representations? Yes, when students were given different representations and
asked to convert them, they were able to do so. See Section 5.2.

RQ2 Do grade 4-5 students demonstrate equal facility for translating between different representations

of state diagrams? No. When a state diagram is given and students are asked to write a description
about it, students were confused how much to write, especially in the case of a cycle in the state
diagram. Students also found it easier to interpret point-form specifications rather than paragraphs,
and found the conversion of a working app into a State Diagram easiest of all. See Section 5.2.

RQ3 Can grade 4-5 students understand the role of reachability? Assuming that students who did

not understand the role of reachability would generate random graphs, what confidence do we

have that the graphs are more reachable than random graphs? We have a confidence of p <
0.001 that they understand reachability enough not to draw random diagrams, based on an monte
carlo simulation of the Anderson-Darling statistic for four of the diagrams with 11 states. See
Section 5.1.

RQ4 Are grade 4-5 students engaged by state diagrams and their applications to adventure games? Yes,
students were engaged by state diagrams. They expressed interest in creating the state diagrams
during class, and showed even more interest in designing the levels or difficulty of the levels of
their game than designing the graphics for their game. Several groups continued working after
school. See, e.g., Table 3.

RQ5 Do grade 4-5 students understand abstract and concrete states equally well? Will students pre-

sented with concrete states generalize to abstract states without prompting? For the grade 5 stu-
dents, we did not explain about concrete and abstract states. But when we asked them to draw
their own State Diagrams for their favorite game, some students came up with abstract states. See
Figure 3 (bottom).

That said, we have a plans for tool and pedagoical improvements and future studies.

7.1 Tool Improvements

Given that most of our teaching has been forced online due to the ongoing COVID-19 pandemic, more
features are planned for improving distance education. Instructors can currently view and make changes
to students’ state diagrams, but live editing and viewing and shared control by teams would significantly
improve distance learning and teamwork.

The next step towards model-driven engineering requires the integration of the state diagram editor
with our Web IDE, allowing the code generation button to automatically open a game slot with the
generated code. Full model-driven development would add the ability to make changes in the state
diagram and have them mirrored in the code. This is more work, but is important to support an iterative
design thinking approach to development.

Collaboration could also be supported by allowing sub- or nested- state diagrams; that is, allowing
an entire state diagram to exist within a state of a larger diagram. Students are interested in designing
mini-games as part of a larger game, and in fact we encourage this with a summer camp. Nested state
diagrams would allow students to integrate mini-games without mentor involvement, as is currently
required 6. This would require that sub-diagrams can be tested independently, similar to the support we
already provide for individual frames in animated comics.

6http://outreach.mcmaster.ca/#camps and https://macoutreach.rocks/escapemathisland/

http://outreach.mcmaster.ca/#camps
https://macoutreach.rocks/escapemathisland/


Pasupathi, Schankula, DiVincenzo, Coker, and Anand 19

Beginner students can get very far with data-less states and transitions but eventually fall prey to what
is known as a “state explosion,” where students create many states and transitions to represent data which
would make more sense as a data type like a Boolean, integer, etc. Even in our first 2.5-hour workshop
we saw students making such diagrams, with states representing things like the amount of health an
enemy has left and transitions for dealing with different damage values. We believe that students do
benefit from the discussion and problem-solving that went into making such complex diagrams, based
on discussions we overheard during the session. Furthermore, generally students are not ready for things
like integers being added to their states and transitions until they have had the chance to design their
diagrams, generate the code, and discover the state explosion problem on their own. However, especially
(or perhaps, only) when these tools are used in longer-term settings like a summer camp, eventually the
basic “untyped” diagram is no longer powerful enough to support the students’ ideas. Thus, future work
includes finding the best way to introduce and teach these concepts, as well as support for user-defined
algebraic data types and an interface to model such data. As previously mentioned, the lesson intended
to introduce the concept of associating data with states and transitions must first motivate its need in the
form of a student-generated problem and then present its solution as a much simpler diagram, even if this
complicates handwritten (and generated, for that matter) Elm code.

