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Abstract

This paper is motivated by trends in proces-
sor models of which the Cell BE is an exem-
plar, and by the need to reliably apply multi-
level code optimizations in safety-critical code
to achieve high performance and small code
size.

A MultiLoop is a loop specification con-
struct designed to expose in a structured way
details of instruction scheduling needed for
performance-enhancing transformations. We
show by example how it may be used to make
better use of underlying hardware features, in-
cluding software branch prediction and SIMD
instructions. In each case, the use of Multi-
Loop transformations allows us to take full ad-
vantage of software branch prediction to com-
pletely eliminate branch misses in our sched-
uled code, and reduce the cost of loop overhead
by using SIMD vector instructions.

Given the novelty of our representation, it
is important to demonstrate feasibility (of zero
branch misses) and evaluate performance (of
transformations) on a wide set of representative
examples from numerical computation. We in-
clude simple loops, nested loops, sequentially-
composed loops, and loops containing control
flow. In some cases we obtain significant ben-
efits: halving execution time, and halving code
size. As many details as possible are provided
for other compiler writers wishing to adopt our
innovative transformations, including instruc-
tion selection for SIMD-aware control flow.

Copyright c© 2007 Christopher Kumar Anand and
Wolfram Kahl.

1 Introduction

In the context of the move to multiple light-
weight with increasingly-powerful SIMD sup-
port, we have reexamined the way control
flow and particularly loops are specified, and
present here a more general construction called
a MultiLoop. The idea is to provide a vo-
cabulary for high-level programmers to provide
hints to instruction scheduling.

We analyse four representative examples
of numerical calculations relative to the Cell
Broadband Engine’s Synergistic Processing
Units (SPUs) [8], and find that the types of
changes in instruction selection and schedul-
ing enabled by the more general specification
make a large difference in terms of execution
efficiency and code size. Since MultiLoops con-
tains normal loops as a special case, adoption of
the MultiLoop only adds implementation pos-
sibilities. The MultiLoop is aimed at medium-
level code transformations which imply con-
straints on instruction schedules, but not at
low-level scheduling itself.

Yet we have found significant potential for
increased performance by rethinking standard
patterns of code generation. Specifically, we
address the following features which are not
standardized across architectures:

1. software branch prediction,

2. SIMD parallelism,

3. two-way dispatch executing “arithmetic”
and “data movement” in parallel.

In our examples, all branches can be correctly
hinted so that branch misses do not occur, and
loop overhead can be largely shifted from the
bottlenecked arithmetic pipeline to the non-
arithmetic pipeline.

1
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SPU Pipelines To simplify the discussion
for readers who are not familiar with the SPU
ISA and programming model, we refer to the
two execution pipelines as “arithmetic” and
“non-arithmetic”, because this is a good ap-
proximation of the division of instructions han-
dled by the two pipelines, and this division is
very natural across processor families. Specific
measurable claims are always made with re-
spect to the division of execution as defined in
the programming model, see [2] for details of
that model. In the literature, the arithmetic
and non-arithmetic SPU pipelines are called
the even and odd pipelines in the literature,
as a result of alignment requirements for max-
imum instruction dispatch.

Pipelined Loops Since the point of defin-
ing new control flow structures is to achieve
higher levels of performance, we recall the best
conventional approach to efficient loop imple-
mentation: software pipelined loops. Figure 1
shows a simple loop structure with three blocks
such that the middle block depends on outputs
of the top block, and the bottom block depends
only on outputs of the first block. The left is
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Figure 1: Left: a simple loop as it would ap-
pear in a high-level language, with three stages
executed in sequence. Middle: a software-
pipelined version of the loop, with stages are
executed in parallel, prologue and epilogue.
Right: without prologue and epilogue addi-
tional stages.

the usual view in a high-level language, and
other two are software-pipelined versions. Hor-
izontal juxtaposition of blocks means that the

blocks are scheduled in parallel (interleaved on
a processor with finite superscalar resources);
the labels are the logical iteration numbers,
which we define to be the iteration number of
the loop in the standard (left) presentation.

In the version including loop prologue and
epilogue (middle), the loop is equivalent to the
original in the sense that the same instructions
are executed (although in different orders) on
the same data.

Without loop prologue and epilogue (right),
we could get the same performance with one
third the code, but we do not get the same ex-
ecution. Using MultiLoop generators, we can
meet loser specifications without significant ad-
ditional cost.

Contribution: In this paper we present a
class of MultiLoop control flow patterns, show
how several typical numerical tasks can be
formulated as MultiLoops, and introduce two
MultiLoop transformation schemes that pro-
duce efficiently schedulable code. Both trans-
formations generalize software pipelining as
presented above.

Four examples demonstrate the applicability
of these transformations, and give some hint as
to the applications which will benefit the most.
In particular, the Map example shows signif-
icant improvement and we present the loop
overhead in enough detail for other compiler
writers to implement as part of instruction se-
lection.

Overview: In the next section, we review the
aspects if the SPU instruction set relevant for
this paper. Then we define and discuss the
MultiLoop control structure and its transfor-
mations in Sect. 3, present examples in Sect. 4,
and discuss related work in Sect. 5.

2 SIMD and the SPU ISA

Single Instruction Multiple Data (SIMD) in-
structions operate on more than one data
element in parallel. They were introduced
into commodity processors to accelerate multi-
media synthesis and processing. These in-
struction set architectures (ISAs) are di-
verse in structure and implementation, with
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VMX/Altivec [5] on Power and SSE [12] on x87
being the best-known.

