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of the identity to the combined Hessian, which means taking a smaller step which is
more gradient step and less Newton step, both of which slow convergence. Because
of these factors, it is best use this penalty after other penalties have stopped rapidly
converging, and only use it in combination with convex penalties.

5.5. Fit to Data. The preceding penalties are some of the penalties which encode
a priori information about the expected solution, which may be modified and in-
troduced at different iterations to improve convergence. Every problem must also
contain a fit-to-data term which is dictated by the problem.

Our assumption is that the problem has a readily computable forward problem:
a way of going from model to expected data. If the forward problem is linear
T : P → M , where D is the vector space of pixel data and M is the vector space
of measurement data, and the measurements are contaminated by white noise, the
fit-to-data term is

(32) φdata(f) = ‖Tf −m‖2 ,

where m are the measurements. The gradient is given by

(33) ∇φdata = 2TT Tf − 2TT m,

and the Hessian by

(34) Hφdata = 2TT T.

Where the adjoint TT can always be computed by similar fast methods. The most
common case is when T is a close relative to the Radon transform or nonuniform
Fourier transform, in which case the adjoint can be accelerated using the same
methods.

Modifications for unequal or correlated noise are straightforward. Modifications
for nonlinear forward problems require another level of analysis. If the nonlinear
problem is convex, and the difference between the nonlinear model and its lin-
earization can be bounded in a trust region, then our framework provides the tools
required to solve the nonlinear problem. Simply substitute the linearization of the
forward problem at each iteration, and add a multiple of the identity to the overall
Hessian to ensure the next step stays within the region on which the linearization
is a good approximation. As the solution approaches a minimum for the general
nonlinear problem, the step size will reduce in size and converge linearly to the
local optimum. We will explore this issue in detail for specific nonlinear forward
problems in a future paper.

Unlike the previous penalties, Hφdata will in general be dense, and the exact
values of a split Adata + Bdata = Hφdata which matches the sparsity pattern for A
may be too expensive to determine exactly. In this case, the requirement on the
split is for A to have the same sparsity pattern as the diagonal blocks of the other
Hessian components, and B to come with the smallest possible spectral radius.

For example, sparsely sampled radial sampling in MRI and sparse spiral sam-
plings in transmission tomography (including CT), result in TT T being approxi-
mately shift-invariant, given as convolution with a point spread function (psf). The
psf approximates a delta function at the origin, and for different sparse samplings
above includes low-intensity star patterns centred at the origin. The first term,
Adata is formed by taking the 2m + 1 adjacent pixels centred at the origin in the
row direction. Fig. 6 shows an actual psf (see [ACK06]), with a yellow outline to
show the pixels which contribute to Adata.
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1.  Bang

2.  Listen
3.  Solve Acoustic 

Equations

http://en.wikipedia.org/wiki/Seismology
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Magnetic 
Resonance 

Imaging

0.  Tissue Density
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Modulation

2.  Sample Fourier Transform

3.  Invert Linear 
System
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Challenging when...

• model is big

• 1 000 000 000 variables

• model is nonlinear

• data is inexact

(usually know error probabilistically)
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Imaging

• discretize continuous model 

• regular volume/area 
elements

• sparse structure
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Figure 1. Real (left) and imaginary (right) parts of the ideal den-
sity. The same vertical and gray scales are used in all comparable
plots.

2.6. Novelty. Our contribution to the solution of inverse imaging problems con-
sists of

• the decomposition of the Hessian into block diagonal and other blocks for
use in Neumann series or polynomial approximations,

• penalty functions designed to mimic bilateral filters,
• the optimization of spatial kernels to produce desired gradient directions

from penalty functions.
Although we could not find the repeated application of Neumann series, single
applications have been used in other ways in image reconstruction problems, see
[WNC01], and repetition of such application was probably considered previously.

3. Example Problem

We will use a computationally simple inverse problem for the purposes of expo-
sition and numerical evaluation: MR SENSE (Sensitivity Encoding) with regular
two times undersampling of signals in the frequency domain. In this problem, we
want to determine a complex tissue density function

(5) ρ : Ω→ C
from measurements

(6) µ1, µ2, µ3, µ4 : Ω/2→ C,

in which we take Ω = {0, 1, . . . , 255}× {0, 1, . . . , 255} and Ω/2 = {0, 1, . . . , 127}×
{0, 1, . . . , 255}. The real and imaginary parts of our numerical test object ρ are
given in Fig. 1. The measurements are modeled by

(7) µm;i,j = Sm;i,jρi,j + Sm;i+128,jρi,j + εm;i,j ,

where the εm;i,j are identically normally distributed, zero mean, independent mea-
surement errors. Physically, the measurements are reconstructed MR images which
are undersampled in one direction so that the reconstructed images alias, with the
top/bottom of the image also appearing in the middle. MR measurements are
collected using antennae which modulate the tissue density by their spatial sensi-
tivity, Sm : Ω→ C. SENSE works well when the antennae are designed to produce
linearly-independent sensitivities.

This is a particular example of SENSE, in which a regular undersampling pattern
in frequency space produces (after reordering) a block diagonal forward problem
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Solutions: Noise
• filter noisy solution

1. convolution filter
2. bilateral filter
3. Anisotropic Diffusion (uses pde)

• regularize via penalty 
1. energy
2. Total Variation
3. something new
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Solutions: Problem Size

I. use a fast method (i.e. based on FFT)
II. use (parallelizable) iterative method

a. Conjugate Gradient
b. Neumann series

III. use sparsity
a. choose penalties with sparse Hessians

IV. use fast hardware
a. 1000-way parallelizable
b. single precision 

8



Anand-Neumann Series-AdvOl-Feb2007

Cell BE
• 25 GFlops DP

• 200 GFlops SP

• need 384-way ||ism

• 4-way SIMD
• 8-way cores
• 6-times unrolling
• double buffering
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Solutions: Nonlinearity

use iterative method

A. sequential projection onto convex sets

B. trust region

C. sequential quadratic approximations

10
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Plan of Talk
A. example/benchmark
B. optimization

1. fit to data
2. regularization

i. new penalty (with optimized gradient)
ii. nonlinear penalties

C. solution
1. operator decomposition
2. Neumann series

D. proof of convergence
E. numerical example

1. noise reduction
2. linear convergence

11
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Example/Benchmark
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A FIRST-ORDER FRAMEWORK FOR
INVERSE IMAGING PROBLEMS

CHRISTOPHER KUMAR ANAND

Abstract. We argue that some inverse problems arising in imaging can be
efficiently treated using only single-precision (or other reduced-precision) arith-
metic, using a combination of old ideas (first-order methods, polynomial pre-
conditioners), and new ones (bilateral filtering, total variation). Using single
precision, and having structures which parallelize in the ways needed to take
advantage of low-cost/high-performance multi-core/SIMD architectures, this
framework is especially suited to embedded image reconstruction applications
like medical imaging. We show with a simulated magnetic resonance imaging
problem that this method can be numerically effective. Since the conver-
gence/error analysis is particularly simple for pure quadratic objectives, this
approach can also be used in embedded environments with fixed computation
budgets, or certification requirements. Simple analysis for the quadratic case
also serves as a basis for the analysis of nonlinear problems solved via a se-
quence of quadratic approximations. We include one example of a nonlinear,
nonquadratic penalty function.
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In this paper, we propose a method of solving inverse problems in imaging which
are characterized by two challenges: large optimization problems and tight budgets
(for cost, power consumption, and solution time). Significant recent progress in
mathematical methods such as Total Variation regularization [ROF92] and aniso-
tropic diffusion of image processing demonstrates that image quality can be sig-
nificantly improved by incorporating novel regularization and iterative strategies
into the inverse problem models, but at considerable computational cost. Bilateral
filtering [TM98], on the other hand, provides a remarkable level of noise reduction
in a single step and offers efficient computation. Our method arose in answer to
the question: Can the efficiency of bilateral filtering be brought to inverse imaging
problems?

