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Abstract
This paper describes an alternative to modulo scheduling for loops, in which the first

step is to divide instructions into stages by solving a series of min-cut problems constructed
from the code graph of the unscheduled loop body. Our algorithm is formulated and im-
plemented in terms of the code graphs of our own “declarative assembly language” for
CELL SPUs. We have measured an average 20% reduction in Iteration Interval between
our algorithm and modulo scheduling via XLC.

1. Introduction
There are many techniques for software pipelining in use and under research, including un-
rolling, kernel recognition, modulo scheduling [1, 2, 3], and decomposed software pipelin-
ing [4, 5, 6]; see [7] for an overview.

Our approach differs from most approaches by defining and working with an enriched
data dependency graph, called loop specification, in which relationships between multiple
logical iterations are expressible. This simplifies some concepts (modulo variable renam-
ing), and facilitates a different trajectory through the scheduling problem. Rather than
assigning cycles, or partial orderings to instructions, we first assign them to stages. We
call our algorithm Explicitly-Staged Software Pipelining (ExSSP) in contrast to modulo
scheduling where stage assignment is not explicit.

The first fully implemented instance of our algorithm targets the Cell SPU [8]. We have
tested the scheduler output for correctness, and verified that its self-reported performance
agrees with the timing tool shipped with the CELL SDK 1.1. On a library of math functions,
our self-reported timing is on average 20 percent faster than XLC.

2. Code Graphs
In our system, a loop body before scheduling is represented by a “code graph”. This section
summarises and adapts definitions from [9] for our purposes.

A code graph is a hypergraph with a sequence of input nodes and a sequence of output
nodes. Each node in the code graph is labelled with a type. The hyperedges of the graph
are labelled with machine instructions and their immediate arguments, i.e., any constants
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that are directly encoded in the opcode, but no source or target registers. Each hyperedge
has zero or more ordered input tentacles (connected to nodes representing the arguments
consumed by the instruction) and one or more ordered output tentacles (connected to nodes
representing the results of the instruction).

Definition 2.1 A code graph G = (N , E , In, Out, src, trg, nType, eLab) over an edge la-
bel set ELab and a set of types NType consists of

• a set N of nodes and a set E of hyperedges (or edges),

• two node sequences In, Out : N ∗ containing the input nodes and output nodes of the
code graph,

• two functions src, trg : E → N ∗ assigning each hyperedge the sequence of its source
nodes and target nodes respectively,

• a function nType : N → NType assigning each node its type, and

• a function eLab : E → ELab assigning each hyperedge its edge label, where the
label has to be compatible with the numbers of source and target nodes of the edge,
and with the types of those nodes.

For the purposes of the current paper, we only consider code graphs that correspond to
straight-line code; for motivation for more general code graph concepts and for more details
see [10, 9].

Definition 2.2 A code graph is called executable if it is acyclic and

• for every edge, an output node is reachable from at least one target node of the edge,
and

• every node is either an input node, or the target node of exactly one edge.

At the left of figure 1, you can see a very simple code graph that squares one vector of four
floating point values using the SPU instruction fm, floating point multiply. To make the
figures easier to talk about, we will label each node in the code graph with a unique name;
remember, however, that nodes in the code graph actually only have types, not names. The
code graph in the figure has two nodes, which we name x and y, and one edge, labelled with
the SPU instruction. The sequence of input nodes contains only x, and y is the only output
node. The input and output sequences are visualised by the numbered triangles connected
to the nodes in the figure. The triangles themselves are not nodes or edges of the graph.

The set of possible types consists of one type for each type of register available in the
target architecture — in the case of the Cell SPU, there is just one type of register —, and
the type state.
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Figure 1: Simple code graphs. Left: a code graph that squares a vector of numbers using
the SPU instruction fm (floating point multiply); right: a code graph with the
state-affecting store instruction stqx

The state type exists to account for the fact that some machine instructions cannot be
modelled as functions from input values to output values; examples include load, store, and
branch hint instructions; we do not support actual branch instructions in the code graph.
A value of type state is a token that represents all the state that can be affected by an
instruction, including, but not limited to, memory (in our case, the Cell SPU’s local store),
and the state of the branch processor (which is affected by the hint for branch instruction).

