
Elementary Function Evaluation
Using

New Hardware Instructions

Elementary Function Evaluation
Using

New Hardware Instructions

By
Anuroop Sharma M.Tech

IBM Center for Advanced Studies Fellow

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree
Master of Science

McMaster University
c� Copyright by Anuroop Sharma, October 5, 2010

MASTER OF SCIENCE(2010) McMaster University
COMPUTING AND SOFTWARE Hamilton, Ontario

TITLE: Elementary function evaluation using New Hardware In-
struction

AUTHOR: Anuroop Sharma M.Tech (Indian Institute of Tech-
nology, Delhi)

SUPERVISOR: Dr. Christopher Anand

NUMBER OF PAGES: xi, 68

LEGAL DISCLAIMER: This is an academic research report. I,
my supervisor, defence committee, and university, make no claim
as to the fitness for any purpose, and accept no direct or indirect
liability for the use of algorithms, findings, or recommendations
in this thesis.

ii

Abstract
In this thesis, we present novel fast and accurate hardware/ soft-
ware implementations of the elementary math functions based
on range reduction, e.g. Bemer’s multiplicative reduction and
Gal’s accurate table methods. The software implementations are
branch free, because the new instructions we are proposing in-
ternalize the control flow associated with handling exceptional
cases.

These methods provide an alternative to common itera-
tive methods of computing reciprocal, square root and reciprocal
square root. These methods could be applied to any rational-
power operation. These methods require either the precision
available through fused multiply-accumulate instructions or extra
working precision in registers. We also extend the range reduc-
tion methods to include trigonometric and inverse trigonometric
functions.

The new hardware instructions enable exception handling
at no additional cost in execution time, and scale linearly with in-
creasing superscalar and SIMD widths. Based on reduced instruc-
tion, constant counts, and reduced register pressure we would rec-
ommend that optimizing compilers always in-line such functions,
further improving performance by eliminating function-call over-
head.

On the Cell/B.E. SPU, we found an overall 234% increase
in throughput for the new table-based methods, with increased
accuracy.

The research reported in the thesis has resulted in a patent
application [AES10], filed jointly with IBM.

iii iv

Acknowledgments
I would like to thank my supervisor Dr. Christopher Anand for
his wonderful support and guidance throughout my degree.

I would like to thank the IBM Toronto Lab Center for Ad-
vanced Studies, and Robert Enenkel, for their support of my re-
search work thus far.

I would like to thank Dr. Wolfram Kahl and Mira Anand
for very useful comments.

I would also like to thank my fellow students in the Coconut
project.

I would also like to thank my parents, family and friends
for their support and encouragement.

v vi

Contents

Abstract iii

Acknowledgments v

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Novelty . 1
1.3 Impact . 2
1.4 Trademarks . 2
1.5 Thesis Organisation 2

2 Background and Previous Work 3
2.1 IEEE Floating Point Numbers and Ulp Errors . . 3
2.2 Multiplicative Range Reduction 3
2.3 Accurate Tables 4
2.4 Multiplicative-Reduction Accurate Tables 4
2.5 NR Reduction with Hardware Seed 4

3 Square Root: A Case Study 5
3.1 Iterative Newton Raphson 5

vii

3.2 Multiplicative Reduction Accurate Tables 5

4 New Instructions 7

5 Testing Environment 11

5.1 Coconut . 11

5.2 Cell/B.E. SPU 11

5.3 Maple . 12

5.4 Keywords and Symbols 12

6 Extended Range Doubles and Fused Multiply-Add 15

6.1 FMAX Hardware Instruction 16

6.2 Special Bit Patterns 18

7 Lookup Instructions 19

7.1 Lookup Opcode 19

8 Logarithmic Family Functions 25

8.1 Log Software Implementation 25

8.2 Overview of Log Lookup Logic 27

8.3 Log Lookup Instruction 28

8.4 Log Lookup Optimized for Hardware Implementa-
tion . 31

9 Reciprocal Family Functions 37

9.1 Reciprocal Family Software Implementation . . . 37

9.2 Recip Lookup Instruction 38

10 Square-Root Family Functions 43

10.1 Square Root Software Implementation 43

10.2 Sqrt Lookup Instruction 44

viii

11 Exponential Family Functions 47
11.1 Exp Software Implementation 47
11.2 Exp Lookup Instruction 49

12 Trigonometric Family Functions 51
12.1 Trigonometric Functions Software Implementation 51
12.2 Trig Lookup Instruction 53

13 Inverse Trigonometric Family Functions 57
13.1 Inverse Trigonometric Functions Software Imple-

mentation . 57
13.2 Inverse Trig Lookup Instruction 59

14 Evaluation 63
14.1 Accuracy . 63
14.2 Performance . 63

15 Conclusion 65

ix x

List of Figures

4.1 Data flow graph with instructions on vertices, for
log x, roots and reciprocals. Only the final instruc-
tion varies—fma for log x and fm for the roots and
reciprocals. 8

8.1 Bit flow graph with operations on vertices, for log x
lookup. Shape indicates operation type, and line
width indicates data paths width in bits. 35

xi xii

List of Tables

6.1 Special treatment of exceptional values by fmaX

follows from special treatment in addition and mul-
tiplication. The first argument is given by the row
and the second by the column. Conventional treat-
ment is indicated by a “c”, and unusual handling
by specific constant values. 15

7.1 The values returned by lookupOpcode instruc-
tion for the function recip; for the different ranges
of the input. 20

7.2 The values returned by lookupOpcode instruc-
tion for the function div for the different ranges of
the output. 20

7.3 The values returned by lookupOpcode instruc-
tion for the function sqrt for the different ranges
of the input. 21

7.4 The values returned by lookupOpcode instruc-
tion for the function rsqrt ; reciprocal square root;
for the different ranges of the input. 21

7.5 The values returned by lookupOpcode instruc-
tion for the function log for the different ranges of
the input. 22

xiii

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

7.6 The values returned by lookupOpcode instruc-
tion for the function exp for the different ranges of
the input. 22

7.7 The values returned by lookupOpcode instruc-
tion for the function trig for different ranges of
inputs. 22

7.8 TheThe values returned by lookupOpcode in-
struction for the function atan2 for different ranges
of inputs. 23

14.1 Accuracy and throughput (using Cell/B.E. SPU
double precision) of standard functions with table
sizes. 64

xiv

Chapter 1

Introduction

1.1 Motivation

Elementary function libraries, like IBM’s Mathematical Acceleration Subsys-
tem (MASS), are often called from performance-critical code sections, and
hence contribute greatly to the efficiency of numerical applications. Not sur-
prisingly, such functions are heavily optimized both by the software developer
and the compiler, and processor manufacturers provide detailed performance
results which potential users can use to estimate the performance of new pro-
cessors on existing numerical workloads.

Changes in processor design require such libraries to be re-tuned; for
example,

• hardware pipelining and superscalar dispatch will favour implementa-
tions which use more instructions, and have longer total latency, but
which distribute computation across different execution units and present
the compiler with more opportunities for parallel execution.

• Single-Instruction-Multiple-Data (SIMD) parallelism, and large penal-
ties for data-dependent unpredictable branches favour implementations
which handle all cases in a branchless loop body over implementations
with a fast path for common cases and slower paths for uncommon, e.g.,
exceptional, cases.

1.2 Novelty

In this thesis, we address these issues by defining new algorithms and new
hardware instructions to simplify the implementation of such algorithms. In

1

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

[AS10, AS09], we introduced new accurate table methods for calculating loga-
rithms and exponentials, including the special versions log(x+1) and exp(x)−1
which are needed to get accurate values for small inputs (respectively outputs),
including subnormal values. In this thesis, we introduce a related approach
for calculating fixed powers (roots and reciprocals), and we show that all of
these functions can be accelerated by introducing novel hardware instructions.
In addition, we also introduce an accurate table range reduction approach for
other elementary functions, including trigonometric and inverse trigonometric
functions. Hardware-based seeds for iterative root and reciprocal computa-
tions have been supported on common architectures for some time. As a
result, iterative methods are preferred for these computations, although other
table-based methods also exist.

By reducing to seven the number of tables needed for all standard
math functions, we have provided an incentive to accelerate such computations
widely in hardware.

In this thesis, we show that accelerating such functions by providing
hardware-based tables has a second advantage: all exceptions can be handled
at minimal computational cost in hardware, thus eliminating all branches (and
predicated execution) in these functions. This is especially important for SIMD
parallelism.

Many of the ideas in this thesis are covered by patent application “Hard-
ware Instructions to Accelerate Table-Driven Mathematical Function Evalu-
ation”, Christopher K. Anand, Robert Enenkel, and Anuroop Sharma, US
Patent Application 12/788570.

1.3 Impact

The resulting instruction counts dramatically reduce the barriers to in-lining
these math functions, which will further improve performance. We also expect
the new instructions to result in reduced power consumption for applications
calling these functions. When compared to current software implementations
on the Cell/B.E. SPU, these new hardware-assisted versions would result in a
tripling of throughput for vector libraries (functions which map elementary
functions over arrays of inputs). But application codes which are difficult
to re-factor to call such efficient implementations would benefit even more,
because the hardware-assisted implementations use a third of the number of
instructions and have a memory footprint a hundred times smaller,

2

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

completely eliminating the penalties associated with in-lining the instructions.

1.4 Trademarks

IBM is a registered trademarks of International Business Machines Corpora-
tion in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertain-
ment, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service
marks of others.

1.5 Thesis Organisation

The rest of the thesis is organized as follows. Chapter 2 gives an overview
of floating point arithmetic and the relevant previous work in the area of el-
ementary function evaluation. Chapter 3 uses the square root function as
a case study to demonstrate the relative advantages of the proposed thesis
over the conventionally used Newton Raphson methods. Chapter 4 gives an
overview of the proposed hardware instructions and discusses the issues re-
lated to the hardware implementations. Chapter 5 gives an overview of the
Coconut [AK09] project and the Haskell programming language which is used
to simulate the proposed hardware instructions and the software implemen-
tations of the elementary functions. Chapter 6 through Chapter 13 discuss
the implementation of the proposed hardware instructions and the elementary
functions, using Coconut. Chapter 14 reports the efficiency and the accuracy
results for the elementary functions; with the conclusions of the thesis in the
last chapter.

3

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

4

Chapter 2

Background and Previous Work

Accurate evaluation of mathematical functions is very important for the stabil-
ity of many numerical algorithms. The errors in elementary functions become
more significant as they tend to accumulate as algorithms become more com-
plicated. Many efforts have been made to improve the accuracy of elementary
functions. To understand the error analysis, given in this thesis, an under-
standing of the IEEE floating point format and the ulp (unit in the last place)
is a requisite. In this chapter, after explaining this floating point representa-
tion, we will discuss some previous work in the field of elementary function
evaluation.

