
Thinking Computationally with Elm
Version 0.8

c© 2015-2016, Christopher Kumar Anand

This book is dedicated to the student volunteers, teaching assistants and graduate students
for helping to reimagine literacy, but especially to Curtis d’Alves.

Contents

Preface 5

Chapter 1. Tower of Hanoi 7

Chapter 2. map and Assembly Lines 13
1. Map 13

Chapter 3. To be or not to be in the Basement 17
1. State Diagrams 17
2. Implementing in ELM 18
3. The StateDiagrams Module 21

Chapter 4. Fold, Signals and Functional Reactive Programming 23

Chapter 5. GraphicSVG 29
1. Shapes 29
2. Moving Shapes 30
3. Custom Colours 30
4. Groups Can Make Life Easy 31
5. Repetitive Patterns using map 32
6. Serpenski’s Triangle 33

Chapter 6. Complexity, or Why You Probably Want to Use Dict 37
1. Simply Fast 38

Chapter 7. Algebraic Expressions 41
1. Simplification 43
2. Derivatives 45

Chapter 8. Say Goodbye to Mediocre Presentations, and Closed Types 47

Chapter 9. Wires & Switches 49
1. CPU 49
2. Traces 54

3

Preface

This book attempts to explain Computational Thinking, as if this were 2016, and not
1970. It is a first step in becoming a highly productive programmer who knows how to use
tools developed over the last four decades to quickly write correct programs, or a software
architect who sees the fundamentals of a operational problem and the fundamentals of data
structures, and joins them in a solution.

If you already know something about old-fashioned “real-world” programming, wel-
come to the future!

Well, welcome to what the future will look like once the crinkles are ironed out of this
book! Please send comments and bug-fixes to anandc@mcmaster.ca.

5

CHAPTER 1

Tower of Hanoi

We start with a seemingly simple children’s puzzle, but whose solution involves some
really powerful aspects of Computational Thinking.

In the Tower of Hanoi, your task is to move a tower made by stacking blocks of dimin-
ishing size, one on top of another. You can move one block at a time to one of three bases. At
no time can a larger block rest on a smaller block. All the blocks have different sizes.

Assuming you are seeing this problem for the first time, the first question is, what ques-
tions should you ask yourself? For which sizes of tower can we solve the problem? How
many moves are required to move the tower with a given number of blocks.

Take some time to think about the problem, and solve it if you can. If your solution is
good, you should have no trouble explaining the solution to a friend.

How did you explain your solution to a friend? Did you use notation you have used
before in algebra or geometry? Did you make up your own symbolic language? Could you
explain your solution entirely in English?

If your math teachers have done a good job, you started by writing down what you know
about the problem, and maybe even assigning variable names. Here’s what I came up with:
n = number of blocks

{A,B,C} = set of places

{1,2,...n} = the blocks

A surprising feature of this problem, which reflects a general trend in computational
thinking, is that a seemingly more difficult problem has a simpler solution. In this case,
figuring out how many moves it will take to move a tower of size n. Here is where using
algebra, and the Divide & Conquer principle makes the difference between impossibly con-
voluted and incredibly simple. Let mn be the number of moves required to move a tower of
size n from one place to another. That gives us simple notation.

The DnC principle appeals to a particular kind of teamwork. It asks us to assume we have
friends who will share their solution to a simpler problem so that we can build on that. In
this case, if we are asked to move a tower of size n, we can assume that friends have already
figured out how to move a tower of size 1 through n− 1. The key is the n− 1 solution.

Take a few minutes and try to describe a solution to the tower n problem, assuming that
you can call on friends to move a tower of size n− 1.

Well, if friends will move a tower of size n− 1, they will move the top part of your tower,
which is itself a tower of size n− 1, leaving you to move one block, the one on the bottom,
which we will call the nth block. So if you need to move the tower from A to B, your job is to
move the nth block from A to B. To be able to do your job, you need your friends to move the
upper n− 1 blocks from A to C to get them out of the way. Then you can move your block,
after which your friends can move the n− 1 blocks from C to B. So the number of steps will
be

mn = mn−1 + 1 + mn−1

7

8 1. TOWER OF HANOI

Let’s apply this formula to a specific case:

m3 = m2 + 1 + m2

= (m1 + 1 + m1) + 1 + (m1 + 1 + m1)

= (1 + 1 + 1) + 1 + (1 + 1 + 1)
= 7

Now to get 7, we have used the hopefully obvious fact that we can move a tower with 1
block in 1 move. But there are no obvious facts for computers! If we had asked a computer
to use the definition of mn in terms of mn−1 it would have continued

m3 = m2 + 1 + m2

= (m1 + 1 + m1) + 1 + (m1 + 1 + m1)

= ((m0 + 1 + m0) + 1 + (m0 + 1 + m0)) + 1 + ((m0 + 1 + m0) + 1 + (m0 + 1 + m0))

= (((m−1 + 1 + m−1) + (m−1 + 1 + m−1)) + 1 + ((m−1 + 1 + m−1) + (m−1 + 1 + m−1)))

+1 + (((m−1 + 1 + m−1) + (m−1 + 1 + m−1)) + 1 + ((m−1 + 1 + m−1) + (m−1 + 1 + m−1)))

and it would have continued to continue until the end of time or it ran out of memory to
store the nonsense answer or some physical component failed.

Here is another good lesson about computational thinking. No matter what crazy thing
a computer does, people have to take the blame, because people are doing the thinking,
coming up with a set of rules and the computer faithfully carries them out. Until we figure
out rules for common sense, computers will not have it, and while that may come sooner
than many expect, you can bet it won’t come before your next assignment is due—so you
figure out the rules.

Philosophical discussions are great, but we still have a problem to solve! How can we do
it? We need to put in the rule that a person with common sense would have inserted, that

m1 = 1
So we could express our procedure as follows:

Given an mn to calculate, use repeated substitutions to reduce mn to a number, where we
replace

m1 with 1
and for any values of n bigger than 1, we replace

mn with mn−1 + 1 + mn−1.

There isn’t really any point in writing all of this out, since a person would probably figure
that out, but it happens to be very close to how we would use ELM to tell a computer the
same thing.

m n = case n of
1 −> 1
otherwise −> m (n−1) + 1 + m (n−1)

Note a few differences between standard algebraic notation and ELM. Instead of using
subscripts to differentiate different values m1, m2, ..., we use a function m depending on an
input n. For now, this is just a difference of notation, but functions have the potential to be
more general. The next difference is that we capture all of the substitution rules together by

1. TOWER OF HANOI 9

considering all the different cases, using a case statement. This takes up a bit more space
on the page in some cases, but it is much clearer if all the rules are together, and the fact
that there are multiple rules is signaled by case and of. The case statement always works
the same way: The case and of bracket an expression whose value determines the case. In
this case, the variable n. On the following lines, values line up on the left, separated by ->

(arrows) to the expression used to calculate the function value on the right. There is one
special value, otherwise, which catches all the values which do not match any of the other
cases. Finally, unlike in algrebra, multiplication requires a symbol, *, and ELM will not
accept a definition like (x+a)(x+b) in which writing expressions next to each other indicates
multiplication, even though this is common in algebra. One good reason is that ELM allows
variable names to be words, rather than single symbols.

You can try this definition for yourself, by typing this text into ***need url for box which
captures function definition and tabulates some answers***

*** put in table here ***
At this point we have pointed out the differences, but there are more similarities than

differences. For example, parentheses change the order of operations (which you probably
didn’t even think about), the operations + and - work as you would expect, and we have
variables. We will talk more about variables, but for now, we’ll rely on your understanding
of variables from algebra.

One big difference between how we will use ELM and how you have previously used
math, is that we just defined our own function m on the first day. Whereas you probably
used algebra to solve word problems for years before you learned about a function, maybe it
was sin(θ) or

√
x, and if you found the concept daunting, then you are not alone. The funny

thing is that you have been using functions most of your life! Because + is a function. It
takes two numbers and gives you back their sum. In fact, ELM treats functions like + like
any other function, and you can even create your own functions written with a symbol or
symbols between two input variables.

If you now feel silly for having struggled with the idea of a function, you are not alone,
but in fact, there is more we can say about functions besides the fact that they have inputs
and outputs, which will make things even clearer. But first we need to talk about the inputs
and outputs, ie the values. And before that, we better finish our Tower of Hanoi example!

To solve the full problem, we will again use the DnC strategy, so let’s spell out the strategy
in more detail: We need to identify three steps:

Divide: Within the original problem, identify smaller subproblems of the same type, unless
it is small enough to solve immediately.

Conquer: Solve the subproblems using the same strategy.
Combine: Combine the solutions to the subproblems into a solution to the original problem

Sounds simple, but pay close attention to the requirement that the subproblems be of the
same type and not subdivide infinitely. In our first example, the problem was to count the
number of moves required to move a tower of size n. All of the problems involve moving a
tower, only the size changes, and the towers are readily ranked by size.

Here’s an example which fails: Mow a field by dividing it into two equal pieces and
getting two friends to each mow half. When they are finished, the field is mowed. The
problem: mow a piece of a field is always the same problem, and if your friends are as lazy
as you, they will follow your lead and get two friends to mow halves of their halves. The
problem is that there is no smallest size of field, so nobody would ever get around to doing
any mowing. If we slightly change the problem, and start with a field of 32 hectares, and in

10 1. TOWER OF HANOI

the divide step we specify that when the patch to be mowed is 1 hectare, the unlucky friend
of a friend will have to go buy a goat and supervise it to insure it munches evenly, then the
Divide and Conquer strategy would work.

Here’s another way it could fail: You sneak into the kitchen and steal a gingerbread per-
son, but after escaping detection for a day, you start to worry about potential incarceration,
and want to dispose of the body before any detectives come snooping. So you get some
friends and break off the arms, legs and head, and give each friend a piece of anatomy to
disappear. This time you will successfully disappear the evidence, but not using Divide and
Conquer, because the subproblems (arms, legs, head, torso) are not the same as the whole
person. You cannot break a leg off an arm, nor an arm off a head. So what we have is a
strategy which disposes of one body, but it won’t hide criminality at a large scale, involving,
say, boxes of gingerbread people.

Back to the Tower of size n:
Divide: The top n− 1 blocks are a tower in their own right, but smaller by one. A tower with

1 block cannot be divided, but it can be moved in one step.
Conquer: Calculate the number of steps to move the tower of size n− 1, call it mn−1.
Combine: To move the tower of size n, we need to move the smaller tower, move the bottom

and move the smaller tower again, so we need mn−1 + 1 + mn−1 steps.
What about moving the tower? You may have devised your own notation for moves, but
some notation is required to avoid writing tourtuourously long sentences in English.

Move Tower of size n from x to y using additional place z.
Divide: If the tower has size 1, move that piece from x to y, which we will write as (x, y),

otherwise the top n− 1 blocks are a smaller tower.
Conquer: Apply this procedure to produce a sequence of steps for moving the top tower from

x to z using y. Call that sequence s(x, z, y), and apply it again to find a sequence
s(z, y, x) to move a tower of size n− 1 from z to y using x.

Combine: Join together the two sequences with one additional move: s(X, Z, Y) followed by
(x, y) followed by s(z, y, x).

To write this in ELM, we need to define our set of places, which is a distinct type of thing,
apart from numbers, letters, words, buffalos, and every other thing we need in our program.
We define a new type of thing like this:

type Place = A | B | C

The type is obvious. Giving the new type of thing a name must use a capital letter, hence
Place and not place, and the things of that type must also start with capital letters, and are
separated by vertical bars.

For two things together, we can use a pair, ie (A,B), in the same way that we use (7,3) for
Cartesian coordinates on the plane to group together the horizontal and vertical positions.
We can use the pair to represent movements, but if we were already using pairs for other
things, we should create a new type for movements to keep things straight. I’ll show you
how later.