These algorithm developments coincide with a period of rapid change in hardware
architecture. For example, the recently-released first-generation Cell BE delivers
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nonquadratic penalty function.
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In this paper, we propose a method of solving inverse problems in imaging which
are characterized by two challenges: large optimization problems and tight budgets
(for cost, power consumption, and solution time). Significant recent progress in
mathematical methods such as Total Variation regularization [ROF92] and aniso-
tropic diffusion of image processing demonstrates that image quality can be sig-
nificantly improved by incorporating novel regularization and iterative strategies
into the inverse problem models, but at considerable computational cost. Bilateral
filtering [TM98], on the other hand, provides a remarkable level of noise reduction
in a single step and offers efficient computation. Our method arose in answer to
the question: Can the efficiency of bilateral filtering be brought to inverse imaging
problems?

These algorithm developments coincide with a period of rapid change in hardware
architecture. For example, the recently-released first-generation Cell BE delivers
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Figure 1. Real (left) and imaginary (right) parts of the ideal den-
sity. The same vertical and gray scales are used in all comparable
plots.
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Figure 2. Solution of the direct problem. The fixed gray and
vertical scale reduces the visibility of the noise.

with 4 × 8 (real) dense blocks. We take advantage of this structure to solve the
inverse problem directly as a baseline solution, see Fig. 2.

The usual measure for noise in MRI (Signal to Noise Ratio, SNR) is calculated
as the ratio of the largest expected pixel value to the standard deviation of the
measured error. In our case, the true image has pixel values 1, i or 0, so the SNR
is the inverse of the standard deviation of the error, which we have chosen to be 2,
when measured over the pixels with true value of 1, giving an SNR of 1/2. (More
noise than signal.)
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signal quality comes with increased collection time (and cost); imaging is never
fast enough, so producing images from noisier data is welcome; and (ii) irregular
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[PWBB01, ACK06]) lead to problems with no direct inverses.
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On the other hand, the contribution to the off-diagonal blocks is not real, so
there are twice as many nonzero elements (not counting symmetry in the Hessian):

(36) (BSENSE2)(i,j),(i,j+128) =
∑

m

Sm;i,jS
∗
m;i,j+128,

by which we mean that the four nonzero elements corresponding to the interaction
of pixels (i, j) and (i, j+128) correspond to multiplication by this complex number.
Since these values are applied directly in the form of a matrix-vector product, and
not involved in a Cholesky decomposition, there is no effect on space.

Since the energy of Hφdata is divided equally between the diagonal and off-
diagonal blocks, this problem can be expected to be more difficult to invert by
this method than typical target applications, for which the psf is not sparse, but
is concentrated at the origin. Further investigation is required to see how this fact
balances out the fact that we don’t have a fast exact decomposition into block
diagonal and off-diagonal parts.

The total memory footprint of this algorithm depends strongly on the fast algo-
rithm used to calculate T and TT , but the additional footprint for the regularization
will be (|supp(c)|/2 + width(c))×(image size). For most target problems, the com-
putational cost associated with c will be small relative to the fit-to-data term, so
the space requirements are what needs to be traded-off with the improvement per
iteration.

6. Numerical Results

Numerically, we verify linear convergence, with all computations done in single
precision. (All variables were declared to be single precision, and we verified that
single-precision instructions were used in some of the assembly code.) We verify
convergence with a variety of different penalty functions and in two regimes: a
small number of iterations, to simulate real-time imaging, and a larger number
to ensure convergence past visibly-detectable differences. For the simulated real-
time situations, we chose 15 iterations, because we wanted to add some additional
penalties and they worked best after the initial 10 iterations, but we wanted to keep
the number of iterations down. For 15 iterations, we compare the optimized kernel
c with the simplest possible kernel, the so-called five-point stencil with obviously
unacceptable results for the smaller kernel. We also compare the penalties φbi2 and
φbiTv for visual differences in edge sharpness.

The implementation is in ANSI C, with minimal space-optimizations, taking
advantage of the banded structure to allow large problems to execute in RAM. No
optimization was done for speed, but even at 100 iterations, the processing speed
is comparable the time gnuplot required to plot the results.

6.1. Convergence. We deliberately chose to test in a high-noise regime, so we
expected many iterations to be necessary. In Fig. 7, we see that the linear conver-
gence continues to the 100th iteration, both with the φbi2 and φbiTv penalties, plus
additional penalties after 10 iterations. For the first 10 iterations, see Fig. 8, we
used equal weighting for the penalty and fit-to-data term,

(37) minλφdata + λbi2φbi2 + λbiTvφbiTv + λmaskφmask + λmagnetφmagnet + λsegφseg

λ = 1 = λbi2 and use a very small regularizer α = .0125. In both cases, we perform
a simple mask calculation at this point (shrinking a circle until the average pixel

fit-to-data
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will suffer from pipeline stalls equal to the six cycles of latency of a floating-point
operation. To achieve peak performance, 6 × 4 decompositions must be executed
in parallel, using software-pipelined loops. To use all eight SPUs, we need 8 × 6
decompositions to execute in parallel. Since the SPUs can only efficiently address
256MB of local storage, some method of buffering data in and out of the local stor-
age is required. Double buffering entire blocks is the simplest scheme, requiring an
additional factor of two. In total, 384 decompositions must be in-flight in parallel
to achieve peak performance. The exact amount of parallelism required to achieve
peak performance depends on both the high-level and low-level data dependencies.
For example, dense Cholesky decompositions can be parallelized internally, using
SIMD features at near peak performance, and long vectors may be broken into
blocks and pipelined at the high level. But hundred-way parallelism will still be
required for a single Cell, and thousand-way for a small cluster.

2.6. Novelty. Our contribution to the solution of inverse imaging problems con-
sists of

• the decomposition of the Hessian into block diagonal and other blocks for
use in Neumann series or polynomial approximations,

• penalty functions designed to mimic bilateral filters,
• the optimization of spatial kernels to produce desired gradient directions

from penalty functions.
Although we could not find the repeated application of Neumann series, single
applications have been used in other ways in image reconstruction problems, see
[WNC01], and repetition of such application was probably considered previously.