2.1 IEEE Floating Point Numbers and Ulp

Errors

In computer hardware, only discrete values of the real numbers, called floating
point numbers, can be represented. The IEEE Standard for Floating-Point
Arithmetic (IEEE 754) is the most widely-used standard for floating-point
computation. This representation uses some fixed number of bits to represent
the significant and the exponent, respectively. For single-precision floating
point values, 23 and 8 bits are respectively used to represent the significant
and the exponent which is biased by 127. In double-precision floating point,
these values are 52 and 11 bits, where exponent is biased by 1023. In both
representations, the first bit is used to store the sign of the value and 2 is used
as the base. The numerical value of a floating point number can be calculated
using the following formula

5

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

(−1)sign × (1.significant digits)× baseexponent-bias.

The unit ulp (unit in the last place) is frequently used to report the error
in numerical calculations, since it represents the smallest representable error.
Since an ulp is defined to be the difference between two consecutive IEEE
floating point values, it is a relative measure whose absolute value depends on
the value whose error is being reported. In the rest of this thesis, most of the
error analysis is done using ulp as an unit. For more details, see [Mul05].

2.2 Multiplicative Range Reduction

Multiplicative range reduction goes back to Bemer [Bem63], who used it in
square-root subroutines to do range reduction before using a polynomial ap-
proximation to generate a starting point for the Newton-Raphson iteration.
The effect of multiplicative range reduction is then undone by multiplying the
result by a second table value. At the time Bemer invented the method, large
tables would not have been practical. As read-only memory became cheaper,
however, hardware tables made large, low-latency tables practical. For ex-
ample, [Tak97] proposed a single-coefficient look-up for linear interpolation
of powers, which for double precision would require a table with 224 entries.
Correct rounding would require extra precision in the interpolation and an ex-
tra multiplication used to generate an additional coefficient. In contrast, our
proposed method requires smaller table size (e.g., 213) and no extra precision
registers (other than the extra precision used in a fused multiply-add).

2.3 Accurate Tables

Accurate table methods have been used for long time in the evaluation of the
elementary math functions [Gal86, GB91]. Gal’s accurate tables are devised
to provide accurate values of special functions using a lookup table and inter-
polation. The idea behind Gal’s accurate table method is to use table values
that are either exactly representable in IEEE floating point representation or
use values which are very close to an IEEE floating point number instead of
using the tables of equally spaced argument values which results in rounding
errors.

6

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

2.4 Multiplicative-Reduction Accurate Tables

The combination of multiplicative reduction and accurate table methods, and
the recognition that this combination could be used to reduce the number of ta-
bles used in the logarithm and exponential families of functions was introduced
in [AS10, AS09]. Obviously, the reduction in the number of tables translates
into a reduction in the hardware cost and complexity for hardware-assisted
implementations, and is an important enabler for the efficient implementation
of the ideas presented in this thesis.

2.5 NR Reduction with Hardware Seed

Most modern architectures which support floating-point computation provide
estimate instructions for reciprocal and reciprocal square root which can be
used both as rough estimates when low accuracy is sufficient (e.g., some stages
of graphics production) and as seeds for iterative methods, most commonly
Newton-Raphson refinements, also called Heron’s method in the case of square-
root computations.

Some architectures like IBM POWER5 [Cor05] provide an instruction
which calculates the exact square root of the input register. Even on those
architectures which provide these machine instructions, iterative methods offer
higher efficiency and therefore higher throughput on pipelined machines be-
cause the estimates can be pipelined while single instructions like those men-
tioned, cannot be reasonably pipelined because of their long latency. For ex-
ample, 84 cycles for the Cell/B.E. PPE’s floating point square root instruction
(see table A-1 of [Cor08]), which is significantly longer than other instructions
like floating point multiply-add with a latency of 10 cycles.

Iterative methods for
√
x are most efficiently implemented by estimat-

ing and refining 1/
√
x, and multiplying the result by x. Vector normalization

is one common operation which requires 1/
√
x rather than

√
x, so it is very

useful to have efficient computations for both the root and its reciprocal with-
out having to use a second (reciprocal or divide) operation.

Unfortunately, correct final rounding often requires an extra itera-
tion, called Tuckerman rounding [ACG+86], or extra-precision registers [Sch95]
[KM97]. Even if the correct rounding of 1/

√
x is available, multiplying by x

will often produce incorrectly rounded results — 28% of the time, when we
tested 20000 random values in Maple. Showing that a particular scheme re-

7

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

sults in correctly rounded output is an involved process [Rus98]. Although, to
a first approximation, these iterations have quadratic convergence and hence
the number of iterations can be adjusted according to the required accuracy,
the final error is very sensitive to the seed value, and the best value depends
on both the power and the number of iterations [KM06].

8

Chapter 3

Square Root: A Case Study

We use the square root function to demonstrate the relative advantages of the
method proposed in this thesis, compared to the most widely used iterative
methods. We also provide the equations governing the proposed algorithm and
maximum theoretical errors introduced by different steps of the algorithm.

3.1 Iterative Newton Raphson

The Newton Raphson method to calculate the square root of the input is based
on the seed or approximate value of its reciprocal square root provided by the
hardware instruction. The hardware instruction returns the approximation of
the reciprocal square root of the input using piecewise interpolation, which
requires table lookups. Heron’s refinements are then performed,

xn = xn−1 +
xn−1

2

�
1− xn−1

2
v
�
, (3.1)

in software to get 52-bit accurate reciprocal square root of the input.
The accuracy of the estimate is doubled with every repetition of the

refinement, so a certain number of refinements, based on the accuracy of initial
estimate, are required to produce the 52-bit accurate reciprocal square root.
Square root is then calculated by multiplying the input with the reciprocal
square root, but it does not guarantee the correct rounding.

For the inputs 0 and ∞, the reciprocal square root estimate instruc-
tion returns ∞ and 0 respectively, which then is multiplied with the input,
producing NaN as the output of the refinement step. In order to handle
the exceptional cases, we need to test the input for these outputs and either

9

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

branch out or use predication or a floating-point select instruction to substi-
tute the right output. All these computations require extra instructions or a
conditional branch out, thus decreasing the throughput.

3.2 Multiplicative Reduction Accurate Tables

In this section, we explain our algorithm with new proposed hardware instruc-
tions. Let 2e · f be a floating-point input. Decompose e = 2 · q + r such that
r ∈ {0, 1}, and use this to rewrite the square root as

(2e · f)1/2 = 2q · 2r/2 · f 1/2
. (3.2)

Next, we use the proposed new instruction which will produce multiplicative
reduction factor 1/µ. Then, we multiplicatively reduce the input by

c =
1

µ
f − 1, (3.3)

where 1/µ = 1
2−eν is produced using an accurate value 1/ν, looked up in a table

using the concatenation of the first n−1 bits of the mantissa and the low-order
exponent bit as an index, and N = 2n is the number of intervals which map
into, but not onto (−1/N,+1/N). This is another way of saying that |c| < 2−N ,
because multiplication by a power of 2 is same as the addition of exponent
bits. For small subnormal inputs, this multiplicative factor is larger than the
largest representable IEEE floating point number. For this reason, we propose
a new extended range double representation which has 12 bits for storing the
exponent, and 51-bits for storing the mantissa bit. We have calculated the
accurate table values in such a way that the implied 52nd bit is always zero.
This effectively doubles the range of normal values, hence subnormal inputs
and large inputs which produce subnormals as their reciprocal can be treated
in same way as other normal inputs. We also propose a new instruction fmaX ,
which computes the fused multiply add over the three arguments fmaX a b c
= a∗b+c, where the first argument is an extended range double. The reason we
include the low-order exponent bit is so that we can look up

√
µ = 2q ·

√
2r · ν in

parallel with 1/µ. This method is called an accurate table method, because for
each interval we choose a value ν such that

√
2r · ν is exactly representable, and

1/ν is within 1/2M ulp of a representable number, where M is the parameter
which determines the accuracy of the table, and is chosen depending on the
properties of the function being evaluated. For the second lookup, we use the
same proposed instruction with a different integer argument.

10

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

The reduction, (3.3), is very accurate because the output ulp is at most
1/2M times the input ulp and we are using a fused multiply-accumulate. The
rounding error is equivalent to a 2−53−M perturbation of the input followed by
an exact computation.

We calculate the square root of the reduced fraction using a minimax
polynomial, p(c), approximating

√
c+ 1− 1

c
(3.4)

with a maximum relative error (before rounding) of less than 2−53. The poly-
nomial is approximately equal to the Taylor series

p(c) ≈ 1

2
− c

8
+

c2

32
+O(c3), (3.5)

so given the small size of c, rounding errors will not accumulate and the final
result will have strictly less than one ulp error.

To obtain the final result,

(2e · f)1/2 = (
√
µ · p(c)) · c+√

µ (3.6)

where
√
µ = 2q ·

√
2r · ν , requires

• a multiplication, 2q ·
√
2r · ν, the result of which is exact,

• a multiplication by p(c) having at most a 2-ulp error,

• a multiply-add with c with norm < 2−N reduces the contribution of the
2-ulp error to 22−N giving a total maximum error of 1

2 + 22−N ·
�
1
8

�
,

Under the assumption that the difference in ulps between exact square
roots and correctly rounded square roots is uniformly distributed in

�−1
2 ,

1
2

�
,

we can expect the number of incorrectly rounded results to be bounded by
one over the number of intervals. Since we want to use a small interval size
to reduce the required order of the polynomial approximation, we therefore
expect very high accuracy, which is what we have found in simulations.

The other advantage of using proposed hardware instruction is that we
can detect the special inputs and override the second lookup with the right
output, whereas the first lookup can be carefully chosen such that intermediate
steps never produce a NaN . This eliminates the need to detect the special cases
in the software implementation.

11

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

12

Chapter 4

New Instructions

New instructions have been proposed (1) to support new algorithms, and (2)
because changes in physical processor design render older implementations
ineffective.

On the algorithm side, even basic arithmetic continues to improve no-
tably by eliminating variable execution times for subnormals [DTSS05]. Our
work extends this to the most important elementary functions.

Driven by hardware implementation, the advent of software pipelining
and shortening of pipelining stages favoured iterative algorithms (see, e.g.,
[SAG99]); the long-running trend towards parallelism has engendered a search
for shared execution units [EL93], and in a more general sense, a focus on
throughput rather than low latency, which motivates all the proposals (includ-
ing this thesis) that combine short-latency seed or table value lookups with
standard floating point operations, thereby exposing the whole computation
to software pipelining by the scheduler.

In proposing Instruction Set Architecture (ISA) extensions, one must
consider four constraints:

• the limit on the number of instructions imposed by the size of the ma-
chine word, and the desire for fast (i.e., simple) instruction decoding,

• the limit on arguments and results imposed by the architected number
of ports on the register file,

• the limit on total latency required to prevent an increase in maximum
pipeline depth,

• the need to balance increased functionality with increased area and power
usage.

As new lithography methods cause processor sizes to shrink, the relative

13

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

cost of increasing core area for new instructions is reduced, especially if the
new instructions reduce code and data size, reducing pressure on the memory
interface which is more difficult to scale.