Since we need many moves, we need a way of putting individual moves together in a
finite sequence. ELM has a List type for this, with two functions we will need a lot:

[x] takes a thing x, and makes a list of length one with it. xs ++ ys takes two lists of the
same type of thing and joins them together into a bigger list.

With them, we can solve our tower problem:

1. TOWER OF HANOI 11

move n x y z = case n of
1 −> [(x , y)]
otherwise −> (move (n−1) x z y) ++[(x , y)]++(move (n−1) z y x)

Woah! That was a long chapter, all to explain three lines of ELM! This is typical of the
Divide and Conquer strategy. Once you figure out how to divide up your problem, it is
usually easy to write the code, especially in a language like ELM. The tricky part is that the
divide step is not always obvious. Let’s make sure we remember the three parts: in the code
above, underline the parts which correspond to conquering.

move n x y z = case n of
1 −> [(x , y)]
otherwise −> (move (n−1) x z y) ++[(x , y)]++(move (n−1) z y x)

Now underline the parts corresponding to combining:

move n x y z = case n of
1 −> [(x , y)]
otherwise −> (move (n−1) x z y) ++[(x , y)]++(move (n−1) z y x)

CHAPTER 2

map and Assembly Lines

*** put fold here ***
We started this book with Divide & Conquer because it captures so much of computa-

tional thinking. (1) With the right scheme for division, Divide & Conquer enables the divi-
sion of work among a growing set of computers, which is the key to scaling a solution up
to internet scale. (2) With the right reformulation, any task a computer can perform, can be
expressed as a Divide & Conquer alogrithm. (3) Even though the individual tasks are simple,
Divide & Conquer procedures can accomplish complex tasks.

But every algorithm is not a Divide & Conquer algorithm, and confusing different algo-
rithm patterns is a good way to get stuck at the implementation step. So let’s look at some
special cases of Divide & Conquer which are easier to implement directly, starting with map.

When you can divide into smallest problems in one step, rather than dividing into smaller
problems of the same type, you probably want to use map. The map function applies to
collections of data, but let’s start with lists, which we have seen before.

1. Map

As a simple problem, let’s say we have a list like[1,2,3,4,5,6,7] but we want to double
each element to make a list of even numbers. The map function does this

doubleElements l i s t = map multByTwo l i s t
multByTwo x = 2 ∗ x

computes [2,4,6,8,10,12,14]. Try it yourself on http://elm-lang.org/try.
Although they make nice, short examples, map is not restricted to numbers! Its type

map : (a −> b) −> L i s t a −> L i s t b

says that map takes two arguments1. The first one (a -> b) is a function from type a to
b. In our example, both a and b are the type Int, but they could be anything. They can be
anything, but they determine the types of the input and output lists (and vice versa). The
second argument is a list of type a (: List a) and the output a list of type b.

Let’s look at a practical real-world example. First-year students, often living away from
home for the first time, need a lot of advice about things like what can safely go in the
dishwasher. So we made this handy data type and function.

type K i t c h e n S t u f f = Spoon | P l a t e | Ladle | Microwave | PizzaBox

dishwasherSafe x = case x of

1Documentation for all of the core packages includes this type information. See
http://package.elm-lang.org/packages/elm-lang/core/2.1.0/List.

13

14 2. MAP AND ASSEMBLY LINES

Spoon −> True
P l a t e −> True
Ladle −> True
Microwave −> Fa lse
PizzaBox −> Fa lse

But with all the clubs, and the long walk across campus, they do not have time to apply the
function to items individually, but with map, then don’t have to!

a l l S a f e = map dishwasherSafe [Spoon , PizzaBox]

gives [True,False]. So in this case, map dishwasherSafe : List KitchenStuff -> List

Bool.
Using map looks powerful, and it is. Instead of creating a recipe for programmers to

implement, the recipe is captured as function. This is the common feature of functional
programming languages like ELM which are driving their adoption in industry. You may
be aware that the most common languages in industry are object-oriented languages, and
have heard of some like Java and C++. A few decades ago, object-oriented languages offered
software architects a way of organizing large pieces of software which, when done right,
offered much greater flexibility and extensibility than the previous procedural languages.
But over many years, a dark side to these languages emerged. Projects often failed to meet
their goals, and often sinking more money into them hastened their collapse. Managers were
desperate to diagnose failing projects and successful architects wanted to explain why some
of their projects succeeded. The funny thing about software is that after writing a million
lines of code, you can easily be farther from your destination than when you started, and to
most outsiders, and even many insiders it is hard to tell when this is the case.

Well, a lot was learned by people who wrote a lot of software, and a practical cookbook
for successful software design was written. Called ”Design Patterns: Elements of Reusable
Object-Oriented Software” by Gamma, Johnson, Vlissides and Booch, it basically said, if you
are going to implement a common pattern, do it in a standard way, and name it so developers
coming after you know what you are aiming to do. The standard patterns are called design
patterns, and the book sold over half a million copies, and most people consider it to be
wildly successful. The weakness of design patterns is that they still need to be implemented
correctly, and the languages at the time did very little to help programmers do this.

In contrast, design patterns implemented in functional languages can mostly be imple-
mented as functions themselves, and often in a couple of lines. This is possible because
functional languages treat functions the same as other variables, which in Computer Science
is the definition of being “first class”2. It is still possible to apply higher-order functions
like map to the wrong inputs, but many wrong inputs will be rejected as having incompat-
ible types, and the code is short enough to make the pattern and its inputs transparent. In
non-function languages, the pattern implementation is often spread over multiple modules
making it difficult to check for consistency.

Enough philosophy! We’ve seen how simple using map is. But how is it a special case of
Divide & Conquer? What are the subproblems? Here they are:

2This is a weird cultural thing in Computer Science, that the default class is first class, with the assumption
that everyone deserves first class treatment, and anything less is implicitly treated as a defect in the system.
Compare this to airlines, where flying first class is ridiculously expensive and restricted to a privileged few.

1. MAP 15

Divide: Separate the first element from the rest of the input list. The rest of the list is still a
list, so that’s our subproblem.

Conquer: Apply this procedure to get a new list whose elements are the result of applying the
function argument to the rest of the list.

Combine: Take the solution to the subproblem, which is a list, and prepend the result of apply-
ing the function argument to the first element.

When we implement this in ELM, we also need to take care of the base case, which here is
when the list is empty, and so has no first element.

map fun l i s t = case l i s t of
(x : : xs) −> (fun x) : : (map fun xs)
[] −> []

1.1. Anonymous Functions. On its own map is powerful, but its usefulness is magnified
by being able to define simple functions right there in the first map argument, without having
to give them a name, and use another line. Instead of defining multByTwo above, we could
instead use the fact that we can use any infix operator like + or *, as a normal function by
putting it in parentheses, like so

multByTwo x = (∗) 2 x

and to save a bit of typing could have used the definition

multByTwo = (∗) 2

which is called a partial application of the function (*). Now, I personally do not recommend
using this style a lot, because you it is not visually obvious that multByTwo is a function taking
one argument, but inside a map

evens n = map ((∗) 2) [1 . . n]

cannot cause any confusion, and just saved us a line of code. But it gets better, when we can
compose these functions. In math, functions can be composed with ◦, as in

(f ◦ g)(x) = f (g(x)),

meaning that the function f ◦ g takes an input x, feeds it to g and feeds that output to f as an
input. In ELM, there are different composition operations

f <| g x = f (g x) = g x |> f

depending on whether you want outputs to flow left or right into other functions as inputs.
You have probably seen this used to move shapes

shape1 = f i l l e d red (c i r c l e 10) |> move (1 0 , 1 0)

and note that move (10,10) is a partially applied function, since move takes two inputs, but
once we give it the first one (the shift vector), we have a function with one input, which it
gets from the left of the |>. So values move across the composition operators in the direction
of the pointy part.

16 2. MAP AND ASSEMBLY LINES

So ELM notation is more flexible, in allowing both left-to-right and right-to-left compo-
sitions, but this is not quite the same as the ◦ composition of mathematical functions. The
analogues of ◦ are >> and <<:

(f << g) x = f (g x) = (g >> f) x

Which is actually less convenient than the preview composition operators. In fact, we could
insert those operators here as well

(f << g) x = (f << g) <| x = x |> (f << g) = f (g x)

which is just confusing things, so what is the point? The point is that we can compose
functions inside map. So instead of defining a compound function to use in map

s i n e P o i n t x = s i n (2 ∗ pi / 10 ∗ x)
hi l lAndVal ley = map s i n e P o i n t [0 . . 9]

we could use

hil lAndVal ley = map (s i n << ((∗) (2∗ pi /10))) [0 . . 9]

which saves us a line. Now you may wonder if this is really better, since we have so many
years of experience looking at expressions more like sinePoint, and you would have a point.
But first of all, this definitely does not apply to most cases, e.g., if you need to move and rotate
a bunch of shapes

dancingShapes = map (move (1 0 , 1 0) << r o t a t e (degrees 45)) standingShapes

and secondly, we have another way of putting the x back into anonymous functions, called
a lambda expression

hil lAndVal ley = map (\ x −> s i n (2∗ pi /10∗x)) [0 . . 9]

This looks a bit like a case in a case expression, and happily, it means the same thing, ex-
cept that there is only one case, and x input which is mapped to sin(2*pi/10*x). They are
called lambda expressions because the Greek letter λ was used to represent the binding of a
variable to an expression to define a function, almost exactly as in ELM, except that we use \

as a discount version of λ, because typing λ would be too time consuming. Since it was de-
fined by Alonzo Church as a way of defining computation, and proving things about which
functions can be computed (which, surprisingly, is not true of all functions), it was shown
to be equivalent to defining computability in terms of a machine (specifically a Turing ma-
chine, defined by Alan Turing), and it has become a symbol of computer science. The place
where programming language enthusiasts meet is called lambda-the-ultimate.org, and a
good place to find out what is cool in programming languages, and all Computer Science
superheros have λs stitched into their stretchy suits.

CHAPTER 3

To be or not to be in the Basement

Einstein used so-called thought-experiments, in which he imagined an experiment to
evaluate the consequences of a theory. His elevator experiment led to the formulation of
relativity, the most accurate theory we have of gravity.

We’re going to do our own elevator experiment, and from it develop a theory for change
and a tool for modelling change, called a state diagram. With state diagrams, we can model
changes to physical systems unlucky enough to be connected to our computers and changes
to the graphical user interface through which we interact with our users.

You probably remember learning about state in science class. And if you don’t, just shake
your head until the generated heat melts those frozen thoughts, and gets them flowing again.
The states of matter look like

where each of the bubbles is a state, and the arrows are called phase transitions.
In general, when we see a diagram like this in computer science, we call it a graph, the

bubbles nodes, and the lines edges. If the edges have arrows for direction, it’s a directed
graph.

1. State Diagrams

A State Diagram is directed graph, with nodes we call states, and edges we call tran-
sitions. A game graph is very similar to a State Diagram, because there is always a place
(state) we are in, and for this to change, something has to happen. The real state diagram
corresponding to a game would also include any items you are carrying, and in some games
whether certain mosters are dead or not. This extra information significantly complicates
the state diagram, to the point where nobody could follow it. Since keeping track of the
state of mechanical devices, like elevators, subway trains, etc., is rather important, Com-
puter Scientists have developed more complicated versions of state diagrams called State
Charts, which can include nesting (diagrams within diagrams), and tools to create, visualize
and verify charts. Other tools can even create multiple programs to control the devices and
react to outside events, so that the diagrams themselves play the role of the program, and
the programmer gets to draw pictures instead of write code.