Data Flow The SPU ISA [6] uses 128-bit
operands, in common with VMX and SSE. It
contains a rich set of operations formed by di-
viding the 128-bit operands into 8-, 16-, 32-
or 64-bit quantities and performing the usual
scalar operations independently on each. See
Fig. 2, for an example 32-bit add instruction
operating on four elements. This results in a

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

+ + + +

Figure 2: fma, a 32-bit add operating on two
128-bit wide operands.

useful level of parallelism, but introduces align-
ment issues in data. As a result, all SIMD
instruction sets have some instructions to re-
arrange data. Two approaches are possible, a
large set of instructions with specific functions
(e.g. unpacking pixel data into vectors by com-
ponent), or a small set of software-controllable
instructions. All ISAs follow a middle path,
with genericity increasing from SSE to VMX
to SPU ISA. The instructions of most use in
synthesizing loop overhead are the byte per-
mute instruction shufb (analogous to VMX’s
vperm), shown in Fig. 3, and quadword rotate
instructions, including rotqbii, which rotates
the whole 128-bit vector up to 7 bits (immedi-
ate argument) left; this is the preferred register
move instruction.

As shown in Fig. 3, SPU byte permutation
can be used to move 32-bit components from
one slot to another one (useful for transposing
single-precision floating point matrices, for ex-
ample), or duplicate bytes. It can rotate bytes
through cycles, which can be used to count
through loop induction variables when the loop
sizes are known at compile time. Byte and bit
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Figure 3: shufb byte permutation taking two
source operands (coloured) and an operand of
byte indices.

rotate instructions take both immediate counts
and counts from operand registers.

Storage Model As we move to higher lev-
els of parallelism on a chip, which Cell is pio-
neering, the overhead associated with a shared
memory space (page tables, cache coherency,
etc.) will increase superlinearly. To avoid this,
the Cell processor’s SPU compute engines have
their own local stores (LSs), and use DMA to
transfer data to and from system memory. This
has the positive effect that access to local mem-
ory can be as predictable as accesses which hit
in L1 cache on a normal processor. Unfortu-
nately, it means that all code required for a
particular task must be copied to the LS.

This puts a premium on achieving small code
sizes, and changes the assumptions we can
make about loops. Since input and output
data on such light-weight engines will have to
be transfered to and from local storage in di-
gestible chunks, many more loop lengths will be
knowable at compile time — especially if code
is compiled just-in-time before distribution to
multiple light-weight cores. The SPU’s Lo-
cal Stores are direct-mapped with wrap-around
addressing, and no memory protection. As a
result loads cannot raise segmentation faults,
which makes it easier to replace clean-up code,
prologues and epilogues with extra loop itera-
tions, thus reducing code size.

Control Flow To produce efficient loop im-
plementations at the single SPU level, we ex-
ploit branch hinting, which does not effect the
results of execution, only timing. The hbr in-
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struction takes as an immediate argument the
location of a branch, and (as a register argu-
ment) the branch target.

Branch miss penalties have grown with in-
creasing hardware pipelining within micropro-
cessors. Hardware branch prediction requires
additional circuits not required by the archi-
tected instructions. It is a natural feature
to omit from compact processing elements de-
signed for heterogeneous parallelism on a chip
systems, like Cell.

3 MultiLoop Code Graphs

For hand-coded assembly language kernels, ex-
perts use certain patterns of efficient control
flow. It is a meta-goal of the Coconut project to
capture such patterns and abstract them into
either code graph transformations at the level
of our intermediate language, or into transla-
tors from higher-level structures into assembly
language.

MultiLoops make it easy to express such
patterns. They are the target of transforma-
tions from operations normally represented by
nested or sequentially composed loops, and al-
low the folding of multiple branches into single
branches. On the SPU, only a single branch
hint is active at a time, so a successful strategy
for software predicting branches can only work
if branches are sparse.

Intermediate Language All intermediate
structures take the form of labelled hyper-
graphs and nested hypergraphs. We do not use
anything similar to a register transfer language.

Straight-line computation is expressed in
code graphs [7]; these are data-flow hyper-
graphs with nodes corresponding to register
values or generalised state component values,
and with hyper-edges labelled by assembly in-
structions; these hyper-edges can have multi-
ple inputs and outputs according to the argu-
ments they use and the results they produce
(see Fig. 13 in Sect. 4.2 for an example).

Our code graphs are strictly more expressive
than data dependency graphs used in compi-
lation algorithms based on Single Static As-
signment (SSA), because state information is
explicitly represented as nodes separate from

data.
These data-flow-level code graphs are used as

edge labels for non-branching edges in nested
hypergraphs where the outer level represents
control flow:
Definition 3.1 A control-flow arrangement
(CFA) is a directed hypergraph with two kinds
of hyper-edges, distinguished by their labels:

• A code graph edge, or stage edge, is la-
belled with a code graph, and has exactly
one input node and one output node, la-
belled according to the input and output
types of the code graph.

• A control flow edge is labelled with a
control-flow assembly instructions that
cannot occur in the data-flow level.

Besides control-flow edges, another aspect of
control flow is the existence of control-flow join
nodes, i.e., nodes that are output nodes of more
than one edge.

Certain properties of CFAs are important:
Definition 3.2 A control-flow arrangement is
called

• deterministic iff each node has only one
outgoing edge;

• concurrent iff some control flow edge has
more than one input node (e.g., synchro-
nisation primitives);

• sequential iff all control edges have exactly
one input node;

• tight iff each node immediately adjacent
to at least two code graph edges is a
control-flow join node.