To achieve a performance benefit, ISA extensions should do one or more
of the following

• reduce the number of machine instructions in compiled code,

• move computation away from bottleneck execution units or dispatch
queues,

• reduce register pressure.

We propose to add two instructions (with variations as above) :
d = a b c = a · b+ c an extended range floating-point multiply-add,

with the first argument having 12 exponent bits and 51 mantissa bits,
and non-standard exception handling;

t1 = a b fn idx an enhanced table look-up with two vector argu-
ments, and two immediate arguments specifying the function and the
lookup index. Some functions, like log , sqrt and recip, only use the first
vector argument, whereas functions like atan2 , trigonometric functions
and exp use both vector arguments. To keep the number of arguments to
the lookup instruction the same, we always accept two vector arguments
but ignore the second argument (and do not write it) when only one
argument is required. The function index fn, an integer ∈ {0, 1, .., 7},
specifies the function log ,exp, ... atan2 . The lookup index specifies which
of the lookup values associated with the function is returned. Functions
that use multiplicative reduction accurate table methods are defined for
idx ∈ {0, 1}, and undefined otherwise. For other functions, as many as
six lookup values are defined via different values of idx .

It is easiest to see them used in an example. For all of the functions us-
ing multiplicative reduction accurate tables; for example, log , sqrt and recip;
the data flow graphs are the same (see Figure 4.1) with the correct lookup
specified as an immediate argument to lookup, and the final operation being
fma for the log functions and fm otherwise. The figure only shows the data
flow (omitting register constants). All of the floating point instructions also
take constant arguments which are not shown. For example, for all the mul-
tiplicative reduction methods, the fmaX takes third argument which is −1, as
an addend.

The dotted box is a varying number of fused multiply-adds used to
evaluate a polynomial after the multiplicative range reduction performed by

14

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

.

.

.

lookup fn 1

fmaX

fma

fma

fma or fm

lookup fn 2

x

f(x)

1/c

12

(ii) (i)

Figure 4.1: Data flow graph with instructions on vertices, for log x, roots and
reciprocals. Only the final instruction varies—fma for log x and fm for the
roots and reciprocals.

the fmaX. For the table sizes we have tested, these polynomials are always of
order three, so the result of the polynomial (the left branch) is available four
floating point operations later (typically about 24-28 cycles) than the result
1/c. The second lookup instruction performs a second lookup, for example, for
the log function, it looks up log2 c, and substitutes exceptional results (±∞,
NaN) when necessary. The final fma or fm instruction combines the polynomial
approximation on the reduced interval with the table value.

The double and double dashed lines indicate two possible data flows
for the possible implementations:
(i) the second lookup instruction uses the same input;

15

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

(ii) the second lookup instruction retrieves a value saved by the first lookup
(in final or intermediate form) from a FIFO queue or rotating scratch
registers.

In the first case, the dependency is direct. In the second case the de-
pendency is indirect, via registers internal to the execution unit handling the
look-ups. All instruction variations for the different functions have two regis-
ter inputs and one output, so they will be compatible with existing in-flight
instruction and register tracking. Compiler writers will prefer the variants
with indirect dependencies, (ii), which reduce register pressure and simplify
modulo loop scheduling. In these cases, the input values are only used by the
first instruction, after which the registers can be reassigned, while the second
lookup can be scheduled shortly before its result is required. The case (i),
on the other hand, results in a data-dependency graph containing a long edge
connecting the input to the last instruction. In simple loops, like a vector
library function body, architectures without rotating register files will require
as many copy instructions as stages in order to modulo schedule the loop. On
many architectures, this cannot be done without a performance degradation.

To facilitate scheduling, it is recommended that the FIFO or tag set be
sized to the power of two greater than or equal to the latency of a floating-
point operation. In this case, the number of registers required will be less than
twice the unrolling factor, which is much lower than what is possible for code
generated without access to such instructions.

The combination of small instruction counts and reduced register pres-
sure eliminates the obstacles to in-lining these functions. We recommend that
lookup be handled by either a load/store unit, or, for vector implementa-
tions with a complex integer unit, by that unit. This code is bottlenecked
by floating-point instructions, so moving computation out of this unit will in-
crease performance. On the Cell/B.E. SPU, the odd pipeline should be used.
On an IBM POWER ISA machine the load/store unit should be used for
VMX/Altivec, or scalar instructions. If the variants (ii) are implemented, the
hidden registers will require operating system support on operating systems
supporting preemptive context switches. Either new instructions to save and
restore the state of the hidden registers, or additional functionality for existing
context switching support instructions will be required. Alternatively, the pro-
cessor could delay context switches until the hidden registers are no longer in
use, or the process model could avoid the need for context switches altogether,
as for example in the systems [AK08, BPBL06].

16

Chapter 5

Testing Environment

To evaluate the algorithms, we used Coconut (COde CONstructing User Tool),
and added the proposed instructions to the Cell/B.E. processor target. Al-
though the software implementations use the Cell/B.E. instruction set, the
algorithms do not use any instructions not commonly available in other archi-
tectures. The most important existing instruction, which is now commonly
available, is the fused multiply and add, which is required to get correctly
rounded results.

5.1 Coconut

The functions are implemented in a Domain Specific Language (DSL) embed-
ded in the functional programming language Haskell [PJ+03].

The main advantages of the Haskell embedding are: the ease of adding
language features using type classes and higher order functions, and the strong
static typing in Haskell which catches many errors at compile time. Some fea-
tures could be easily implemented using the C preprocessor, or C++ template
features, but others, notably table look-ups, would be cumbersome to imple-
ment and very difficult to maintain. See [AK09], for a full account of the
language, and the results of implementing a single-precision special function
library for the Cell/B.E. SPU.

The double precision library, SPU DP MASS, was implemented using
this tool, and is distributed starting with the Cell/B.E. SDK 3.1. It was found
to be four times faster than the best alternative, SIMD Math, implemented
in C using processor intrinsics. Most of the improvements stem from efficient
patterns for table look-ups and leveraging higher levels of parallelism through

17

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

partial unrolling. The performance improvements reported in this thesis are
relative to the faster MASS implementations developed using Coconut, so the
differences are the result of the improved algorithm and not simply a more
efficient implementation.

5.2 Cell/B.E. SPU

The Cell/B.E. (Broadband Engine) architecture contains a POWER architec-
ture microprocessor together with multiple compute engines (SPUs) each with
256K of private local memory, which in our case, put a limit on table size when
multiple special functions are used together to process blocks of data.

All SPU computation uses Single Instruction Multiple Data (SIMD)
instructions operating on more than one data element packed into a register
in parallel. The SPU has a single register file with 128 bit registers. Most
instructions operate on components, i.e., four 32-bit integers or 2 64-bit double
precision floating point numbers, adding, multiplying or shifting each element
in parallel. We call these pure SIMD instructions, to distinguish them from
operations operating on the register contents as an array of bytes, or a set of
128 bits.

Since SIMD applies a single instruction to multiple data, it follows that
multiple data elements are treated in the same way. The additional cost of
branches in an architecture without deep reordering and branch prediction
puts a premium on implementations without any exceptional cases. So it is
usually faster to make two versions of a computation and then select the right
one based on a third predicate computation than it is to branch and execute
one of the two computations. For this reason, all our special functions on
the SPU are branch-free. Such branch-free implementations are also useful in
real-time applications requiring deterministic execution time.

The SPU has two dispatch pipelines, an even pipeline corresponding
roughly to computation, and an odd pipeline including load-store and bit/byte
permutations acting on the whole register. By their nature, special functions
are computationally bound, so several patterns make special efforts to use
odd instructions wherever possible, and we propose the new instructions to be
included in the odd pipeline.

18

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

5.3 Maple

Maple is a general-purpose mathematical software system, which can perform
numerical and symbolic calculations and elementary function evaluations with
very high precision. We used Maple to calculate most of the accurate tables
and the minimax polynomial approximations of the target function in narrow
ranges. High precision Maple functions were also used to test the algorithms
proposed in this thesis.

5.4 Keywords and Symbols

Various keywords from Coconut libraries and Haskell are used in the literate
code presented in this thesis. This section summarizes some of the keywords
and data types.

Coconut defines hardware ISAs in a type class, which is similar to a
virtual class in OO languages. This class is implemented in multiple instances,
including and interpreter instance and a code-generating instance. This over-
loading uses parametric type classes [Jon95]. The type class PowerType is
defined with associated data types [CKJM05] representing different resource
types of the processors, for example, VR is used for vector registers. We have
included the type signatures of the functions in the literate Haskell code. For
example, the type signature

logFamily :: PowerType a ⇒ MathOptions → Bool → VR a → VR a

defines the inputs and the outputs of the function logFamily . The declaration
PowerType a adds a constraint that the type a must be an instance of the class
PowerType. Two instances of PowerType class are declared in the Coconut
library; INTERP is used for interpreting the algorithms and GRAPH is used
for generating codegraphs in the sense of [KAC06], used for assembly code
generation. Any instance a of the type class PowerType a must provide an
associated data type VR a for vector register values. Data type MathOptions
is defined to wrap the base in which we want to calculate the function and flags
for handled exceptional cases. For example, when logFamily is used with the
MathOptions MO2 moAll it will interpret or generate assembly code for log2
(base 2), handling all exceptional cases. The input Bool is used to identify
whether we are calculating log2p1 , a special function provided to calculate the
precise log near 1 or standard function log2 .

19

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Data type ArbFloat is provided in the Coconut library to simulate
aribitrary-precision floating-point operations. The sign, exponent, mantissa
and base are represented as arbitrary precision Integers, provided by the stan-
dard Haskell library. All the computations are performed using the Haskell
Integer data type.

data ArbFloat = NaN | PInf | MInf
| AF {afExp :: Integer

, afSig :: Integer
, afSign :: Integer
, afBase :: Integer
}

deriving (Show)

Some Haskell operators are frequently used throughout the code presented in
this thesis. ($) is equivalent to placing parentheses around the remainder of a
clause.
($) :: (a -> b) -> a -> b -- Defined in GHC.Base

infixr 0 $

The symbol @ is used in Haskell pattern matching to bind the whole
value to a name. For example, in

head1 list@(a : as) = a

the name list could be used in place of whole list, where pattern matching
binds the first element to the list to name a.

20

Chapter 6

Extended Range Doubles and
Fused Multiply-Add

The key advantage of the proposed new instructions is that the complications
associated with exceptional values (0, ∞, NaN, and values which over- or
under-flow at intermediate stages) are internal to the instructions, eliminating
branches and predicated execution.

For example, cases similar to 0 and ∞ inputs in square root example
treated, in this way. Consider the case when the input to the square root func-
tion is ∞, we want to avoid the formation of NaN in the computation of range
reduction followed by polynomial evaluation, which has the coefficients of op-
posite signs. It is achieved by passing special bit patterns as the first lookup
value, shown in figure 4.1 and modifying the behaviour of fmaX for those bit
patterns. The behaviour of fmaX does not depend on the specific function;
depends only the arguments, where the first argument of fmaX is always pro-
duced by lookup instruction; specific to the function. Table 6.1 defines the
exceptional behaviour. Only the first input of fmaX is in the extended-range
format. The second multiplicand, the addend and the result are all IEEE
floats.