17

18 3. TO BE OR NOT TO BE IN THE BASEMENT

The only thing not normally allowed in a State Diagram is a bi-directional edge. If the
same transition can go in both directions, two arrows are drawn. While we sometimes do
not draw transitions which return to the same state in order to simplify our diagrams, it is
unusual in state diagrams that each transition only effects one state, as in the game graph.

State Diagrams, are a graphical representation of Finite State Machines, which are the
usual way of giving Computer Science an a mathematical foundation allowing theoretical
computer scientists to prove things like that some programs will go on forever without stop-
ping, that one algorithm will take longer to solve a problem than another, that a the solution
produced by an algorithm is correct, and that the running algorithm always has certain prop-
erties (importanly safety properties).

State is always present when software interacts with the real world.

2. Implementing in ELM

How do we model state and transitions in ELM?

states = data

transitions = functions

I know that is really complicated, but you just have to memorize it.
In ELM, we can always recognize data types by the type keyword, but forming lists

and tuples is another way of creating data. Be careful when using tuples that the meaning
of the data is clear. Although tuples are really convenient, you probably need a comment
explaining what the different components of the tuple represent, because you do not have
descriptive names the way you do with constructors.

module StateDiagram where

2.1. Example: an Elevator. State captures everything we need to know about what is
happening now, so we know what can happen next, and what actions a user could request.

• doors, open and closed
• be on a floor or in between floors
• doing nothing, or going to a floor
• call buttons can be pressed on floors, or in the elevator

Transitions capture both user requests and actions and processes coming to a completion.
• elevator can arrive at a floor
• doors can open
• doors can close
• people can press buttons
• elevator arrives at place where button is lit, and button goes dark
• door should close if no motion is detected

Data recording the state of the elevator has multiple components. Let’s start small, with
recording the state of one door:

type Door = Open | Closed

Two transitions (each function is represented by arrows labelled by function name).

2. IMPLEMENTING IN ELM 19

openDoor Open = Open −− t h i s i s needed in ELM, sometimes omit in diagram
openDoor Closed = Open

closeDoor Open = Closed
closeDoor Closed = Closed

We can capture these two states and two transitions with a diagram

Open

Closed

openDoor

openDoor

closeDoor

closeDoor

Note again that when things get complicated, we often omit transition edges which come
back to the same state.

Going back to tracking state, we obviously need to know where the elevator is. There are
many ways of doing this, and we came up with different solutions, but decided to go with
recording the state as being at a floor, or going to a floor. A more complicated elevator might
record the exact position between floors, and if you are going to support smartphones apps
which tell you when your elevator will arrive, you would need to keep track of the speed of
the elevator and the number of people getting on and off, ...

type Floor = Basement
| ToBasement
| Ground
| ToGround
| F i r s t
| T o F i r s t

The state of one button:

data Button = LitUp | Dark

Transitions corresponding to buttons being pressed 3 call buttons, these are user-initiated
state transitions

Transition functions always have type State -> State, and we can give them all types
together.

callToBasement , callToGround , c a l l T o F i r s t , arriveAtGround , arriveAtBasement , ←↩
a r r i v e A t F i r s t

: (Floor , (Button , Button , Button)) −> (Floor , (Button , Button , Button))

20 3. TO BE OR NOT TO BE IN THE BASEMENT

Some state transitions are initiated by the user, or by external events. In this case, the user
can call an elevator by pressing a button. Elevators do not have many external events, but
there probably some elevators out there which detect earthquakes and come to a stop.

callToBasement s t a t e = case s t a t e of
(Basement , (bb , gb , fb)) −> (Basement , (Dark , Dark , Dark))
(ToBasement , (bb , gb , fb)) −> (ToBasement , (LitUp , Dark , Dark))
(Ground , (bb , gb , fb)) −> (ToBasement , (LitUp , Dark , Dark))
(F i r s t , (bb , gb , fb)) −> (ToBasement , (LitUp , Dark , Dark))
(ToGround , (bb , gb , fb)) −> (ToGround , (Dark , LitUp , Dark))
(ToFirs t , (bb , gb , fb)) −> (ToFirs t , (Dark , Dark , LitUp))

callToGround s t a t e = case s t a t e of
(Basement , (bb , gb , fb)) −> (ToGround , (Dark , LitUp , Dark))
(ToBasement , (bb , gb , fb)) −> (ToBasement , (LitUp , Dark , Dark))
(Ground , (bb , gb , fb)) −> (Ground , (Dark , Dark , Dark))
(F i r s t , (bb , gb , fb)) −> (ToGround , (Dark , LitUp , Dark))
(ToGround , (bb , gb , fb)) −> (ToGround , (Dark , LitUp , Dark))
(ToFirs t , (bb , gb , fb)) −> (ToFirs t , (Dark , Dark , LitUp))

We leave it as a homework problem to write the callToFirst function.
There are also environment-initiated state transitions.

arriveAtGround s t a t e = case s t a t e of
(Basement , (bb , gb , fb)) −> (Ground , (Dark , Dark , Dark))
−− t h i s should r e a l l y cause an error , s i n c e we arr ived somewhere we were ←↩

not going
++” and got a s i g n a l t h a t we arr ived on the ground f l o o r ”

(ToBasement , (bb , gb , fb)) −> (ToBasement , (LitUp , Dark , Dark))
(Ground , (bb , gb , fb)) −> (Ground , (Dark , Dark , Dark))
(F i r s t , (bb , gb , fb)) −> e r r o r $ ”oops , we think we are on the f i r s t ←↩

f l o o r , ”
++” and got a s i g n a l t h a t we arr ived on the ground f l o o r ”

(ToGround , (bb , gb , fb)) −> (Ground , (Dark , Dark , Dark))
(ToFirs t , (bb , gb , fb)) −> (ToFirs t , (Dark , Dark , LitUp))

We leave it as a homework problem to write the arriveAtBasement and arriveAtFirst func-
tions. Our best hope of getting all of these cases right is to start with a state diagram, or in this
case, we can simplify things by drawing separate diagrams for the position of the elevator:

3. THE STATEDIAGRAMS MODULE 21

First

toBasementBasement

Ground toGround

toFirst

callToBasement

callToBasement

callToGround

callTo
Groun

d

callToF
irst

call
ToF

irst

arriveBasement

arriveGround

arriveFirst

error

arriveFirst

arr
ive
Firs

t

and the lighting of the buttons:

LitUp

Dark

callToBasement

anything else

arriveAtBasement

anything else

LitUp

Dark

callToGround

anything else

arriveAtGround

anything else

LitUp

Dark

callToGround

anything else

arriveAtGround

anything else

But, in our defence, we were still learning about transitions when we developed this
example in class.

Hey! Why is the state of the door not integrated into the other state? People are going
to get pretty upset when they find out the door doesn’t open! To do this we would need to
extend the state, by adding the door state to the tuple, or creating a new set of constructors.
This is left as a homework problem.

3. The StateDiagrams Module

Let’s return to basic science again, and the question that probably bugged you the most:
who drew that masterpiece of a diagram? ELM, of course! And for the right price, you can
draw your own neat diagrams, all you need is our StateDiagrams module which you import
along with the graphics collage to draw it in,

import StateDiagrams exposing (. .)
import Graphics . Collage exposing (. .)

then define a type with your favourite states,

type S t a t e s = Sol id | Liquid | Gas

22 3. TO BE OR NOT TO BE IN THE BASEMENT

define the transitions via functions (which in this case we define to leave all states alone,
other than the ones they change),

melt x = case x of
So l id −> Liquid
other −> other

f r e e z e x = case x of
Liquid −> Sol id
other −> other

sublimate x = case x of
So l id −> Gas
other −> other

deposi t x = case x of
Gas −> Sol id
other −> other

condense x = case x of
Gas −> Liquid
other −> other

vaporize x = case x of
Liquid −> Gas
other −> other

and use the viewStateDiagram function to draw it:

main = c o l l a g e 400 400
[viewStateDiagram [(Sol id ,(−50 ,−50))

, (Gas , (−50 ,50))
, (Liquid , (4 0 , 0))
]
[(melt , ” melt ” , [(Sol id , (20 , −40))])
, (f reeze , ” f r e e z e ” , [(Liquid , (0 , −20))])
, (vaporize , ” vaporize ” , [(Liquid , (2 0 , 4 0))])
, (condense , ”condense” , [(Gas , (−5 ,25))])
, (deposit , ” deposi t ” , [(Gas , (−85 ,7))])
, (sublimate , ” sublimate ” , [(Sol id ,(−45 ,−7))])
]
Nothing
Nothing

]

This is the hard part, because in addition to a list of the states you want drawn, you need to
figure out Cartesian coordinates to pin them to, and in addition to the transitions, you need
to decide from which initial states to draw them and where to pin the labels. Note that while
the states are data types, and ELM just knows how to show them as strings of characters,
transitions are functions which ELM cannot show, so we need to provide a string to display.

CHAPTER 4

Fold, Signals and Functional Reactive Programming

I know you are impatient to learn about creating interactive programs, and we do have
the key concept behind us—State—but we need a bit more practical knowledge to put this
knowledge to use in ELM.

Let’s take a look at a simple game, Peekaboo. We need to import a couple of familiar
modules, and new modules for getting the position of the mouse an something called Signal.

module Peekaboo where
import Graphics . Element exposing (. .)
import Graphics . Collage exposing (. .)
import Color exposing (. .)
import Mouse
import S igna l

Next, we have a new type for the main function, Signal Element, and we use a new function
Signal.map, which looks a lot like List.map, which we have seen before.

main : S igna l Element
main =

Signa l . map draw Mouse . p o s i t i o n

The type Signal Element uses a type constructor Signal analogous to List, which took one
type and defined the type of a list of elements of that type. A Signal is a lot like List. Both
are container types, but even more, they both define lists, but whereas List a defines a list
of values put together at one time, Signal a defines a list of values which are generated one
at a time. Just as Einstein’s thinking about elevators led to the unification of space and time
in one mathematical object, if we had a bank of elevators distributed in space, we would
need a type List ElevatorState to model their combined state, and were we to model the
state of an elevator as it changes in time, we would need a type Signal ElevatorState, and
for a whole bank of elevators changing in time, Signal (List ElevatorState). Elevator
space-time!

While we are waiting for Evan to be awarded a Nobel prize for inventing Signals, let’s
look at the rest of the program. We see a Signal.map which works analogously to List.map

by mapping a function over the values which arrive in the signal over time. In this case,
the incoming signals come from Mouse.position, which unsurprisingly is a list of positions
of the mouse as it hovers over our window, and draw transforms them (into Elements, as
specified by the type of main). The draw function

draw pos =
c o l l a g e 400 400 [f i l l e d blue (c i r c l e 20) |> move (mouseToCollage pos)

]

23

24 4. FOLD, SIGNALS AND FUNCTIONAL REACTIVE PROGRAMMING

moves a single blue circle to the position of the mouse, and puts it in a collage. There is just
one tiny wrinkle in the otherwise well-pressed code: the coordinates in the Mouse.position

signal and the coordinates within the collage are incompatible, one is integral, and the other
uses floating-point fractions; one is centered on the mid-point of the collage, and the other
starts at the top-left corner of our window; one goes up, the other down. The function
mouseToCollage irons out this wrinkle, as best we can.

mouseToCollage (x , y) = (t o F l o a t x − 200 ,200 − t o F l o a t y)

Now, if you’re 8 months old, Peekaboo is a very satisfying game, but if your guardian
reads this chapter to you in a another year, you will be somewhat less impressed, because
there is no development in this game, every moment is just like the one before. The prob-
lem lies in Signal.map, which applies draw to each mouse position. This property of map
is extremely useful for three reasons: one, it means that we only need to understand the
evaluation of our function on one input at a time; two, when applied to lists and other col-
lections in space, since each application is independent, we can use multiple processors to
operate on different inputs to speed things up, which process is called parallelization; and
three, when applied to “time” to create an animation, we can very easily modify time by
scrubbing, fast-forwarding, reversing, etc., and get the functionality of a movie editor. You
may have already thought of other things we can do with programs structured using map,
but we need to get back to making our game more interesting.