3. Example Problem

We will use a computationally simple inverse problem for the purposes of expo-
sition and numerical evaluation: MR SENSE (Sensitivity Encoding) with regular
two times undersampling of signals in the frequency domain. In this problem, we
want to determine a complex tissue density function

(5) ρ : Ω→ C
from measurements

(6) µ1, µ2, µ3, µ4 : Ω/2→ C,

in which we take Ω = {0, 1, . . . , 255}× {0, 1, . . . , 255} and Ω/2 = {0, 1, . . . , 127}×
{0, 1, . . . , 255}. The real and imaginary parts of our numerical test object ρ are
given in Fig. 1. The measurements are modeled by

(7) µm;i,j = Sm;i,jρi,j + Sm;i+128,jρi,j + εm;i,j ,

where the εm;i,j are identically normally distributed, zero mean, independent mea-
surement errors. Physically, the measurements are reconstructed MR images which
are undersampled in one direction so that the reconstructed images alias, with the
top/bottom of the image also appearing in the middle. MR measurements are
collected using antennae which modulate the tissue density by their spatial sensi-
tivity, Sm : Ω→ C. SENSE works well when the antennae are designed to produce
linearly-independent sensitivities.

This is a particular example of SENSE, in which a regular undersampling pattern
in frequency space produces (after reordering) a block diagonal forward problem
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to a better local minimum is to increase the weighting of this penalty and decrease
the size of σ as a function of iteration count. As the weighting of this penalty
function gets higher and σ gets smaller, pixels will be forced to move to one of the
component means. If the weighting is too high initially, however, some pixels will
be trapped in the wrong basin of convergence.

Another consequence of the nonconvexity is that the Hessian may have negative
values on the diagonal. This happens for pixel values far away from the simplex,
or when σ is small enough for pixels in the interior of the simplex. This will
reduce the diagonal of A and even without making A singular and the Cholesky
decomposition ill-defined, it tends to increase the eigenvalues of L−1BLT−1 which
reduces the rate of convergence of the Neumann series and increases the error in the
polynomial approximation of (A+B)−1. We can compensate by adding a multiple
of the identity to the combined Hessian, which means taking a smaller step which is
more gradient step and less Newton step, both of which slow convergence. Because
of these factors, it is best use this penalty after other penalties have stopped rapidly
converging, and only use it in combination with convex penalties.

5.5. Fit to Data. The preceding penalties are some of the penalties which encode
a priori information about the expected solution, which may be modified and in-
troduced at different iterations to improve convergence. Every problem must also
contain a fit-to-data term which is dictated by the problem.

Our assumption is that the problem has a readily computable forward problem:
a way of going from model to expected data. If the forward problem is linear
T : P → M , where D is the vector space of pixel data and M is the vector space
of measurement data, and the measurements are contaminated by white noise, the
fit-to-data term is

(32) φdata(f) = ‖Tf −m‖2 ,

where m are the measurements. The gradient is given by

(33) ∇φdata = 2TT Tf − 2TT m,

and the Hessian by

(34) Hφdata = 2TT T.

Where the adjoint TT can always be computed by similar fast methods. The most
common case is when T is a close relative to the Radon transform or nonuniform
Fourier transform, in which case the adjoint can be accelerated using the same
methods.

Modifications for unequal or correlated noise are straightforward. Modifications
for nonlinear forward problems require another level of analysis. If the nonlinear
problem is convex, and the difference between the nonlinear model and its lin-
earization can be bounded in a trust region, then our framework provides the tools
required to solve the nonlinear problem. Simply substitute the linearization of the
forward problem at each iteration, and add a multiple of the identity to the overall
Hessian to ensure the next step stays within the region on which the linearization
is a good approximation. As the solution approaches a minimum for the general
nonlinear problem, the step size will reduce in size and converge linearly to the
local optimum. We will explore this issue in detail for specific nonlinear forward
problems in a future paper.
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Let Ω ⊂ ZN be a multi-dimensional lattice of points, V a real vector space and
f : Ω− > V a (noisy) image. Convolution with a kernel c : ZN− > R,

(3) f̂(x) =
∑

y∈R\{x}

c(y − x)f(y),

is the simplest method of filtering noise. It works when the noise and true image
have different spectra (usually the noise is white, with uniform high- and low-
frequency components, but the image has very small high-frequency components).

Bilateral filtering introduces a range kernel function s : V → V ,

(4) f̂(x) =
∑

y∈R\{x}

c(y − x)s(f(y)− f(x))f(y),

which modulates the weighting of neighboring pixel values. In the original and later
application papers, this is seen to reduce edge blurring in images with sharp edges,
because it reduces the influence of neighboring pixels with very different values on
each other. Both c and s are usually taken to be Gaussian kernels, with the c being
truncated at some finite width to reduce computation, and s chosen to match the
expected noise statistics in f .

Although Bilateral Filtering works well as a single-step filtering method, the
concept can be used in an iterative derivative-free method, for example in AD
[Bar05]. The cycle of relationships is closed in the analysis, [BSMH97], of the link
between robust statistics and AD.

2.5. Exploiting Commodity/Lower-Precision Hardware in Scientific Com-
putation. In another direction, the community of researchers exploring the limits
of computation possible on graphics processors has made significant progress in
translating scientific algorithms to the limited precision and restricted computa-
tional model of current graphics processors. This work offers an alternative to our
proposed method and significant progress has been made, including recent work
implementing interior point linear programming using OpenGL [JO06]. For algo-
rithms which do not perform well in single precision, it is possible to use single-
precision calculations and iterative refinement to produce higher-precision results,
as was done for very high-precision linear algebra in [GZ03] and for accelerating
Cell computations in [KD06].

Note: For numerical analysts who may not be familiar with the level and kind
of parallelism available in current commodity architectures, we examine the case
of the first-generation Cell [KDH+05]. This processor contains 8 general-purpose
processor cores (Synergistic Processor Units, SPUs), each capable of dispatching
a single SIMD floating-point operation per cycle. Each SIMD operation operates
on 128 bit operands, which can be operated on as a short vector of four single-
precision floating-point numbers. Although it is possible to reorder the constituents
of operands and synthesize conditional execution, peak floating-point performance
is only available when the four floating-point elements in each operand are operated
on in the same manner. For example, adding two vectors can easily be arranged
to function this way, while Cholesky decomposition of a single tridiagonal block
will operate at near one quarter the peak rate. This can be remedied if four blocks
of the same size are processed in parallel, with the data stored in memory in an
interleaved fashion. Again, using the Cholesky decomposition example, data de-
pendencies between instructions mean that four decompositions executed in parallel

Bilateral Filter
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for some constant φ0. The gradient is H(x− x0). The difference between the next
iterate and the minimum point is

(14)

‖x + ∆x− x0‖ =
∥∥x + p(A−1B)A−1(−H(x− x0))− x0

∥∥

≤
∥∥p(A−1B)A−1(−H(x− x0))− (H + αI)−1(−H(x− x0))

∥∥

+
∥∥(H + αI)−1(−H(x− x0))− (x− x0)

∥∥

≤
(
ε ‖H‖+

∥∥(H + αI)−1
∥∥α

)
‖x− x0‖ .