In Table 6.1, we list the handling of exceptional cases. All exceptional
values detected in the first argument are converted to the IEEE equivalent and
are returned as the output of the fmaX, as indicated by sub-script f (for final).
The NaNs with the sub-scripts are special bit patterns required to produce
the special outputs needed for exceptional cases. For example, when fmaX is
executed with NaN 1 as the first argument (one of the multiplicands) and the
other two arguments are finite IEEE values, the result is 2 as an IEEE floating

21

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

+ext finite −∞ ∞ NaN
finite c c c 0
−∞ c c 0 0
∞ c 0 c 0
NaN c c c 0

∗ext finite −∞ ∞ NaN
±0 ±0f ±0f ±0f ±0f

finite�= 0 c 2 2 2
−∞ −∞f −∞f −∞f −∞f

∞ ∞f ∞f ∞f ∞f

NaN0 NaNf NaNf NaNf NaNf

NaN1 2f 2f 2f 2f
NaN2 1/

√
2f 1/

√
2f 1/

√
2f 1/

√
2f

NaN3 0f 0f 0f 0f

Table 6.1: Special treatment of exceptional values by fmaX follows from special
treatment in addition and multiplication. The first argument is given by the
row and the second by the column. Conventional treatment is indicated by a
“c”, and unusual handling by specific constant values.

point number.

fmaX NaN1 finite1 finite2 = NaN1 · finite1 + finite2

= 2

If the result of multiplication is an ∞ and the addend is the ∞ with the oppo-
site sign, then the result is zero, although normally it would be a NaN . If the
addend is a NaN , then the result is zero. For the other values, indicated by “c”
in table 6.1, fmaX operates as the dfma instruction provided in the Cell/B.E.
SPU hardware [IBM06] except that the first argument is an extended range
floating point number. For example, the fused multiplication and addition of
finite arguments saturate to ±∞ in the usual way.

22

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

6.1 FMAX Hardware Instruction

The Haskell module presented by this section as a literate program, simulates
the proposed dfmaX instruction, extended floating multiplying add instruc-
tion. In order to simulate this instruction, we have used the arbitrary pre-
cision functions provided Coconut [AK09] framework. In real hardware, this
instruction could be implemented in same fashion as fused multiply-add dfma

instruction. The first argument (one of the multipliers) has extended range for
exponents so that subnormals and inverses of subnormals, which saturate to
infinity in IEEE representation, can be treated as normal floating point num-
bers. This representation uses 12 bits for storing exponents, thus doubling the
range and 51 bits for mantissa. We assume that the 52nd bit of mantissa is
zero, and we have the same precision as before.

module FMAXHardwareInstr
where

dfmaX :: PowerType a ⇒ VR a → VR a → VR a → VR a
dfmaX a b c = result
where

We will decompose the extended fused multiply and add dfmaX into 2
instructions for multiply multX and add addX , explained below, so that we
can define a special argument/result pair relatively easily, and to make the
definition analogous to 6.1.

result = undwrds $ zipWith specialCases (dwrds a) raddition

We override the output for special bit patterns in the first argument. These
cases are need to output the NaN f and the ±∞f , described in the table 6.1,
for the special cases in many functions. Bit patterns 0x0, 0x7ff8000000000000,
0xfff8000000000000 and 0x7ffc000000000000 are 0, +∞, −∞ and NaN 0 re-
spectively in extended range representation. Bit patterns 0x0, 0x7ff0000000000000,
0xfff0000000000000 and 0x7ff8000000000000 are 0, +∞, −∞ and NaN respec-
tively in IEEE floating point representation.

specialCases x y = case x of
0x0000000000000000 → 0x0000000000000000 -- 0 → 0

23

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

0x7ff8000000000000 → 0x7ff0000000000000 -- +∞ → +∞
0xfff8000000000000 → 0xfff0000000000000 -- −∞ → −∞
0x7ffc000000000000 → 0x7ff8000000000000 -- NaN 0 → NaN

In the computation of div , the following special case is needed, where the
result is saturating to Inf . In those cases, the lookup instruction returns the
special bit pattern NaN 1 = 0x7ffc000000000001, such that 2 is returned as the
result of fmaX computation. 2 is represented as 0x4000000000000000 in IEEE
floating point representation.

0x7ffc000000000001 → 0x4000000000000000 -- NaN 1 → 2

We use the following special case in the trig function, where we want to return
1/
√
2 as both sine and cosine values for very large inputs. In these cases,

lookup instruction returns NaN 2 = 0x7ffc000000000002 as first argument and
the result of fmaX 1/

√
2 = 0x3fe6a09e667f3bcc is returned as the result.

0x7ffc000000000002 → 0x3fe6a09e667f3bcc -- NaN 2 → 1√
2

In the software implementation of recip function, we want to return 0 as the
result of range reduction, when input is ±∞. The special case is handled using
NaN 3 = 0x7ffc000000000003 bit patterns as first argument of fmaX .

0x7ffc000000000003 → 0x0000000000000000 -- NaN 3 → 0
→ af2DVal y

For the rest of the cases, return the result we obtained from multiplication

rmult = zipWith (λx y → multX (extDVal2af x) (dval2af y))
(dwrds a) (dwrds b)

and then addition.

raddition = zipWith (λx y → addX x (dval2af y))
rmult (dwrds c)

To simulate the fused multiply and add instruction, we used the Arbitrary
precision floating point data type, defined in the Coconut libraries. First, we
convert the binary representation of an extended range floating point number
to ArbFloat(arbitrary precision floating point). As explained earlier, we need
to extend the range in both directions (near zero and near infinity), hence the

24

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

bias is increased from standard IEEE 1023 to 2047 for extended range floating
point numbers, and 12 bits are used for storing the exponent. The mantissa is
stored using the last 51-bits, but we calculated all the extended range values
with implied zero, so we do not loose any precision.

extDVal2af :: Integer → ArbFloat
extDVal2af v = case (exp �,mantissa �, sign) of

(0xfff, 0, 0) → PInf
(0xfff, 0, 1) → MInf
(0xfff, ,) → NaN
(0, 0,) → AF (−2099) 0 1 2

→ AF (exp � − 2047− 52) mantissa
(if sign ≡ 0 then 1 else− 1) 2

where
(signExp �,mantissa �) = divMod v (2 ↑ 51)
(sign, exp �) = divMod signExp � (2 ↑ 12)
mantissa = 2 ↑ 52 + shiftL mantissa � 1

The following function returns the multiplication of an extended range double
floating point number with an IEEE floating point number; both converted
to AF(arbitrary precision floating point) first; returning an arbitrary precision
floating point. We override the output according to the 6.1. number.

multX :: ArbFloat → ArbFloat → ArbFloat
multX NaN = 2
multX PInf = 2
multX MInf = 2
multX x1@(AF exp1 sig1 sign1 2) x2@(AF exp2 sig2 sign2 2)

= x1 ∗ x2
multX x y = error $ "FMAXHardwareInstr.Impossible"

++ show (x , y)

The following function returns the addition of an arbitrary precision floating
point number and an IEEE floating number, converted to arbitrary precision
floating point number first.

addX :: ArbFloat → ArbFloat → ArbFloat
addX PInf MInf = 0
addX MInf PInf = 0

25

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

addX NaN = 0
addX PInf = PInf
addX MInf = MInf
addX x1@(AF exp1 sig1 sign1 2) x2@(AF exp2 sig2 sign2 2)

= x1 + x2
addX x y = error $ "FMAXHardwareInstr.Impossible"

++ show (x , y)

6.2 Special Bit Patterns

At many instances in the software implementation of the functions and the im-
plementations of lookup instructions, we have used variable names like nan1X ,
infinityX or oneX to represent the speical bit patterns, NaN 1, ∞, and con-
stants 1, in extended precision, whereas symbols like nan, infinity or one to
represent the constant values in IEEE floating point representation.

26

Chapter 7

Lookup Instructions

In this chapter, the values returned by the hardware lookup instruction for
the different elementary functions are reported. The implementation specific
to individual functions (corresponding to different immediate arguments) of
the lookup instruction is included in their respective chapters. The Haskell
module LookupOpcode only provides a wrapper for the lookup functions, given
in the later chapters. The actual implementation of the LookupOpcode module
is therefore omitted. The lookup values returned from the lookupOpcode

instruction for the different functions and for the different input ranges are
included in the tables given below.

7.1 Lookup Opcode

In the following tables, we use e to represent the unbiased exponent of the
input and c to represent the value of the reduction factor, one of the accurate
table values. NaNi are special bit patterns used by dfmaX to output special
values. The usage of these special values are reported in Table 6.1. The
subscript ext is used to denote the values in the extended range floating point
representation. The subscript sat is used for the IEEE values; saturated to 0
and ±∞.

27

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

|Input| Lookup 1 Lookup 2

finite
�
−1s 2

−e

c

�

ext

�
−1s 2

−e

c

�

sat

< 2−1024 NaN3 −1s∞

∞ NaN3 0

NaN
�
−1s 2

−e

c

�

ext
NaN

Table 7.1: The values returned by lookupOpcode instruction for the function
recip; for the different ranges of the input.

The first lookup value for the function recip is an extended range float-
ing point number and the second lookup is an IEEE floating point number.

|Output| Lookup 1 Lookup 2

finite
�
−1s 2

−e

c

�

ext

�
−1s 2

−e

c

�

ext

∞ NaN1 NaN3

NaN
�
−1s 2

−e

c

�

ext
NaN0

Table 7.2: The values returned by lookupOpcode instruction for the function
div for the different ranges of the output.

It is important to note that not all resultant infinities are produced
using the special case reported above. For some finite arguments, the algorithm
used for normal cases can also saturate to infinity. The first lookup value for
div function is an extended range floating point number and the second lookup
value is an IEEE floating point number.

28

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Input Lookup 1 Lookup 2

finite > 0
�

2−e

c

�

ext
2q
√
2r · c

= 0
�

2−e

c

�

ext
0

< 0
�

2−e

c

�

ext
NaN

∞
�

2−e

c

�

ext
∞

NaN
�

2−e

c

�

ext
NaN

Table 7.3: The values returned by lookupOpcode instruction for the function
sqrt for the different ranges of the input.

The first lookup value for the function sqrt is an extended range floating
point number and the second lookup value is an IEEE floating point number.
In the table 7.3, the symbols q and r are used to represent the quotient and
the remainder of the division of e by 2.

Input Lookup 1 Lookup 2

finite > 0
�

2−e

c

�

ext
2q
�

2r

c

= 0
�

2−e

c

�

ext
∞

< 0
�

2−e

c

�

ext
NaN

∞
�

2−e

c

�

ext
0

NaN
�

2−e

c

�

ext
NaN

Table 7.4: The values returned by lookupOpcode instruction for the function
rsqrt ; reciprocal square root; for the different ranges of the input.