What we need is something like map, but which “remembers” the past. One option would
be to dust off the chapter about Divide & Conquer, and create a new version of map, but it
is easier to use functions which already exist. The new functions are called “fold”, and the
“s” in functions is not a typo, because unlike map, there are different ways of implementing
fold. If you are a baker of interesting cakes, then you are already familiar with folding in-
gredients into your cakes. If you sprinkle some hazelnuts into your batter and fold them in,
your final cake will have hazelnuts. If you then fold some raisons, apricots, figs and finally
pistacios into your cake, they are will all contribute to the tastiness of your final cake. The
fold operation takes two inputs, the cake batter and the new ingredient, and has one output,
the cake batter (now containing the new ingredient).

f o l d I n : Ingredient −> B a t t e r −> B a t t e r

The process of folding in all of the ingredients then has this type:

fo ld : (Ingredient −> B a t t e r −> B a t t e r) −> B a t t e r −> L i s t Ingredient −> B a t t e r

This is how your grandmother’s cookbook would have explained it, had your grandmother
been Ada Lovelace. We can also explain it in ELM.

For List, we have two folds, one which goes through the ingredients from left to right,
and one from right to left.

f o l d l f i n i t xs = case xs of
[] −> i n i t
y : : ys −> f o l d l f (f y : : i n i t) ys

and

4. FOLD, SIGNALS AND FUNCTIONAL REACTIVE PROGRAMMING 25

f o l d r f i n i t xs = f o l d l f i n i t <| L i s t . reverse ys

Let’s look at a picture of map versus fold applied to lists

map f

a0

a1

a2

...

an−1

an

b0

b1

b2

...

bn−1

bn

f
//

f
//

f
//

f
//

f
//

fold f binit

a0

a1

a2

...

an−1

an

binit

b0

b1

b2

...

bn−1

bn

g
&&

g
&&

g
&&

g
&&

g
&&

��

��

��

��

��

��

inputs

outputs

where we see that both take a list of inputs a0, a1, . . . , an and both compute a list b0, b1, . . . , bn,
but whereas map outputs all of the bs, fold only outputs the final value, and fold needs an
initial value which it updates with every new input.

Both map and fold are implemented for many container types in ELM, including Array,
Dict, List, Set and String, and works in an analogous way. For Signals, map works exactly
as you would expect, but fold runs into a problem—namely, most signals, like the position
of the mouse do not have a known number of elements, and for many programs might as
well be thought of as infinite, since they will go on until someone closes the web page where
they are running. Getting a value from a folded signal only as the program terminates is not
very helpful! So fold for Signals does output all of the b values in a their own Signal.

foldp : (input −> s t a t e −> s t a t e) −> s t a t e −> Signa l input −> Signa l s t a t e

Where the “p” comes from “past”, because at any point in time, the current state depends
on the past states and past inputs. This is exactly what we need to give our game a sense of
progress!

Before we go on, we should note that it is somewhat unusual to use “fold” for a function
with a different type signature (i.e., multiple outputs), since it makes the fold family less
consistent. Consistency makes things easy to remember, which gives you time to think of
other things. And I do not know of another languages with a special fold, like this. For
comparison, look at the Haskell function mapAccumL.

Now we’ll put it together into a game, using the arrow keys on the keyboard. The first
step is to use our newly discovered fold function on events

main = Signa l . foldp update i n i t S t a t e events
|> Signa l . map view

which will fold a stream of events events into succeeding states starting with initState

using a combining function update. As new states are created, they are drawn with the view

26 4. FOLD, SIGNALS AND FUNCTIONAL REACTIVE PROGRAMMING

function. The events combine two distinct external signals, a timer ticking down timeSteps

and the keyboard arrows pressed at that time; map2 does the combining, and since the current
position of the arrow keys is a continuous signal, we need to sample the combined signal at
the discrete times given by the timeSteps.

events = S igna l . sampleOn timeSteps (S igna l . map2 (,) t imeSteps Keyboard . arrows)

For a smooth looking game, we choose to fire the time off at a rate of 30 frames per second
(fps), and scale down the time from milliseconds to deciseconds to get a playable speed for
the game.

t imeSteps = Signa l . map (\ t −> t /100) (fps 30)

The game starts with the ball in the centre of the collage, at rest, which is represented by
two pairs of Floats.

i n i t S t a t e = ((0 , 0) −− s t a r t in c e n t r e
, (0 , 0)) −− with some v e l o c i t y

The update function is easier to understand in phases. Decomposition also makes it easier
to add new features like bubble gum and hair gel.

update (dt , keys) b a l l = b a l l |> physics dt
|> bounce
|> t u r b o J e t dt keys

Applying the rules of physics in this case means moving according to the current velocity.
Note that these equations assume that the velocity is constant over the time step, and only
changes between time steps. This is a reasonable approximation for simple games, but if you
are using it for a Mars mission launch, you will need a more accurate approximation.

physics dt ((x , y) , (vx , vy)) = ((x + vx ∗ dt , y + vy ∗ dt)
, (vx , vy))

In this game, we effect the ball by turning on turbo fans which accelerate the ball in the x, y
or diagonal direction.

t u r b o J e t dt keys ((x , y) , (vx , vy)) = ((x , y)
, (vx + t o F l o a t keys . x ∗ dt

, vy + t o F l o a t keys . y ∗ dt))

Note that we assume the acceleration is proportional to the frame rate. On a fast computer
this is not necessary, but on a slow machine or one also doing real work in the background,
frame rates may fluctuate, and this will cause stuttering if we do not adjust the acceleration
based on the time between frames, which is easy to do by multiplying by the time difference
dt.

Now, we come to the bouncing, we we implement as a composition of four functions, one
for each wall.

4. FOLD, SIGNALS AND FUNCTIONAL REACTIVE PROGRAMMING 27

bounce = bounceTop >> bounceBot >> bounceLeft >> bounceRight

We only show the top wall here, which does not try to calculate the exact point at which
the ball hits the wall, rather it waits until the ball would appear behind the wall, and then
reverses the y component of the velocity and backs the ball up to an equal distance inside the
wall as it would have gone outside the wall if not for the bouncing.

bounceTop ((x , y) , (vx , vy)) = i f y > h a l f
then ((x , 2∗ hal f−y) , (vx,−vy))
e l s e ((x , y) , (vx , vy))

We could have made this more realistic by also reducing the magnitude of the ball according
to the amount of energy converted to heat during the bounce process, and put the ball a bit
closer to the wall to account for the time it takes for the ball to compress and then decompress
as it bounces.

Finally, we show the ball with a function nearly identical to the one in the mouse example.

view ((x , y) , (vx , vy)) =
c o l l a g e (2∗ h a l f) (2∗ h a l f) [f i l l e d blue (c i r c l e 20) |> move (x , y)

CHAPTER 5

GraphicSVG

by Vasav Shah

GraphicSVG is a library of graphics functions which generates Scalable Vector Graphics
(SVG). SVG is a web standard, which is well-supported by all common web browsers. It
follows most of the conventions of the earlier Graphics module which was part of the core
of Elm before version 0.17, and which inspired many people to try Elm. Graphics func-
tions rendered into an html canvas, which is the web standard for bitmapped graphics, and
user interaction was handled using a model which was replaced in Elm 0.17. In addition
to creating a new mechanism for user interaction which works with Elm 0.17, we took the
opportunity to rename some of the types whose names had no meaning to beginners, and
we added some features in great demand during outreach workshops. Yes we finally have a
built-in pink function!

Let’s jump right in, by creating a blank picture:

main= graphicsApp { view = view }

Every program needs a main function, and for static graphics, the graphicsApp function
works. It has one argument, which is a record, with one field, called view. That field must be
a collage:

view = c o l l a g e 300 300 []

And in this case the collage will be 300× 300 pixels. This sets up a coordinate system with
(0, 0) being in the middle of the canvas. So in this case, the domain for both x and y are
[−150, 150].

In the GraphicsSVGmodule, there are three types of Apps: graphicsApp, notificationApp,
and gameApp, with the second adding user interaction, and the third enabling animations, by
generating periodic timing messages. To handle interaction or animation, we will introduce
a model to capture state and an update function to handle transitions.

1. Shapes

The graphicsSVG module allows us to draw any shape you can think of. Functions such
as circle, rect, and ngon make, drawing basic shapes really easy. Here is an example of how
you draw a circle.

view= c o l l a g e 300 300 [
c i r c l e 25

|> f i l l e d red
]

29

30 5. GRAPHICSVG

A simple way to think about shapes is to think of them as stencils that you might have used
in elementary school. If we have a circular stencil, which has a radius of 25, but we don’t
colour it in or outline it, we won’t see anything! That’s why we need to use the filled function.
In other words, you must specify a filled or outlined type or the compiler will complain.
These functions take in a Stencil, and a colour, and outlined also needs a line style. Both
produce Shapes. So you fill in or outline stencils to create shapes. Easy to remember!

You can look at the other Stencils at http://outreach.mcmaster.ca/tools/ShapeCreator.
html. You probably noticed that we also support custom colours! You may not have noticed
that the Elm code needed to make the shape you selected is copyable, so you can paste it into
you future masterpiece.

2. Moving Shapes

Unless you want to draw endless concentric circles, we need to move our shapes around.
Hopefully you remember something called Cartesian coordinates.

To move a Stencil right 10 units:

view= c o l l a g e 300 300 [
c i r c l e 25

|> f i l l e d (rgb 0 255 0)
|> move (1 0 , 0)

]

You can see the move takes in a tuple, and a Shape and returns a Shape in different position.
We call functions such as move transformations. Transformation functions do not change the
type of input. Since the input and output are the same type, we can chain them together,
which is not so exciting with moves along, but add in rotates and scales, and it is very con-
venient. Note that GraphicSVG uses a simplified transformation model, in which the order
in which the transformations are applied does not matter, they are applied independently.
Thinking about it differently, rotations happen about the centre of the shape, rather than the
centre of the collage, no matter how they are shifted or stretched. But if you put multiple
shapes together as a group, e.g., if you group two circles and an oval into a surprised face,
transformations of the group act on the shapes together.

3. Custom Colours

Colouring all stencils in with red is simple to understand but this limits our creativity!
With a bit of colour theory, you can display any colour your browser can reproduce. When
you were in grade one you probably learned that the primary colours are red, yellow, and
blue, and that you can mix these colours in the form of finger paints to get any colour. For
example adding blue and yellow gives green. This is an subtractive colour scheme, where
adding colours together takes you towards black (or brown in the case of finger paints), and
a similar one (cyan, magenta, yellow and black) is widely used in the printing industry. We
call them subtractive because the pigments absorb light, taking some of the colours away.
Lit screens, however, use an additive model, in which the primary colours are red, blue and
green. This colour scheme is used because it’s how light is perceived by the cone cells in
our eyes. Then to get a colour like yellow, you would need to use a combination of red and
green.

Substituting rgb for red, we can get any colour we want:

http://outreach.mcmaster.ca/tools/ShapeCreator.html
http://outreach.mcmaster.ca/tools/ShapeCreator.html

4. GROUPS CAN MAKE LIFE EASY 31

view= c o l l a g e 300 300 [
c i r c l e 25

|> f i l l e d (rgb 255 255 0)
]

The function rgb takes in 3 values, each an integer ranging between 0 and 255, from darkest
to brightest. As an exercise try to find the rgb values for other basic colours.

