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Teardrop is an efficient sampling trajectory for acquiring Magnetic Resonance (MR) Imaging Data,
especially balanced steady state free precession images. In this paper we present two models for
optimizing such trajectories. These are the first models to incorporate motion-insensitivity constraints
into a non-raster (also called spiral) sampling trajectory. The first model is nonlinear and very specific
to Teardrop. The second model uses sequential second-order cone programming, and is generalisable
to other trajectories in two and three dimensions. We present a weak convergence proof for the
sequential method.

1 Introduction

Teardrop was introduced in [1] as a high-efficiency data collection strategy
for balanced steady state free precession (bSSFP) imaging. It is efficient be-
cause it has a very high sampling duty cycle: collecting data 78 percent of the
time in one example [1]. High-efficiency sampling has the potential of reducing
scan times and capturing data faster for real-time imaging of rapid motion,
e.g. cardiac imaging (see [2]). For a discussion of the mechanisms and merits
of bSSFP imaging, see [3]. In this paper we present nonlinear and sequen-
tial second-order cone (SOC) models for the optimization of Teardrop control
waveforms. These are the first models for general readout waveform design
which incorporate velocity insensitivity. The sequential model is generalisable
to other waveform design problems in Magnetic Resonance Imaging (MRI),
and other trajectory problems which include global constraints, e.g. energy-
minimizing exhaustive search patterns. We do not explore any applications
outside MRI trajectories, but we present a proof of weak convergence which
shows the approach is sound (i.e. produces improvements in the objective and
terminates in finite time).

All imaging suffers from artifacts, errors introduced by the necessity of re-
constructing images using incomplete models. Artifacts include Gibbs’ ringing
around edges, aliasing as a result of too-widely spaced samples, blurring, and
various types of motion effects. Motion is a particular problem for cardiac
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Figure 1. Left: One Teardrop trajectory in k-space. Right: Rotating one Teardrop trajectory
around the centre of k-space.

imaging. One way of mitigating it is the use of velocity-insensitive control
waveforms. Imposing velocity insensitivity results in dense constraints which
are not amenable to fast heuristic methods, such as the original methods used
in [1], and thus requires the more sophisticated optimization models and tools
presented here.

MR imaging is controlled by different digital waveforms, subject only to
loose physical constraints. This freedom is used to tune image acquisition pro-
tocols to each patient, including the positioning, resolution, and dimensions
of individual imaged slices within the imaging volume. To give imaging tech-
nicians the most flexibility, this requires waveform optimization fast enough
to match interactive manipulation of the imaging slice resolution and orien-
tation, meaning subsecond solution times. Both models offer such times with
commercial solvers which could be embedded in the software used by MR
technicians.

The Teardrop gradient waveform is a continuous family of waveforms. It
gets its name from the shape of the integrated waveform for short acquisition
times, see figure 1.

We present two related models for designing Teardrop waveforms, which
share the physical constraints designed to prevent device failure. They differ in
how they constrain the maximum gap between neighbouring trajectories. The
first model uses nonlinear constraints derived from the structure of Teardrop
waveforms (symmetrical outward and inward spiral arms) and properties of
the plane. The second algorithm involves solving a sequence of convex models
with simpler (linear and quadratic) constraints. This could be exploited were
a very fast solver (for larger problems) required. It does not use the fact
that the waveforms describe interleaved spiral trajectories, only knowledge of
which trajectories are neighbours. One of our motives in developing the second
approach is to be able to optimize any waveform in two or three dimensions
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when this adjacency information is available. The results of the two methods
are equivalent, from the application point of view.

This paper is organized as follows: Section 2 reviews the required concepts
in MR. The general methods of formulating optimization models of MRI
Teardrop gradient waveforms and specifics for the nonlinear model are pre-
sented in section 3. This discussion includes: Teardrop waveform parametriza-
tion, the design objective, and constraints, including alternative formulations.
The next section (4) modifies the general nonlinear constraints and objective
for for the sequential SOC approach, and gives a proof of soundness. Section 5
details the implementation of the models, and computational results. Section 6
closes the paper with conclusions and recommendations for future work.

