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SDP + NMR
• Applications

• Imaging

• NMR

• Problem:  Maximize Signal

• Trust-Region Method + CSDP

• Results
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Applications: 
Imaging

• Fourier Transform

• MRI

• Radon Transform

• CT, PET, SPECT, EPR
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MRI
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Optimze data collection for 3d MRI

we pare the constraints down to a minimum, and rely on the fact that unless con-
strained to intersect, they will not. We show that the

3. Magentic Resonance Imaging

In magnetic resonance imaging, we measure radio-frequency magnetic fields cre-
ated by the resonances of one or more nuclei in the object, usually hydrogen (mostly
water) in people. Measurable resonance occurs because the object is placed in a
large homogeneous field, and excited by the momentary application of oscilating
transverse fields. For a very readable, and complete account of how we create the
signals, and the complications which arrive, see [?]. Being radio-frequency signals,
we cannot measure them with line-of-sight devices (as opposed to x-ray and nuclear-
decay-product imaging), and must use devices a lot like radio antennae, commonly
called coils. The measurements we make with these coils are not localized, but con-
tain contributions from every nuclei in the object. In the simplest case, the uniform
coil, we collect data which is simply the sum of the magnetic fields produced by
each nucleus. Non-uniform coils have geometrically-varying sensitivities, and the
measured signal is the dot product of a sensitivity field with the field created by
the nuclei. The signals are in fact real, but by working in a rotating frame of refer-
ence close to the resonant frequency, we can encode both relative frequencies and
phases by using complex valued fields and signals. For the fields, this is equivalent
to putting a complex structure on the plane perpendicular to the direction of the
large homogeneous field.

Geometric encoding is achieved by inducing transient linear variations in strength
on the homogeneous field. Linear variations in field produce linear variations in
resonant frequency, which over time create linear phase variations, as a function
of position. If ρ : R3 → C is the original transverse magnetic field, the new field
will be exp(i〈x, k〉)ρ(x) where x ∈ R3 and k ∈ R3∗, the element of the dual space
corresponding to the accumulated phase. It follows that the measured signal

s(t) =
∫

R3
ei〈x,k(t)〉ρ(x)dx,

is a sampling of the Fourier Transform of the object’s original magnetization.
For any given trajectory k(t), we have a linear transformation Map(R3, C) →
Map(R, C), and if it is invertible, we can reconstruct the original magnetization
from the measurements.

Early MR image reconstruction was constrained by the cost of computation,
and focussed on making data better fit existing fast hardware, and later software
Fourier transforms. Data collection was forced to be regular, and sampled on rect-
angular grids (first in two and later in three dimensions). Even the first image
reconstructions based on non-trivial inverse problems, e.g. phase contrast symme-
try [?], assumed regular rectangular data sampling, as did the first parallel imaging
schemes. Regular sampling is the classic discretization considered in signal process-
ing. It represents an approximation in a finite-dimensional vector space of an object
in an infinite-dimensional function space. Such representations may be inadequate
because the do not sample widely enough; or they do not sample closely enough. In
the first case, the reconstructed image is the sum of low-spatial-frequency Fourier
basis functions, and fine detial will not be represented. In the second case, the
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Different Under 
Sampling
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Different 
Errors
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Line-of-Sight

• CT, PET, SPECT, EPR sample 
projections

• FT(1d Projection) = FT(image)|line

• Constraint on Sampling
7
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Problem Sneak Peak

• Inverse Problem with 
Noisy Data

• Minimize Expected 
Reconstructed Noise
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Application:  NMR
• Know DNA Sequences

• Defines Strings of Amino Acids

• Missing Info:   

• Protein Structure

• only works if folded

• Protein Function

• interaction = wiggling
9 http://en.wikipedia.org/wiki/Protien
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Protein NMR
• Protein Structure 

• 2 methods:

• heteronuclear, multi-dimensional NMR

• x-ray Crystallography (faster?)