Control flow edges with more than one output
node are also called branching edges.

For this paper, we are only interested in a re-
stricted kind of CFA; we chose the name since
the original motivation was that of a gener-
alised deterministic non-concurrent loop spec-
ification that essentially can be seen as imple-
menting a “loop with multiple bodies”:
Definition 3.3 A MultiLoop is a deterministic
sequential CFA.

For example, Fig. 4 (Left) shows a MultiLoop
for the loop pipelining shown in the introduc-
tion, in Fig. 1. This CFA is not tight since it
contains the sequence S1, S2, S3 of code graph
edges (the stages) without intervening control
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Figure 4: Left: MultiLoop for three-staged
loop pipelining. Right: Tight MultiLoop of
simple loop.

flow joins; this sequence is semantically equiva-
lent to a single code graph node containing the
sequential composition Body = S1 ; S2 ; S3 of
the three stage graphs. Such a non-tight CFA
can be tightened by replacing such sequences
with the results of the corresponding sequen-
tial composition; in this case, the correspond-
ing tight MultiLoop has a single Body edge in-
side the loop, shown in Fig. 4 (Right). In both
cases, the node below the initCG code graph
edge is a control-flow join node, and the bi hy-
peredge is a branching edge.

From a scheduling point of view, the goal
of intermediate code generation is to obtain
a tight MultiLoop where typically there is a
branch after every code graph edge, each code
graph can be densely scheduled, and each code
graph is sufficiently deep to hint its branch in
time.

However, just tightening a non-tight Multi-
Loop does not normally achieve this goal.

Some function bodies are designed or gener-
ated directly as non-tight MultiLoops, for ex-
ample when a common pattern underlies the
generated code. Other function bodies are gen-
erated first as tight MultiLoops, and then “ar-
ranged” into MultiLoops with longer stage se-
quences, for example using the heuristic for
loop pipelining stage separation described in

[17]. There are also cases where a function
body is first generated as a non-tight Mul-
tiLoop, and then re-arranged into a differ-
ent non-tight MultiLoop, with additional con-
straints imposed by the original staging. An
example for this will be explained in Sect. 4.2;
we show the original non-tight version in Fig. 5
to the left, and to the right the re-arranged
version where midCG has been split as sequen-
tial composition midCG = m1; m2, and the
two halves have been integrated into the ad-
jacent stages, yielding Top1CG = top1CG; m1

and Bot12CG = m2; bot12CG etc..

MM8x8Top1

top1CG
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midCG

MM8x8Mid2

bot12CG

MM8x8Top23 * Control

bi
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top23CG
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bot12CG

MM8x8Top23 * Control
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MM8x8Top1 * Control
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MM8x8Top1 * Control
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1
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0
1

0

1

0

1

Figure 5: Left: Source MultiLoop for Matrix
Multiplication Right: Re-arranged version.

The scheduling objectives are then achieved via
MultiLoop transformations, and in Sect. 4 we
show example applications for the two high-
level transformations described in the follow-
ing.
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MultiLoop Pipelining: A loop body
software-pipelined into n stages processes
data from n consecutive logical iterations in
parallel. This approach can also be used for
more complex MultiLoops. While in the case
of simple loops, as in Fig. 4 (Left), those n
data sets are always processed by the same set
of the n stages of the loop body, in a more
general MultiLoop, different combinations of
n stage graphs will be needed to process data
from n consecutive logical iterations.

Although for arbitrary code graphs, the code
size could multiply by a factor exponential in
n, if this is done for a highly regular Multi-
Loop, with a small set of equal stage graphs
occurring with the same periodicity in differ-
ent sequences, then performing this pipelining
transformation followed by a minimization step
can lead to tight MultiLoops with no or small
code size increase.

The examples presented in sections 4.1 and
4.4 rely on the MultiLoop pipelining transfor-
mation.

MultiLoop Re-Sequencing: The initial
and final parts of many loop bodies are hard to
schedule densely, since there are frequently too
many dependencies in these regions. Since not
all of these dependencies carry across the loop
boundary, however, moving the boundaries im-
proves efficiency.

As a MultiLoop transformation, Re-
Sequencing combines sequences of stage edges
with intervening branch nodes, producing a
separate sequence for each way such inter-
vening branches can take. Conceptually, this
moves all branches to the beginning of the
sequence, choosing “prophetically” the right
sequence. Therefore, an appropriate transfor-
mation of the branch logic is necessary; this is
particularly easy in counted loops with counts
known at compile time. For the rearranged
MultiLoop from Fig. 5 (Right) we show the
immediate (machine-generated) result of this
re-sequencing transformation in Fig. 6. The
one-element sequenced code graph edges
only serve to connect start and end nodes of
the MultiLoop; each of the five two-element
sequenced code graph edges results from a
different way of re-sequencing the branches
with one stage before the branch and one after.

MM8x8Top1

[Top1CG]

MM8x8Mid1

[bi _1,bi _1]

MM8x8Mid1

[Bot12CG,Top23CG]MM8x8Mid1

[Bot12CG,Top23CG] MM8x8Mid1

[bi _1,bi _1]

MM8x8Mid1

[Bot12CG,Top23CG]

MM8x8Mid1

[Bot12CG,Top23CG]

MM8x8Mid1

[bi _1,bi _1]

MM8x8Mid1

[Bot3CG,Top1CG]

MM8x8Mid1

[Bot3CG]

MM8x8Top1

1

1

0
1

0
1

10

Figure 6: Raw Re-Sequenced MultiLoop for
Matrix Multiplication

Because of the regularity of the input Mul-
tiLoop Fig. 5 (Right), only two different two-
sequence code graph edges remain after stan-
dard control flow minimisation together with
a slight rearrangement of the branch logic (see
Fig. 7).