1.1 Related work

Accelerating MRI is an active research topic, with a long history going back
to the introduction of echo-planar imaging (EPI), [4] in the early days of
imaging. The fastest methods of reconstructing images follow EPI in spirit
by sampling all or a substantial part of the data required to reconstruct an
image continuously. Such data collection strategies include spiral, rosette, and
Teardrop sampling.

A number of techniques have been put forth to design nulled moment gra-
dient waveforms for motion compensation [5–11]. These are direct solution
methods, with very limited constraints. They take advantage of the linear
relationship between gradient waveform time moments and lobe amplitudes
to generate motion compensated or sensitised waveforms. There are several
potential deficiencies that may limit their effectiveness in gradient waveform
design. Limitations on the incorporation of physical limits means that not all
solutions are feasible. Refinements [9,12,13] iterate through algebraic solutions
until feasible solutions are found. These methods do not guarantee that a fea-
sible solution will be found even if one exists, nor do they produce optimal
results.

Gradient waveform design has been described as a problem of nonlinear con-
strained optimization [9], and previous work has presented different methods
of optimizing gradient waveforms in different situations [14–20]. But many of
these methods are limited to the design of trapezoidal pulses, and most have
been studied for one dimensional (1D) gradient design.

Hargreaves et al. [21] were the first to introduce optimized rewinders for the
more difficult case of short spiral imaging. Rewinders, which are additional
waveforms occuring after the normal spiral data collection, add overhead and
take away from overall efficiency, unlike some of the methods for trapezoidal
waveforms. This is why they only achieve a theoretical sampling duty cycle of
48 percent versus 78 for Teardrop.
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2 MRI Basics

To understand the present design problem, we require the following facts from
MR physics:

(i) the subject is in a large field, which imposes a preferred direction
(ii) protons precess around this field when not at equilibrium
(iii) the signals from all protons are measured by coils sensitive to the ‘trans-

verse’ components, which can be combined into a complex-valued signal
(iv) localization of the signal is achieved indirectly using linear variations of

field strength, which lead to linear variations in the precession of the mag-
netization and phase of the complex signal, which result in measurable
interference

(v) the linear variations are controlled by gradient coils driven by amplifiers
controlled by digital waveforms.

More detail is available in texts on MRI, including [22], [3].

2.1 The k-Space and Basic 2D k-Space Patterns

The key organizational concept in MR image reconstruction is k-space, see
[23, 24], the dual space to physical space which parametrizes linear phase
variations, also called spatial harmonics. Measured data is a sampling of the
Fourier transform of the object density at individual points in k-space. In
two-dimensional imaging, a thickened plane within the object is excited to
produce a signal, and only gradients whose variation is tangent to that plane
are used during data collection. The resulting signal s depends on the position
in k-space

s(t) =

∫

x

∫

y
m(x, y)e−i2π[kx(t)x+ky(t)y] dxdy, (1)

determined by integrating the gradient strengths Gx, Gy

kx(t) =
γ

2π

∫ t

0
Gx(τ) dτ (2)

ky(t) =
γ

2π

∫ t

0
Gy(τ) dτ (3)

called the position in k-space; m(x, y) is the transverse nuclear magnetization,
and γ is a physical constant relating the strength of a magnetic field to the
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Figure 2. Raster, EPI, spiral and radial sampling patterns.

rate of precession. So

s(t) = M(kx, ky), (4)

where M is the 2D Fourier transform of m(x, y), and kx and ky are given in
units of spatial frequency, e.g. cycles/m.