A state-affecting instruction, like the store instruction stqx (store quadword indexed)
shown on the right of figure 1, is then modelled as taking an additional parameter of type
state, and returning a modified state. The figures use slanted text to distinguish nodes of
type state, like state and state’ , from nodes of the register type, like addr.

Sometimes, we want to work with independent aspects of state, e.g. with different, non-
overlapping areas of memory, without imposing a sequential ordering on the instructions
that work with different state. In this case, we will just use two separate state tokens in the
code graph. Use of two separate state tokens is taken as an assertion that the operations
on the two separate tokens are independent from each other; this assertion is currently not
checked by our system.

To help describe transformations of code graphs, we use a theory based on category
theory, more specifically on gs-monoidal categories; this is described in detail in [9]. For
the purposes of this paper, it is sufficient to summarise the algebra defined by that theory
without requiring any further understanding of category theory.

Every code graph G has a signature which consists of the sequence of the types of its
input nodes and the sequence of the types of its output nodes; it is written as G : I →
O. Type sequences can be concatenated using the associative operator ×; the empty type
sequence, denoted by 1l, is both a right and left unit for ×.

For two code graphs G : A → B and H : B → C, the code graph denoted A;B : A → C
is their sequential composition; G’s output nodes are identified with H’s input nodes.

3



Two code graphs G : A → B and H : C → D can also be composed in parallel using
the ⊗ operator, producing G⊗ H : A× C → B× D.

Code graphs without any edges and where all nodes are inputs and/or outputs are called
wiring graphs; the following wiring graphs, parameterised with a type sequence T , will be
used later:

• IT : T → T is the identity code graph over that type sequence; it contains no edges,
and each of its nodes is both an input node and an output node in the corresponding
position, with the types taken from T . The identity code graph is both a right and left
unit for sequential composition.

• ∇T : T → T × T is a code graph without operations that “duplicates” its input; the
list of output nodes equals the list of input nodes concatenated with itself.

3. Loop Specifications
In a code graph representing a loop body, variables modified by this loop body are repre-
sented both as inputs and outputs of that code graph, and the input instances feed from the
output instances of the previous iteration.

In a staged loop body, the situation can be more complex, since inputs of one stage may
be connected to outputs from different stages, which will then belong to different “logical”
iterations of the unstaged loop body.

To properly formalise the relating issues, we need to specify what values are communi-
cated between different iterations of the loop:

Definition 3.1 A loop specification is a tuple (F, K, C, G, d), consisting of type sequences
F, K, C, an executable code graph G : F × K → F × C, and a sequence of integers d,
called iteration distances, one for each element of F.

In this set-up, the type sequence F identifies the state modified by the loop body, and
forms part of both the code graph inputs and outputs. In addition, there is an iteration
distance d associated with each of these “variables” (via the sequence d), indicating that
in any iteration i, the value of the input is equal to the value of the corresponding output
in iteration i + d. Hence, the usual case of using an output from the previous iteration is
represented by d = −1. A value of d of less than −1 means that the input for the code
graph should be an output from further back in the past; this can, for example, be achieved
by storing the value in an array so that it won’t be overwritten by the next iteration. A
value of d = 0 means that the input should be equal to the output from the same iteration;
semantically this is equivalent to using a single interior node in place of the input node
and the output node, but the separated view is the better starting point for splitting a loop
specification into stages.

In addition to the inputs with corresponding outputs (F), the code graph G also has
another group of inputs, of types K. These inputs are called constant inputs and represent
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all values that are passed to the loop from the outside but are not changed by the loop; these
include unchanging parameters for the loop and constants that cannot be part of the opcode
of a machine language instruction. In other words, the constant inputs are those values that
are required to be available in a register when the loop starts, and throughout the execution
of the loop.

Finally, G also has a group of outputs of types C, called the control outputs. These con-
trol outputs are used to control when the loop should terminate; their meaning is described
in more detail in section 3.2.