The first lookup value for the function rsqrt is an extended range float-
ing point number and the second lookup value is an IEEE floating point num-
ber. The symbols q and r are used in the table 7.4, represents the quotient

29

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

and the remainder of the division of −e by 2.

Input Lookup 1 Lookup 2

finite > 0
�

2−e

c

�

ext
e+ log2(c)

= 0 0 −∞

< 0
�

2−e

c

�

ext
NaN

∞
�

2−e

c

�

ext
∞

NaN
�

2−e

c

�

ext
NaN

Table 7.5: The values returned by lookupOpcode instruction for the function
log for the different ranges of the input.

The first lookup value for the function log is an extended range floating
point number and the second lookup value is an IEEE floating point number.
All the versions of the log functions use the same lookup values, but with
different arguments.

Input Lookup 1 Lookup 2

−1074 < finite < 1024 c 2[Input] · 2c

< −1074 NaN 0

> 1024 NaN ∞

NaN c NaN

Table 7.6: The values returned by lookupOpcode instruction for the function
exp for the different ranges of the input.

In table 7.6, [Input] is used to represent the integer closest to the input.
Both lookup values for the function exp are IEEE floating point numbers. All
the versions of the exp function use the same lookup instruction.

30

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Input Lookup 1 Lookup 2 Lookup 3 Lookup 4

< 242 −chigh,ext −clow,ext ± cos(c) ± sin(c)

> 242 NaN0 NaN0
1√
2

1√
2

NaN −chigh,ext −clow,ext NaN NaN

Table 7.7: The values returned by lookupOpcode instruction for the function
trig for different ranges of inputs.

The sub-scripts high and low are used in the table 7.7, represent IEEE
value of c and c−chigh respectively, where c is calculated using Maple with 500
digits. All the lookup values for trig function are extended range floating point
numbers. All the trigonometric functions use the same lookup instruction.

Input Lookup Lookup Lookup Lookup Lookup Lookup
1 2 3 4 5 6

(a,b) m̃ax(a, b) m̃in(a, b) c arctan(c) ±1 ±π,±π
2 , 0

a
b = 0/∞ 1 1 c arctan(c) 0 ±π,±π

2 , 0

a
b = NaN m̃ax(a, b) m̃in(a, b) c arctan(c) ±1 NaN

Table 7.8: TheThe values returned by lookupOpcode instruction for the
function atan2 for different ranges of inputs.

All the lookup values for the function atan2 are IEEE floating points.
The inverse trigonometric functions use atan2 with appropriate trigonometric
identities.

31

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

32

Chapter 8

Logarithmic Family Functions

The algorithm used to evaluate log is a simplified version of the accurate table
algorithm [AS10] we developed previously. With new proposed instructions,
the special treatement needed to handle exceptional and subnormal inputs can
be ignored. The algorithm follows three phases, visible in the figure 4.1:

1. The input is reduced to the smaller range ∈ [−2−N ..2−N], using multi-
plicative reduction.

f =
�
2−e

/c
�
lookup

∗ v − 1, (8.1)

where 2N -pairs of (1/c, log2(c)) are used to construct the table and e is
the unbiased exponent of the input.

2. The polynomial of considerably smaller order is used to evaluate reduced
input.

log2(1 + f)

f
= poly(f), (8.2)

where poly is a minimax approximation of log2(1+f)
f calculated using high

precision Maple.

3. The polynomial evaluation is added to the value of the function, corre-
sponding to the reduction factor returned by the second lookup.

log2(v) = poly(f) ∗ f + (e+ log2(c))lookup (8.3)

A fused multiply add dfma is used to get correctly rounded results.

In the standard library, logp1 = loge(1+v) is a function provided to get
accurate values of log for very small inputs near 1. A very similar algorithm
is used to calculate this special function, governed by the following equations.

33

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

f =
�
2−e

/c
�
lookup

∗ v +
��

2−e
/c
�
lookup

− 1
�

log2(1 + f)

f
= poly(f)

log2(1 + v) = poly(f) ∗ f + (e+ log2(c))lookup

where, e, c, and the lookup values are determined by 1 + v.

8.1 Log Software Implementation

This Haskell module implements the proposed algorithm for all the variants
of log functions. All the log functions are calculated with base 2, then scaled
up or down by constant factors accordingly.

module LogSoft
where

logFamily :: PowerType a ⇒ MathOptions → Bool → VR a
→ VR a

logFamily (MathOptions base exceptions) isP1Case v = result
where

In the case of isP1Case, the lookup instruction is executed using the argument
v + 1, otherwise the lookup values are calculated using v. Function index 0 is
used to specify the log function.

vPlus1 = dfa v (undoubles2 1)
vOrVplus1 = if isP1Case

then vPlus1
else v

[oneByC , log2ExpC] = map (lookupOpcode vOrVplus1 vOrVplus1
0) [1, 2]

This is the range reduction step in accordance with the given equation.

fracMOffset = if isP1Case
then dfmaX oneByC v

34

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

(dfmaX oneByC (undoubles2 1)
(undoubles2 (−1)))

else dfmaX oneByC v (undoubles2 (−1))

The Horner polynomial is used to calculate the log of 1 + fracMOffset . The
following Maple code is used to generate the minimax polynomial.

Digits := 100;

numSegments := 2^(12);

polyOrd := 3;

b := 1/numSegments;

plog2:=numapprox[minimax](x->limit(log[2](1+y)/y,y=x)

,-b..b,[polyOrd,0],1,’erLog’);

log[2](erLog);

lprint([seq(roundDbl(coeff(plog2(x),x,j)),j=0..polyOrd)]);

The last step to combine the result of polynomial evaluation with the second
lookup value is merged into the following step, outputting log2(v) or log2(v+1),
depending on the case.

evalPoly = hornerVDbl (log2ExpC : fixedCoeffs) fracMOffset

The output is scaled to get the result for different bases. Both high and low
parts of constants are used to get correctly rounded results.

result = case base of
MO2 → evalPoly
MO10 → dfma evalPoly log10ScaleHigh $

dfm evalPoly log10ScaleLow
MOe → dfma evalPoly logeScaleHigh $

dfm evalPoly logeScaleLow
→ error $ "LogSoft.base "

++ show base ++ " not supported"

8.2 Overview of Log Lookup Logic

A simplified data-flow for the most complicated case, log2 x, is represented
in Figure 8.1. The simplification is the elimination of the many single-bit

35

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

input

sign exp mant

drop leading zeros

numZeros+1

12 bit lookup

lowExpBit0b1111111111

add

switch

~

s e12 m51
lookup output

s e11 m52
retreive output

subs 0x7ff

>=1

exp

add 1

expP1

adjustedE

switch

e (last 10 bits)

subs 0b10..0

subs 0b0..0

12 bit lookup

bitRot

rotate pad 10 left by

add 0x7ff

low10Bits ~

add 0x3ff

switch

concatenate bit

xor

add drop carry

add left justified,
 drop carry

drop up to 22 leading-
zeros and first 1, round

subtract from
0x3ff + 10 moreThan22Zeros

subs 0b0..0

<1

isNot12

concatenate bit

51

42

42+1

44

30

31

52

52

52

11

11

11
52

12

~

22

complement bits

bits in data path

add add/subtract, right-justified inputs
unless stated

rotate bits, either to clear leading
zeros or according to second
(length) argument

select one of two inputs or
immediate according to logical input
(not shown for exceptions)

(c)

(b)

(d)

(e)

(f)

(g)

recommended lookup/retreive
boundary requiring 46 bit storage

lower 10

11

(h)

(i)

(j)

(k)

6

leading12Mant

4

(a)

(p)

(r)

(o)

(l)

(m)

(n)

(q)

(s)

(t)

(u)

(v)

5

Figure 8.1: Bit flow graph with operations on vertices, for log x lookup. Shape
indicates operation type, and line width indicates data paths width in bits.

operations necessary to keep track of exceptional conditions. The operations

36

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

to substitute special values are still shown. The purpose of this diagram is
to show that the operations around the core look-up operations are of low
complexity. This representation is for variant (ii) for the second lookup and
includes a dotted line (a) (in Figure 8.1) showing a possible set of values to
save at the end of the first lookup with the part of the data flow below the
line computed when the lookup instruction is called with the second index
value.

The input (b) is used to generate two values (c) and (d), 2−e/µ and
e + log2 µ in the case of log2 x. The heart of the operation contains the two
look up operations (e) and (f), with a common index. In implementation (i)
the look ups would be implemented separately, while in the shared implemen-
tations (ii) and (iii), the lookups would probably be implemented together.
Partial decoding of subnormal inputs (g) is required for all of the functions
except the exponential functions. Only the leading non-zero bits are needed
for subnormal values, and only the leading bits are needed for normal values,
but the number of leading zero bits (h) is required to properly form the expo-
nent for the multiplicative reduction. The only switch (i) needed for the first
lookup output switches between the reciprocal exponents valid in the normal
and subnormal cases respectively. Accurate range reduction for subnormals
requires both extreme end points, e.g. 1/2 and 1, because these values are
exactly representable. As a result, two exponent values are required, and we
accommodate this by storing an exponent bit (j) in addition to the 51 mantissa
bits.

On the right hand side, the look up (e) for the second lookup operation
also looks up a 4-bit rotation, which also serves as a flag. We need 4 bits
because the table size 212 implies that we may have a variation in the exponent
of the leading nonzero bit of up to 11 for nonzero table values. This allows
us to encode in 30 bits the floating mantissa used to construct the second
lookup output. This table will always contain a 0, and we encode this as a
12 in the bitRot field. In all other cases, the next operation concatenates the
implied 1 for this floating-point format. This gives us an effective 31 bits of
significance (l), which are then rotated into the correct position in a 42-bit
fixed point number. Only the high-order bit overlaps the integer part of the
answer generated from the exponent bits, so this value needs to be padded.
Because we output an IEEE float, the contribution of the (padded) value to
the mantissa of the output will depend on the sign of the integer exponent
part. This sign is computed by adding 1 (m) to the biased exponent, in which
case the high-order bit is 1 if and only if the exponent is positive. This bit

37

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

(n) is used to control the sign reversal of the integer part (o) and the sign
of the sign reversal of the fractional part, which is optimized by padding (p)
after xoring (q) but before the +1 (r) required to negate a two’s-complement
integer.

The integer part has now been computed for normal inputs, but we need
to switch (s) in the value for subnormal inputs which we obtain by biasing the
number of leading zeros computed as part of the first step. The apparent
75-bit add (t) is really only 11 bits with 10 of the bits coming from padding
on one side. This fixed-point number may contain leading zeros, but the
maximum number is log2((maximum integer part) − (smallest nonzero table
value)) = 22, for the tested table size. As a result the normalization (u) only
needs to check for up to 22 leading zero bits, and if it detects that number set
a flag to substitute a zero for the exponent (v) (the mantissa is automatically
zero). The final switches substitute special values for ±∞ and a quiet NaN.