You’re probably wondering how can I make something transparent? Luckily, in the li-
brary we have function like rgba. It takes in four values, first three are the same as rgb|. However, the fourth value takes a float between 0 and 1. 1 being opaque and 0 being completely transparent.

view= c o l l a g e 300 300 [
c i r c l e 25
|> f i l l e d (rgb 0 255 0)

, c i r c l e 25
|> f i l l e d (rgba 255 0 0 0 . 5)
|> move (1 0 , 1 0)

]

Additionally, the GraphicSVG library includes the makeTransparent function to give the al-
ready defined colours additional transparency. For example, another way of writing the
example above is:

view= c o l l a g e 300 300 [
c i r c l e 25

|> f i l l e d (rgb 0 255 0)
, c i r c l e 25

|> f i l l e d (rgb 255 0 0)
|> move (1 0 , 1 0)
|> makeTransparent 0 . 5

]

makeTransparent takes a floating point number between 0 and 1 and multiplies the cur-
rent colour’s alpha (regular rgb colours have a default of 1) by that number. (Note: this
number is actually unbounded, and could theoretically be used to increase the alpha of a
colour. For example, a shape with an alpha of 0.25 could be brought back up to 0.5 by using
|> makeTransparent 2, though this not an intended use of makeTransparent). This function
can also be applied to groups of shapes (see next section) to make life easier.

4. Groups Can Make Life Easy

One of the biggest problems with putting all our shapes in collage is that we wouldn’t
be able to apply transformations to multiple stencils at a time. It is really a painful process
to apply the same transformation to each individual stencil. This is why we have something
called group. It makes our lives as developers less stressful. For example, we can assign a
variable, circles, to represent two different circles:

c i r c l e s = group [
c i r c l e 25

|> f i l l e d red
, c i r c l e 30

|> f i l l e d blue

32 5. GRAPHICSVG

|>move (2 5 , 0)
]

Then we can include the variable name in the collage to render the shapes defined by
”circle”:

view = c o l l a g e 300 300 [
c i r c l e s

]

We can apply transformations such as move and scale that will apply to all the stencils in
circles. You might also want to look at other transformation on the documentation.

view = c o l l a g e 300 300 [
c i r c l e s
|> move (5 0 , 0)
|> s c a l e 1 . 5

]

5. Repetitive Patterns using map

Making shapes is easy but imagine you have to make multiple copies of the same shape
at different, but uniform places. One way to do it would be to copy and paste your code, and
then move each group individually. However, the better way to do it is to use our knowledge
from map. Let’s say we want to draw a backyard fence. First, we need to draw one fencepost
and then we can repeat that pattern.

fencePost x = group [
r e c t 200 40

|> f i l l e d brown
|> r o t a t e (degrees 90)
|> move(x , 0)
|> addOutline (s o l i d 3) black

, t r i a n g l e 23
|> f i l l e d brown
|> r o t a t e (degrees −30)
|> move(x , 110)

]

Now we can use our knowledge of map, to make multiple copies of this one fence, with
different x values. The problem is that they will be too close together, so we need to use a
composite lambda function which first increases the size of x, so it is spaced out more evenly.

view = c o l l a g e 600 600 [
group (L i s t . map (fencePost <<(\ x −> x ∗39)) [− 6 . . 6])

]

6. SERPENSKI’S TRIANGLE 33

This function takes a list of integers from -6 to 6 and then maps that to the fencePost
function. But, since we’ve composed the lambda function (\ x -> x*39) with the fence-
Post function, each value is actually multiple by 39 before being used inside the fencePost
function.

This draws a row of fence post evenly spaced. The advantage to doing it this way instead
of multiplying by 39 directly inside fencePost is that we could call fencePost from somewhere
else but use a different lambda function to lay out the fence differently; for example some-
thing like (\x->8*x^2) might make an interesting quadratic fence. You can finish the design
of the backyard and add some more customized details of your choosing. Additionally you
can try making a unique, non-linear fence design by changing the lambda function.

6. Serpenski’s Triangle

Now that we know basic shapes and how to use them, lets try and make a fractal pattern.
Sierpinski’s triangle is one of the most interesting looking patterns to make, and also not too
challenging. Combining the knowledge of divide and conquer along with basic shapes, we
should be able to do this with ease! ”Insert picture of Sierpinski’s triangle here, indicating
level in the caption”

Looking at the picture above we will start trying to find patterns in it. There may be
multiple patterns that will lead to the same final solution, but in this tutorial we will go with
using the subtractive model, as in we assume that we started with the big red triangle, and
add blue triangles in the centre to make it seem like there are three red triangles surrounding
the blue one. So let’s start by making a simple blue triangle with the size of 150:

view = c o l l a g e 300 300 [
t r i a n g l e 150

|> f i l l e d red
|> r o t a t e (degrees −30)
|> move (0 ,−30)

]

The next step is to start making the serpinski function, which will make use of the very famil-
iar divide and conquer strategy to make our fractal. This function will require 4 parameters.
The first two being the x, y position of where we will place our triangle. Third, will be the
size of the triangle, and finally the last one will be the list of triangles we already have. In
this case we will use an if-else statement to do divide and conquer. –I would prefer if you
wrote the divde, conquer and combine here

s i e r p i n s k i T r i a n g l e x y s i z e l i s t =
i f s ize <10 then

. . .
e l s e

. . .

Notice that we set our base case, so that if the size of the triangle is smaller than 10, we
stop making triangles. You could set the base case to be even smaller and get a more detailed
Sierpinski’s triangle, but I found that 10 looked the best.

Now if we happen to hit our base case we want to just add the final triangle which will
be a size smaller than 10 in our list.

34 5. GRAPHICSVG

s i e r p i n s k i T r i a n g l e x y s i z e l i s t =
i f s i z e < 10 then

append l i s t [t r iangleFormated x y s i z e] −−t r iangleFormated w i l l be ←↩
explained

e l s e
. . .

Once we have a base case, we need a way to approach the base case. Since our back-
ground triangle is 150, our first triangle will be half of that in size. Then second layer of tri-
angles will be 1/2 of the ones before, or 1/4 of the original. The third level will be 1/2 of the
ones before or 1/8 of the original. This pattern will continue on until the base case is reached.
So the point is that we will be dividing the size by 2 when we call the sierpinskiTriangle.

You probably already figured out that we want to call sierpinskiTriangle three times be-
cause of three surronding triangles. Doing this makes the code extremely hard to follow but,
not difficult to logically think about. So lets breakdown the process by only doing one call
for triangles going above only.

s i e r p i n s k i T r i a n g l e x y s i z e l i s t =
i f s i z e < 10 then

append l i s t [t r iangleFormated x y s i z e] −−t r iangleFormated w i l l be ←↩
explained

e l s e
s i e r p i n s k i T r i a n g l e x (y+ s i z e) (s i z e /2) (append l i s t [←↩

t r iangleFormated x y s i z e])

We divided the size by two as we disscused, but we also added. You can use math to figure
out that the amount need is exactly size, or you can just use trial and error.

Let’s add another triangle to the right now,

s i e r p i n s k i T r i a n g l e x y s i z e l i s t =
i f s i z e < 10 then

append l i s t [t r iangleFormated x y s i z e] −−t r iangleFormated w i l l be ←↩
explained

e l s e
s i e r p i n s k i T r i a n g l e x (y+ s i z e) (s i z e /2) (s i e r p i n s k i T r i a n g l e (x←↩

+0.865∗ s i z e) (y−0.5∗ s i z e) (s i z e /2) (append l i s t [←↩
t r iangleFormated x y s i z e]))

The first call of serpinski returns a list of triangles that go upwards. Now the second list
will work in the same way: we will get a list of triangles that go to the right side of each.
Then we will use append to combine the two and that way in our collage we can call group
and draw them.

Finally, let’s add the final call,

s i e r p i n s k i T r i a n g l e x y s i z e l i s t =
i f s ize <10 then

append l i s t [t r iangleFormated x y s i z e] −−t r iangleFormated w i l l←↩
be explained

e l s e

6. SERPENSKI’S TRIANGLE 35

s i e r p i n s k i T r i a n g l e (x−0.865∗ s i z e) (y−0.5∗ s i z e) (s i z e /2) (←↩
s i e r p i n s k i T r i a n g l e x (y+ s i z e) (s i z e /2) (s i e r p i n s k i T r i a n g l e ←↩
(x +0.865∗ s i z e) (y−0.5∗ s i z e) (s i z e /2) (append l i s t [←↩
t r iangleFormated x y s i z e])))

As you can see, this gets really confusing, but not complicated. Now imagine that instead
of using triangleFormated, we actually just use triangle, and apply transformation on that.
This code will get even more confusing! This is why the triangleFormated function is added.
This is what the actual function looks like.

t r iangleFormated x y s i z e =
t r i a n g l e s i z e

|> f i l l e d blue
|> r o t a t e (degrees 30)
|> move(x , y)

We’re almost done our masterpiece! We just need to draw the triangles that we have.
In our view, after the first base triangle, we will draw a group with the list we get from
sierpinskiTriangle.

view = c o l l a g e 300 300 [
t r i a n g l e 150

|> f i l l e d red
|> r o t a t e (GraphicSVG . degrees −30)
|> move (0 ,−30)

, group (s i e r p i n s k i T r i a n g l e 0 0 75 []]) |>move(0 ,−30)
]

Questions for this chapter should be to make Sierpinski’s carpet, and Koch snowflake.
They are really similar to Sierpinski’s triangle! Also make a chain using map or other differ-
ent patterns about this.

CHAPTER 6

Complexity, or Why You Probably Want to Use Dict

In the last chapters, we learned about map and fold, and found out that they work on
a whole family of types. Those types are usually called containers or collections and profes-
sional programmers make frequent use of them, because reusing the same structures makes
programs smaller and easier for others to read, and substantially reduces the number of bugs
in the initial implementation.

Let me show you with an example, in which we count the frequency of words in a text,
skipping some common words.

main = show <| worthCountingFrequencies

Computing the historgram is a two-step process: first, we filter out the words we do not
want to count (like “the”) using another function common to the collection types, filter,
which takes an indicator function which evaluates to True on elements we want to keep;
second, we fold over the filtered list using a combining function addWord and starting with
the empty dictionary, just like sum is a fold starting with 0.

worthCountingFrequencies = f o l d r addWord Dict . empty <| f i l t e r worthCounting ←↩
theWords

Since we start with an empty dictionary, we cannot tell much about what a dictionary is,
but we know how a paper dictionary works. We get a list of words and their definitions,
sorted alphabetically so we can find them. Conceptually, a dictionary is the same idea, with
any types allowed in place of the word and the definition, and the simplest way to store a
dictionary would be List (String,String) for a conventional dictionary and List (a,b)

for a generalized dictionary, like Dict. But the point of defining powerful general types like
Dict is that the users do not need to worry about how the entries are stored, and the creators
are free to change the internal storage and algorithms if they find something more efficient.
More about this after we see the whole program.