3.1 Maximum Lifetime and Loopability

We impose one additional restriction on the scheduler’s output: Every operation in the
code graph must appear exactly once in the scheduled loop body, and every instruction in
the scheduled loop body must appear in the code graph. We do not want the scheduler to
insert additional instructions, like extra register-to-register moves.

As a consequence, a node in the code graph will be assigned to at most one register for
its entire lifetime. The lifetime of one node in one iteration also cannot overlap with the
lifetime of the same node in another iteration (that is being executed at the same time due
to software pipelining); we make it the duty of the scheduler to limit the lifetimes to less
than λ, so that modulo variable expansion [2] is never required.

Forbidding long lifetimes can have a negative impact on the achieved λ. However, as
the code graph does not explicitly specify locations for temporary values, modulo variable
expansion becomes nothing but a fancy term for loop unrolling; we can therefore achieve
the effects of longer lifetimes and modulo variable expansion by replicating the loop body
a few times before running the software pipeliner.

Not all loop specifications can be scheduled as loops without adding extra instructions.
First, we consider the situation without software pipelining, i.e., when all operations sched-
uled in the loop body must operate on data belonging to the same iteration.

If an input node in the code graph is also an output node, then they must be an input
and an output in corresponding positions in F. The value of the node then has to be the
same for all iterations; the input-output pair can therefore be converted to a constant input
by removing the node from the output sequence of the code graph and moving its position
in the input sequence to the right to make it part of K rather than of F.

The case where a node is both an input and the corresponding output is easy to avoid
by making it a constant instead; in other cases it is easy to explicitly specify an appropriate
register-to-register move instruction. We therefore require the input code graph to have no
input node that is also an output.

If a value is calculated by an instruction in iteration i, the same instruction in iteration
i + 1 will overwrite it with a new value. Therefore, to achieve d < −1, an additional
instruction has to be added to move the value to some other location before it gets destroyed.
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Positive values for d are impossible: Using results from iteration i + d with d > 0 in
iteration i requires iteration i + d to start before iteration i has finished (software pipelining
or reordering of iterations).

Definition 3.2 A loop specification is loopable if no input node is also an output, and all d
are −1 or 0.

An input-output pair with d = 0 is equivalent to identifying the input node with the out-
put node (and removing them from the code graph’s input and output sequences). If this
transformation succeeds without introducing cycles into the code graph, we get a strictly
loopable loop specification:

Definition 3.3 A loop specification is strictly loopable if no input node is also an output,
and all d are −1.

3.2 Loop Termination

Informally speaking, the control outputs (C) determine whether the loop should continue
after the current iteration. The control outputs are connected directly to the branch instruc-
tion at the end of the loop; depending on what kind branch instruction is used for the loop,
they can have different meanings.

For the Cell SPU target architecture, we currently use the following variants:

• The loop branch is a brnz (branch if not zero word) instruction; the loop continues if
the first component of the only control output (which is, as are all values on the SPU,
a vector) is non-zero.

• The loop branch is a bi (branch indirect) instruction; the first component of the only
control output should contain the address of either the first instruction of the loop or
of the first instruction after the loop.

• The loop branch is a bi instruction, as above; additionally, a second control output is
a state token that is generated by a hbr (hint for branch) instruction.

4. Theory of Staging
Software pipelining can be viewed as a transformation of the loop specification. Informally
speaking, we split up the code graph into sequential parts, which we call stages, and com-
pose them again in parallel to get a new loop body such that adding appropriate prologue
and epilogue code to the loop yields a loop that is equivalent to the original loop.

For the purposes of this section, we assume a legal assignment to stages to be given; a
stage assignment is legal when the transformation outlined in the next section can transform
the loop specification (F, K, C, G, d) to a loopable loop specification (F′, K, C, G′, d′). We
will describe below, in section 5, how to obtain a legal stage assignment for a loop specifi-
cation.