8.3 Log Lookup Instruction

module LogLookup
where

The implementation of the log family functions are based on the al-
gorithms presented by [AS09]. In this thesis, we have proposed hardware
instructions to improve the performance of the log functions. With the new
proposed instructions, all the operations needed, in the paper [AS09], to handle
exceptional cases and subnormal inputs are no longer needed. The proposed
hardware lookup instruction returns the multiplicative reduction factor and
the value of the function corresponding to the reduction. Unlike in [AS09], the
lookup values are not fixed table values, but adjusted to the input. The first
lookup value is the multiplicative reduction factor 2−e/c, in extended range
double floating point representation, where e is the exponent of the input. In
the case of subnormal inputs, the reduction factor is adjusted by the number
of leading zeros in the mantissa of the input, such that 2−e × x ∈ [1, 2) and
2−e/c × x ∈ [1 − 2−N , 1 + 2−N] holds for all cases (normal and subnormal).
Corresponding adjustments are done for the second lookup value, which re-
turns e + log2(c). Since in extended precision we treat subnormals as normal
numbers, we do not need to do anything special for large inputs to calculate

38

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

the first lookup. Subnormal inputs that do not saturate to Infinity, however,
need to be boosted up and then have the lookup calculation corresponding to
the boosted value applied to them.

This version of log lookup is implemented in such a way as to make
the mathematical semantics of the intermediate variables clear. In some in-
stances this requires some extra computation, but makes it easier to follow
the algorithm. A more optimized version closer to the expected hardware
implementation is also presented after this function.

logLookup :: Integer → (Integer , Integer)
logLookup x = (fstLookup, sndLookup)
where

For the ease for future development and changes in the table, various constants
related to the table are parameterized. A 2n-interval table with the values
1/c, log2(c), where c ∈ [1, 2], is constructed. Other constants are explained
later as they are used.

(n, table,m, k , uniqueZero) = (12, log2TableFixed , 30, 11, 0xc)

We decompose the input into sign, exponent and mantissa. No logical opera-
tions are required at this step.

(sign, rest) = divMod x (2 ↑ 63)
(exponent ,mantissa) = divMod rest (2 ↑ 52)

At several points, we need to treat subnormal inputs differently, which is
controlled by this bit value.

expIsZero = exponent ≡ 0

The lookup key is the n leading bits of the significant of the normalized number.
For subnormal inputs, we can construct the normalized number by counting
the leading zeros and shifting the significant left until the first non-zero bit falls
out. At the same time, dropped off leading zeros are required to construct the
exponent of the normalized number. These operations result in the boosting
of sub-normal inputs into normal range by multiplying it by 252.

(, leading0s) = countLeadingZeros 52 52 mantissa
(adjustedExponent , adjustedMantissa) =

39

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

if expIsZero
then (52− fromIntegral leading0s ,

bits 0 52 (shiftL mantissa (leading0s + 1)))
else (exponent ,mantissa)

Based on the leading n-bits of adjustedMantissa, the values from the table are
retrieved. Table values are calculated to keep the table size as small as possible
and in agreement with the new extended range floating point representation.
The inverse of c ∈ [1, 2] is calculated such that the last bit (52nd) of its
mantissa is 0, which is implied in the extended range representation. All the
1/c ∈ [0.5, 1] values have exponents either 0x3ff or 0x3fe, so we only store
the last bit of the exponent. At the same time, the mantissas of the log2(c)
values have only m non-zero bits, so the last 52−m zeros bits are not stored
and are implied. Since the exponent of log2(c) has a much smaller range
than the standard 11-bit exponents of the IEEE representation, we only need
to store �log2k� bits, representing the difference of the exponent from the
smallest exponent k, other than 0, in the table. This difference also gives us
the amount of rotation we need to construct a fixed point integer for log2(c).
log2(c) = 0 is treated as a special case, storing a unique bit pattern in the
rotation bit field.

lookupKey = bits (52− n) 52 adjustedMantissa
((rotation,mantissaLog2C), (lastBit ,mantissaOneByC))

= table !! (fromIntegral lookupKey)

We concatenate the lastBit to 0x3fe to get the exponent of 1/c.

exponentOneByC = 0x3fe + lastBit

Now, we need to construct the exponent part of 1/xapprox = 2−e in extended
range representation, where the bias is 0x7ff. Complementing the exponent
bits with bias 0x3ff returns −e + 1+ 0x3ff. Adding exponentOneByC which
is already biased by 0x3ff to exponentComplemented will return the desired
exponent biased by 0x7ff.

exponentComplemented = xor adjustedExponent 0x7ff

In the case of subnormal inputs, we need to account for the boost factor 252,
by adding 52 to the exponent of extended range 1/xapprox.

40

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

approx1ByInputX =
if expIsZero
then (exponentComplemented + exponentOneByC + 52) ∗ (2 ↑ 51)

+mantissaOneByC
else (exponentComplemented + exponentOneByC) ∗ (2 ↑ 51)

+mantissaOneByC

In order to compute the other lookup value, eunbiased+ log2c, we convert
the log2c and eunbiased to fixed point integers by multiplying them by 252+k,
then adding them together and converting the result back to the floating point
representation. The implied 1 of the floating point representation needs to be
added in all cases, except in the first interval with log2(c) = 0.

impliedOneBit = if rotation ≡ uniqueZero
then 0 else 1

mantissa52Bits = (2 ↑ 52) ∗ impliedOneBit
+ shiftL mantissaLog2C (52−m)

mantissa52Bits is shifted up to �log2(k)� bits, in order to get the fixed point
integer 252+k × log2(cfloating).

fixedLog2C = shiftL mantissa52Bits (fromIntegral rotation)

We need to treat the inputs < 1 differently from those ≥ 1, where the unbiased
exponent is positive. We calculate either eunbiased−log2(c) or eunbiased+log2(c),
based on the sign of eunbiased, and put the corresponding sign in the sign bit
field of the result. We can calculate the value of the unbiased exponent by
adding 1, and letting the 11th bit fall off, in the case of the inputs ≥ 1. The
falling bit tells us the sign of the unbiased exponent. In case of the inputs < 1,
the last 10 bits of the complement of the biased exponent returns the absolute
value of the unbiased exponent, which has already been calculated in order to
construct 1/xapprox.

adjustedExponentP1 = adjustedExponent + 1

We need to switch between various operations based on the sign of the unbiased
exponent.

npSwitch n p = if bits 10 11 adjustedExponentP1 ≡ 1
then p

41

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

else n
unbiasedExponent = bits 0 10

$ npSwitch exponentComplemented
adjustedExponentP1

In the case of subnormal inputs, the unbiased exponent must be adjusted
which extends it to 11-bits.

adjustE = if expIsZero
then unbiasedExponent + 52
else unbiasedExponent

We convert the adjusted exponent to fixed-point representation, multiplied up
by the same factor 252+k.

eShifted = shiftL adjustE (k + 52)

We add or subtract fixedLog2C from the absolute value of the unbiased expo-
nent. In hardware implementation, it is a switch between fixedLog2C or its
2’s-complement, and then the left adjusted m+ k bit adder can be used.

ePlog2CInt = npSwitch (eShifted − fixedLog2C)
(eShifted + fixedLog2C)

Now we construct the eunbiased + log2(c) floating point representation from its
fixed point integer by counting the leading zeros and shifting the bits right
until first non-zero bit is aligned to the position 53, the position of implied
one in floating point representation, and then mask it off. In order to have
correct rounding we need to have rounded shift. We do not need to count
all the zeros, because we know the smallest number resulting from the above
computation is min(1−max log2(c), 0 +min log2(c)) ∗ 252+k (except 0), which
are both 52 + k bits long. Thus, we only need to count up to 11 + k leading
zeros. If all of the first 11 + k bits are zeros, we return 0.

(isZero, leadingZeros) = countLeadingZeros (52 + 11 + k) (11 + k)
ePlog2CInt

mantissaEplog2C = if isZero
then 0
else bits 0 52 $
roundShiftR ePlog2CInt
(52 + 11 + k − fromIntegral leadingZeros − 53)

42

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

The unbiased exponent of the floating point representation of ePlog2CInt is
the number of bits which fell off on the right plus k, since we multiplied by
252+k. Add the bias 0x3ff to the unbiased exponent.

expEplog2C = if isZero
then 0
else 0x3ff + 52 + k + 11− leadingZeros − 53− k

Concatenate the individual parts of ePlog2CInt together.

approxLog2Input = (npSwitch 1 0) ∗ 2 ↑ 63
+ (fromIntegral expEplog2C) ∗ 2 ↑ 52
+ mantissaEplog2C

Finally, we check for input values requiring special treatment (0, ∞, NaN ,
≤ 0), and produce special results.

(fstLookup, sndLookup) = case (sign, exponent ,mantissa) of
(0, 0, 0) → (0, 0xfff0000000000000)
(0, 0x7ff, 0) → (0, 0x7ff0000000000000)
(0, 0x7ff,) → (0, 0x7ff8000000000000)
(1, ,) → (0, 0x7ff8000000000000)

→ (approx1ByInputX , approxLog2Input)

8.4 Log Lookup Optimized for Hardware Im-

plementation

The previous implementation uses potentially expensive operations which make
the mathematics clearer. In this section, we provide an alternative implemen-
tation which makes the high-level transformations required for an efficient
hardware implementation. The reader should be able to get a feeling for the
logical complexity in terms of bits and gates by inspecting this implementa-
tion. The transformations required to support the other lookup variants are
similar, and not given in this thesis.

logLookupOptimized :: Integer → (Integer , Integer)
logLookupOptimized x = (fstLookup, sndLookup)
where

43

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

We will keep using these parameters as much as possible, but some steps will
use their specific values.

(n, table,m, k , uniqueZero) = (12, log2TableFixed , 30, 11, 0xc)

Decomposing the input into a different bit field does not require any
logical operation.

(sign, rest) = divMod x (2 ↑ 63)
(exponent ,mantissa) = divMod rest (2 ↑ 52)

expIsZero kept the same as the previous implementation.

expIsZero = exponent ≡ 0

Instead of constructing a normalized number which we do not require, we
directly extract the lookup key from the mantissa of the input. This can
be implemented as a shift left, possibly integrating the count leading zeros
operation, but simplified so as to produce only 12 output bits.

(, leading0s) = countLeadingZeros 52 52 mantissa
lookupKey =
if expIsZero
then bits (52− n) 52 (shiftL mantissa (leading0s + 1))
else bits (52− n) 52 mantissa

((rotation,mantissaLog2C), (lastBit ,mantissaOneByC))
= table !! (fromIntegral lookupKey)

In the case of normal input, the complement of the exponent is calculated to
−e+ 1+ bias .

exponentComplemented = xor exponent 0x7ff

The operation to calculate the exponent of the extended range multiplicative
reduction factor −eredux + 1 + bias = leading0s + 0x7ff is decomposed into 2
steps. The first step requires a 12-bit adder, which adds 0x3ff, followed by a
2-bit adder, which further adds 0x400, as we require 0x3ff + leading0s at a
later stage to calculate the unbiased exponent.