We use a simple function which simply lists the words we do not want to count, which is
ok for a short list, but gets more inefficient as the list grows.

worthCounting word = case word of
” the ” −> Fa lse
” to ” −> Fa lse
”and” −> Fa lse
. . . skipping some . .
” or ” −> Fa lse
otherwise −> True

The heart of this program is the combining function used by the fold.
37

38 6. COMPLEXITY, OR WHY YOU PROBABLY WANT TO USE DICT

addWord wrd f r e q = Dict . update wrd insertOrAdd f r e q

The hard work is all done by the Dict.update function, whose arguments are the word
we want to tabulate, a function to decide whether to add, update or delete the entry for
that word, and the dictionary being updated. The thing to learn about this function is the
clever way in which function handles four possible cases for the update (the “word” is in the
dictionary, or not) × (“word” should be in the updated dictionary, or not). This is done with
Maybe a types. Maybe is another odd container. It can contain at most one value, but it may
contain no value, and it does this with two constructors data Maybe a = Just a | Nothing.
This allows update to know with one input whether a “word” is already in the dictionary,
and if it is what the “definition” is, and similarly, it can output Just def if the word should
stay in the dictionary, or Nothing if it should not be in the resulting dictionary. In our case,
the “definition” is the count for this word, and once we see a word it stays in the dictionary,
starting with a count of one, and incrementing the count if there is already a count.

insertOrAdd maybeCount = case maybeCount of
J u s t already −> J u s t (already + 1)
Nothing −> J u s t 1

Finally, we can extract a list of words from a string with the function List.words.

theWords = words ” In the l a s t chapters , we learned about map and fold , and ←↩
found . . . ”

1. Simply Fast

In more primitive programming languages, it was too often the case that getting a pro-
gram to be fast required convoluted code which almost nobody could read. In a modern
language like ELM, many of the reasons for this are gone. To understand this we need a
benchmark for comparing different algorithms. That benchmark is called complexity, which
is unfortunate, since it does not mean what it usually does in English, namely, that some-
thing is intricate or complicated. Instead, complexity in computer science is the number of
steps or operations an algorithm takes depending on the size of the input. We saw in the
Tower of Hanoi that the number of steps increased quickly as a function of the size of the
tower.

Fortunately, not everything worth waiting for requires waiting! The documentation for
Dict says

Insert, remove, and query operations all take O(log n) time.
Query means looking things up, and the big O notation (which is really called “big O”, look
it up!) means, in this case, that the limit, as the number of things in the dictionary goes to
infinity, of the quotient of the time to complete an operation and log of the number of things
is a constant. Practically, for useful algorithms it means, except for particularly small cases,
if n is the number of things in the dictionary, plan on operations taking log n times as long as
an operation on a single-item dictionary. So, is this good?

Well, moving the Tower of Hanoi took just over 2n operations, where n is the size of the
tower. This is called exponential complexity, or exponential growth in computing time.

If you store things in a list and have to look them up, you are stuck going through the list
one at a time, so, on average, you will need n/2 comparisons to find what you are looking

1. SIMPLY FAST 39

for, and n comparisons in the worst case—that you have to check through to the last element.
This is called linear complexity.

We can visualize how these processing times compare by graphing the equations y = ex

(in solid blue), y = x (in dashed purple) and y = log x (in short-dashed red).

0 8 16 24 32 40 48 56 64 72

8

16

24

32

40

48

As you can see, except for very small sizes, something with complexityO(log n) is crazy fast
compared to something with complexity O(n), and for reasonably big problem sizes, we
might as well give up on any process with exponential complexity, because we may never
get the answer. Unfortunately, many important problems do have exponentially complex
solutions, so computer scientists have found and continue to search for faster methods of
almost solving the problems.

Fortunately, the tree data structure leads naturally to algorithms with log complexity.
Let’s figure out why, by looking at one of the nicest examples, a balanced binary tree,

type BTree a = Empty | Branch a (BTree a) (BTree a)

which, for simplicity, we populate with numbers,

t r e e = Branch 10 (Branch 6 (Branch 3 (Branch 1 Empty Empty)
(Branch 4 Empty Empty))

(Branch 8 (Branch 7 Empty Empty)
(Branch 9 Empty Empty))

(Branch 17 (Branch 12 (Branch 11 Empty Empty)
(Branch 14 Empty Empty))

(Branch 25 (Branch 20 Empty Empty)
(Branch 30 Empty Empty))

40 6. COMPLEXITY, OR WHY YOU PROBABLY WANT TO USE DICT

which is easier to understand if drawn:

1

3

4

6

7

8

9

10

11

12

14

17

20

25

30

ss ++

''ww

��������

''

�� ��

ww

�� ��

It is a binary tree because each node has two outgoing edges. It is an ordered binary tree
because at every node, the subtree going left is labelled only by values less than the current
value, and the subtree going to the right is labelled only by values greater than the current
value. It is a balanced tree because from the head node, all of the maximal paths are the same
length or close to it, or said another way, all of the lowest boughs touch the ground.

The great thing about a tree labelled in this way is that to test for membership in the set
of node labels, we can start at the top and test for ordering (being less than, equal, or greater
than) once at each level, going down if the current node label is not what we are looking
for. At most we need as many comparisons as the tree is heigh. Since the number of nodes is
1+ 2+ 4+ 2h−1 = 2h− 1, where h is the height of the tree, we conclude that it takesO(log2 n)
steps to test for membership in a set when stored in a balanced binary tree.

Now, if we labelled the tree with a pair (key,value) of types, where the key type is
used for looking up associated values, we would have an O(log2 n) method of looking up
associated values—just like a Dict!

If we stored our values

asAList = [1 , 3 , 4 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 4 , 1 7 , 2 0 , 2 5 , 3 0]

on the other hand, we would be stuck with linear complexity.

The moral of the story is that it is well worth spending a few days to really learn the
container types in ELM, and save a lot of time not waiting for Dict lookups in the future.

CHAPTER 7

Algebraic Expressions

Every language needs nouns and verbs. Things, and what happens to them. In Computer
Science, we have data, and functions.

In this module, we define a language of the types of algebraic expressions you use in
Calculus.

type Exprs = Const F l o a t
| Var S t r i n g −− in math we of ten use Char
| Sqrt Exprs −− we can take s q r t (anything)
| IntPow Exprs I n t −− the easy case of exponent
| Exp Exprs −− e ˆ expr
| Ln Exprs
| Mult Exprs Exprs
| Add Exprs Exprs
| Neg Exprs

To save ourselves some headaches later, we do not allow expressions like xy, but restrict our
expressions to integer powers xn where n is an integer. In mathematics, we usually use a
single letter for a variable, but then we also end up using subscripts, superscripts, greek and
other alphabets and accents. Since ELM Strings are made up of Unicode characters, you can
pretty much do any of those things, as long as you can remember the keyboard tricks to type
them all in. I’ll stick to English words, contracted and sometimes squished together. We also
need the Var constructor, which signals that this particular String is the name of a variable.
In pen-and-paper mathematics, we would never write something like that. The same symbol
can mean different things in different contexts. We just need to remember which type of math
we are doing. This is even more clear for constants, where 0 could be a number zero, but it
could also be a function which is always zero, or a vector which is zero.

Since this data type refers to itself in some of its constructors, so we could call it a self-
referential data type. In some programming languages, this is harder to do, but it is so easy
to do in ELM that it hardly gets mentioned. It is, however, commonly called an algebraic
data type. Either way, is the mirror-image of the Divide & Conquer algorithms and you can
expect to see them here.

To make it easier to create examples, we predefine some variables

x = Var ”x”
y = Var ”y”
z = Var ”z”

so you can refer to them without needing to repeatedly type Var. For example

xXy = Mult x y

41

42 7. ALGEBRAIC EXPRESSIONS

You can now type in some of your favourite expressions that bring back fond memories of
High School math class. Here are some of our favourites:

example = Add (Const 7) (Mult (Const 4) (Add (Sqr t x) (Exp y)))
example2 = Add (Var ”x”) (Var ”y”)
example3 = Mult (Var ”z”) (Const 0)
example4 = Add (Sqr t (Mult (Var ”x”) (Const 0))) (Var ”y”)
example5 = (Sqr t ((Const 0)))
example4Again = Add (example5) (Var ”y”)

Once you’ve typed those in, I bet you have a hard time reading them. The Exprs language
is just not as easy to read as the mathematical expressions we are used to, but we can partially
fix that by adding a function to translate Exprs into a string of characters which look a lot
like pencil-and-paper expressions.

Expressions can get long and complicated, but we can always break them up into similar
pieces, and using Divide & Conquer means that we only have to figure out the simplest
possible expressions, and then let the function do all the work:

p r e t t y : Exprs −> S t r i n g
p r e t t y e = case e of

(Var name) −> name
(Mult expr1 expr2) −> ” (” ++ (p r e t t y expr1) ++ ”) ” ++ ” ∗ ” ++ ” (” ←↩

++ (p r e t t y expr2) ++ ”) ”
(Sqr t expr) −> ” s q r t (” ++ (p r e t t y expr) ++ ”) ”
(Const c) −> show c
(IntPow expr exponent) −> ” (” ++ (p r e t t y expr) ++ ”) ˆ (” ++ (show ←↩

exponent) ++”) ”
(Exp expr) −> ”e ˆ (”++ (p r e t t y expr) ++ ”) ”
(Ln expr) −> ” ln (”++ p r e t t y expr++ ”) ”
(Add expr1 expr2) −> (p r e t t y expr1) ++ ” + ” ++ (p r e t t y expr2)
(Neg expr) −> ”− (” ++ p r e t t y expr ++ ”) ”

Since our constants are not real numbers, but floating point approximations, we need
to know a bit about the difference. Floating-point numbers are like numbers in scientific
notation, they contain an exponent, and a fractional number with a fixed number of digits of
precision. Of course, the exponent and fractional part are stored in binary so the precision is
measured in binary digits (i.e., bits)–of which a Float has 53–and the maximum exponents
are 21023. Irrational numbers like

√
2 and π cannot be represented exactly, but other numbers

like 101 and 2.5 can. In addition to “normal” numbers, there are also special bit-patterns for
∞, −∞ and NaN (not-a-number). These numbers follow a standard representation in bits
created by a committee of the IEEE (Institute of Electrical and Electronics Engineers).

Knowing that these are only approximations, most people are not surprised that errors
can build up when real numbers are rounded-off to the best approximation, but most people
are surprised that NaN is not equal to itself. If you want your functions to work with Floats,
you need to be aware of this.

The main advantage of using IEEE standard numbers is that you can share your numbers
with people using other computers. The reason NaN is useful, is that you don’t need to test
for potential errors all over your code, you can let just check the final result with

isNaN : Float -> Bool

1. SIMPLIFICATION 43

because once a NaN is generated, it will propagate through the computation to the final result.
Adding, subtracting, taking an exponent, etc. of a NaN produces another NaN. This is really
important when we want to do a lot of calculations in parallel to make things faster. Since
NaNs propagate, all of our computations can work in parallel which allows CPUs to process
tens of operations at the same time, and GPUs to process many thousands all together. This is
really useful in imaging when we have millions of pixels all requiring the same calculations
to render a scene or reconstruct a medical image.

1. Simplification

s im pl i f y : Exprs −> Exprs

x · 0 7→ 0 (commutative)

s im pl i f y e = case e of
(Mult x (Const 0)) −> Const 0
(Mult (Const 0) x) −> Const 0

x1 7→ x

(IntPow x 1) −> x

x · x 7→ x2 Since we cannot match the same value twice in the Divide step, we have to match
x*y and add a condition that they be equal (x == y).

(Mult x y) −> case x == y of
True −> IntPow x 2
Fa l se −> Mult (s i mp l i f y x) (s i m pl i f y y)

xn ∗ x 7→ xn+1 is complicated, because we cannot use x twice on the LHS

(Mult (IntPow x n) y)
−> case x == y of

True −> IntPow x (n+1)
Fa l se −> Mult (IntPow (s i m pl i f y x) n) (←↩

s im pl i f y y)

x + 0 7→ x(commutative)

(Add x (Const 0)) −> x
(Add (Const 0) x) −> x

x ∗ 1 7→ x(commutative)

(Mult x (Const 1)) −> x
(Mult (Const 1) x) −> x

√
x2n 7→ xn√
x2n+1 7→ xn√x

(Sqr t (IntPow x exponent))
−> case exponent % 2 of −− remainder

0 −> IntPow x (exponent // 2)
−> Mult (IntPow x (exponent // 2)) (Sqr t x)

44 7. ALGEBRAIC EXPRESSIONS

In the next rules, we check to see if an operation is applied to a constant, in which case we
can calculate the result right away, because there are no variables involved.