6



G1,0

G1,1 G2,0

G1,2 G2,1 G3,0

G1,3 G2,2 G3,1

G1,n-1 G2,n-2 G3,n-3

G2,n-1 G3,n-2

G3,n-1

…

G1,0

G1,1

G2,0

G1,2

G2,1

G3,0

G1,3

G2,2

G3,1

G1,n-1 G2,n-1 G3,n-1
…

G2,3

G3,2

G3,3

Epilogue

Prologuej = 0

j = 1

j = 2

j = 3

j = n-1

j' = 0

j' = 1

j' = n-3

Figure 2: Software pipelining with three stages; left: loop independent data dependences
in a non-pipelined loop restrict parallelism; right: the same dependences are now
dependences between different iterations of the pipelined loop.
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Figure 3: Inter-iteration dependences in a pipelined loop

Consider a loop that we can split into three stages, G1, G2 and G3. In Fig. 2, Gi,j denotes
stage Gi operating on data for logical iteration j. If we schedule the loop without software
pipelining (Fig. 2, left), the loop-independent data dependences between the stages will
prevent us from exploiting much parallelism. With software pipelining (Fig. 2, right), these
dependences are between different iterations of the pipelined loop and therefore do not
restrict parallelism between the stages.

Figure 3 shows how different values of d can be realised in a pipelined loop. When we
assign operations to stages (section 5), we will need to assign stages in such a way that the
resulting assignment is legal:

Definition 4.1 A legal stage assignment with k stages for a loop specification associates a
stage number in {1, . . . , k} with each operation in the code graph such that

• a value produced by an operation in stage i is consumed only by operations in stage
i and/or in stage i + 1, and

• for an input/output pair in F associated with d, where the output value is produced
by an operation in stage i, the input value can only be consumed by operations in
stages i + d and/or in stage i + d + 1.

It is tempting to simply split up the code graph G into k sequentially composed subgraphs,
called stages, with G = G1;G2; . . . ;Gk, and then to re-compose them in parallel, to yield
P;(G1 ⊗ G2 ⊗ . . .⊗ Gk), where P is a permutation to make the argument order of the code
graph match up.

This approach, however, gets us no closer to actually scheduling a software-pipelined
loop, as we are potentially violating both conditions for being loopable. Also, output values
that are computed in one stage have to be passed through the later stages in the sequential
composition, and inputs have to be passed through the stages before the one where they are
consumed.

4.1 Pipelining Transformation

We take a more specialised approach to sequential decomposition and connect inputs con-
sumed and outputs produced in a stage Gi directly to the inputs and outputs of G as a whole,
without routing them “through” the other stages.
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Figure 4: Splitting a code graph into three stages

For each stage Gi : Mi−1× Ii×Ki → Oi×Ci×Mi, the Ii inputs are inputs from F, the Ki

are constants from K, and Mi−1 are outputs from the previous stage. Likewise, the Oi and
Ck are connected to the output of G, while the Mi are fed into the next stage — obviously
we have to set M0 = Mk = 1l.

Furthermore, we add the “control stage number” c as additional parameter c to the
software pipelining and demand that all control outputs are generated in stage c, so we
define Ci = 1l for all i 6= c, and Cc = C. This influences the meaning of the control outputs;
see Sect. 4.2 for details.

Because every output node has exactly one producer in G, every element of F will
appear in the output list Oi of exactly one stage Gi; inputs, however, can appear in the Ii

lists more than once.
We will also have to add a wiring graph P : F×K → (I1×K1)× . . .× (Ik ×Kk) at the

top to rearrange the Ii and Ki to match the order of F × K, and a permutation wiring graph
Q : O1× . . .×Ok → F×C at the bottom to make the order of the Oi match up with F×C:

G = P;(G1 ⊗ II2×...×Ik);(IO1 ⊗ G2 ⊗ II3×...×Ik); . . . ;(IO1×...×Ok−1
⊗ Gk);Q,

Constant inputs can appear on P’s output list any number to times, other inputs up to twice.
Figure 4 illustrates how three stages would fit together.

If the stages Gi have been chosen appropriately, we can construct a new, loopable,
software-pipelined loop specification (F′, K, C, G′, d′) where the stages are executed in par-
allel, but for different “logical iterations”, i.e., for different iterations of the original loop
specification.