• Protein Dynamics

• 1 method

• repeated n-d NMR
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Basic NMR

• radio-frequency magnetic 
field excites spins

• high-energy state decays 
producing free-induction 
decay (direct dimension)

11

R

C

O

C N

H H

R

C

O

C N

H H

R

C

O

C N

H H

...

rf pulse excites 
1H spins

data collection 

window

...



Anand-Sharma - SDP-NMR - MOPTA 07

2-d NMR
• pulse @ 2 

frequencies

• transfer spin 
state H-N-H

• phase variation 
proportional to 
delay (indirect)
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2-d C-H

13

4 E. Kupče and R. Freeman
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Figure 2. Two-dimensional HMQC spectra of amikacin (a) with
the standard purging sequence followed by a relaxation delay,
(b) with WURST-2 cross-polarization, and (c) with
cross-polarization and the equivalent of Ernst-angle excitation
(see text). Note the suppression of noisy F1 ridges in (b) and
(c). Measurement duration: 40 s. The typical traces (at a
frequency indicated by the arrows) show signal enhancement
factors of (b) 2.1 and (c) 3.4.

CONCLUSIONS

The benefits of the ASAP modification in heteronuclear
NMR correlation spectroscopy are threefold. First, cross-
polarization causes a net transfer of longitudinal magnetiza-
tion from the donor protons to the acceptor protons during
the interval normally devoted to spin-lattice relaxation;
this interval can thus be shortened significantly. Secondly,

WURST mixing retains more residual Z-magnetization than
the customary purging sequence and therefore improves
enhancement factors relative to the control spectra. Thirdly,
WURST mixing proves to be more effective in suppressing
the noisy F1 ridges that often mar two-dimensional spec-
tra recorded with short relaxation delays. All three factors
contribute to the usefulness of this simple modification of
standard pulse sequences. In practice, the overall timesaving
achieved by ASAP is as much as an order of magnitude in
the two examples studied. It is expected that this technique
will be particularly suited to NMR of small molecules where
cross-relaxation rates tend to be slow in comparison with
Hartmann–Hahn transfer rates. Higher-dimensional exper-
iments will clearly benefit from the same innovation. The
ASAP method can complement other fast multidimensional
techniques.
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com/jpages/0749-1581/suppmat/
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The speed of multidimensional NMR spectroscopy can be significantly increased by drastically shortening
the customary relaxation delay between scans. The consequent loss of longitudinal magnetization can be
retrieved if ‘new’ polarization is transferred from nearby spins. For correlation spectroscopy involving
heteronuclei (X = 13C or 15N), protons not directly bound to X can repeatedly transfer polarization to the
directly bound protons through Hartmann–Hahn mixing. An order of magnitude increase in speed has
been observed for the 600 MHz two-dimensional HMQC spectra of amikacin and strychnine using this
technique, and it also reduces the noisy F1 ridges that degrade many heteronuclear correlation spectra
recorded with short recovery times. Copyright  2007 John Wiley & Sons, Ltd.

Supplementary electronic material for this paper is available in Wiley InterScience at http://www.interscience.wiley.com/
jpages/0749-1581/suppmat/

KEYWORDS: NMR; 1H; 13C; amikacin; cross-polarization; F1 ridges; HMQC; fast multidimensional NMR; polarization
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INTRODUCTION

Of the recent schemes for speeding up multidimensional
NMR spectroscopy, perhaps the simplest of all is to shorten
or even eliminate the customary relaxation delay,1 – 5 the
time allowed for recovery of longitudinal magnetization
between repetitions of the sequence. However, this approach
is only really effective for relatively fast-relaxing nuclei,
and can lead to serious radio-frequency heating problems
if the relaxation delay is very short. We demonstrate
here an alternative scheme, which speeds the recovery of
longitudinal proton magnetization by sharing polarization
with nearby protons. We call this method acceleration by
sharing adjacent polarization (ASAP).