To form an image, the trajectories given by {k(t)} should cover a sufficient
part of the k-space to allow reconstruction of m(x, y). A variety of patterns
have been developed for sampling and image reconstruction. The rectangular
raster scan (figure 2 left) is used by standard two-dimensional Fourier trans-
form (2DFT) imaging. Beginning at the origin, the k-space trajectory moves
along the kx direction as the signal is read out. A change in the amplitude
of the Gy gradient leads to a different line in the k-space. By indexing to a
set of ky-positions, we can assemble sufficiently many measurements to fill the
2D k-space, and simply perform an inverse 2D Fourier transform to recon-
struct the image. Undersampling with this trajectory produces recognizable
aliasing artifacts called ghosts. Projection reconstruction imaging, sampling
along radii or diameters, was (and is still) used because the resulting data
can be reconstructed using low-complexity methods of inverting the Radon
transform.

Spiral imaging samples along the locus of a spiral. The most common form of
image reconstruction involves resampling the measurements onto a rectangular
lattice and applying a fast Fourier transform.

The two most common artifacts particular to 2DFT images are the conse-
quences of motion and undersampling, especially in the y direction. Under-
sampling means that not enough cycles are used in the data collection. This
results in the samples not being sufficiently close in k-space and the bottom
of the image appears to wrap around the top. This artifact is called aliasing.
The cure is to increase the density of the samples.

In one dimension, with regular sampling, the Nyquist sampling theorem
requires that inter-sample spacing, ∆kx

, be bounded by the maximum repre-
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sentable object size, the field of view (FOV),

1

∆kx

≥ FOV. (5)

This translates into a constraint on the spacing of lines in raster or radial
sampling, and the spacing of spiral interleaves:

∆inter-arm <
1

FOV
. (6)

The effects of the subject’s motion on the 2DFT image are complicated and
multiple, but for very fast (subsecond) imaging the most important effect is
caused by differences in the effect of gradient waveforms on static and dynamic
tissues. The difference in phase for tissue at constant velocity is proportional
to the first moment of the gradient waveforms, so we can put constraints on
this moment [7]. Higher moments measure the effect of non-constant velocity
(acceleration, change in acceleration, etc.), and can be incorporated by exactly
the same methods we employ here for the first moment.

3 Nonlinear Optimization

To define an optimization problem, we must define

(i) variables (the discretized waveform),
(ii) an objective (maximize resolution), and
(iii) constraints (amplifier limits, aliasing, motion insensitivity).

3.1 Teardrop Waveform Parametrization

Since gradient waveforms are computer generated discrete functions and ap-
plied to the gradient coils via digital-to-analog (D/A) converters, the most
obvious and general variable set is a discrete series of piecewise-constant gra-
dient amplitudes. This set may be expressed in vector form as

~g = [g1, g2, · · · , gi, · · · , gn+1]
T ∈ R2n+2, (7)

where gi ∈ R2 indicates the amplitude of the gradient waveform at time
ti = i△t, and △t is the sample interval. The amplitudes at the n + 1 points
define the gradient waveform. Any gradient waveform shape can be expressed
by such a gradient amplitude vector, thereby removing artificial constraints on
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shape and expanding the feasible solution space to the limits of the gradient
hardware system.

To present objective and constraints conveniently and efficiently in the
Teardrop gradient waveform design, we add another variable set ~k which stands
for a set of points in k-space.

~k = [k1, k2, · · · , ki, · · · , kn]T ∈ R2n, where (8)

ki =

i∑

j=1

gj i ∈ [1, · · · , n]. (9)

Note that there is one more point in the gradient amplitude space than in k-
space in this formulation, but either set forms a complete set of variables and
we will use the set which results in the clearest explanation, without comment.

3.2 Objective: Maximize Resolution

In k-space, low frequencies are near the centre of k-space, higher spatial fre-
quencies are towards the edges. We know small structures and fine details of
an image contain high spatial frequencies. So higher spatial frequencies give
better spatial resolution. Thus, if we want a sharp image, we have to measure
not only the low spatial frequencies but higher ones as well.

Our design goal is to maximize resolution. So our objective function can be
expressed as

max

{
||k(n+1)/2||2 n odd

||kn/2||2 + ||kn/2+1||2 n even.
(10)

This is not a convex function, so there are no guarantees we will reach a global
minima.