So if the spectrum of the Hessian is bounded away from zero, we can find a poly-
nomial approximation of sufficient degree to make ε small enough to ensure that
approximate Newton step is a contraction mapping, and the iteration converges.
The rate of convergence depends on the conditioning of the Hessian and the order
of the polynomial approximation.

We have shown that this framework converges in infinite precsion. It works even
with low-precision arithmetic well past a level of convergence meaningful in imaging
problems because errors do not accumulate from outer iteration to outer iteration,
and errors in the inner iteration amount to tens of ulps which is below the error of
the approximation.

For a polynomial p(x) =
∑

i pixi, rounding errors during the inner iteration will
be on the order of m ulps plus

∑
i |pi|/pmin ulps multiplied errors in multiplication

by B, where pmin is the minimum magnitude coefficient of the polynomial. In
reasonable situations this result in a ratio under two, and in our test-case we have
always been able to keep it under one. We use the fact, see [GVL96], that Cholesky
decomposition of the diagonally-dominated blocks of A introduces at most a few
ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be
able to ensure rapid convergence with the penalty terms. Two properties can ensure
this: dominance of the block diagonal component of the Hessian and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first family of penalty functions on
bilateral filtering, we replace (4) with a penalty

(15) φbi(f) =
∑

y "=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions, including ones used in bilateral filtering.
The choice of c and s is guided by

(1) previous use in statistics or filtering,
(2) descent direction, −∇φbi,

range 
kernel

Bilateral Regularizer
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(3) sparsity and conditioning of the Hessian.
We want the negative gradient to point in the direction of a more likely image

than the current estimate. For problems where pixel values represent component
properties, e.g. water content or radio opacity, images are expected to be piecewise
constant to a first approximation, with most of the signal in the low-frequency
components, while the noise is distributed evenly across frequencies. This leads to
the design goal

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0.

For one of the penalties will define, we can formulate this design problem using
constrained linear optimization involving the coefficients of c. The optimization
model is a multi-dimensional analogue of FIR filter design. Since the penalties
form a family, it makes sense to use such an optimal c for the whole family.

For general c and s, the gradient and Hessian are

∂

∂fi(x)
φbi =

∑

{y | y !=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
∑

{y | y !=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of s.
The derivatives of s are important when f is vector-valued. If s depends func-
tionally on ‖f‖ alone, then its Hessian is a multiple of the identity, and the full
Hessian decomposes into identical, block banded with banded block blocks. In our
implementation, we use this fact to reduce storage for the Hessian and the number
of Cholesky decompositions.

Consider s(t) = ‖t‖2 (L2 norm). To simplify the analysis, we assume
∑

y !=0 c(y) =
1, and c(y) ≥ 0. In this case we define

(18) φbi2 =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑

y !=x

(fi(x)− fi(y))c(x− y) = 2



fi(x)−
∑

y !=x

fi(y)c(y − x)



 ,

(19)

and

(20)

Hfi(x),fj(y)φbi2 = 0, ∀(i &= j or x &= y)

Hfi(x),fi(x)φbi2 = 2
∑

y !=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).

We observe that ∇φbi2(f) is the convolution of f with the kernel formed by 1 at
zero and − c(x) for other values of x. This is why the design can be formulated
as linear programming. In Fig. 3 we show the optimal two-dimensional discrete

A FIRST-ORDER FRAMEWORK FOR INVERSE IMAGING PROBLEMS 11

(3) sparsity and conditioning of the Hessian.
We want the negative gradient to point in the direction of a more likely image

than the current estimate. For problems where pixel values represent component
properties, e.g. water content or radio opacity, images are expected to be piecewise
constant to a first approximation, with most of the signal in the low-frequency
components, while the noise is distributed evenly across frequencies. This leads to
the design goal

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0.

For one of the penalties will define, we can formulate this design problem using
constrained linear optimization involving the coefficients of c. The optimization
model is a multi-dimensional analogue of FIR filter design. Since the penalties
form a family, it makes sense to use such an optimal c for the whole family.

For general c and s, the gradient and Hessian are

∂

∂fi(x)
φbi =

∑

{y | y !=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
∑

{y | y !=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of s.
The derivatives of s are important when f is vector-valued. If s depends func-
tionally on ‖f‖ alone, then its Hessian is a multiple of the identity, and the full
Hessian decomposes into identical, block banded with banded block blocks. In our
implementation, we use this fact to reduce storage for the Hessian and the number
of Cholesky decompositions.

Consider s(t) = ‖t‖2 (L2 norm). To simplify the analysis, we assume
∑

y !=0 c(y) =
1, and c(y) ≥ 0. In this case we define

(18) φbi2 =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑

y !=x

(fi(x)− fi(y))c(x− y) = 2



fi(x)−
∑

y !=x

fi(y)c(y − x)



 ,

(19)

and

(20)

Hfi(x),fj(y)φbi2 = 0, ∀(i &= j or x &= y)

Hfi(x),fi(x)φbi2 = 2
∑

y !=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).

We observe that ∇φbi2(f) is the convolution of f with the kernel formed by 1 at
zero and − c(x) for other values of x. This is why the design can be formulated
as linear programming. In Fig. 3 we show the optimal two-dimensional discrete
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Figure 3. Optimal
√

18 spatial kernel and its transfer function,
with contours at .05 intervals from − 1.05 to − .05, with a double
contour at − 1.

‖x‖ c(x)
1 0.04071725
2 0.03499660
4 0.02368359
5 0.02522255
8 0.02024067
9 0.01407202
10 0.01345276
13 0.00850939
16 0.00812839
17 0.00491274
18 0.00396661

Table 1. Optimized definition of c used in numerical examples.

function c with support in a disc of radius
√

18 which we use in the numerical
examples in this paper.
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φbiTV =
∑
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is equal to the Total Variation, when c(x−y) is zero except for immediate neighbors,
and hence has all the problems associated with the discontinuity at the origin and
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φbiNormal = −
∑

y !=x

c(y − x)e‖f(y)−f(x)‖2 .(23)
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is equal to the Total Variation, when c(x−y) is zero except for immediate neighbors,
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zero Hessian;
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in which sHuber is the Huber function used in robust statistics. It is the C1 function
which equals the absolute value outside a neighborhood of zero and a parabola
inside. This penalty has a continuous gradient but discontinuous Hessian.
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For a polynomial p, rounding errors during the inner iteration will be on the
order of m ulps plus pmax/pmin ulps plus errors in multiplication by B, where pmax

and pmin are the maximum and minimum coefficients of the polynomial, which
in reasonable situations result in a ratio under 2. We use the fact, see [GVL96],
that Cholesky decomposition of the diagonally-dominated blocks of A introduces
at most a few ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be able
to insure rapid convergence with the penalty terms. Two properties can insure this:
dominance of the block diagonal component of the Hessian, and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first penalty on bilateral filtering,
we replace (4) with a penalty

(15) φbi(f) =
∑

y !=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions used in bilateral filtering. We want
−∇φbi to point in the direction of a more-likely image than the current estimate.
For problems where pixel values represent component properties, e.g. water content
or radio opacity, images are expected to be piecewise constant to a first approxi-
mation, with most of the signal in the low-frequency components. Noise, however,
is random, distributed evenly across frequencies. We can design c so that

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0,

using constrained linear optimization, in a multi-dimensional analogue of FIR filter
design.