We have mentioned that an input value from F can be used in more than one stage;
since each such input is updated during each iteration of a software-pipelined loop, it can
be used by at most two consecutive stages (for more details see [11]. If an input is used
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Figure 5: Putting the stages together in parallel

by two stages, then the corresponding output value appears exactly once in the Oi list of
exactly one stage, but it must appear twice in the output list of G′. One appearance will be
associated with a d′ = −1 entry in d′, the other appearance with d′ = 0.

These additional input/output pairs will contribute to change F to F′ and d to d′; the
corresponding wiring graph Xi : Oi → O′

i is used to adapt the stage graphs:

G′
i := Gi;(Xi ⊗ ICi ⊗ IMi)

The kernel G′ : F′ × K → F′ × C of the software-pipelined loop will then be

G′ := R;(G′
1 ⊗ · · · ⊗ G′

k);S,

where F′ := O′
1 × M1 × · · · × O′

k, and S : O′
1 × C1 × M1 × · · · × O′

k × Ck → F′ × C and
R : F′ → I1 × K1 ×M1 × I2 × K2 × ...×Mk−1 × Ik × Kk are wiring graphs.

S is constructed such that it moves the C outputs to the end of the output list; if the
control stage is the last stage (c = k), then S = IF′×C. Figure 5 shows how these parts fit
together for k = c = 3.

The entries in d′ will be 0 for each first instance of duplicated Oi outputs, and −1
for all other Oi and Mi outputs. The wiring graph R distributes K constants to their Ki

uses, propagates Mi inputs, also propagates non-duplicated Oi inputs (adapting for d if
necessary); it wires the first occurence of each duplicated Oi input to the corresponding
output in Ii+d, and the second occurence to the corresponding output in Ii+d+1.

4.2 Loop Termination Revisited

In a software-pipelined loop, we have little choice but to interpret the control outputs based
on the pipelined loop body; therefore, their meaning changes depending on the value of
c, i.e., depending on which stage they are produced in. If the control outputs evaluate to
a value meaning “do not continue” in stage c of iteration n, then the last iteration of the
pipelined loop executes G1,n+c−1, . . . , Gc,n, . . . , Gk,n+c−k. Including the loop epilogue, the
last iteration to be executed will be iteration n + c− 1.
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If we are trying to save on code size, we can do without an epilogue altogether in many
cases; we might need to provide some extra space for partial results in any memory areas
that the loop stores its results in. Without a prologue, if iteration n causes loop termination,
the last iteration to be completed is iteration n + c − k; additionally, iterations n + c − 1
through n + c− k + 1 have been initiated, but not finished. It will depend on the particular
stage assignment chosen for this loop whether any results for those partial iterations will
be stored to memory or not.

5. Algorithm for Stage Splitting
For splitting a given loop specification into k stages we use a heuristics that, in addition to
finding a legal stage assignment, also strives to achieve the following goals:

1. The latency along the longest path through any stage should be at most the initiation
interval we expect to achieve.

2. Not too many registers should be alive across stages.

All registers that are alive across stages will be live at the top of the final scheduled
loop and will therefore conflict with each other. On the other hand, higher register
requirements inside a stage can be mitigated by good decisions in the later steps.

3. Not too many forward dependences should arise between stages.

An inter-stage forward dependence corresponds to an input/output pair in the pipelined
loop specification for which the associated d′ = 0. This is generally undesirable, be-
cause it reduces parallelism between the involved stages.

Our heuristic is based on using two functions, depth and height, that map every operation
in the code graph to a nonnegative “depth” and “height” value. We first use these values to
decide approximately where to cut the code graph into stages; based on the dependences
between operations, the selection of candidate cuts is further restricted; from the remaining
candidates we finally pick the one that minimises the number of values communicated from
one stage to the next, i.e., we minimise register requirements at the top of the loop.