MM8x8Top1

[Top1CG]

MM8x8Mid1

[Bot12CG,Top23CG]

MM8x8Mid1

switch

MM8x8Mid1

[Bot3CG,Top1CG]

MM8x8Mid1

[Bot3CG]

MM8x8Top1

1

1

0

1
2

Figure 7: Minimised Re-Sequenced MultiLoop
for Matrix Multiplication

In Sect. 4.2 we explain how the “prologue”
and “epilogue” edges can be eliminated in this
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case; similar approaches can be made to work
in other cases, so that for highly regular Mul-
tiLoops, the re-sequencing transformation also
results in little or no code size increase.

The example presented inSect. 4.3 also re-
lies on the MultiLoop re-sequencing transfor-
mation.

Programmer Interface The MultiLoop al-
lows very general control flow. It is a tool for
formal specification and verification of control-
flow transformations, and we have also found it
very useful in reasoning informally about pro-
posed performance-enhancing transformations.
It is not intended as an everyday programming
language, and we envision a short list of inter-
faces for generating MultiLoops with specific
structures. All of the examples in this paper
can be understood in terms of loops with con-
ditional execution, which can be presented as
loops with versioned loop bodies. The pro-
grammer separately specifies declarative com-
ponents, specifies their composition into multi-
ple loop bodies, and puts constraints on staging
as necessary (see Fig. 8).

II III IVI

constraint c:
e.g. must be in

last stage

constraint b:
e.g. none

constraint a:
e.g. must be in

first stage
way1a way2a way3a

b b b

way1c way1c way1c way2c

b

way4a

top top top top

mid1 mid1 mid1 mid1

mid2 mid2 mid2 mid2

bot bot bot bot

Figure 8: Four-way MultiLoop bodies.

Well-structured conditional execution can be
refactored into this form. The final compo-
nent in each loop version must contain a dis-
tinguished control output which contains the
branch address for the next loop version.

In this way, application specialists can opti-
mize the loop overhead for common high-level

patterns, including transformations which de-
pend on the staging. Four such examples are
given in Sect. 4. In a conventional tool chain,
this would not be possible because control-flow
transformations are performed on the interme-
diate language(s) without exposing important
pieces to the high-level language programmer.

4 Examples

In many application domains, execution effi-
ciency is largely determined by loop scheduling.
Loops can be classified by
• whether the number and pattern of itera-

tions is known at compile time or run time;
• whether the number and pattern of iter-

ations is data dependent (i.e., whether it
can be calculated from values in registers
at the start of the loop, or depends on val-
ues loaded through the course of the loop,
or calculated iteratively);
• whether the loop is nested or not nested;
• whether the loop is isolated, or sequen-

tially composed with similar loops.
The examples cover these cases, but not in all
combinations. Data dependent loops are more
complicated in general, and only the resam-
pling example covers this case.

4.1 Mapping over Arrays

Mapping a function over a structure (list, set,
tree) is a common pattern in all programs.
With common memory organizations, maps
over arrays (contiguously stored lists) are the
most efficient. Some hardware vendors provide
optimized libraries of mathematical or graphics
functions mapped over arrays.

We have found that in this case, a MultiLoop
specification can shift most of the loop over-
head from the arithmetic pipeline to the non-
arithmetic pipeline. For mathematical func-
tions, computation is almost always limited by
arithmetic in the arithmetic pipeline, so this re-
sults in a measurable speedup. For a standard
math library, the resulting reduction in the re-
source lower bound using this formulation will
drop by two to ten percent, based on the im-
plementations reported in [17, Tables 7.1 and
7.2].
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Since this is our smallest example, we will
go through all of the loop overhead, showing
how a single arithmetic instruction is sufficient
to move two pointers, update a counter and
calculate the branch address for the loop. We
will show it for the case of mapping a func-
tion, f :: RegVal → RegVal, with one input and
one output. There is one unused word in our
control quadword, so this would work just as
well for three-pointer maps (one input and two
outputs, or two inputs and one output).1

In Fig. 9, we show the four instructions of
loop overhead for such loops. The control
quadword (1) contains the input and output
pointer and the counter (and one unused 32-
bit word); a single add instruction (2) updates
all three active elements by the increments in
the register constant (3). Single-word add is an
arithmetic instruction and slants to the right.
All other instructions are non-arithmetic and
slant to the left. All non-immediate load/store

16 unroll -4 unroll 16 unroll unused

pOut count pIn unused a (int add)

rotqbyi 8

load(s)

store(s)
rotqbii 2

rotqby

pOut countpIn unused

2 bits

unusedloop: exit:
hint /

branch

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Figure 9: Overhead for a map loop.

instructions take the address from the first
word in a register quadword, so the stores (4)
use the control word as an argument. The loads
(5) need their argument (6) rotated (7) by two
words, i.e., 8 bytes. The branch address (8)
used by the branch and the hint instructions is
calculated via a byte rotation count (9) which
is calculated by shifting (10) the two high-order