In general

∂

∂fi(x)
φbi =

∑

{y | y !=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
∑

{y | y !=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of
s. The simplest s to analyze is s(t) = ‖t‖2. To simplify the analysis, we assume
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∑
y !=0 c(y) = 1, and c(y) ≥ 0. In this case we define

(18) φbi2 =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑

y !=x

(fi(x)− fi(y))c(x− y) = 2



fi(x)−
∑

x!=y

fi(x)c(x)



 ,(19)

and

(20)

Hfi(x),fj(y)φbi2 = 0, ∀(i %= j or x %= y)

Hfi(x),fi(x)φbi2 = 2
∑

y !=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).

In our example, the image is complex valued, so there are two components,
corresponding to the real and imaginary part, but the analysis works for any real-
vector-valued image. We observe that ∇φbi2(f) is the convolution of f with the
kernel formed by 1 at zero and − c(x) for other values of x.

This is the only case for which we can analyze/optimize the performance of c,
but we can use such cs for other functions s. Other functions s to consider are

φbiTv =
∑

y !=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥

2
+ ε

‖f(y)− f(x)‖2 ,(21)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiTV =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖ ,(22)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiHuber =
∑

y !=x

c(y − x)sHuberf(y)− f(x),(23)

in which sHuber is the Huber function used in robust statistics which is a C1 function
which equals the absolute value outside a neighborhood of 0 and a parabola inside;
and

φbiNormal = −
∑

y !=x

c(y − x)e‖f(y)−f(x)‖2 .(24)

Unlike φbi2, all of these functions have the property that the gradient and Hessian
depend on all components of f (i.e. both real and imaginary parts for a complex-
valued image). The first function has the same sparsity structure as φbi2, and can
be viewed as an approximate analogue of Total Variation. The second function is
a more direct analogue of Total Variation, but is non-smooth, with zero Hessian,
which would contribute to instability in the approximate Newton step. Fig. 3 shows
how the one approximates the other. For real-valued images, we could reformulate
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Figure 4. Two examples of the biTv kernel approximating the
absolute value. The approximation depends on the current value
of the difference, as shown on the left. On the right we see that
the difference with the absolute value is quite large when the going
from a small difference to a large one. This has the effect of limiting
step length for steps which would increase differences.

corresponds to the original kernel used in bilateral filtering, but reduces sparsity
and conditioning in the Hessian (since it may be nonconvex); while

φbiTv =
∑

y !=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥

2
+ ε

‖f(y)− f(x)‖2 ,(24)

(25)

which is a pixel-scaled version of φbi2 in which the scaling depends on the previous
estimate (f̃), and hence has the same sparsity (and symmetry among components).
It improves conditioning differently as a function of the current estimate, which may
improve actual convergence, while weakening bounds on worst-case convergence.
We designed this to be a better-behaved and easier-to-implement version of Total
Variation. Fig. 4 shows how the one approximates the other. For real-valued
images, we could reformulate this penalty using linearly-constrained optimization,
but this is out of the scope of this paper.

In the numerical results section, we report on the behaviour of φbi2 and φbiTv,
leaving the other kernels for a future work.

Every nonzero value of c corresponds to nonzero (sub/super)diagonals in Hφbi2.
In most applications, this means that the memory requirements associated with the
approximate Newton step will be O(|c|× (image size)), where |c| is the size of the
support of c. Functions c with support in a disk (ball for higher dimensions), give
the best trade-off in terms of memory/performance. The function in Fig. 3 shows
a degree of rotational symmetry, and its transfer function (its Fourier transform)
shows that pure spatial frequencies with periods smaller than six pixels, which
represent 91 percent of all non-aliasing frequencies, would be reduced in magnitude
by 95 percent by a gradient step (if the penalty were the entire objective function).
Choice of the support for c and the frequencies to try to eliminate warrant further
investigation, and in a future paper we will give the details of the optimization
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mation, with most of the signal in the low-frequency components. Noise, however,
is random, distributed evenly across frequencies. We can design c so that

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0,

using constrained linear optimization, in a multi-dimensional analogue of FIR filter
design.

In general

∂

∂fi(x)
φbi =

∑

{y | y !=x}

∂s(f(x)− f(y))
∂fi(x)

c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
∑

{y | y !=x}

∂2s(f(x)− f(y))
∂fj(y) ∂fi(x)

c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of
s. The simplest s to analyze is s(t) = ‖t‖2. To simplify the analysis, we assume
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∑
y !=0 c(y) = 1, and c(y) ≥ 0. In this case we define

(18) φbi2 =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ,

and compute

∂

∂fi(x)
φbi2 = 2

∑

y !=x

(fi(x)− fi(y))c(x− y) = 2



fi(x)−
∑

x!=y

fi(x)c(x)



 ,(19)

and

(20)

Hfi(x),fj(y)φbi2 = 0, ∀(i %= j or x %= y)

Hfi(x),fi(x)φbi2 = 2
∑

y !=0

c(y) = 2,

Hfi(x),fi(y)φbi2 = −2c(x− y).
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φbiTv =
∑

y !=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥

2
+ ε

‖f(y)− f(x)‖2 ,(21)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiTV =
∑

y !=x

c(y − x) ‖f(y)− f(x)‖ ,(22)

which is differs from φbi2 in that the terms are scaled by the pixel values in the
previous iteration (f̃);

φbiHuber =
∑

y !=x

c(y − x)sHuberf(y)− f(x),(23)

in which sHuber is the Huber function used in robust statistics which is a C1 function
which equals the absolute value outside a neighborhood of 0 and a parabola inside;
and

φbiNormal = −
∑

y !=x

c(y − x)e‖f(y)−f(x)‖2 .(24)

Unlike φbi2, all of these functions have the property that the gradient and Hessian
depend on all components of f (i.e. both real and imaginary parts for a complex-
valued image). The first function has the same sparsity structure as φbi2, and can
be viewed as an approximate analogue of Total Variation. The second function is
a more direct analogue of Total Variation, but is non-smooth, with zero Hessian,
which would contribute to instability in the approximate Newton step. Fig. 3 shows
how the one approximates the other. For real-valued images, we could reformulate
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For a polynomial p, rounding errors during the inner iteration will be on the
order of m ulps plus pmax/pmin ulps plus errors in multiplication by B, where pmax

and pmin are the maximum and minimum coefficients of the polynomial, which
in reasonable situations result in a ratio under 2. We use the fact, see [GVL96],
that Cholesky decomposition of the diagonally-dominated blocks of A introduces
at most a few ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be able
to insure rapid convergence with the penalty terms. Two properties can insure this:
dominance of the block diagonal component of the Hessian, and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first penalty on bilateral filtering,
we replace (4) with a penalty
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∑

y !=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions used in bilateral filtering. We want
−∇φbi to point in the direction of a more-likely image than the current estimate.
For problems where pixel values represent component properties, e.g. water content
or radio opacity, images are expected to be piecewise constant to a first approxi-
mation, with most of the signal in the low-frequency components. Noise, however,
is random, distributed evenly across frequencies. We can design c so that

−∇φbi(fhigh) = −fhigh, while
−∇φbi(fzero) = 0,

using constrained linear optimization, in a multi-dimensional analogue of FIR filter
design.
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∂s(f(x)− f(y))
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c(x− y),(16)

and

(17) Hfi(x),fj(y)φbi = =
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c(x− y).