The algorithm proceeds as follows:

1. Initialise a constraints graph S (see section 5.2) that contains our current knowledge
about the stage assignment.

2. For i := k down to 2

(a) Calculate height, depth, htot, and dtot based on the code graph with all opera-
tions known to be in stage i + 1 or greater removed (see section 5.1)

(b) Try to mark all operations with height > htot/i as being in stage i− 1 or less
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(c) Try to mark all operations with depth > (i− 1)dtot/i as being in stage i

(d) Let A be the set of all operations known (according to S) to be in stage i− 1 or
less, and let B be the set of all operations known to be in stage i or greater

(e) Construct Gcut (see section 5.3)

(f) Run a minimum cut algorithm on Gcut

(g) Mark all operations in Gcut that are above the minimum cut as being in stage
i− 1 or less

(h) Mark all operations in Gcut that are below the minimum cut as being in stage i
or greater

3. Extract final stage assignment from S.

5.1 Height and Depth

There are several choices for the depth and height functions. The simplest is to calculate
depth and height based on the latencies of instructions:

Definition 5.1 Given a code graph G, then, for each node n and each edge e,

• depthL(n) is the depth of the producer edge of n plus the producer’s latency, or 0 if
n is an input;

• heightL(n) is the maximum of the heights of all consumer edges of n incremented by
their respective latencies, or 0 if n is an output;

• depthL(e) is the maximum of the depths of all sources of e;

• heightL(e) is the maximum of the heights of all targets of e.

For an operation (a hyperedge) e in the code graph, the function depthL(e) gives a lower
bound on the number of cycles that pass between the initiation of an iteration and when
the instruction is issued for that iteration in a software-pipelined schedule. Likewise,
heightL(e) gives a lower bound for the number of cycles that pass between the comple-
tion of the instruction and the completion of the last instruction in the iteration.

Definition 5.2 Given a code graph G, then, for each edge e,

• heightU(e) is the number of hyperedges e′ that are reachable in G from e and for
which unit(e′) = u when u is chosen such that heightU(e) becomes maximal.

• depthU(e) is the number of hyperedges e′ that are reachable in reverse direction
from e and for which unit(e′) = u when u is chosen such that depthU(e) becomes
maximal.
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The lower bounds provided by heightU(e) and depthU(e) stem from the fact that only one
instruction per unit can be executed in one machine cycle; all edges reachable from e have
to be executed after it, and all nodes reachable in reverse direction have to be executed
before it.

To get the “best of both worlds”, we therefore define:

Definition 5.3 Given a code graph G, then, for each edge e,

• heightLU(e) := max(heightL(e), heightU(e)),

• depthLU(e) := max(depthL(e), depthU(e)).

Furthermore, we define a total height htot := maxn∈N height(n) and a total depth dtot :=
maxn∈N depth(n).

5.2 Stage Constraints

Let s be the function that maps each operation to its stage number. During the execution of
the algorithm, a directed graph S will represent our current knowledge about this function.
Its nodes are the operations in G, plus an additional node z. We define s(z) = 0.

An edge (x, y, d) (an edge from x to y, labelled with the integer d) is taken to denote the
constraint

s(x) + d ≥ s(y).

Initially, we populate the graph with edges representing the constraints we already know:

• edges to and from z to enforce ∀ x : 0 ≤ s(x) < k,

• for every edge (x, y, d) in the dependency graph, edges (x, y, d + 1) and (y, x,−d),

• edges forcing all producers of control outputs to be in the last stage.

Then, we add some more constraints that are likely to yield a better stage assignment:

• Edges forcing the operations with the greatest height to be in the first stage.

This is essential for making the stage assignment yield good results.

• For each non-constant input, edges forcing all its consumers to be in the same stage.

This constraint serves to subtly discourage, but not entirely forbid inter-stage forward
dependences (d′ = 0 in the pipelined loop specification).

These constraints are not logically necessary, and as such can cause negative-weight cycles
in S if they contradict other constraints. Therefore, if adding an edge for one of these
constraints would create such a cycle, the constraint is simply ignored.
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The algorithm then decides the boundaries between stages one by one, starting at the
last stage. The number of the stage below the boundary to be decided shall be denoted by
i.