√
Const c 7→

Const
√

c

(Sqr t (Const c)) −> Const (s q r t c)

The same works for the other operations

(Add (Const c1) (Const c2)) −> Const (c1 + c2)
(IntPow (Const c) n) −> Const (c ˆ n)
(Exp (Const c)) −> Const (e ˆ c)
(Ln (Const c)) −> Const (logBase e c)
(Neg (Const c)) −> Const (−c)

NaN + x 7→ NaN (this one is tricky)

(Add (Const x) y)
−> case isNaN x of

True −> Const x
Fa l se −> Add (Const x) (s i mp l i f y y)

If none of the above patterns is matched, we have to look deeper in the expression tree to
find something to simplify. This is the Divide step! Since there are multiple data constructors
which contain subexpressions, we need multiple rules to implement the Divide step. All of
the rules are similar to e1 ∗ e2 7→ simplify(e1) ∗ simplify(e2)

(Mult expr1 expr2) −> Mult (s i mp l i f y expr1) (s i m pl i f y expr2)

but each handles a different outermost operation:

(Add expr1 expr2) −> Add (s i mp l i f y expr1) (s i mp l i f y expr2)
(Sqr t expr1) −> Sqrt (s i m pl i f y expr1)
(IntPow expr1 n) −> IntPow (s i mp l i f y expr1) n
(Exp expr1) −> Exp (s i mp l i f y expr1)
(Ln expr1) −> Ln (s im pl i fy expr1)
(Neg expr1) −> Neg (s im pl i f y expr1)
(Const c) −> Const c
(Var name) −> Var name

Now each time we apply the simplify function, it searches the expression tree for a
pattern for which it has a rule, and applies that rule. Most expressions can be simplified
by more than one rule, and sometimes the second pattern we simplify is partially created
by applying the first rule. We need a way to keep applying rules until there are no more
rules which apply. The easy way to do this is to apply simplify and check to see if the new
expression is the same

s i m p l i f y U n t i l I t S t o p s x = l e t xNew = s im pl i f y x
in case xNew == x | | isConstNaN x of

True −> x
Fa l se −> s im pl i f y xNew

where we use a helper function which checks for a NaN input, since NaN is defined to be
not equal to anything, including itself!

isConstNaN x = case x of

2. DERIVATIVES 45

(Const x) −> isNaN x
y −> Fa lse

2. Derivatives

Derivation is an operation which turns a an expression defining a continuous funciton
and produces a new expression defining the slope of the tangent to the function at each
point. We call this the derivative. In ELM, we everything we do is a function, and we can
translate the last sentence into this type

deriv : S t r i n g {− v a r i a b l e with r e s p e c t to which we take the d e r i v a t i v e −}
−> Exprs
−> Exprs

adding in the fact that we take the derivative with respect to a particular variable (which is
defined by a string)–this is something we may expect a person to assume.

We define the function by encoding all the basic rules about derivatives one case at a time.
If the funciton is constant, of course, the slope is zero:

deriv varName e
= case e of

(Const c) −> Const 0

for example d/dx(x) = 1 and d/dx(u) = 0 (as long as u is not the variable with respect to
which we are taking the derivative.

A variable, on the other hand, has derivative 1 if it is the right variable:

(Var name) −> case varName == name of
True −> Const 1
Fa l se −> Const 0

and the derivative of a sum is the sum of the derivatives:

(Add e1 e2) −> Add (deriv varName e1) (der iv varName e2)

Did you notice Divide & Conquer being applied in the last rule? The remaining rules will
also implement D & C, but the combine steps get more complicated.

Let’s start with the product rule:

(Mult e1 e2) −> Add (Mult (deriv varName e1) e2)
(Mult e1 (deriv varName e2))

The remaining cases are rules which are familiar from Calculus, and some of them we call
the Chain Rule.

(Neg e1) −> Neg (deriv varName e1)
(Sqr t e1) −> Mult (Const 0 . 5) (Mult (IntPow (Sqr t e1) (−1))

(der iv varName e1)
)

where, to see the application of the chain rule, we could write f (x) for e1 and f ′(x) for
deriv varName e1:

∂

∂x

√
f (x) =

1
2

1√
f (x)

f ′(x).

(IntPow e1 n) −> Mult (Mult (Const (t o F l o a t n)) (IntPow e1 (n−1)))

46 7. ALGEBRAIC EXPRESSIONS

(der iv varName e1)
(Exp e1) −> Mult (der iv varName e1) (Exp e1)
(Ln e1) −> Mult (IntPow e1 (−1))

(der iv varName e1)

CHAPTER 8

Say Goodbye to Mediocre Presentations, and Closed Types

As a growing ELM programmer you have probably noticed your enjoyment of life goes
up as your brainpower expands, but even as your life gets better, there is a dark force eroding
the foundations of the space-time continuum. Listen carefully, and you may be able to Yes, I
am –speaking– writing out-loud about hear the droning from boardrooms across the planet
caused by needlessly mediocre slide presentations.

Be part of the solution! Write your presentations in ELM!

To get you started, I’ve created a template for a slide presentation, in which arrow keys
advance (and retreat) through your slides, and each slide has an animation, which restarts
whenever you come back to a slide. To make this work, we need to get Signals generated
when arrow keys are pressed, and to animate the slides, we need a time signal. Since there
are two types of Signals we respond to, we need to bring them together in a union type

type Events = Arrows {x : Int , y : I n t }
| TimeIncrease F l o a t

which captures the types of Signals we process, and a we merge the two streams of Signals
with a function mysteriously called merge

events : S igna l Events
events =

S igna l . merge
(S igna l . map Arrows Keyboard . arrows)
(S igna l . map TimeIncrease (fps 40))

In addition to recording the cause of the latest signal, so we can do the right thing, the Event

type solves a typing problem for us, namely, the fact that Keyboard.arrows and fps 40 have
different types. Since they have different types, we cannot put them in an ELM List, un-
like English lists which allow mixed categories and even parts of speech in one lists—cows,
pontificate, nicely1.

main = Signal.map view ¡— Signal.foldp update (0,1) events
– the update has to handle both types of signals update event (t,idx) = case event of – if

an arrow is pressed, move to another slide, and reset time Arrows arrows -¿ (0 , moveIdx
arrows idx) – if time goes by, update the time in the state (for animations) TimeIncrease dt -¿
(t + 0.001 * dt, idx)

1Duck your head while contrarians pounce on this one: since all of these are words, they do form a homo-
geneous list. But I think you know what I mean, and helps explain why English is a terrible language in which
to program computers!

47

48 8. SAY GOODBYE TO MEDIOCRE PRESENTATIONS, AND CLOSED TYPES

– to avoid going past the first/last slides, check before changing – the slide index moveIdx
arrows oldIdx = case arrows.x of 1 -¿ if oldIdx + 1 ¡ Array.length slides then oldIdx + 1 else
oldIdx (-1) -¿ if oldIdx ¿ 0 then oldIdx - 1 else oldIdx otherwise -¿ oldIdx

– even though we cannot go past the last slide, – we need to check that the slide lookup
in the array of slides works – and display a blank collage if we are out of range view (t,idx)
= case Array.get idx slides of Just slide -¿ slide t Nothing -¿ collage 400 400 []

– the list of slides is stored in an array (because this is O(1) lookup) slides = Array.fromList
[slide1,slide2,slide3]

slide1 t = collage 400 400 [filled blue (circle 10) —¿ move (100*sin t,0)]
slide2 t = collage 400 400 [filled purple (circle 10) —¿ move (100*sin t,0)]
slide3 t = collage 400 400 [filled red (circle 10) —¿ move (100*sin t,0)]

CHAPTER 9

Wires & Switches

Do you remember a time when your parents thought you were sleeping, but you were really
making secret plans via flashlight signals with your accomplice? You were encoding information by
turning the flashlight ON and OFF (or maybe by using long and short flashes).

Inside every iPad or smartphone is a computer crammed with billions of wires, tiny ver-
sions of the wires connecting a flashlight’s battery and light, and all the pictures, texts, and
numbers you put into that device are encoded into groups of ON and OFF states.

Every spelling mistake you fix or sketch you make happens by flipping switches.
How can we do all that with ON and OFF? Well, first of all, we have billions of switches

in here, and we are very organized!
To start, let’s agree that ON will mean 1 and OFF 0. Just as with normal decimal numbers,

we can group these bits (short for binary digits, bi meaning two) to make bigger numbers.
Counting in binary:

decimal 0 1 2 3 4 5 6 · · ·
binary 0 1 10 11 100 101 110 · · ·

You get the idea!
Starting with something as simple as on/off, we have built up a system of numbers. Letters

are easy, just number them 1 for A, 2 for B, and so on, and we can encode text. If you write
fancy text, you will need Unicode1, which is an agreed encoding of any symbol you are likely
to need, and even of symbols for the undeciphered Linear A script of Minoa (ancient Greece),
and—just in case you find a recipe to turn dust into gold—mediaeval alchemical symbols.

Images are also easy to encode. Chop them into little squares, and encode the intensity
of the primary colours in each square as a number. If you really are reading this on an iPad,
you can try this out with our free app Image 2 Bits, for black = 1 and white = 0 images.

One thing I cannot explain is why all of our technology based on binary encoding is called
digital2!

1. CPU

So encoding information as on/off choices is not hard, but how do we process that in-
formation? While decoding images and text can be a interesting mental exercise, the real
advantage of the information revolution is not just the better storage of information, but the
ability of computing machinery to process it for us. Think about it, even looking something
up on the internet involves many computers processing that information. The computer at
the source needs to separate the information you want from all the other information, then
it needs to find a path through the web of the internet to send that information back to your
computer, then your computer needs to make the answer visible or audible to you. Ok, now

1http://www.unicode.org
2Wikipedia blames it on the mathematician George Stibitz.

49

http://www.unicode.org

50 9. WIRES & SWITCHES

you can ask the internet “Are there really butterflies in my stomach?” and all your other
pressing questions.

What puts the “automatic” in automatic data processing is the ability of the billions of
switches in our favourite information appliances to turn on and off in response to other
switches, and by really cleverly connecting those switches together with tiny wires. Every
year, those switches and wires are made even smaller, so that today you could not even see
the individual switches with a microscope. Normal light is just too “big” to see them. This
helps in two ways: smaller switches using less material are cheaper, and information gets
around faster ask distances shrink, since all information has to obey one speed limit—the
speed of light3.

Realistically, I’m going to need to skip some steps in order to explain how a billion
switches are organized into a CPU. So rather than building up complexity step by step, let’s
use an approach which works for developers of business software: model the data and then
the processes. A difficult client may not be able to tell you what the data is, and when they
explain the processes involved, they will skip a bunch, but if you cannot put these two things
down on paper, you better hope you are getting paid by the hour and not for finishing the
job.

So what is the data we need to worry about. If you know something about what science
has uncovered about the processor you carry around in your head, you know that everyone
has a measurable ability to juggle a small number of facts at once. This is called short term
memory, and for most people it is about seven numbers, and although you can improve
it with training, it will not change by much. On the other hand, even small changes can
have big impacts on how good you are at logical thinking—solving logic puzzles and math
problems. Once you get past that small number of facts you can juggle, you need another
mechanism. Most of us were taught to write out all the facts in a problem before trying
to solve it. This “outsources” the juggling problem to a piece of paper, and it is even more
effective if you can create some kind of diagram to connect your data together. This is exactly
why state diagrams are so useful in helping us design complex software, or helping us make
sure what we implement really does what it is supposed to do.