44

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

unbiasedExponentSubNorm = 0x3ff + fromIntegral leading0s
adjustedExponentComplemented =
if expIsZero
then unbiasedExponentSubNorm + 0x400
else exponentComplemented

Calculating approx1ByInputX requires another 12-bit adder, then con-
catenation of the mantissa of 1/c.

approx1ByInputX =
(adjustedExponentComplemented + 0x3fe + lastBit) ∗ 2 ↑ 51
+mantissaOneByC

In our table calculation, the unique rotation bit assigned to 0 is 0xc.
No other rotation has a value greater or equal to 0xc, hence the implied bit is
the result of a nand operation of leading 2-bits of rotation. We do not need
to construct a full 52+ k bit fixed point integer for log2(c). We can use m+ k

bits to represent it.

impliedOneBit = xor 1 $ bits 3 4 rotation .&. bits 2 3 rotation
mantissaMp1Bits = mantissaLog2C + (2 ↑m) ∗ impliedOneBit

Furthermore, we only require m + k + 1 bits to represent log2(c) as a fixed
point integer, hence fixedLog2C is not padded with extra zeros at the end.

fixedLog2C = shiftL mantissaMp1Bits (fromIntegral rotation)

We can use the same operation to get the sign of the unbiased exponent.

exponentP1 = exponent + 1
npSwitch n p = if bits 10 11 exponentP1 ≡ 1

then p
else n

We have already calculated the unbiased exponent for subnormal inputs. For
other inputs, the operations remain the same.

unbiasedExponent =
if expIsZero
then unbiasedExponentSubNorm

45

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

else bits 0 10
$ npSwitch exponentComplemented exponentP1

We convert the adjusted exponent to fixed-point representation by shifting the
unbiased exponent by k +m.

eShifted = shiftL unbiasedExponent (k +m)

We add or subtract fixedLog2C from a fixed point absolute exponent. In hard-
ware implementation, it is a switch between fixedLog2C or its 2’s-complement.

npfixedLog2C = npSwitch (1 + xor fixedLog2C (2 ↑ (k +m + 11)− 1))
fixedLog2C

ePlog2CInt = bits 0 (k +m + 11) (eShifted + npfixedLog2C)

We have calculated the log2c table value with only 30 non-zero leading bits and
we need to round shift the fixed point ePlog2CInt by only 10+k− leadingZeros ,
where k = 11, the maximum rotation we need is 10 + k − 0 = 21, and we
have 22-bits to pad to the left. We therefore need to shift ePlog2CInt left
by leadingZeros +1. Since leadingZeros are bounded above by 22, we only
require a 5-bit adder and a 23-bit shift left operation. The choice of the table
also guarantees the accuracy of ePlog2CInt , which now does not require any
rounding.

(isZero, leadingZeros) = countLeadingZeros (m + 11 + k) (11 + k)
ePlog2CInt

mantissaEplog2C = if isZero
then 0
else bits 0 52
$ shiftL ePlog2CInt
(fromIntegral $ leadingZeros + 1)

The unbiased exponent of the floating point representation of ePlog2CInt is
the number of bits which fell off on right plus k, since we multiplied by 252+k.
We add the bias 0x3ff to the unbiased exponent. This step requires an 11-bit
adder.

expEplog2C = if isZero
then 0
else 0x3ff + (m + k + 11− leadingZeros)− (m + 1)− k

46

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

We concatenate the individual parts of ePlog2CInt together.

approxLog2Input = (npSwitch 1 0) ∗ 2 ↑ 63
+ (fromIntegral expEplog2C) ∗ 2 ↑ 52
+ mantissaEplog2C

Finally, we check for input values requiring special treatment (0, ∞, NaN ,
≤ 0), and produce special results.

(fstLookup, sndLookup) = case (sign, exponent ,mantissa) of
(0, 0, 0) → (0, 0xfff0000000000000)
(0, 0x7ff, 0) → (0, 0x7ff0000000000000)
(0, 0x7ff,) → (0, 0x7ff8000000000000)
(1, ,) → (0, 0x7ff8000000000000)

→ (approx1ByInputX , approxLog2Input)

47

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

48

Chapter 9

Reciprocal Family Functions

This chapter explains the software implementation and the supporting hard-
ware lookup instructions for the reciprocal and divide functions. The mul-
tiplicative reduction accurate table method is used for evaluation of these
functions. Since the multiplicative reduction factor and the value of the recip-
rocal function for multiplicative reduction factor are equal, any of the IEEE
values in the interval can be used for the construction of accurate table. In
particular, the values used for square root, or reciprocal square root could be
used, to reduce the total number of tables required.

9.1 Reciprocal Family Software Implementa-

tion

module RecipSoft
where

This function generates instructions to evaluate either divide or re-
ciprocal. They both share the same two lookup instructions and extended
multiply-add instruction, but some of the instructions around them change.

recipFamily :: PowerType a ⇒ Bool → VR a → VR a → VR a
recipFamily isDiv denom num = result
where

The first lookup instruction is for the multiplicative reduction factor, chosen
such that

multReduc · denom ∈ [1− 1/(table size), 1 + 1/(table size)],

49

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

except in exceptional cases, and in some cases with outputs close to ∞ which
would otherwise saturate prematurely. The second lookup instruction is an
approximation of 1/denom in the recip case, and in the div it also includes
an exponent adjustment to properly account for subnormal inputs. It is an
extended floating point value, and contains special values in exceptional cases.

[multReduc, approxRecip] = map
(lookupOpcode denom num
$ if isDiv then 3 else 2) [1, 2]

We use a dfmaX instruction for the multiplicative reduction to allow ex-
tended range values of multReduc.

f =
1

c lookup
∗ denom− 1 (9.1)

fracMoffset = dfmaX multReduc denom (undoubles2 (−1))

Both recip and div use the same higher-order coefficients in the minimax poly-
nomial, and we use Horner evaluation.

innerPoly = hornerVDbl divRecipCoeffs fracMoffset

The final combination differs in the two cases. The following two equations
govern the

1

denom
=

�
1

c lookup
∗ poly(f)

�
∗ f +

1

c lookup

num

denom
=

��
num ∗ 1

c lookup

�
∗ poly(f)

�
∗ f +

�
num ∗ 1

c lookup

�

where innerPoly is the evaluation of minimax polynomial poly , which approx-
imates

1
1+f − 1

f

in range f ∈ [−2−n, 2−n].

result = if isDiv

In the div case, we combine the numerator with the approximate reciprocal of
the denominator.

50

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

then let oneByCXnum = dfmaX approxRecip num
(undoubles2 0)

in dfma (dfm oneByCXnum innerPoly)
fracMoffset oneByCXnum

In the recip case, We use dfmaX instead of dfm because in the cases where
1/denom is saturating to infinity, the multiplication by innerPoly can change
the sign, resulting in formation of NaN as output. Those cases are eliminated
by returning 0 as first lookup value multReduc. As a result, dfmaX instruc-
tion returns 0 and the correct reciprocal is returned by second lookup value
approxRecip.

else dfma (dfmaX multReduc innerPoly (undoubles2 0))
fracMoffset approxRecip

9.2 Recip Lookup Instruction

module RecipLookup
where

This lookup instruction returns different lookup values for div and recip.
In both cases, the first lookup value is extended range multiplicative reduction
factor 2−e/c. The second lookup, in the case of recip, is the value of the
multiplicative reduction factor in IEEE representation. In the case of div , we
pass the same extended range value, but it is modified to handle the exceptional
cases because we know the second lookup value is multiplied by numerator
num, before being used with the evaluation of polynomial evalPoly . We use
dfmaX to get the IEEE representation of the product. Different treatments
are needed for the outputs of the div function at both ends, i.e. a very big
output and a very small output. For very big outputs, we need to use the
smallest value 1/c in the intervals containing the input. This prevents 2−e/c

from saturating prematurely to Infinity , which would produce NaN as the
output of the final calculation. In the case of very small outputs, subnormals,
we need to choose the largest value of 1/c, because we do not want to lose
accuracy because of dropped of bits, premature saturation to 0, or subnormals.
In the case of recip, we choose the smallest value of 1/c for all intervals, because

51

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

we know the smallest subnormal output 2−1024 will only be dropping 2-bits at
most, and in our table calculations these bits are 0s.

recipLookup :: Bool → Integer → Integer → (Integer , Integer)
recipLookup isDiv denom num = if isDiv

then divLookup
else recipLookup

where

The table we are using for this implementation has 2n+1 double floating point
numbers. An additional 1 double is required because of the aligned lookup for
the different inputs of div . Since this number at either end is 1 or 0.5, it does
not need to be stored, but can be constructed in the hardware.

n = 12
table = recipTable n

Boost the denorm into normal range by multiplying by 252. This part of
the calculation is mathematically the same way as for other multiplicative
reduction methods, like used in logLookup.

(sign, rest) = divMod denom (2 ↑ 63)
(exponent ,mantissa) = divMod rest (2 ↑ 52)
(, leading0s) = countLeadingZeros 52 52 mantissa
(adjustedExponent , adjustedMantissa) = case exponent of

0 → (52− fromIntegral leading0s ,
mod (shiftL mantissa (leading0s + 1)) (2 ↑ 52))

→ (exponent ,mantissa)

We check whether the output is going to be large or small in the case of
div . We can approximate it by subtracting the leading 2-bits of exponent of
the denominator from the leading 2-bits of exponent of the numerator. The
special treatment is only needed for very large outputs near infinity or very
small outputs, sub-normals. In the rest of the range, we do not care which
lookup value we get. We also do not care exactly where this approximate
calculation starts being true, as long as it is true for very small outputs.

isSmall = (bits 61 63 num) + xor 0x3 (bits 61 63 denom) � 0x3

Lookup is the leading n-bits of the adjustedMantissa, aligned by 1.