POLARIZATION SHARING

In many experiments, notably those involving a heteronu-
clear species X (such as 13C or 15N) the protons can be divided
into two distinct groups (hereafter called ‘donors’ and ‘accep-
tors’) that behave differently with respect to spin-lattice
relaxation. To fix ideas, consider the case of a heteronuclear
multiple-quantum correlation (HMQC) experiment where X
is the 13C nucleus. The acceptor protons are those directly
bound to 13C with large spin–spin couplings; they are the
spins that eventually give rise to the final spectrum. By con-
trast, the donor protons have negligible couplings to 13C

ŁCorrespondence to: Ray Freeman, Jesus College, Cambridge CB5
8BL, United Kingdom. E-mail: rf110@hermes.cam.ac.uk

and are therefore essentially unaffected by this polarization
transfer sequence, which simply returns them to the C Z axis.

In many practical cases with natural isotopic abundance,
there are many more donors than acceptors. They provide
a replenishable ‘reservoir’ that may be repeatedly tapped
to cross-polarize the acceptor proton. A dynamic balance
is established between loss of donor polarization through
transfer, and its recovery through spin-lattice relaxation
during the acquisition interval. In this manner, replacement
of the usual relaxation delay with a short cross-polarization
interval offers a significant reduction in cycle time and an
improvement in overall sensitivity.

The mechanism for this cross-polarization is the homonu-
clear Hartmann–Hahn (HOHAHA) effect.6,7 The equivalent
effect is well known in solid-state NMR where the donor
protons constitute a tightly coupled reservoir, and polariza-
tion is transferred through dipole–dipole interactions with a
low-abundance heteronucleus. The situation is quite differ-
ent in liquid samples where the mixing is mediated by the
scalar coupling, and the interchange of polarization is cyclic,
with a period set by the appropriate proton–proton coupling
constant. The consequent enhancement of the detected signal
contains oscillatory components, in general, a superposition
of several sinusoids. However, there is a net transfer of
polarization in the desired direction whatever mixing inter-
val is used, although some choices will be more effective
than others. Experimentally, we have found that a mixing
interval of the order of 40 ms sets up a satisfactory dynamic
balance between the gains and losses of polarization of the
donor protons, and is short enough to avoid appreciable

Copyright  2007 John Wiley & Sons, Ltd.
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• regular sampling + FFT

• contour with x-section

• clustered peaks (lorentzian or gaussian)
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n-d NMR
• induction on number of colours in 

diagram

• since delays are positive, can only 
sample positive values in indirect 
dimensions

• sampling in indirect dimensions is 
expensive 

• days, weeks, months, years for full 
sampling14
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Protein Dynamics
• in n-d 1 peak per residue

• no overlap for n=4,5,...,10 ?

• measure with additional delay

• signal of each peak decays 
exponentially

• rate linked to mobility

15
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Questions

• How many samples do we need to 
estimate 200 peak areas?

• Is regular sampling for FFT optimal?

16
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Slow FT Inverse 
Problem

• x - known peaks

• k - samples

• general form still a 
linear system (S)

• Moore-Penrose
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come from a complete rectangular grid discretization. In general, inverting the
linear signal generation transformation produces estimates for model variables
with different variances, corresponding to condition numbers greater than one.
In some cases, the transformation is not invertible at all, and some model vari-
ables cannot be estimated.

Anand et al. (2007) introduced a method of optimizing a set of steady-
state MRI experiments with respect to expected noise. The same eigenvalue
maximization approach using a semi-definite constraint applies to efficient k-
space sampling, but the other (non-convex) constraints are quite different.
The sampling problems in this paper are, in general, much larger than the
problem considered in the previous paper, with no realistically-sized problem
being solvable with a straight-forward model. All of the sampling problems
we propose to solve carry a lot of additional structure. In this paper, the
structure of the multi-dimensional NMR problem is used to decompose the
natural problem into a series of sub-problems which are each optimizable by a
trust-region method using a semi-definite/linear sub-problem solved by CSDP
(Borchers 1999).

Organization. In section 2, the general model is presented in complex and
real forms. It is translated into a problem with semidefinite constraints, lin-
earized to form a trust region subproblem, and implemented using CSDP, in
section 3. The next section, 4, details the application to multi-dimensional
NMR, including a further decomposition into hyperplane subproblems. Sec-
tion 5 follows with numerical results showing that realistic problem sizes can
be solved by this method, comparing different strategies, and showing that the
quality of solution increases with dimension.