Why do we have such a small working memory? Well, I am not an expert in evolutionary
biology, but if you accept the fact that our brain uses energy and oxygen4 and taking things
to the limit, a very smart human who did not have much energy left for running probably
would not have survived very long in the African savannah, so it is clear that there was
evolutionary pressure not to make the brain too big. On the other hand, remembering that
our cousins who decided to live in caves with tigers do not come to our birthday party any
more, and being able to conclude that keeping a distance from known tiger haunts would
keep us alive. So clearly there is a good balance there. The really amazing thing is that the
evolutionary pressures of a million years ago produced a brain which can survive in the
information age.

In a central processing unit, a CPU, there is also a trade-off, but for registers, which are
the CPUs version of working memory, the trade-off is in speed and cost but not energy.

3There is actually a method of appearing to send information faster than light using the separation of par-
ticles coupled by quantum mechanical mechanisms, but only by spending even longer to separate the particles
in the first place.

4Actually, the brain uses more than its share of oxygen by weight, about a quarter of your body’s sup-
ply, which is physical training is a good way to boost your capacity to write exams or get complicated ELM
programs to work.

1. CPU 51

To organize billions of dynamic switches, we organize them in cascading networks, which
we can imagine as inputs starting at the top and feeding the first row of switches, whose
outputs feed the second row of switches, and so on. So that they can do more than one
computation, once the first row of switches has changed in response to its inputs, a second
set of inputs can be processed. This is similar to how the foldp function applies a function
to a list of signal inputs and the current state. In this case, the current state would be the
output of the row of switches, and dependence on the current state would be implemented
as wires which loop from the outputs back to the inputs. Although we did not need to chain
together multiple foldp, you could imagine that more complicated programs may need to
do so. Since the basic building block of computation is a simple switch, we cannot really
do anything without many rows, which would be the equivalent of many foldps chained
together.

In our ELM programs, new signals came from user interaction or timers set to create
signals, like fps, which creates signals a number of times every second. In the CPU, so that
in inputs do not arrive before the outputs are ready, each row of switches is separated from
the previous one by a special row of switches called latches because they latch onto an output
of the previous row, and maintain it as the input of the next row until a secondary signal
causes them to drop the old value and pick up new input values. The trick of designing high
performance CPUs is to create switch geometries such that the slowest switch anywhere in
the CPU is as fast as possible. Once this time is known, a signal which turns on and off at
this speed is provided as an input to every latch in the CPU, and 0 and 1 values will march
from row to row at the rate of this signal. This is what is called the clock rate, and currently
measured in gigahertz (GHz), meaning that 0s and 1s march through each row several billion
times per second.

At this point, is challenging, but possible, to design the main components of a CPU, what
we call ALUs, arithmetic logic units, which take rows of inputs representing binary numbers
or lists of bits, and after a few or a few 10s of rows, output the addition or multiplication of
the inputs as binary numbers, or perform logical operations on the individual binary digits
(bits). To keep things moving, we need to quickly retrieve inputs and store outputs to short-
term memory. Since electrical signals can at most travel as fast as the speed of light, larger
short-term memories, requiring more switches, and therefore more area on the CPU lead
to larger wires, and slower retrieval and storage. It turns out that seven is also about how
many registers were found to make efficient CPUs, with the earliest CPUs having only a few,
and for a long time most CPUs having eight registers. It is only relatively recently that more
complicated CPU designs have made it practical to have much larger numbers of registers
(32,64, or even 128).

Just as people used pencil and paper, and library books to store a larger number of facts
before the age of computing machinery, the CPU has the capacity to store more facts than
fit in working memory, and in the CPU these are mostly stored as RAM (random access
memory) and on hard drives5.

So to get back to our model of data in the CPU we will stick to eight registers (containing
integers

type a l i a s Regis terValue = I n t

5Actually, much of the performance improvements in recent years have come from new classes of memory
which change the trade-off between speed and cost.

52 9. WIRES & SWITCHES

) which gives us a data model

type CPUState = CPUState (RegisterValue , Regis terValue
, RegisterValue , Regis terValue
, RegisterValue , Regis terValue
, RegisterValue , Regis terValue)

Which would be enough if our CPUs did the same computation over and over, but unlike a
cement mixer, which can only mix cement (or perhaps dough for the worlds largest pizza),
CPUs are so valuable because they can do any computation we can think of. To handle this,
we need to be able to program them, we we do by giving them a list of instructions. Think of
it as a task list, which is not useful if you do not track completed tasks. We do this by adding

C u r r e n t I n s t r u c t i o n

(another type alias for Int) to the data model. But with such a model, we would still need
to write a different program for each set of possibilities in a program, since there is only one
list. If, however, we had the possibility to make tests of the current state and jump around
in the list of instructions, we can have one program which can write personalized birthday
invitations to our friends and address each of them in their native language. To handle the
jumping, we add the result of the last comparison.

ComparisonResult

And, finally, assuming there is a finally for our program, we need

(Maybe HaltedBecause)

to indicate whether the CPU has reached the end of the program, stopped because there was
an error,

type HaltedBecause = ReachedHalt
| I l legalRegis terNum
| I l l e g a l A d d r e s s
| I l l e g a l I n s t r A d d r e s s

or, in the case of Nothing, is still running our program.
Our processor will only make simple numerical comparisons, which we can model with

ELM’s Order type

type a l i a s ComparisonResult = Order

Next, in the language of business6 software development, we need to list the processes.
We can list them from the software point of view as instructions

type I n s t r u c t i o n = Load RegisterNumber RegisterNumber RegisterNumber

6People in business don’t like that name, so they call it Enterprise Software.

1. CPU 53

is an instruction to move a value from main memory to a register. By convention, the first
listed register number is the destination, and the address is the sum of the second two register
values. If the address does not exist, the processor must halt with an error.

| Store RegisterNumber RegisterNumber RegisterNumber

is an instruction to move a value from a register to main memory. By convention, the first
listed register number is the source register, and the destination address is the sum of the
second two register values. If the address does not exist, the processor must halt with an
error.

| LoadImmediate RegisterNumber Regis terValue

Sometimes, a value is always the same, so we don’t need to bother putting it in main memory,
we have this special instruction to load the value contained in the instruction.

| Add RegisterNumber RegisterNumber RegisterNumber

This is the first instruction which calculates a new value, in this case, and addition of integers.
By convention, the first listed register number is the destination, and the values in the second
two registers are added.

| Multiply RegisterNumber RegisterNumber RegisterNumber

Similarly, the first listed register number is the destination, and the values in the second two
registers are multiplied.

| And RegisterNumber RegisterNumber RegisterNumber
| Or RegisterNumber RegisterNumber RegisterNumber

Ass with add and multiply, and and or take two inputs and put an output back in the first
register, but instead of treating the bits in the register a number, they treat them as a bunch
of bits and perform logical operations on each of the bits. For example

0 0 1 1
And 0 1 0 1

= 0 0 0 1
and

0 0 1 1
Or 0 1 0 1
= 0 1 1 1

shows the results of Anding and Oring 4-bit numbers, although our RegisterValues are 32-
bits wide.

| Not RegisterNumber RegisterNumber

Not reverses the bits.
Not 0 1 0 1

= 1 0 1 0

| Rotate RegisterNumber RegisterNumber I n t

54 9. WIRES & SWITCHES

while Rotate spins them around to the right,

00001000 rotate 1−→ 00000100, 11000000 rotate 6−→ 00000011, 00000001 rotate 1−→ 10000000,

putting them back in on the left when they fall off the end. (Again shown with shorter 8-bit
numbers rather than the normal 32-bits.)

Doing different things depending on input data, or different user actions is accomplished
at the CPU level by being able to compare numbers and then jump to a different instruction
in the the machine program rather than continuing, only if the conditions are true.

| Compare RegisterNumber RegisterNumber

does the comparisons of two register values, and puts the result of the compare into the
CPUState.

| Branch (L i s t ComparisonResult) RegisterNumber

optionally jumps to an instruction number given by the specified register if the current con-
dition in the CPUState is in the List of ComparisonResults.

And finally, when our program is really finished, we can save electricity and turn our
CPU off with the Halt instruction.

| Halt

For safety, there should always be a Halt at the end of the list of instructions, even if the
CPU will never get there because of Branches. In particular, if all the conditions are listed,
the CPU will always jump to the indicated location in the program!

2. Traces

Just like an accident investigator for the Transportation Safety Board, if something goes
wrong with a machine program, we need to retrace the steps which led to the illegal instruc-
tion or incorrect result. For the simplified CPU we are studying, all we need to know are the
initial CPU state and memory state and the program, because our CPU is deterministic—it
will always arrive at the same result when starting with the same inputs7.

Given the program,
number instruction

(0, LoadImmediate 7 2),

(1, LoadImmediate 2 1),

(2, LoadImmediate 3 3),

(3, LoadImmediate 4 (-1)),

(4, LoadImmediate 5 16),

(5, LoadImmediate 6 6),

(6, Multiply 2 7 2),

(7, Compare 2 5),

7If you are an aficionado of computer games, you may be puzzled by the apparent random events which
happen in your games! Even on deterministic CPUs, we can fake randomness by using some data which
changes as an input. For a game, the start time of the game, measured in seconds from 1970, is generally
random enough, but for more serious matters, like choosing random seeds to encrypt our secret messages,
most CPUs have even better ways of generating random numbers.

2. TRACES 55

(8, Branch [LT] 6),

(9, Halt)

we can write out the state of the CPU at each instruction, and obtain a program trace:
clock
time

current
instructn

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Condition

1 0 0 0 0 0 0 0 0 0 EQ
2 1 0 0 0 0 0 0 2 0 EQ
3 2 0 1 0 0 0 0 2 0 EQ
4 3 0 1 3 0 0 0 2 0 EQ
5 4 0 1 3 -1 0 0 2 0 EQ
6 5 0 1 3 -1 16 0 2 0 EQ
7 6 0 1 3 -1 16 6 2 0 EQ
8 7 0 2 3 -1 16 6 2 0 EQ
9 8 0 2 3 -1 16 6 2 0 LT
10 6 0 2 3 -1 16 6 2 0 LT
11 7 0 4 3 -1 16 6 2 0 LT
12 8 0 4 3 -1 16 6 2 0 LT
13 6 0 4 3 -1 16 6 2 0 LT
14 7 0 8 3 -1 16 6 2 0 LT
15 8 0 8 3 -1 16 6 2 0 LT
16 6 0 8 3 -1 16 6 2 0 LT
17 7 0 16 3 -1 16 6 2 0 LT
18 8 0 16 3 -1 16 6 2 0 EQ
19 9 0 16 3 -1 16 6 2 0 EQ

10

Creating a trace is a good way of checking your intuition about what a program does. It
is also recommended, along with two sudokus and ten servings of vegetables and fruit as
part of your daily diet, and is a favourite question to put on tests and exams, because it really
tests your knowledge of the CPU state and transition functions—and it takes a while to fill
out, giving the teacher a time for a nap. Unless you happen to be an artificial intelligence,
and you are labouring with the limitations of the human brain, including the tendency to get
bored or complacent and make silly mistakes, this is a good question to double check!

	Preface
	Chapter 1. Tower of Hanoi
	Chapter 2. map and Assembly Lines
	1. Map

	Chapter 3. To be or not to be in the Basement
	1. State Diagrams
	2. Implementing in ELM
	3. The StateDiagrams Module

	Chapter 4. Fold, Signals and Functional Reactive Programming
	Chapter 5. GraphicSVG
	1. Shapes
	2. Moving Shapes
	3. Custom Colours
	4. Groups Can Make Life Easy
	5. Repetitive Patterns using map
	6. Serpenski's Triangle

	Chapter 6. Complexity, or Why You Probably Want to Use Dict
	1. Simply Fast

	Chapter 7. Algebraic Expressions
	1. Simplification
	2. Derivatives

	Chapter 8. Say Goodbye to Mediocre Presentations, and Closed Types
	Chapter 9. Wires & Switches
	1. CPU
	2. Traces