3.3 Constraints

Gradient system hardware limitations, maximum interleaf spacing to prevent
aliasing artifacts, and first moment nulling form the (hard) constraints for the
design of Teardrop gradient waveforms.

3.3.1 Gradient System Hardware Limitations.



September 9, 2006 7:11 Optimization Methods and Software AnandRenTerlaky

8 Anand Ren Terlaky

Amplitude Limits. Gradient amplifiers have peak current limits which restrict
the maximum absolute value of gradient waveform amplitude. These limits can
be expressed as inequality range constraints on each of the n + 1 points in the
discrete waveform sequence as

||gi||2 ≤ Gmax, i ∈ [1, n + 1], (11)

where Gmax is the maximum allowable gradient amplitude.

Slew or Rise Time Limits. Gradient amplifiers also have limits on slew rate
or rate of change of amplitude. This can be approximated as an inequality
constraint on the first-order differences between adjacent points in the dis-
cretization as

||gi+1 − gi||2 ≤ Smax∆t, i ∈ [1, · · · , n + 1], (12)

where ∆t is the duration of the sample interval.

3.3.2 Endpoint Constraints. Balanced SSFP acquisitions require zero
starting and ending positions in k-space. The simplest approach is to start
and end the readout at the centre of k-space, with no gradient activity:

g1 = 0 k1 = 0 (13)

gn+1 = 0 kn = 0. (14)

(The exact form of the initial and final constraints may vary as a function of
the design of the slice excitation, but these decisions are outside the scope of
this paper, and do not change the character or structure of the problem.)

3.3.3 First Moment Nulling. In bSSFP imaging, we do not dephase (de-
stroy by making incoherent) the magnetization from one readout to the next,
but keep modifying it with new RF pulses. Since the magnetization is never
reset, errors build up over time, which may magnify motion artifacts. To make
the readout gradient motion-insensitive, we require the first moment to be
zero:

n+1∑

i=1

igi = 0. (15)
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Figure 3. The deduction of the spiral constraint.

3.3.4 (Un)aliasing Constraint. Aliasing results if the separation between
spiral interleaves is greater than 1/FOV. For a standard spiral in polar coor-
dinates

r = κθ, (16)

where r is the radial distance, θ is the polar angle, and κ is a constant. This
constraint is satisfied if and only if κ < 1/(2πFOV). If r and θ are functions
of time

r′ ≤ κθ′. (17)

For an oppositely turning spiral, the constraint would be

−r′ ≤ κθ′. (18)

We will use, without loss of generality, the two forms for the outward and
inward halves of the Teardrop, respectively.

From figure 3, we know that the radial derivative r′ at a point k = (kx, ky)
is k · g/||k|| where g = k′ and k · g indicates the dot product of the vectors
k and g. The angular derivative is k⊥ · g/||k||2, where k⊥ = (−ky, kx) is the
perpendicular vector of k. Substituting these in the constraint (17), we get

r′ ≤ κθ′ ⇔ k · g√
k · k

≤ κ
k⊥ · g
k · k . (19)
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By squaring both sides of this formula, the constraint family can be written
entirely in terms of polynomials as

(ki · gi)(ki · gi)(ki · ki) ≤ κ2(k⊥
i · gi)(k

⊥
i · gi) i ∈ [1, · · · , n]. (20)

3.4 First Nonlinear Model

Combining the objective and all the constraints together, we get the following
optimization model when n is odd:

max ||k(n+1)/2||2 (21a)

subject to k1 = 0 (21b)

kn = 0 (21c)

g1 = 0 (21d)

gn+1 = 0 (21e)

ki =
i∑

j=1

gj i ∈ [1, · · · , n] (21f)

||gi||2 ≤ Gmax, i ∈ [1, · · · , n + 1] (21g)

||gi+1 − gi||2 ≤ Smax∆t, i ∈ [1, · · · , n + 1] (21h)

n+1∑

i=1

igi = 0 (21i)