1Less obvious is that that the same idea works for
up to seven-pointer cases, if the pointer arithmetic is
performed using 16-bit integers. If the ranges permit,
the 16-bit integers can be used as-is, but in general it
is necessary to put addresses modulo 16 in the control
quadword, and shift the result by four bits before ex-
tracting pointers.

bits from the count word into the low-order
bits of the first word. Since loads and stores
and 16-byte aligned, the four low-order bits of
pOut will always be zero, so the only significant
bits of the rotation count (9) are the two bits
shifted in from the count word. If the count
is initialized to the number of elements to be
mapped, then the first count times through the
loop, those two bits are zero, but on iteration
(count + 1), the count becomes negative and
the high bits are set. So the rotation count is
either zero (initially) or three (on the ultimate
iteration). The count is used to rotate (11) a
quadword (12) composed of the addresses of
the top of the loop and the loop exit. If the
function ends with the loop doing the mapping,
and no non-volatile registers are used in the
body, then the exit address for the loop can be
the address in the link register. In this case the
function return is hinted and the total number
of branches is equal to the number of values
mapped divided by the unroll factor.

This example is interesting for two reasons:
one, it is a very efficient implementation of a
common loop pattern; and two, in the natu-
ral software-pipelining of this loop the loads
will be in the first stage, and the stores the
last stage, so the add instruction (2) in some
sense belongs to multiple stages and the con-
trol word (1) contains values from different log-
ical iterations. We view the transformation of
the loop overhead required to software pipeline
this loop as being on the same level as loop un-
rolling, and implement the two transformations
together in the corresponding code generator.
The output of the generator includes iteration
distances between outputs of one stage and in-
puts of the next stage, and stage constraints on
load and store operations.

4.2 Dense Matrix Multiplication

Matrix matrix multiplication and multiply-
addition are important basic operations in lin-
ear algebra. Imperatively, they are encoded us-
ing nested loops. To achieve efficiency, they
are always unrolled by blocking calculations
into rectangular submatrices. When the blocks
have the same structure, there is only one cal-
culational kernel, and differences in loop levels
and iteration manifest in varying pointer cal-
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culations. We have transformed such calcula-
tions into branch-free form, including the cal-
culation of branch addresses in time to hint all
branches. We have analyzed the cost-benefit
for the dense matrix case (no a priori infor-
mation about zero matrix entries), and found
that the expected improvement on a Cell SPU
with perfect scheduling is small. This is be-
cause such basic linear algebra has a low com-
putation to data size ratio. Significant benefits
would accrue as this ratio rises, e.g., if matrix
elements are computed on the fly, or unpacked
from complicated sparse representations.

We analyze the case in which single preci-
sion floating point dense matrices are stored in
row-major order (corresponding to a statically-
declared two-dimensional C array). SIMD par-
allelism enforces the grouping of row elements
into quadwords containing four floats. In prac-
tice, matrix sizes larger than the SPU Local
Stores are multiplied. We will assume that such
matrices are already blocked contiguously into
big blocks with dimensions divisible by four.
We then further block them (non-contiguously)
into small blocks. In Fig. 10, the small blocks
are 8× 2 quadwords, which is 8× 8 floats, and
are shown as contiguous squares, with quad-
words separated by solid lines. The small
blocks must divide evenly into the big blocks.

Figure 10: Block structure for square matrices,
showing division into SIMD vectors.

We choose a block size large enough to en-
sure:

1. SIMD vector boundaries are on block
boundaries (including results of trans-
poses);

2. there are sufficient independent parallel
fma operations to saturate pipelined ex-
ecution units during the multiply;

3. the cost of non-arithmetic load, store,
and transpose operations is smaller than

that of the arithmetic operations (the
arithmetic cost grows cubicly and the
load/store/transpose cost quadratically in
the width of square small blocks).

The minimum square block size with these
properties is 8× 8, in which case 128 fmas are
needed. We will use these numbers in the fol-
lowing analysis. It follows that a lower bound
on the scheduled cost per iteration will be the
number of fma instructions plus any arithmetic
instructions used in the loop overhead.

Iterating over blocks we form sums of prod-
ucts Cij =

∑
k AikBkj of blocks. In an imper-

ative language this would be

for i

for j

C[i,j] ← 0

for k

C[i,j] ← C[i,j] + A[i,k] * B[k,j]

branch

store C[i,j]

branch

branch

On a processor with static hinting, the in-
ner branch would miss once per iteration of the
middle loop, and the middle branch would miss
once per outer iteration, and the outer iteration
would miss once. The relative cost of the misses
decreases with the number of blocks in the mul-
tiplication. For an 8 × 8 array of 8 × 8 dense
blocks it is about two percent of the theoretical
mimimum execution time on an SPU.

Figure 11: Left: Pointer movement through
A blocks, showing movement in green associ-
ated with the inner-most loop, in black associ-
ated with the middle loop, and in blue associ-
ated with the outermost loop. Middle: Pointer
movement through B blocks, with the same
colours. Right: Pointer movement through C
blocks, with the same colours.

By applying the re-sequencing transforma-
tion to a MultiLoop formulation, we can elimi-
nate branch miss penalties and reduce overhead
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to a single integer add, a, that increments three
pointers. For short and fixed-length loops, we
can use permute and rotate instructions to gen-
erate branch addresses on the fly in the non-
arithmetic pipeline.