2 Nonlinear Problem

Let {xj} ⊂ r be a set of discrete points of interest for a model function
f : r → (the real-valued case can be treated as a special case, or be solved
by similar methods). The values of f are not directly measurable, but the
values of

f̃(ki) =
m∑

j=1

f(xj)e
√
−1〈ki,xj〉,

its Fourier Transform, are measurable. Let n be the number of such measure-
ments, and m the number of model variables.

Notes: This assumes that the support is a discrete set of points. This may be
strictly true, the support may be well-approximated by a discrete set of points,
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or the contribution outside a discrete set may be removable by filtering the
data. In cases such as projection imaging, the directly measured data is not
the the Fourier Transform, but is equivalent to knowing the Fourier Transform
on a restricted set.

Adding noise, we can write this as the affine transformation




f̃(k1)

...
f̃(kn)



 = S




f(x1)

...
f(xm)



 +




ε1
...
εn





where S is the complex n×m matrix

Si,j = e
√
−1〈ki,xj〉.

Without noise, the Moore-Penrose pseudo-inverse reconstructs the model f




f(x1)

...
f(xm)



 = (S∗S)−1S∗




f̃(k1)

...
f̃(kn)



 (1)

exactly. But noise in the measurements is also transformed. The worst-case
expected error (including correlated error involving multiple model variables)
corresponds to the singular vector of (S∗S)−1S∗ with the minimum singular
value. Maximizing sampling efficiency therefore corresponds to maximizing the
minimum eigenvalue of S∗S:

(S∗S)i,j =
n∑

l=1

e
√
−1〈kl,xj−xi〉

Note that all diagonal values are n, which is an upper bound on the minimum
eigenvalue. If the minimum eigenvalue is equal to n, then S∗S must be diag-
onal. Very small problems could be solved in this form using a derivative-free
optimizer. The minimum eigenvalue is a continuous function with discontinu-
ities in its derivative at matrices with minimal eigenvalues with multiplicity
greater than one, so smooth methods are not applicable. Non-smooth methods
are generally slower, and were not tried.
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Noise ~ Conditioning

•  expected maximum error 
       ~ 1/ minimal eigenvalue

• leads to semi-definite constraint
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Real Nonlinear 
Problem
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The Real Problem. The Hermitian m×m matrix S∗S can be represented as
a real symmetric 2m× 2m matrix A with elements:

A2i−1,2j−1 =
n∑

l=1

cos〈kl, xj − xi〉

A2i,2j =
n∑

l=1

cos〈kl, xj − xi〉

A2i,2j−1 =
n∑

l=1

sin〈kl, xj − xi〉

A2i−1,2j = −
n∑

l=1

sin〈kl, xj − xi〉

(2)

where i = 1...m and j = 1...m.
The real matrix A has the same eigenvalues as S∗S with each multiplicity

doubled. So maximizing the minimum eigenvalue of A is equivalent to maxi-
mizing the minimum eigenvalue of S∗S.

2.1 Nonlinear/Semidefinite Problem

Maximizing the minimum eigenvalue of A can be formulated as a semidefinite
programming problem: given parameters xi ∈ m,

min
{ki}

− λ (3)

subject to A− λI & 0 (4)

A satisfies (2) (5)

In different applications, the components of ki ∈ n must satisfy different
constraints, given by the physical limits of the measurement hardware, basic
physics, or practical limits on experiment time. If the constraints are simple
bounds, which is the case for multi-dimensional NMR, the bounds can be
added trivially, and will not be carried through the problem formulation.

3 Semidefinite/Linear Trust Region Subproblem

Trust Region methods (Conn et al. 2000) are commonly used for non-linear
problems. Define a semidefinite/linear trust region subproblem by linearizing
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programming problem: given parameters xi ∈ m,

min
{ki}

− λ (3)

subject to A− λI & 0 (4)

A satisfies (2) (5)

In different applications, the components of ki ∈ n must satisfy different
constraints, given by the physical limits of the measurement hardware, basic
physics, or practical limits on experiment time. If the constraints are simple
bounds, which is the case for multi-dimensional NMR, the bounds can be
added trivially, and will not be carried through the problem formulation.