One category of statistics evaluated above revealed that most of the children were able to use a
transition to reach each state they created (see Figure 3). However, a few outliers showed that some
of the students had difficulty with this, leaving certain states unreachable. In the future we should not
allow code generation when some states are unreachable, but explain to the user that each state needs a
transition leading to it.

Self-hosting means implementing a tool using the tool itself. Eventually, we would like to self host
SD Draw. To discover the features we would need, we drew a state diagram based on the current imple-
mentation, see [20], to identify features required for advanced users. In particular, this exercise uncovered
the desirabilty of nested states and user-defined types, and tool support for keyboard shortcuts. Potential
solutions are disucssed in [20]. Finally, team-based software development, and software maintenance re-
quires support for versioning. Elm already supports semantic versioning, and we could support semantic
versioning in state diagrams which would project onto Elm’s versioning.

7.2 Pedagogical Improvements

We found that students were generally able to translate between different equivalent specifications of
state diagrams, but that they were more successful and (anecdotally) more comfortable with point-form
specifications than paragraphs. This suggests designing and testing a staged curriculum in which trans-
lation between diagrams and point-form specifications should be taught first, followed by paragraph de-
scriptions, and the advantages of translating from working game to diagram to point-form to paragraph
should be measured. Teachers are always trying to find ways of engaging reluctant writers, and we hy-
pothesize that this is one way of leveraging children’s engagement with video games. Different teaching
styles should be investigated for different age groups. Furthermore, demographic information collected
beforehand can allow the foundation for comparing genders, ages and developmental differences.

Knowing that many students created abstract states without prompting, see Figure 3, we should add a
follow-up lesson after children have produced one (or more) state diagrams to introduce abstract states to
all children. We should then design new challenges to evaluate whether all children are able to understand
and use abstract states, and whether there are differences based on developmental level.



20 A Longtitled Paper

Acknowledgements

We acknowledge financial support from the Faculty of Engineering. We also appreciate input from
teachers, parents, and all the enthusiasm and inspiration from all the future coders we visit.

References
[1] Shaaron E Ainsworth & Katharina Scheiter (2021): Learning by drawing visual representations: Potential,

purposes, and practical implications. Current Directions in Psychological Science 30(1), pp. 61–67.

[2] Lynne Anderson-Inman & Mark Horney (1996): Computer-based concept mapping: Enhancing literacy with

tools for visual thinking. Journal of adolescent & adult literacy 40(4), pp. 302–306.

[3] Mordechai Ben-Ari (1998): Constructivism in computer science education. Acm sigcse bulletin 30(1), pp.
257–261.

[4] Marina Umaschi Bers (2019): Coding as another language: a pedagogical approach for teaching computer

science in early childhood. Journal of Computers in Education 6(4), pp. 499–528.

[5] Ni Chang (2012): The role of drawing in young children’s construction of science concepts. Early Childhood
Education Journal 40(3), pp. 187–193.

[6] Li Cheng & Carole R Beal (2020): Effects of student-generated drawing and imagination on science text

reading in a computer-based learning environment. Educational Technology Research and Development
68(1), pp. 225–247.

[7] Evan Czaplicki (2012): Elm: Concurrent FRP for Functional GUIs. Senior thesis, Harvard University.

[8] Bogdan Denny Czejdo & Sambit Bhattacharya (2009): Programming robots with state diagrams. Journal of
Computing Sciences in Colleges 24(5), pp. 19–26.

[9] Curtis d’Alves, Tanya Bouman, Christopher Schankula, Jenell Hogg, Levin Noronha, Emily Horsman,
Rumsha Siddiqui & Christopher Kumar Anand (2018): Using Elm to Introduce Algebraic Thinking to K-

8 Students. In Simon Thompson, editor: Proceedings Sixth Workshop on Trends in Functional Programming
in Education, Canterbury, Kent UK, 22 June 2017, Electronic Proceedings in Theoretical Computer Science
270, Open Publishing Association, pp. 18–36, doi:10.4204/EPTCS.270.2.

[10] E Paul Goldenberg & Cynthia J Carter (2021): Programming as a language for young children to express

and explore mathematics in school. British Journal of Educational Technology 52(3), pp. 969–985.