(ki · gi)(ki · gi)(ki · ki) ≤ κ2(k⊥
i · gi)(k

⊥
i · gi) (21j)

i ∈ {1, · · · , ⌊n/2⌋ − 1},

− (ki · gi)(ki · gi)(ki · ki) ≤ κ2(k⊥
i · gi)(k

⊥
i · gi) (21k)

i ∈ [⌈n/2⌉ + 1, · · · , n],

where n ∆t is the sample interval, and κ is a constant.
When n is even, the objective becomes:

max ||kn/2||2 + ||kn/2+1||2 (22)

while the constraints are the same.
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Figure 4. Diagram which leads to the trigonometric spiral constraint (25).

3.5 Variation on the Nonlinear Model

The most complicated constraint in the original model is the last one: the spiral
constraint (21j)/(21k). By using the arctangent function, we can simplify this
constraint significantly. From figure 4, we see

k⊥
i−1 · ki = |ki−1||ki| cos(90o − ∆θ) = |ki−1||ki| sin ∆θ, (23)

ki−1 · ki = |ki−1||ki| cos ∆θ, (24)

hence

∆θ = atan2(k⊥
i−1 · ki, ki−1 · ki), (25)

where (x, y) → (
√

x2 + y2, atan2(y, x)) is the transformation from Cartesian
to polar coordinates. The two-argument arctangent distinguishes opposite di-
rections, which the single-argument version does not.

Integrating r ≤ κθ gives an approximation ∆r ≤ κ∆θ which is satisfied if
and only if

||ki||2 − ||ki−1||2 ≤ κ atan2(k⊥
i−1 · ki, ki−1 · ki), i ∈ {1, . . . , ⌊n/2⌋}, (26)

which is an alternative to constraint (21j). Reversing the sign gives the alter-
native to (21k).

The alternative spiral constraints (26) are still nonlinear and nonconvex,
and not applicable to general trajectory shapes, including three-dimensional
trajectories. They depend on the discrete rotational symmetry, which inter-
changes any two trajectories, and the cycle of adjacency relationships.
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4 Sequential Convex Optimization

In this section we define a general approach which works with any set of
adjacency relationships, with or without symmetry. We define a sequence of
problems, {Pi}, where Pi is defined in terms of the solution to Pi−1, and each
subproblem is convex with only linear and SOC constraints. To do so we must
transform the nonconvex constraints (26) into convex constraints, and make
the objective linear.

4.1 (Un)aliasing constraints

To generalise the spiral constraint we need to add another set of points in
k-space as variables:

~k′′ = [k′′
1 , k′′

2 , · · · , k′′
i , · · · , k′′

n]T ∈ R2n. (27)

We impose the rotational relationship with additional constraints

k′′
i =

(
cos φ sin φ
− sinφ cos φ

)
ki, (28)

where φ = 2π/(the number of interleaves). The spiral constraint can now be
replaced by a general proximity constraint:

min
j

βi,j ≤
1

FOV
, ∀i ∈ {1, ..., n}, (29)

where

βi,j = distance(k′′
i , kjkj+1) (30)

is the distance between a control point on the second trajectory and a line
segment of the first trajectory. Referring to figure 5, βi,j can be calculated as

βi,j = min
α∈[0,1]

||α kj+1 + (1 − α) kj − k′′
i ||2. (31)

To define the new constraint concretely in terms of the old solution, we use
the fact that the minimum occurs at

αi,j =





α̃ if 0 < α̃ < 1

1 if α̃ ≥ 1

0 if α̃ ≤ 0

, where (32)
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kj

kj+1

αi

k
′′

i

βi,j = min
α∈[0,1]

||α kj+1 + (1 − α) kj − k′′

i ||2,

Figure 5. Limit the distances between two trajectories.