We reformulate the triple-nested loop as a
MultiLoop with three versions, with three com-
ponents each. The three versions correspond to
the first iteration of the inner loop, the middle
iterations and the last iterations. The middle
component (midCG in Fig. 5) is unchanging and
performs the multiply, as shown in Fig. 12.2

madd

Figure 12: The middle code graph multiplies.

Figure 13 shows two cases (top1CG and
top23CG in Fig. 5) of the load and increment
portion. The first case is for one version of
the loop which loads or zeros C depending on
whether a multiply or multiply-add is being
performed. The second case only loads the next
block of A and B.

The last components, bot12CG and bot3CG
in Fig. 5, shown in detail in Fig. 14, contain the
branch hint and, in the second case, which is
used in the third version of the loop body, the
store of the finished C block.

Separate code graph components for the loop
overhead allow for even smaller loop overhead
code bodies. The address calculation, and
hence the control-flow, handled by iterInner and
iterOuter and the nodes they connect forms a
disjoint subgraph. Effectively, the inner loop
of the imperative description is encoded by
iterInner and the two outer loops by iterOuter.
Similary, the pointer movement is handled
by different components for the inner-loop,
wayInner, and the two outer loops, wayOuter.
The number and type of inputs and outputs are
not constant, but the outputs of a loop version

2In the following code graph drawings, inputs and
outputs are represented by triangles. Nodes for the
state of the local store (green) and branch hint (blue)
put state explicitly into the code graphs.

loadB

loadA

wayOuter

loadC

rotqby

rotqbyi

iterInner

iterOuterrotqbyi

loadB

loadA

wayInner

rotqbyi iterInner

Figure 13: Top code graphs, with C load (top)
for the first loop version and C accumulation
(bottom) for the last two.

hbr

storeC

hbr

Figure 14: Multiply bottom code graphs, with
C accumulation (top) for the first two loop vari-
ations and C store (bottom) for the last.

match the inputs of a loop version which can
legally follow it.

If we apply the re-sequencing transformation
to the MultiLoop formulation with two stages
per loop body as shown in Fig. 5 (Right), then
there are only two scheduled versions of the
re-sequenced loop body required, as shown in
Fig. 7. This makes the code size for a sched-
uled MultiLoop roughly the same as a software-
pipelined version of the imperative code, in
which the code size for the inner loop would
be double the size of the loop body.
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Loop Induction via Permutation Groups.
To reduce the triple loop nest to two code
MultiLoop bodies and synthesize the required
pointer movement in Fig. 10 using shuffles and
rotations, we use two key observations: (1) that
top1CG occurs in logical iterations congruent
to 0 mod 8 and bot3CG occurs in logical itera-
tions 7 mod 8 which are paired together; (2) the
pointer movement is periodic.

The action of any finite group can be sim-
ulated in this way, although we have only en-
countered Abelian groups up to the present.
Groups with power-of-two sizes up to 32 can be
simulated using word, half-word, byte or nib-
ble rotation. Groups with other orders must be
simulated using byte permutation via shufb.
Both approaches can be used to directly cy-
cle through offsets and addresses, or to indi-
rectly cycle through indices into such, and then
use rotation or permutation with register argu-
ments (rotqby, rotqbi or shufb + key syn-
thesis) to look up the actual offsets and ad-
dresses. Indirect permutation is especially ef-
fective when the list being permuted has a great
deal of overlap. By increasing the order of in-
direction, e.g., permuting lists of permute con-
stants, the action of direct products of groups
can be so constructed.

We can do without a prologue and epilogue,
and only need one MultiLoop to do both ma-
trix multiplication and multiplication-addition
because we exposed load and store addresses
as inputs and outputs, and put constraints
on their staging. Loads on the SPU are safe
(they cannot cause segmentation faults), so ex-
tra loads “past the end of the loop” can be
ignored. Stores are never safe, but we know in
which logical iterations extra stores will occur.
In Fig. 14, the address for the stores is exposed
as an input. Normally, this address is produced
by a rotqbyi in the first iteration the address
is generated in the init block, so we can set the
initial store address to the location of a scratch
memory area. Only a non-contiguous scratch
area the size of a small block is required.

To produce both multiplication and
multiplication-addition, we always include a
loadC which takes its address from a rotqby
controlled by an exposed register input, which
we set to rotate either to the address which
will be used in the next storeC or to load from

a constant scratch memory area stocked with
zeros.

For this example, the performance advantage
provided by the MultiLoop will be relatively
small, because the loop body itself needs to
be so large to avoid being performance-limited
by load/store activity. The encapsulation of
the loop overhead in the MultiLoop will work
for any sparse structure with identical blocks.
For varying blocks (which is more common) a
more general set of loop overheads will be re-
quired. This is the advantage of the MultiLoop
for blocked matrix multiplication: efficient loop
overheads for new block sparse structures can
be supplied by the developer and do not have
to be encoded in the compiler.

4.3 Partial Fourier Transform

MultiLoop formulations of multi-dimensional
separable transforms lead to significant code
reduction. In the simplest cases, conventional
specifications lead to sd times more instruc-
tions, where s is the number of pipeline stages
used in a schedule and d is the dimensionality.
In the complicated case we study it is a factor
of two.

Partial Fourier Transforms are Fourier trans-
forms composed with coordinate projections or
injections, e.g. they take a vector of 256 com-
plex values, perform a Fourier transform, then
copy out the central 192 elements. In the other
direction we pad the input with zeros. Simi-
lar operations occur in wavelet and other fast
transforms.