The sparsity of the Hessian depends on the support of c and the derivatives of
s. The simplest s to analyze is s(t) = ‖t‖2. To simplify the analysis, we assume

Figure 4. Two examples of the biTv kernel approximating the
absolute value. The approximation depends on the current value
of the difference, as shown on the left. On the right we see that
the difference with the absolute value is quite large when the going
from a small difference to a large one. This has the effect of limiting
step length for steps which would increase differences.

corresponds to the original kernel used in bilateral filtering, but reduces sparsity
and conditioning in the Hessian (since it may be nonconvex); while

φbiTv =
∑

y !=x

εc(y − x)√∥∥∥f̃(y)− f̃(x)
∥∥∥

2
+ ε

‖f(y)− f(x)‖2 ,(24)

(25)

which is a pixel-scaled version of φbi2 in which the scaling depends on the previous
estimate (f̃), and hence has the same sparsity (and symmetry among components).
It improves conditioning differently as a function of the current estimate, which may
improve actual convergence, while weakening bounds on worst-case convergence.
We designed this to be a better-behaved and easier-to-implement version of Total
Variation. Fig. 4 shows how the one approximates the other. For real-valued
images, we could reformulate this penalty using linearly-constrained optimization,
but this is out of the scope of this paper.

In the numerical results section, we report on the behaviour of φbi2 and φbiTv,
leaving the other kernels for a future work.

Every nonzero value of c corresponds to nonzero (sub/super)diagonals in Hφbi2.
In most applications, this means that the memory requirements associated with the
approximate Newton step will be O(|c|× (image size)), where |c| is the size of the
support of c. Functions c with support in a disk (ball for higher dimensions), give
the best trade-off in terms of memory/performance. The function in Fig. 3 shows
a degree of rotational symmetry, and its transfer function (its Fourier transform)
shows that pure spatial frequencies with periods smaller than six pixels, which
represent 91 percent of all non-aliasing frequencies, would be reduced in magnitude
by 95 percent by a gradient step (if the penalty were the entire objective function).
Choice of the support for c and the frequencies to try to eliminate warrant further
investigation, and in a future paper we will give the details of the optimization
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problem, profile a range of choices, and do the same for the spatial kernel of the
original bilateral filter.

Note that the penalty φbi is a bound on the difference between a pixel and the
weighted average of its neighbors:

(26)
∑

y !=x

c(y − x) ‖f(y)− f(x)‖2 ≥

∥∥∥∥∥∥
f(x)−

∑

y !=x

c(y − x)f(y)

∥∥∥∥∥∥
,

but that the inequality is strict generically. The latter would result in roughly twice
the number of nonzeros in the Hessian, reducing computational efficiency.

5.2. Masking. In slice/volume reconstuctions, the imaged object is often sur-
rounded by air, which in a perfect reconstruction appears as pure noise, but in im-
perfect reconstructions may contain incorrectly-attributed signal. If the object/air
interface can be determined from the device design, or from a low-quality recon-
struction, a penalty

(27) φmask =
∑

{x | x is air}

‖f(x)‖2

can be used to push the pixel values to zero (or whatever the appropriate signal
for the surrounding air or other substance is). The contribution to the gradient
is negative the image value, and the Hessian is diagonal, constant two outside the
object and zero inside. If set measurement is uncertain, the penalty can weight the
contributions from different pixels according to the certainty of not being inside the
object, or we could simply consider questionable pixels to be part of the object.

In limited experience, this works better than constraining those pixels to be zero
and then eliminating those variables from the problem. Perhaps this is true in high-
noise regimes where assigning external noise pixels to internal pixels can actually
make noise problems worse. It is certainly easier to implement boundary conditions
and do parallelization when the number of pixels in the object remains constant.

5.3. Partial Volume. In problems where the pixel values are modeled as linear
combinations of the signals corresponding to different object components (e.g. mus-
cle, fat, etc. for medical imaging, or forest, field, concrete, etc. for remote sensing),
the reconstructed vector pixel values should form a simplex (if the pure signals are
linearly-independent and the reconstructed values are expressed in a basis formed
by extension) or another convex polytope.

In either case, we can add penalty functions to penalize pixels outside the poly-
tope.

We see two ways of implementing such penalties: simplex basin and edge attrac-
tor. Let

(28) ψ(t) =

{
t2 t < 0
0 otherwise.

Define

(29) φsimplex(f) =
∑

i

ψ(fi) + ψ(1−
∑

i

fi).

For two-vectors, the corresponding basin of convergence is visualized in Fig. 5. This
penalty is convex and easy to compute. Its Hessian is discontinuous, however, but
this could be fixed by switching to the fourth power for the penalty components. If
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Figure 5. Surface rendering of the two-dimensional version of
φsimplex showing contours at 0,.2,.4,.6,.8.

the measurements can be converted to the natural basis of the simplex (extended in
the case of more measurements than components), the Hessian is diagonal. Unlike
the Hessians of other penalty functions, however, it is not constant on the diagonal
elements corresponding to one pixel. In fact, it could be one on any subset of the
diagonal and zero on the rest corresponding to components. (It is always one on
the remaining directions).

An alternative is
(30)

φmagnet(f) =

{
(f − f0)2 f in the exterior and projects to f0 on the boundary,

0 f in the interior.

This penalty has discontinuous Hessian, but the Hessian is diagonal in any basis
for the pixel values, because it is either two or zero on all diagonal elements corre-
sponding to one pixel. If all other penalties have this property, then storage for A,
B, and L can be reduced, along with the number of Cholesky decompositions. This
comes at the expense of penalizing movement along the boundary of the simplex
for pixels outside the simplex.

An alternative to both methods would be to use barriers. Since they are unde-
fined outside the simplex, this would require additional computation to ensure that
we never leave the simplex.

5.4. Segmentation. In many applications, images are used to make quantitative
determinations of component areas/volumes. For example, grey and white matter
volume is important in tracking development in children and degenerative diseases
in the elderly. Segmentation into components is also required before surface ren-
dering.

In such cases, where images are reconstructed from source data, the most likely
segmentations can be determined by incorporating a probability distribution on
pixel values into the reconstruction via a penalty function:

(31) φseg(f) =
∑

{g |mean values of components}

e−‖f−g‖2/σ2
.