α̃ =
(k′′

i,old − kj,old) · (kj+1,old − kj,old)

||kj+1,old − kj,old||2
. (33)

Letting,

γi = argminj βi,j , (34)

the new constraint is

||αi,γi kγi+1 + (1 − αi,γi) kγi − k′′
i ||2 ≤ 1

FOV
, (35)

which says that the point on the adjacent trajectory closest to a point in the
old solution is now constrained to lie within the Nyquist sampling distance of
the corresponding point in the new solution. Since γi and αi,j depend on the
previous solution and on variables in the current problem, the constraint is
convex quadratic.

4.2 Linear objective

We replace the old objective function by

max

{
kN+1 · k̄, n = 2N + 1

(kN + kN+1) · k̄, n = 2N
(36)

where

k̄ =

{
kN,old/|kN,old|, n = 2N + 1
(kN,old+kN+1,old)
|kN,old+kN+1,old|

, n = 2N
. (37)
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The new objective seeks to expand the trajectory in k-space in the same
direction as the maximal point of the previous solution.

4.3 Symmetry reduction

We now show how to use the problem symmetry to cut the number of variables
in the problem in half, which for brevity we will only do for the case n = 2N+1.
In this case kN is the middle point of the Teardrop trajectory. In our new
model, we only need to optimize N +1 points (the first half of the trajectory),
reproducing the other half by reflection.

Most of the constraints come in families with each constraint involving only
one or two adjacent points. Symmetry reduction for these constraints involves
dropping constraints on dropped points. Expressing the first moment nulling
constraint (21i), however, can only be done in combination with the condition
kn = 0, which says that the zeroth moment is zero. Using the direction of the
middle point of the previous iteration k̄, and its perpendicular vector k̄⊥, as
defined above, the trajectory is symmetric precisely when

gi+N+1 · k̄ = −gN+2−i · k̄, and (38)

gi+N+1 · k̄⊥ = gN+2−i · k̄⊥. (39)

To satisfy the constraint (21i), it is necessary and sufficient to satisfy the
following equalities:

k̄ · (
2N+2∑

i=1

igi) = 0, (40)

k̄⊥ · (
2N+2∑

i=1

igi) = 0. (41)

Using (21f) to add (21c) in the equivalent form
∑

gi = 0 to (21i) we obtain
(40):

k̄ · (
2N+2∑
i=1

(i + 1/2)gi) =
∑2N+2

i=1 (i + 1/2)gi · k̄

=
∑N+1

i=1 (i + 1/2)gi · k̄ +
∑2N+2

i=N+2(i + 1/2)gi · k̄
=

∑N+1
i=1 (i + 1/2)gi · k̄ +

∑N+1
j=1 (N + 3/2 + j)gN+1+j · k̄

=
∑N+1

i=1 (i + 1/2)gi · k̄ +
∑N+1

j̃=1
(j̃ + 1/2)(−gj̃) · k̄

= 0.
(42)
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Similarly,

k̄⊥·(
2N+2∑

i=1

igi) =

N+1∑

i=1

(i+1/2)gi·k̄⊥+

N+1∑

j=1

(j+1/2)(gj+1/2 ·k̄⊥ = 2k̄⊥·
N+1∑

i=1

(i+1/2)gi.

(43)
So we have one real constraint (instead of four) after doing a symmetry re-
duction.

4.4 Subproblem

Keeping all other constraints the same as before, we obtain the following con-
vex model for the subproblem:

max kN · k̄ (44a)

subject to k1 = 0 (44b)

g1 = 0 (44c)

ki =

i∑

j=1

gj , i ∈ [1, N + 1] (44d)

||gi||2 ≤ Gmax, i ∈ [1, N + 1] (44e)

||gi+1 − gi||2 ≤ Smax∆t, i ∈ [1, N ] (44f)

N+1∑

i=1

(i + 1/2)gi = 0 (44g)

k′′
i =

(
cos φ sin φ
− sin φ cos φ

)
ki, i ∈ [1, N ] (44h)

||αi,γi
· kγi+1 + (1 − αi,γi

) kγi
− k′′

i ||2 ≤ d, (44i)

i ∈ [2, N ],

where ∆t is the sample interval, γi and αi,γi
are chosen according to (34) and

(32), k̄ = kN,old/|kN,old|, and d is a constant usually chosen to be 1/FOV.