For each boundary, the height and depth functions are used to classify each operation
into three categories: above, below and undecided. The primary aim here is to exclude
stage assignments that violate the second condition stated above, i.e. assignments where
one of the stages, when scheduled individually, is longer than we would like our final loop
body to be.

We calculate the height and depth functions based on a subgraph of the code graph G;
all nodes that are (according to S) known to be in stage i + 1 or below are excluded. Thus,
the total height and depth correspond to all the instructions from the first stage to stage i,
inclusively.

Rather than pre-determining a target λ, we just strive to split up the code graph into
stages of roughly equal size, as measured by the height and depth functions. As the height
function is intended to give a lower bound of the distance in cycles between an instruction
and the “bottom” of the code graph, we force all operations with a height greater than htot/i
to be in stage i− 1 or above; likewise, all instructions with depth greater than (i− 1)dtot/i
to be in stage i.

The graph S is augmented to reflect this new information by adding the appropriate
edges to and from z. If adding such an edge would create a cycle with negative weight in S,
then it is skipped. This means that previous decisions, or their consequences, contradict the
new “recommendation” that was derived from the height and depth functions. Precedence
has to be given to the earlier decisions.

We can now extract the set of all operations whose position with respect to the stage
boundary under consideration is not yet known from the graph S. The exact boundary is
then determined in a way that minimises the number of registers required (as described
below). The results of that decision is then recorded in S again, and the process repeated
for the next lower-numbered boundary, until all stages are decided.

5.3 Stage Separation

Now let us turn to the problem of determining where to draw the exact boundary between
two stages. We have already narrowed down our choice so that condition 1 will always be
fulfilled.

The goal now is to find a partitioning that fulfils the other two conditions, i.e., one that
minimises register use without violating any of the constraints and without generating too
many forward dependences. Of course, we must still make sure that our choices don’t
violate any other constraints defined in the previous section.

We can do this by transforming the remaining code graph (after removing the nodes
that are already known to be either above or below the boundary) to an instance of the
minimum cut problem; the minimum cut will be the stage boundary that uses the smallest
number of registers at the top of the loop.

We want to define a graph Gcut such that
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Figure 6: Transforming parts of a code graph (left) to a minimum cut problem (right).
Edges A and D are known to be above and below the stage boundary beforehand;
using the minimum cut we decide to put B and C below the cut, because that
requires the least number of registers to be live at the top of the stage.

1. a minimum cut yields two stages with no illegal dependences, and

2. the size of the minimum cut equals the number of values that have to be kept in
registers from one stage to the next.

Definition 5.4 Given a code graph G, we define the graph G′
cut as containing

• a “source” node s,

• a “sink” node t,

• for every operation in the code graph, an “operation” node,

• for every node in the code graph, a “value” node,

• an edge with infinite weight from each consumer of a value to the producer,

• an edge with weight 1.0 from each producer to the corresponding value node,
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• an edge with infinite weight from each value node to each of its consumers.

Definition 5.5 Based on G′
cut, a set A of operations (hyperedges in the code graph) known

to be above the boundary, i.e., in stage i− 1 or less, and a set B of operations known to be
below the boundary, i.e., in stage i or greater, we define the graph Gcut by

• deleting all operation nodes in A ∪ B,

• deleting all value nodes that are not connected to a consumer or producer not in
A ∪ B,

• deleting all edges that connect two deleted nodes,

• replacing all mention of nodes in A in the remaining edges with s,

• replacing all mention of nodes in B in the remaining edges with t.

Figure 6 illustrates this transformation on a simple example.
If at least one of the consumers of a value is above the cut, then the producer must also

be above the cut. This is easily achieved by having an edge with infinite weight point from
each of the consumers to the producer; any cut where the producer is below the cut but one
of the consumers is above would therefore have infinite weight, and therefore cannot be the
minimum cut.