The MultiLoop and a re-sequencing transfor-
mation can be profitably applied when these
operations are applied in multiple dimensions.
Most fast transforms are, by definition, separa-
ble, which means that they can be applied in-
dependently in each dimension. In imperative
code, this is expressed as a sequential compo-
sition of nested loops. We consider the three-
dimensional case.

Such transforms are most efficiently com-
puted in one direction. On scalar machines
that is usually the direction in which addresses
change the slowest. To use SIMD parallelism,
another direction should be used, otherwise a
lot of shuffling among registers is necessary.
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To avoid having to transform in the expen-
sive direction, we transpose before stores:

for dimension in dimensions

for quad-column in columns(dimension)

load quad-column

transform quad-column

transpose quad-column

store quad-column as row

(loading enough columns to completely fill all
loaded quadwords, e.g., 4 floats).

For three dimensions, this looks like

xyz → Y zx→ ZxY → XY Z (1)

Index label order indicates array ordering, and
case indicates whether a transform has been
performed in the direction labelled by that in-
dex. Each is a loop of column transforms with
code graph

L→ F→ S, (2)

where L is a complete set of loads with nec-
essary data reforming for one row, F performs
the transform, and S is a complete set of stores,
with necessary data reforming for one row. We
permute the indices cyclically (via a transpose)
so that every dimension is transformed in the
“middle” dimension, because SIMD parallelism
is free in the “column” directions.

For Partial FFTs, the size of the dimensions
before and after the one-dimensional trans-
forms are not necessarily the same. This af-
fects the load and store subgraphs by chang-
ing the striding pattern both within the column
and the enumeration of columns, which changes
register constants or immediate constants, de-
pending on the type of indexing. Immediate-
indexed forms reduce register pressure, and are
more complicated for the MultiLoop, so we con-
sider that case.

There are two different versions of L and of S
depending on whether the first index direction
has been transformed or not. We now special-
ize to the three-dimensional case: xyz has one
load pattern and Y zx and ZxY have another;
if more than one column has to be transformed
in parallel then Y zx and ZxY have one store
pattern and XY Z has a second. Load and store
patterns can also differ if other data reformat-
ting is performed, e.g. interleaved complex

..., rj , ij , rj+1, ij+1, rj+2, ij+2, rj+3, ij+3, ...

into planar or quadword-interleaved format

..., rj , rj+1, rj+2, rj+3, ij , ij+1, ij+2, ij+3, ...

The three sequentially-composed loops be-
come a three-way MultiLoop with three com-
ponents(

(L1, F, S1|2)|(L2|3, F, S1|2)|(L2|3, F, S3)
)
.

For all but very small transforms, two stages
are sufficient to hide instruction latency in a
software-pipelined loop, so the computation
graph F is only split once, and the scheduled
loop bodies will execute in this order:

(load,store) (load,store) number of
direction version executions

(1, ∗) (T1, S1|2) n2

(2, 1) (T2|3, S1|2) 2
(2, 2) (T2|3, S1|2) nm− 2
(3, 2) (T2|3, S3) 2
(3, 3) (T2|3, S3) m2

(∗, 3) (T2|3, S3) m2

for an n3 to m3 transformation.
In this case, the re-sequenced MultiLoop

allows us to schedule three versions of the
loop body, whereas three sequential software-
pipelined loops would require three prologues
and three epilogues, effectively doubling the
code size. Even if we used a prologue and epi-
logue in the MultiLoop case, the code size is
still reduced by (d + 1)/(2d), where d is the
number of dimensions.

4.4 Resampling in NUFT

This is the most specialized code we have en-
coded in a MultiLoop. It processes a one-
dimensional array of velocities and data, and
paints a three-dimensional array with the data.
The MultiLoop has 54 different cases with
branching dependent on the cumulative values
of the velocity data, so simple unrolling would
be impossible. Using a pipelined MultiLoop
representation cuts the resource bound on exe-
cution time in half, over alternative representa-
tions, at the cost of increased code size. For the
target applications (Nonuniform Fourier Trans-
form)3, this is a desireable trade.

3This computation, together with the previous Par-
tial Fourier Transform can be used to perform a nonuni-
form Fourier Transform, e.g., used to reconstruct Mag-
netic Resonance Images from irregularly-sampled data,
but the computational issues are more general.
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A time series of positions and data are read
in from one-dimensional arrays and rendered
to a three-dimensional array of complex values.
One can think of it as a variation of rasteriza-
tion of anti-aliased lines in an array of pixels. In
this case the pixels have complex floating-point
values. Such tasks do not fit the simple SIMD
pattern of parallelism. Single input data ele-
ments produce results in multiple neighbouring
array elements. It is not possible to align the
output with quadword boundaries. The only
universal method of handling unaligned data
access is to load or store all of the quadwords
which overlap the required data and use per-
mute or rotate instructions to align the data
within quadwords.

In the simplest imperative implementation,
the array data are read, modified and writ-
ten as required. The load and store instruc-
tions would then dominate the computation
and double the execution time (assuming per-
fect scheduling). A more complicated imple-
mentation which kept a cache of array values
in registers and stored and loaded values as
required would require multiple if statements
nested six-deep or a switch, with so many
missed branches, it would be much less effi-
cient than the MultiLoop version. Since the
conditions depend on the contents of the data
cumulatively, unrolling cannot be used to hide
the latency of the condition calculations. For
computations following this pattern (rasteriz-
ing curves in higher dimensions), load/store ac-
tivity can be significantly reduced by caching
the active hypercube in registers, if the regis-
ter file is large enough.