This function is not convex for small values of σ, so we have to consider multiple
local minima. When it is convex, however, its unique minimum is in the interior
of the simplex and not assignable to any component. A reasonable way of getting
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Using a regularly-sampled representative for this class of problem simplifies the
exposition of the problem and implementation of the algorithm. It also makes avail-
able a direct solution (without regularization) to illustrate the relative magnitude
of the signal and noise, which would be harder to gauge in the general case.

4. Algorithm

The principle is to formulate one or a series of objective functions φi, including
a fit-to-data term and a penalty term(s), and to apply a polynomial approximation
to a Newton step, solving

(8) (H(φi) + αI) ∆xi+1 = −∇φi,

where αI is a positive multiple of the identity. The polynomial is an approximation
of 1/(1 + x) on an interval containing the spectrum of BA−1, where

(9) H(φi) + αI = A + B,

is a decomposition into A, block diagonal with banded blocks, and B general. The
decomposition is chosen to minimize the spectral radius of B, e.g. by making B
zero on the nonzero bands of A. The blocks correspond to rows or columns in the
image, depending on the ordering (row- or column-major order). We will assume
row-major organization, unless another organization is specifically mentioned. We
make A block diagonal with banded blocks because in the Hessian, this corresponds
to objective/penalty functions which depend on the relationships between close
neighbors in the row direction. An objective which depends on close neighbors in
all directions will have a block banded Hessian with banded blocks, in which most
blocks are zero and nonzero blocks are only nonzero on their central sub/super
diagonals.

We choose this sparse structure for A because each of the blocks (which cor-
respond to rows) can be factored in parallel. The Hessian, and hence B, may be
dense, as long as matrix-vector-products can be efficiently computed. All of the
Hessians for penalty functions introduced in this paper can be effectively paral-
lelized. The problem of fast computation of the fit-to-data term (gradient and
Hessian) is not unique to this method, and for most important inverse problems
fast implementations already exist.

In an N2 image, if A has m # N nonzero bands, the Cholesky decomposition
can be done in parallel for each image row/A block in O(mN ⊗N) operations using
O(mN) working space, to form

(10) A = LLT ,

where we use the notation O(x⊗ y) to mean O(x) operations per parallel compu-
tation, with y such computations for the whole image. In the case of an N3 image,
O(mN ⊗N2) operations would be required.

The same block diagonal structure applies to L. Formally,

(A + B)−1 =(LLT + B)−1

=LT−1(I + L−1BLT−1)−1L−1

“small”

•block diagonal with sparse banded blocks
•linear-time Cholesky decomposition
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(replace with Taylor series)

=(LT−1L−1)− (LT−1L−1BLT−1L−1)

+ (LT−1L−1BLT−1L−1BLT−1L−1)− ...

A truncated Taylor series provides a fast method of finding approximate solutions
to (A + B)−1(∆x) = −∇φi, using the following steps:

(1) calculate L−1(−∇φi) by back-solving in O(nN) operations
(2) calculate LT−1

L−1(−∇φi) by back-solving in O(nN) more operations
(3) save result
(4) calculate BLT−1

L−1(−∇φi) using the fast computation for B

(5) calculate L−1BLT−1
L−1(−∇φi) by back-solving inO(nN) more operations

(6) calculate LT−1
L−1BLT−1

L−1(−∇φi) by back-solving in O(nN) more op-
erations

(7) subtract from result
... continue to the order of truncation.

This process converges if the spectrum of L−1BLT−1 is in an interval [−b, b]
with b < 1. If a bounding interval [−b, b′] is known, then for any order, we can find
a minimax polynomial p(x) such that

(11) max
x∈[−b,b′]

‖1/(1 + x)− p(x)‖ = ε

is small. It follows that a linear combination,

(12) LT−1
p(L−1BLT−1

)L−1(−∇φi)

using the coefficients of p, of the terms calculated in the procedure above, provides a
better approximation of ∆x than the truncated Taylor series of the same order. (See
[JMP83] for an explanation and application to preconditioned conjugate gradient.)

Using the minimax polynomial requires little extra machine computation, es-
pecially on machines with fused multiply-add instructions. Note that even if the
Taylor series diverges, we can still find a minimax polynomial as long as the spec-
trum is bounded, although we wouldn’t expect a good rate of convergence to result.

The optimization algorithm contains the above procedure as an inner iteration.
The full procedure is

(1) compute gradient at current iterate (xi);
(2) compute Hessian and LT L (if the objective is convex quadratic);
(3) solve for the approximate Newton step using the procedure above;
(4) repeat until the step size or decrease in objective value fail to cross a thresh-

old.
We allow for non-stationary objective functions to accommodate non-convex objec-
tive functions which need to be solved in stages to prevent convergence to undesir-
able minima.

To ensure stability of the factorization step or to improve convergence, it may be
necessary to add a multiple of the identity to the Hessian. Let α be this multiple
and let H be the Hessian. The quadratic approximation to the objective can be
written

(13) φapprox =
1
2
(x− x0)TH(x− x0) + φ0,
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Abstract. We argue that some inverse problems arising in imaging can be
efficiently treated using only single-precision (or other reduced-precision) arith-
metic, using a combination of old ideas (first-order methods, polynomial pre-
conditioners), and new ones (bilateral filtering, total variation). Using single
precision, and having structures which parallelize in the ways needed to take
advantage of low-cost/high-performance multi-core/SIMD architectures, this
framework is especially suited to embedded image reconstruction applications
like medical imaging. We show with a simulated magnetic resonance imaging
problem that this method can be numerically effective. Since the conver-
gence/error analysis is particularly simple for pure quadratic objectives, this
approach can also be used in embedded environments with fixed computation
budgets, or certification requirements. Simple analysis for the quadratic case
also serves as a basis for the analysis of nonlinear problems solved via a se-
quence of quadratic approximations. We include one example of a nonlinear,
nonquadratic penalty function.

1. Introduction

T =





S1;top S1;bottom
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
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TT T

(TT T )−1TT µ

min
p polynomial

max
x∈spec(L−1BLT−1)

∥∥∥∥
1

1 + x
− p(x)

∥∥∥∥ = ε

In this paper, we propose a method of solving inverse problems in imaging which
are characterized by two challenges: large optimization problems and tight budgets
(for cost, power consumption, and solution time). Significant recent progress in
mathematical methods such as Total Variation regularization [ROF92] and aniso-
tropic diffusion of image processing demonstrates that image quality can be sig-
nificantly improved by incorporating novel regularization and iterative strategies
into the inverse problem models, but at considerable computational cost. Bilateral
filtering [TM98], on the other hand, provides a remarkable level of noise reduction
in a single step and offers efficient computation. Our method arose in answer to
the question: Can the efficiency of bilateral filtering be brought to inverse imaging
problems?

Date: 25 January 2006.
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for some constant φ0. The gradient is H(x− x0). The difference between the next
iterate and the minimum point is

(14)

‖x + ∆x− x0‖ =
∥∥x + p(A−1B)A−1(−H(x− x0))− x0

∥∥

≤
∥∥p(A−1B)A−1(−H(x− x0))− (H + αI)−1(−H(x− x0))

∥∥

+
∥∥(H + αI)−1(−H(x− x0))− (x− x0)

∥∥

≤
(
ε ‖H‖+

∥∥(H + αI)−1
∥∥α

)
‖x− x0‖ .