[11] Masaru Kamada (2016): Islay—An educational programming tool based on state diagrams. In: 2016 Inter-
national Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), IEEE, pp.
230–232.

[12] Dexter C Kozen (2012): Automata and computability. Springer Science & Business Media.

[13] Shriram Krishnamurthi & Kathi Fisler (2019): Programming paradigms and beyond. The Cambridge Hand-
book of Computing Education Research 37.

[14] Andrea Kunze & Jennifer G Cromley (2021): Deciding on drawing: the topic matters when using drawing

as a science learning strategy. International Journal of Science Education, pp. 1–17.

[15] Aleksi Lukkarinen, Lauri Malmi & Lassi Haaranen (2021): Event-driven Programming in Programming

Education: A Mapping Review. ACM Transactions on Computing Education (TOCE) 21(1), pp. 1–31.

[16] Ana Francisca Monteiro, Maribel Miranda-Pinto & António José Osório (2021): Coding as Literacy in

Preschool: A Case Study. Education Sciences 11(5), p. 198.

[17] Bill O’Farrell & Christopher Anand (2017): Code the future!: teach kids to program in ELM. In: Proceedings
of the 27th Annual International Conference on Computer Science and Software Engineering, IBM Corp.,
pp. 357–357.

http://dx.doi.org/10.4204/EPTCS.270.2


Pasupathi, Schankula, DiVincenzo, Coker, and Anand 21

[18] Optimal Computational Algorithms, Inc. (2018): ElmJr (1.0). iOS App Stores:
https://apps.apple.com/ca/app/elmjr/id1335011478.

[19] Joonhyeong Park, Jina Chang, Kok-Sing Tang, David F Treagust & Mihye Won (2020): Sequential patterns

of students’ drawing in constructing scientific explanations: focusing on the interplay among three levels of

pictorial representation. International Journal of Science Education 42(5), pp. 677–702.
[20] Padma Pasupathi (2021): SD Draw: A State Diagram Tool including Elm Code Generation for Interactive

Applications. Master’s thesis, McMaster University.
[21] Christopher Schankula, Emily Ham, Jessica Schultz, Yumna Irfan, Nhan Thai, Lucas Dutton, Padma Pasu-

pathi, Chinmay Sheth, Taranum Khan, Salima Tejani et al. (2020): NewYouthHack: Using Design Thinking

to Reimagine Settlement Services for New Canadians. In: International Conference on Innovations for Com-
munity Services, Springer, pp. 41–62.

[22] Christopher W Schankula & Christopher K Anand (2016-2019): GraphicSVG [Elm Package]. Available at
http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest.

[23] Annett Schmeck, Richard E Mayer, Maria Opfermann, Vanessa Pfeiffer & Detlev Leutner (2014): Drawing

pictures during learning from scientific text: Testing the generative drawing effect and the prognostic drawing

effect. Contemporary Educational Psychology 39(4), pp. 275–286.
[24] Leslie Suters & Henry Suters (2020): Coding for the Core: Computational Thinking and Middle Grades

Mathematics. Contemporary Issues in Technology and Teacher Education 20(3), pp. 435–471.
[25] F Vico, M Molina, D Orden, J Ortiz, R Garcia & J Masa (2019): A coding curriculum for K-12 education:

the evidence-based approach. In: Proceedings of the 11th annual International Conference on Education and
New Learning Technologies, pp. 7102–7106.

http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest

	Introduction
	Background
	McMaster Start Coding Program
	Functional Programming
	Elm Language
	Related Work
	Visual Learning and Education
	Coding, Literacy, and State Diagrams

	Using Event-Driving Programming in Education
	State Diagrams in Computer Science Education


	State Diagrams
	Graphical Representation and Tool
	Code Generation
	Adding Graphics with Elm


	Design
	Lesson Design
	Challenge Design

	Results
	Quantitative Analysis of State Diagrams
	Qualitative Analysis of Challenges

	Discussion of Results
	Limitations

	Conclusions and Future Work
	Tool Improvements
	Pedagogical Improvements