A value is live at the top of the loop if the operation that produces it is above the cut
and at least one of the consumers is below the cut. For every value, we want an edge with
weight 1.0 that crosses the cut if and only if the value is live at the top of the loop. We only
want one such edge per value in order to avoid counting any live value twice. Therefore,
this edge with weight 1.0 connects the producer node to the value node; edges with infinite
weight are used to connect the value node to each of its consumers. Note that there is no
edge going from the consumer to the value, so that it is possible for a value node to be
below the cut while the operation node that consumes the value is above the cut.

We express the constraint that we want all consumers of an input to be in the same stage
at this level by adding a cycle of edges with infinite weight between all successors of each
input.

If a value has a producer or consumer whose stage is already known and a producer
or consumer whose stage is not yet known, the transformation is done as above, but t is
substituted for any operation that is known to be in stage i or greater, and s is substituted
for any operation that is known to be in stage i− 1 or less.

As an example, Fig. 7 shows the stage assignment produced by our algorithm for the
best result for the non-unrolled cosine function listed in Table 1.
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Figure 7: Stage assignment for cos with u = 1, s = 4, m = 2
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6. Numerical Results
We used code graphs defined using COCONUT declarative assembly language [10] for the
Cell SPU to test the performance of a prototype scheduler based on the algorithms de-
scribed in this paper. We present the results for a library of basic mathematical functions,
both against resource-based lower bounds and to modulo scheduling in xlc.

Each of the basic mathematical functions operates on SIMD vectors, and is iterated
over input and output arrays of such.

We can apply two different preprocessing steps to the code before scheduling it; we
can unroll the loop by replicating the loop body u times in parallel (the parallel instances
of the loop body will use common loop counting instructions). We can also apply a pre-
processing step that splits up the m nodes with the greatest lifetimes (as estimated before
scheduling using the heightLU function from section 5.1) by inserting register-to-register
move instructions (we use the rotqbyi 0 instruction, rotate quad word by zero bytes).

Table 1 shows the result of using ExSSP on the math functions; for each value of the
unrolling factor u, the table shows the number of stages s and the number of inserted moves
m that yielded the shortest schedule; for this shortest schedule, it shows the theoretical
lower bound b for the schedule length calculated from the number of instructions for each
of the Cell SPU’s two execution units, the achieved schedule length (in cycles) n and the
number of registers r used by the schedule. As expected, we we are more likely to find a
schedule close to the minimum bound at higher unrolling factors, although some optimal
schedules occur even with u = 1. For u = 4, almost all functions schedule within a few
cycles of the theoretical lower bound b.

Fig. 8 shows an overall 20 percent II reduction, when using ExSSP instead of xlcs
implementation of modulo scheduling. This includes all functions implemented in the
vector math library except the two-result sine/cosine pair function, which could not be
scheduled by xlc using modulo scheduling.
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7. Conclusion and Outlook
As a slight extension of the code graphs presented in [9], we defined loop specifications
as the main conceptual vehicle to guide the code transformations necessary for software
pipelining. The constraints on stage composition arising from first investigating the pipelin-
ing transformation on the level of composition of code graphs and loop specifications pro-
vided useful guidance for the heuristic we employ for stage splitting.

The prototype implementation of the resulting Explicitly-Staged Software Pipelining
algorithm produces very efficient software-pipelined loop bodies, which makes our ap-
proach worth pursuing further.

We plan to investigate whether the heuristics of decomposed software pipelining de-
scribed in [4, 5, 6], especially the circuit-retiming based approach given in [6], can be
adapted to our framework. The algorithm of [6] has a known efficiency bound, but it does
not currently have any provisions for pre-assigning stages.

In [9], the concept of joins is discussed; the idea is to allow a node in the code graph
to have multiple producers; the scheduler is then expected to choose one alternative, based
on which leads to the better code. This would also allow the stage decomposition heuristic
to take advantage of joins, which may provide choices to produce values based on inputs
with different iteration distances d. While resolution of stage-internal joins would still be
left to the final instruction scheduling pass. the larger gains are expected from joins where
one of the alternatives is chosen during stage assignment; this is in fact a generalisation of
our current method to insert moves to eliminate long lifetimes of values.
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