3 Semidefinite/Linear Trust Region Subproblem

Trust Region methods (Conn et al. 2000) are commonly used for non-linear
problems. Define a semidefinite/linear trust region subproblem by linearizing
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Trust Region

• general non-linear solvers do not use 
semi-definite cone structure

• use trust region method with linear 
problem

• shape trust region relative to sensitivity 

20
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Linear Subproblem

21
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the nonlinear constraints (5), using the first-order Taylor series for A at a
previous guess k̃. Substituting it into the previous problem produces

min
k

− λ

subject to A|k̃ +
∑

α = 1...n
β = 1...r

(kα,β − k̃α,β)
∂A

∂kα,β

∣∣∣∣
k̃

− λI " 0, (6)

in which

∂A2i−1,2j−1

∂kα,β
= − (sin〈kα, xj − xi〉)(xj,β − xi,β) (7)

∂A2i,2j

∂kα,β
= − (sin〈kα, xj − xi〉)(xj,β − xi,β) (8)

∂A2i,2j−1

∂kα,β
= (cos〈kα, xj − xi〉)(xj,β − xi,β) (9)

∂A2i−1,2j

∂kα,β
= − (cos〈kα, xj − xi〉)(xj,β − xi,β). (10)

In the trust region method, this problem is solved with additional constraints
requiring the solution to stay within a region of trust where the linearization
is a good estimate of the non-linear constraints. Commonly, the region is a
sphere, which works well in general, but for the particular constraint (5), it is
possible to tune the shape of the region to the problem. The set of k such that

|kα,β − k̃α,β | ≤ π/2
max|xj,β − xi,β| (11)

has the property that the restrictions of the trigonometric components go
through at most a quarter phase. This is a cheap way of scaling the trust-
region to the curvature in different directions. Although it is not invariant un-
der changes of co-ordinates, the co-ordinates have physical meaning for some
problems, notably the NMR problem, and scale differently. Scaling this par-
ticular trust region builds in the relative sensitivity of A to changes in the
components of k.

The trust region algorithm starting with an initial set of sample points k̃, at
which λ̃ is the minimum eigenvalue of A, and trust region T defined by (11) is

(i) solve (6) plus bounds constraints and k ∈ T for k with objective λ
(ii) calculate the minimum eigenvalue, λmin of A at the point k
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Implementation

• C program calling CSDP for subproblem

• use random, and greedy-random 
seeding in incremental and one-step 
solvers

22
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Hyperplane 
Decomposition

• CSDP cannot solve full problem

• use dense H-freq sampling

• reduce dimension of parameters and 
variables 

• only optimize hyperplanes with peaks

23
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Hyperplane 
Decomposition - II

• block diagonal structure

• still to large

• separate blocks (hyperplanes) into 
independent problems

24
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4.2 Hyperplane Subproblems

Since the directly acquired dimension is densely sampled, it is possible to
assume the Fourier transform has been applied in this dimension and consider
each frequency in this dimension separately. This reduces the dimension of the
problem by (r − 1)/r · 1/np, on the sampling (k) side, and on the peak (x)
side by the ratio of peaks in that plane to overall peaks. Such problems can be
solved. This does not take into account that a single set of FIDs is acquired,
so the the k values are not independent in separate subproblems. Another
problem is that we have to ‘round’ peaks which occur at arbitrary points to
discrete frequency planes. Given a method of rounding peaks to planes, this
can be used to define a block-diagonal A:

(S∗S)i,j =

{∑n
l=0 e

√
−1〈kl,xj−xi〉 if xj , xi belongs to plane l

0 otherwise
(13)

where xj , ki ∈ r−1.
The resulting problem is still impracticably slow in CSDP. Perhaps a solver

with more complete support for sparsity would do better, but it turns out that
there is little incentive to try, as seen by the results of a simpler approach.