4.5 Iteration

To solve the nonlinear problem, we start with a spiral: given by

ki = c0(cos(c1i), sin(c1i)),
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Input:
initial values ki,old, k′′

i,old i ∈ [1, n];
tolerance: a parameter which stands for the tolerance of the objective
function.

begin

iter := 1;
previous-obj := 0;
ki := ki,old, k′′

i := k′′
i,old i ∈ [1, · · · , n];

calculate αi by using Formula (32);
solve;
repeat

{
ki := ki,old, k′′

i := k′′
i,old i ∈ [1, · · · , n];

recalculate αi by using Formula (32);
previous-obj := current-obj;
solve the optimization problem (44);
i := i + 1;

} until current-obj <= previous-obj + tolerance.
end.

end.

Figure 6. The pseudocode of the iterative nonlinear method.

and alternately define a convex problem (44), and then solve that problem,
until we fail to achieve a sufficient increase in resolution. See figure 6 for a
pseudocode description.

4.6 Convergence

We cannot hope to guarantee that the result of the iterative algorithm (fig-
ure 6) is a global optimal solution because the original model is not convex.
What we will prove is that the top-level objective value, the maximum res-
olution (radius in k-space), increases monotonically (with each iteration) to
a limit. This means the sequential approach is worth doing (it improves res-
olution) and using failure to produce a sufficient increase in resolution as a
stopping criteria will result in a finite number of iterations. It doesn’t say we
will reach a local maximum, something we haven’t even defined for the sequen-
tial approach, although we clearly hope it will converge to a local maximum
of the nonlinear problem. In many experiments, the nonlinear and sequential
methods found the same solutions.
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Lemma 4.1 The union of the feasible sets of all subproblems (44) has compact

closure.

Proof The common constraints (11) define a compact set containing the fea-
sible set for all subproblems. �

Lemma 4.2 The previous solution, kold, is a feasible point for the subproblem

(44) it defines.

Proof All subproblems share constraints (44b)-(44h), so they are satisfied by
kold. The previous solution kold satisfies the proximity constraint (44i) for the
old values of α and γ. Since the new values defined by (32) and (34) minimize
the norm (by definition), we have

∥∥αi,γi
k′′

γi,old + (1 − αi,γi
)k′′

γi,old − ki,old

∥∥

≤
∥∥αi,γi,old,oldk

′′
γi,old,old + (1 − αi,γi,old,old)k

′′
γi,old − ki,old

∥∥ ≤ d. (45)

So kold satisfies (44i) and hence is a feasible point for the new problem. �

Practically, this allow us to use a feasible interior point method to solve the
subproblems.

Lemma 4.3 The solution, k, of the subproblem (44) constructed from kold

satisfies

‖kN‖ ≥ ‖kN,old‖ .

Proof The starting point has objective kN,old · k̄ = ‖kN,old‖ by the definition
of k̄ following (44). The objective at the optimum cannot be smaller, since the
old solution is a feasible point for the new problem, by the previous lemma.
It follows from the triangle inequality that

‖kN‖ = ‖kN‖
∥∥k̄

∥∥ ≥
∥∥kN · k̄

∥∥ ≥
∥∥kN,old · k̄

∥∥ = ‖kN,old‖
∥∥k̄

∥∥ = ‖kN,old‖ .

�

Lemma 4.4 The sequence given by solving subproblems successively formed

from previous solutions has converging objective values.

Proof The norm ‖kN‖ is a continuous function on a compact set and hence
bounded. The sequence of {‖kN‖} is increasing, so it must converge to a limit
point. �

In practice, the subproblems converge rapidly, not only in the objective,
but uniformly in all variables, even though the four lemmas do not rule out
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non-singleton limit sets. For example, the reflection

ki 7→ 2(k̄ · ki)k̄ − ki

is a symmetry on the set of limit points. We conjecture that convergence in
all variables is a result of using previous solutions as starting points for the
subproblems they define, but for practical purposes, only convergence in the
objective matters.