So if the spectrum of the Hessian is bounded away from zero, we can find a poly-
nomial approximation of sufficient degree to make ε small enough to ensure that
approximate Newton step is a contraction mapping, and the iteration converges.
The rate of convergence depends on the conditioning of the Hessian and the order
of the polynomial approximation.

We have shown that this framework converges in infinite precsion. It works even
with low-precision arithmetic well past a level of convergence meaningful in imaging
problems because errors do not accumulate from outer iteration to outer iteration,
and errors in the inner iteration amount to tens of ulps which is below the error of
the approximation.

For a polynomial p(x) =
∑

i pixi, rounding errors during the inner iteration will
be on the order of m ulps plus

∑
i |pi|/pmin ulps multiplied errors in multiplication

by B, where pmin is the minimum magnitude coefficient of the polynomial. In
reasonable situations this result in a ratio under two, and in our test-case we have
always been able to keep it under one. We use the fact, see [GVL96], that Cholesky
decomposition of the diagonally-dominated blocks of A introduces at most a few
ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. Penalties

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be
able to ensure rapid convergence with the penalty terms. Two properties can ensure
this: dominance of the block diagonal component of the Hessian and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first family of penalty functions on
bilateral filtering, we replace (4) with a penalty

(15) φbi(f) =
∑

y "=x

c(y − x)s(f(y)− f(x)),

where c and s can be any kernel functions, including ones used in bilateral filtering.
The choice of c and s is guided by

(1) previous use in statistics or filtering,
(2) descent direction, −∇φbi,

next error

current error
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Safe in Single-
Precision

• recalculate gradient at each outer 
iteration

• numerical error only builds up during 
polynomial evaluation

• coefficients well-behaved (and in our 
control)
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Numerical Tests

• start with quadratic penalties

• add nonlinear penalties and change 
weights

• with and without time fixed budget for 
computation

30
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Figure 8. Initial 10 iterations, using φbi2.
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Figure 9. After a total 100 iterations, introducing more penalty
terms as iteration count increases, comparing φbi2 (top) and φbiTv

(bottom).

the image requires many iterations, or the solving of large linear systems. This
is motivation for recent work on domain decomposition and multi-grid methods,
see [GY05], [CC06]. Our method provides another potential solution to the signal
propagation problem, at the expense of some extra data shuffling. At each itera-
tion, we are making an approximate Newton step. We can bound the error in the
approximation in the L2 norm, but in imaging problems, such measures can be mis-
leading. In our case, the Newton step is anisotropic, in the sense that for a problem
symmetric with respect to column translation, the Cholesky decomposition and
back substitution are exact for the regularized problem. Signals propagate along
the entire row in each step. Problems symmetric in the row direction, however, do
not behave in the same way, since signals cannot propagate farther than the width
of c multiplied by the order of the polynomial approximation. So our approach
could be described as domain decomposition into rows. But at the expense of a
transpose, we can alternate rows and columns (or as many dimensions as exist for
a particular problem), without incurring any additional penalty.

I. 10 iterations with bi2 regularization
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1.5
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Figure 8. Initial 10 iterations, using φbi2.

1.5
1.0

0.0

1.5
1.0

0.0

Figure 9. After a total 100 iterations, introducing more penalty
terms as iteration count increases, comparing φbi2 (top) and φbiTv

(bottom).

the image requires many iterations, or the solving of large linear systems. This
is motivation for recent work on domain decomposition and multi-grid methods,
see [GY05], [CC06]. Our method provides another potential solution to the signal
propagation problem, at the expense of some extra data shuffling. At each itera-
tion, we are making an approximate Newton step. We can bound the error in the
approximation in the L2 norm, but in imaging problems, such measures can be mis-
leading. In our case, the Newton step is anisotropic, in the sense that for a problem
symmetric with respect to column translation, the Cholesky decomposition and
back substitution are exact for the regularized problem. Signals propagate along
the entire row in each step. Problems symmetric in the row direction, however, do
not behave in the same way, since signals cannot propagate farther than the width
of c multiplied by the order of the polynomial approximation. So our approach
could be described as domain decomposition into rows. But at the expense of a
transpose, we can alternate rows and columns (or as many dimensions as exist for
a particular problem), without incurring any additional penalty.

I. 10 iterations with bi2 regularization
II. introduce other penalties 

1. masking
2. magnet
3. segmentation
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Figure 10. Fast 15 iterations, using width
√

18 stencil (top), and
4-point (width one) stencil (bottom).

L-curves methods should be applied to the larger parameter selection problem
introduced here. Can the work on L-curves help with the related problem of steering
nonlinear optimization problems? The segmentation penalty is a simple nonlinear
term, but of definite value to the many applications which ultimately require seg-
mented volumes and not images. In the four-point kernel example, we have seen
what looks like convergence to unacceptable local minima. In this case, we could
ensure convergence to a good optimum by using φbi2 with the optimized kernel
c, and using sufficiently many initial iterations (based on a numerical termination
criteria), but it would be nice to be able to know the earliest point at which it is
safe to use the nonlinear penalty, since it significantly improves convergence.

Given our multiple penalties, we could apply a filter algorithm.
A problem which is not evident from the numerical tests, perhaps because of

the effectiveness of φseg, is that all of the penalty terms lead to biased estimation
problems, in which we expect the estimates to lie inside the simplex/polytope, even
if all the true values are on the boundary. Can the estimates be made unbiased in a
natural way? Is there a link to path-following methods in constrained optimization?

Although we conceived of this work as an alternative to Krylov space methods,
everything we have done to accelerate the Newton steps could be applied either
to precondition conjugate gradient iteration or to modify the objective of the CG
iteration.

8. Conclusion

We have presented a first-order framework for solving linear and nonlinear in-
verse problems whose model variables are arranged in grids, i.e. images, discrete
volumes, etc.This method is robust in the face of both reduced-precision compu-
tation and high levels of measurement error. We have introduced a number of
penalty functions, some of which we have tested numerically. Contrary to our own

optimized c

simple c
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Absolute Error
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Figure 7. Convergence using by stages the simplest to the most
complex penalty terms. Normalized to make the error in the direct
inverse 1. On the top we plot the total L2 error (versus the true
image). On the bottom we plot the difference between the error
of the current iterate and the error in the limit, to show that the
linear convergence continues up to the 100th iteration.

iteration

error
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Figure 7. Convergence using by stages the simplest to the most
complex penalty terms. Normalized to make the error in the direct
inverse 1. On the top we plot the total L2 error (versus the true
image). On the bottom we plot the difference between the error
of the current iterate and the error in the limit, to show that the
linear convergence continues up to the 100th iteration.

Relative (to limit) Error
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Conclusion

• highly-parallel

• safe in single precision

• robust with respect to noise

• accommodates nonlinear penalties
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