The simpler approach is simply to partition the peaks xi into disjoint planes,
and solve the problem associated with (12) for each subset in the partition. In
the current implementation, a hierarchical clustering indexed by the frequency
in the directly-acquired direction is performed. Hierarchical clustering works
well for the benchmark problem, but it does not guarantee overlapping peaks
will be be in a common plane, so an algorithm tailored to this problem be
better, or even required for larger proteins.

Once optimal sampling co-ordinates are found for each plane, they can be
unioned, eliminating nearly-identical points, if desired. Two approaches have
been tried: (1) apportioning samples to planes in advance, greedily generating
a random starting point and optimizing, (2) incrementally adding random
points and re-optimizing the full set until a target efficiency is reached. The
second method could require arbitrarily many samples. It is also slower.

For the purposes of benchmarking, random greedy search was performed by
randomly selecting 64 initial points, computing the minimum eigenvalues and
taking the best set. To these points were added 8 random samples, one point at
a time, and the best augmented set was retained. This was optionally followed
by the trust region algorithm.

Greedy trust is a variation on this, in which after each additional candidate is
added, the trust region algorithm is applied, and the best set after optimization
is retained for the next iteration. This has the advantage that the efficiency
after optimization can be used as termination criterion, but involves much
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Numerical Tests

• used peak positions for protein 
RIa (119-244)

• omitted residues with missing 
frequencies

• clustered peaks into fat 2D hyperplanes

25
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Robust
 in 3D

• greedy random optimization limited to 80%

• continuous optimization consistently better

• 2x more samples required with greedy approach
26
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Figure 2. Trust region method does much better than random sampling, whether applied once in a
final step, or after each additional random point.

plane number of peaks number of samples efficiency
1 7+2 26 0.99
2 38+2 119 0.72
3 26+2 83 0.82
4 15+2 50 0.87
5 22+2 71 0.80
6 2+2 11 1.00

Figure 3. Efficiencies found by greedy random + trust method for all planes clustered from 3d
RIa (119-244) peaks.

than justified.
When 512-point FIDS with µs sampling are collected for the union of these

360 k-space points, the sampling efficiency as measured by the minimal eigen-
value of A will be 88.2%. This number is higher than the efficiency for the
38-peak plane because (1) the clustered peaks are only partially overlapping,
and (2) more than half the total points optimized for other planes also con-
tribute.

The 3D experiment used to determine the peak positions used 64× 64 sam-
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Figure 1. Efficiency of optimized sampling grows almost linearly with dimension.

points, and suggests that higher-dimensional NMR be used when optimizing
sampling patterns.

Single plane. The full set of 113 points with measured H, N and C resonances
was used to test the clustered hyperplane approach. To compare the relative
efficiency and variability of the three methods, a clustered plane with 7 peaks
(and the 2 sentinel peaks) was used in 8 runs of greedy random optimization,
3 runs of greedy trust optimization, and 16 runs of greedy random + single
trust region step optimization, to show the variability of each method. Figure 2
shows that without continuous optimization 80% is the limit of the expected
efficiency. Both single- and multiple-step trust region methods reach 80% ef-
ficiency with a third as many sample points. They also show less variability,
with the variability decreasing as more points are added.

Full experiment. Applying the greedy random + trust algorithm to all planes
(with 2 sentinel peaks), using a single set of samples with triple the cardinality
of the plane, resulted in efficiencies shown in figure 3. Efficiency decreases as
the cardinality of the plane increases. This computation took three hours on
a 2.6GHz, 8 Dual Core Opteron server in a shared environment. To optimize
NMR experiments which can run days on expensive spectrometers, this is more

Better in 
Higher 

Dimensions

• 17 peaks with full frequency information

• Efficiency increases with dimension (34 samples)

• fewer samples required in higher dimensions 
(conventionally grows exponentially)
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Full Problem

• overall 88.2% efficient

• 100-fold reduction in sampling for equal noise
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Conclusion
• NMR dynamics

• significant potential cost savings

• NMR structure

• more complicated prior information

• imaging

• dimension limited 3d

• practical problems not yet solvable

• tough dense SDP problems available
29
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