In our example, input data influences a
43 neighbourhood of array values, and the
array values are complex, single precision
floating point numbers, stored in interleaved
real/imaginary row-major order. Each quad-
word contains two such values, so 32 quadwords
are required for an aligned cache. Since com-
plex floats are eight bytes wide, we are either
aligned or unaligned (with the natural cache
boundary in the middle of an aligned quad-
word). In the aligned case, rows cover three
quadwords instead of two, so the number of reg-
isters for an unaligned cache is 48 if we store
the entire quadword. On a 128 register ma-
chine, like the Cell SPU, there is room for such

a buffer.
We assume that the active section of the ar-

ray changes by at most one element along each
of the axes. There are, therefore, 27 different
possible movements. Since the cache can be
aligned or not aligned on quadword boundaries,
each direction of movement requires two differ-
ent sets of load/store activity.4 The amount of
load/store activity depends on the movement,
e.g., with eight or twelve loads and stores, re-
spectively in the aligned and unaligned cases.

Compare this with the number of loads and
stores required for a single loop body in which
all conditionals are synthesized using selection
and permutation. In this case, 48 quadwords
must be loaded before the computation and 48
quadwords stored after the computation. In
addition, a shuffle map must be constructed on
the fly to rotate values in the unaligned case,
and this must be applied to each of the 48 quad-
words between the computation and the loads
and stores, for a total of 192 non-arithmetic in-
structions. Since the scheduled II for the most
common (stationary) cases is 86 cycles, [17],
and averaged over expected execution traces
would not be more than 100 cycles, not using
the MultiLoop would cut performance in half.

5 Related Work

Although our goal in this paper is to introduce
a vocabulary for specialized control flow, and
not to introduce a new scheduling algorithm,
there is a lot of overlap between our work and
the literature on optimizing compilers.

Specifically, we are motivated by the dif-
ficulty in incorporating conditional execution
into software pipelined loops. This is a well-
researched problem.

The current leader in scheduling algorithms
for software pipelined loops is Swing Modulo
Scheduling [11]. The most-commonly followed
method of incorporating conditional execution
into such algorithms is hierarchical reduction
[9]. Another alternative is Enhanced Modulo
Scheduling [18].

4The stationary case does not require any load/store
activity in the backing store, but our implementation
uses two identical implementations to simplify indexing
into the jump table.
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Methods which take loops or loop nests
containing conditional execution and effec-
tively break them into multiple paths include
Multiple-II Modulo Scheduling (MII-MS) [19],
All Paths Pipelining (APP) [14], and Split-
Path Enhanced Pipeline Scheduling (SP-EPS)
[13], both of which allow multiple IIs for a sin-
gle loop. APP specializes the loop according to
branches being taken or not taken, and modulo
schedules each version. Additional edges are
added to facilitate jumping between different
schedules. SP-EPS, on the other hand, takes a
control-flow graph for a loop (or loop nest) and
expands at branch points by splitting tails. An-
other approach is the global software pipelin-
ing (GURPR-family) [15, 16]. These methods
involve significant data dependency graph ma-
nipulation, but none of these methods incor-
porate instruction selection. Incorporating in-
struction selection capable of finding the code
sequences used in our loop overhead examples
would be prohibitively expensive.

Enhanced Co-Scheduling [4] extends the
state-machine model for pipelined processors,
and derives a modulo-scheduling algorithm.
Unlike our approach, they start from the ma-
chine level and build up to find a useful level of
formalization.

Most of these algorithms are designed with
Very Long Instruction Word (VLIW) architec-
tures (a form of Multiple Instruction Multi-
ple Data, MIMD) in mind, rather than light-
weight, heterogeneous multi-core systems ex-
ploiting SIMD parallelism. In a way, het-
erogeneous chip multiprocessors like the Cell
BE have a much simpler model of execution
than the VLIW machines and systolic arrays
which have been common in specialized re-
search and industrial applications over the last
two decades. None of the algorithms cited
address the main challenges/opportunities for
these newer systems: very heavy branch miss
penalties but with software branch prediction,
weaker out-of-order execution and multiple dis-
patch, but rich SIMD parallelism.

Our approach is to define a vocabulary to
enable communication between the program-
mer and the instruction scheduler. Another ap-
proach, [1], is to move software pipelining into
the domain of the programmer as source-to-
source transformations. This approach can be

useful, but restricts the discussion to features
present in the high-level language, which make
it impossible to access novel hardware features.

Other researchers have addressed the effi-
cient use of SIMD parallelism in loops [3], they
solved the problem of inter-quadword align-
ment which is common to all SIMD imple-
mentations, especially when parallelizing scalar
code. In our approach, code generators would
handle these aspects of parallelization. Multi-
Loop transformations are solving the orthogo-
nal issue of optimizing control flow.

6 Conclusion

Through detailed analysis of four very differ-
ent examples of numerical computation, we
have shown that generators for MultiLoops can
eliminate branch miss-prediction and leverage
SIMD parallelism to reduce the cost of loop
overhead. In addition to enabling significant
improvements in code size and/or performance,
our descriptions are well-structured, encapsu-
lating complicated SIMD synthesized control
flow, and facilitating discussions of high-level
transformations with low-level implications.

Our next steps are: a formalization of the
specification and transformations, incorpora-
tion of symbolic computation to prove required
properties of scheduled code, and extension of
this framework to inter-SPU communication,
which will involve concurrent control-flow ar-
rangements.
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