5 Implementation and results

We implemented the algorithm in the modelling environment AMPL. The
AMPL language contains all the features required to define optimization prob-
lems, including bi-level and iterative problems using a repeat construction.
The main advantages of the AMPL environment is the ability to evaluate dif-
ferent solvers on the same optimization problem and to make model changes
quickly. Both LOQO [25] and IPOPT [26] solve the nonlinear model in a couple
of seconds.

For the iterative method, several more solvers are available. We used
MOSEK [27] because it had excellent performance, although solution times
for Teardrop are fast enough that any solver capable of handling SOC con-
straints should be able to handle it. We also tried solving larger models for
three-dimensional generalisations of Teardrop (as detailed in [28], including
AMPL code for both the two-dimensional Teardrop and three-dimensional
problems), but found the development very difficult as a result of the lack
of integrated visualization. In another paper, [29], we will describe software
integrating visualization with the solver and a heuristic approach to designing
trajectories in three dimensions also based on SOC constraints, but without
proximity constraints. Using the integrated environment, we plan to apply the
ideas developed here for proximity constraints to the new approach.

5.1 Computational Results

In this section we present the computational results of the Teardrop2D.mod
model solved by MOSEK [27]. The MOSEK optimization software is designed
to solve large scale mathematical optimization problems. It can solve lin-
ear, convex quadratic and general convex mathematical programs. An interior
point optimizer is available for all supported problem classes. All numerical
experiments were performed on an IBM RS/6000 44P Model 270 workstation,
with 8 GB memory and 375 MHz processor.

Figure 7 presents the k-space trajectories obtained by iteratively solving the
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Figure 7. Teardrop trajectories after iterations 1, 4, 8 and 10, the last iteration.

subproblems without the first moment nulling constraint. After ten iterations,
we obtained the optimal result. From these figures, we can see the objective
function value is increasing from iteration to iteration. In the meantime, the
trajectories are becoming more and more evenly spaced as expected.

Figure 8 presents the the optimal trajectories obtained by iteratively solving
the subproblems (44) (with first moment nulling) twelve times. Comparing this
result to the result without first moment nulling (figure 7), we note a small
decrease in the top-level objective.

The k-space trajectories we obtained from the model have been reduced us-
ing symmetry reduction. We use that symmetry to recover the full trajectories.
For example, figure 9 (left) shows one full Teardrop trajectory corresponding
to the half trajectory in figure 7. Rotating the associated gradient profiles is
equivalent to rotating the trajectory around the centre of k-space. Together
the combined views cover the two-dimensional k-space completely, as seen on
the right side of the same figure.

Figure 10 presents the corresponding optimal gradient waveforms in the
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Figure 8. Teardrop trajectories with first moment nulling.
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Figure 9. Left: One optimal Teardrop trajectory. Right: Four interleaved Teardrop trajectories.

x- and y-direction which generate one of the final trajectories of figure 7.
Waveforms for the other interleaves are linear combinations of these two.

6 Conclusions and Future Work

We have demonstrated two approaches to designing resolution maximizing
Teardrop waveforms, incorporating motion insensitivity for the first time in
a readout waveform of this complexity. The approach using general nonlinear
optimization involves constraints specific to waveforms incorporating inter-
leaved spiral arms. The sequential approach uses convex subproblems which
can be solved by several commercial and open-source solvers, and the prox-
imity constraints apply to any trajectory design problem in which pairs of
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Figure 10. Gradient waveforms Gx and Gy for the 2D k-space.

adjacent trajectories are known. Although we cannot prove the sequential ap-
proach produces a local minimum, we have shown it is a sound algorithm and,
in numerous tests, it closely matches solutions of the nonlinear problem.

We will happily provide both waveforms and the AMPL models to design
them to other researchers, and hope that Teardrop will be applied to various
types of imaging. Our current research focus is to incorporate the ideas devel-
oped here for the sequential model into three-dimensional design problems.
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