52

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

lookupKey = if isDiv ∧ isSmall
then bits (52− n) 52 adjustedMantissa
else bits (52− n) 52 adjustedMantissa + 1

(lastBitRecipC ,mantissaRecipC) = table !! (fromIntegral lookupKey)

Construction of the extended range multiplicative reduction factor is the same
way like all the logLookup instruction.

exponentComplemented = xor adjustedExponent 0x7ff
exponentFstLookup = exponentComplemented + 0x3fe

+ lastBitRecipC

fstLookup = case exponent of
0 → sign ∗ (2 ↑ 63) + (exponentFstLookup + 52) ∗ (2 ↑ 51)

+mantissaRecipC ∗ (2 ↑ (51− n))
→ sign ∗ (2 ↑ 63) + exponentFstLookup ∗ (2 ↑ 51)

+mantissaRecipC ∗ (2 ↑ (51− n))

In case of div , the same extended range value is returned as the second lookup
value. However, lookup values are overridden in the case of special outputs.

divLookup
| isNan denom ∨ isNan num = (0, nan0X)
| denom ≡ 0 ∧ num ≡ 0 = (0, nan0X)
| bits 52 63 denom ≡ 0x7ff
∧ bits 52 63 num ≡ 0x7ff = (0, nan0X)

| bits 52 63 denom ≡ 0x7ff = (nan3X , nan3X)
| denom ≡ 0 = (nan1X

, signResult + infinityX)
| bits 52 63 num ≡ 0x7ff = (nan1X

, signResult + infinityX)
| otherwise = (fstLookup, fstLookup)

signResult = (2 ↑ 63) ∗ (xor (bits 63 64 num) (bits 63 64 denom))

There are four intervals, two at each end, where we need a special function
for the second reciprocal lookup. For the inputs with exponents 0x7fe and
0x7fd, we need to construct the subnormals, which requires at most a 2-bit
shift. We also need to construct the outputs which correspond to those input
subnormal ranges. We know, for the case of recip, we always choose the

53

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

smallest 1/c ∈ [0.5, 1). Hence, the last bit of exponent of the lookup is always 0,
and is not included in the calculations. For all other inputs, the IEEE floating
point for reduction factor can be constructed using exponentComplemented
= −e+ 1.

recipLookup = case (exponent , fstBitMantissa, sndBitMantissa) of
(0, 1,) → (fstLookup, sign ∗ (2 ↑ 63) + 0x7fd ∗ (2 ↑ 52)

+mantissaRecipC ∗ (2 ↑ (52− n)))
(0, 0, 1) → (fstLookup, sign ∗ (2 ↑ 63) + 0x7fe ∗ (2 ↑ 52)

+mantissaRecipC ∗ (2 ↑ (52− n)))
(0, 0, 0) → (nan3X , sign ∗ (2 ↑ 63) + 0x7ff ∗ (2 ↑ 52))
(0x7fd, ,) → (fstLookup, sign ∗ (2 ↑ 63)

+ shiftR (((2 ↑ n)
+mantissaRecipC) ∗ (2 ↑ (52− n))) 1)

(0x7fe, ,) → (fstLookup, sign ∗ (2 ↑ 63)
+ shiftR (((2 ↑ n) +mantissaRecipC)
∗ (2 ↑ (52− n))) 2)

(0x7ff, ,) → if mantissa ≡ 0
then (nan3X , 0)
else (0, infinityX)

→ (fstLookup, sign ∗ (2 ↑ 63)
+ (exponentComplemented − 2) ∗ (2 ↑ 52)
+mantissaRecipC ∗ (2 ↑ (52− n)))

fstBitMantissa = bits 51 52 mantissa
sndBitMantissa = bits 50 51 mantissa

54

Chapter 10

Square-Root Family Functions

Square root and reciprocal square root functions are calculated similarly to
reciprocal function above. The lookup instruction is used to get the multi-
plicative reduction factor and the corresponding value of the function. The
following equations are used to decompose the input and combine the individ-
ual values together.

√
v =

�
2�e/2� ∗ 2c0+e−�e/2��

lookup
∗
�
1 + f, (10.1)

where f is the fractional part left over after the multiplicative range reduction

f =

�
1

c

�

lookup

∗ v − 1.

10.1 Square Root Software Implementation

module SqrtSoft
where

rsqrtFamily :: PowerType a ⇒ Bool → VR a → VR a
rsqrtFamily isRecip v = result
where

We use the appropriate lookup instructions to get the multiplicative reduction
factor and corresponding value of the function.

[oneByC , sqrtC0] = map
(lookupOpcode v v $

55

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

if isRecip then 4 else 5) [1, 2]
debug = lookupOpcodeDebug v v

$ if isRecip then 4 else 5

We perform the multiplicative range reduction using the first lookup value.

fracMoffset = dfmaX oneByC v (undoubles2 (−1))

A minimax polynomial approximating

poly(f) =

√
1 + f − 1

f

is used to calculate the value of the function in the reduced range. The fol-
lowing Maple code is used to calculate the minimax polynomial:

Digits := 100;

numSegments := 2^(11);

polyOrd := 3;

b := 1/numSegments;

plog2:=numapprox[minimax](x->limit(sqrt(1+y)/y,y=x)

,-b..b,[polyOrd,0],1,’erSqrt’);

log[2](erSqrt);

lprint([seq(roundDbl(coeff(plog2(x),x,j)),j=0..polyOrd)]);

The higher order polynomial is evaluated using Horner’s scheme.

evalPoly = hornerVDbl coeffs fracMoffset

Finally, the polynomial evaluation is merged with the second lookup, the value
of the function corresponding to the multiplicative reduction factor.

result = dfma (dfm sqrtC0 evalPoly) fracMoffset sqrtC0

10.2 Sqrt Lookup Instruction

module SqrtLookup
where

56

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

sqrtLookup :: Bool → Integer → (Integer , Integer)
sqrtLookup isRecip v = (fstLookup, if isRecip

then rsqrtSndLookup
else sqrtSndLookup)

where

We have calculated the accurate table with 2n intervals, dividing the range
[0, 1). For each interval we have calculated two values of sqrt , one with an
additional

√
2 factor and the other without it, corresponding to whether the

input has an odd or even unbiased exponent.

n = 11

We boost the subnormal inputs into normal range by multiplying 252.

(sign, rest) = divMod v (2 ↑ 63)
(exponent ,mantissa) = divMod rest (2 ↑ 52)
(, leading0s) = countLeadingZeros 52 52 mantissa
(adjustedExponent , adjustedMantissa) = case exponent of
0 → (52− fromIntegral leading0s ,

mod (shiftL mantissa (leading0s + 1)) (2 ↑ 52))
→ (exponent ,mantissa)

lookupKey is constructed using the leading n-bits of adjustedMantissa and the
last bit of adjustedExponent , which tells us whether the unbiased adjustedExponent

is even or odd.

lookupKey = bits 0 1 adjustedExponent ∗ (2 ↑ n)
+ bits (52− n) 52 adjustedMantissa

[sqrtC , oneByC] = (if isRecip
then rsqrtTable
else sqrtTable) !! fromIntegral lookupKey

We take the complement of the exponent to get −e+ 1+ 0x3ff.

exponentComplemented = xor adjustedExponent 0x7ff
exponentFstLookup = exponentComplemented

+ bits 52 63 oneByC
mantissaFstLookup = bits 1 52 oneByC

The multiplicative reduction factor is then constructed using the exponent
complement and table value.

57

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

fstLookup = case exponent of
0 → sign ∗ (2 ↑ 63)

+ (exponentFstLookup + 52) ∗ (2 ↑ 51)
+mantissaFstLookup

→ sign ∗ (2 ↑ 63)
+ exponentFstLookup ∗ (2 ↑ 51)
+mantissaFstLookup

Dividing the exponent by 2 is same as shifting the exponent right by 1 bit and
letting the last bit drop off. We have taken care of the dropped off bit with
the lookup value.

adjustedExponentDiv2 = shiftR adjustedExponent 1

Since we have shifted the biased exponent, the bias also gets divided by 2.
To fix the bias again, we add a constant 511 = div0x3ff2. In the case of
subnormal inputs, an additional factor used for the boost needs to be included.

sqrtExpMultC
| exponent ≡ 0 = adjustedExponentDiv2 ∗ (2 ↑ 52)

+ sqrtC − (511 ∗ 2 ↑ (52))− 26 ∗ 2 ↑ (52)
| otherwise = adjustedExponentDiv2 ∗ (2 ↑ 52)

+ sqrtC − (511 ∗ 2 ↑ (52))

Finally, we override the second lookup value for special cases.

sqrtSndLookup
| isNan v = 0x7ff8000000000000
| div v (2 ↑ 63) ≡ 1 = 0x7ff8000000000000
| div v (2 ↑ 52) ≡ 0x7ff = 0x7ff0000000000000
| v ≡ 0 = 0
| otherwise = sqrtExpMultC

Similar adjustments need to be done for reciprocal square root, where
the complement of adjustedExponent is used to construct the value of the
reciprocal square root function.

adjustedExpComplDiv2 = shiftR (xor 0x7ff adjustedExponent) 1
rsqrtExpMultC

| exponent ≡ 0 = adjustedExpComplDiv2 ∗ (2 ↑ 52)

58

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

+ sqrtC − (512 ∗ 2 ↑ (52)) + 26 ∗ 2 ↑ (52)
| otherwise = adjustedExpComplDiv2 ∗ (2 ↑ 52)

+ sqrtC − (512 ∗ 2 ↑ (52))

Finally, we look for special inputs and override the second lookup with the
correct function values.

rsqrtSndLookup
| isNan v = 0x7ff8000000000000
| div v (2 ↑ 63) ≡ 1 = 0x7ff8000000000000
| div v (2 ↑ 52) ≡ 0x7ff = 0
| v ≡ 0 = 0x7ff0000000000000
| otherwise = rsqrtExpMultC

59

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

60

Chapter 11

Exponential Family Functions

Exponential family functions are calculated using base 2. Inputs are scaled
accordingly. After scaling, we decompose the input into the integer part [x]
and the fractional part, x − [x]. The fractional part is further decomposed
using accurate table values c and 2c, and we multiply the individual powers of
two to get the result

2x = 2[x] ∗ 2x−[x]

= 2[x] ∗ 2c ∗ 2x−[x]−c

11.1 Exp Software Implementation

module ExpSoft
where

expFamily :: PowerType a ⇒ MathOptions → Bool
→ VR a → VR a

expFamily (MathOptions base exceptions) isM1Case v = result
where

We scale the input according the the base of the exponential to put the scaled
integer value into the high-order 11 bits into the mantissa. These bits in the
exponent bit field will return 2[x].

61

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

vScaledOffset = case base of
MO2 → dfa v offsetBump
MOe → dfma v invLog2 offsetBump
MOeX2 → dfma v invLog2X2 offsetBump
MO2m1 → dfnms v (undoubles2 1) offsetM1Bump
MO2p1 → dfa v offsetM1Bump
MOem1 → dfnms v invLog2 offsetM1Bump
MOep1 → dfma v invLog2 offsetM1Bump
MO10 → dfma v log10InvLog2 offset

Base MOeX2 represents the exponential function e2x, MO2m1 represents
2−x−1 and MO2p1 represents 2x−1. These functions are used in the calcu-
lation of hyperbolic functions and other functions not in the standard library.

Now we construct the reduction to (−0.5, 0.5) in two steps:

First, truncate the pseudo fixed-point version of the input to the most
significant fractional bits, using the odd instruction shufb.

v3Bytes = shufB1 vScaledOffset
[0, 1, 2, shufb0x00 , shufb0x00 , shufb0x00 , shufb0x00 , shufb0x00
, 8, 9, 10, shufb0x00 , shufb0x00 , shufb0x00 , shufb0x00 , shufb0x00]

Next subtract a modified fixed offset, to get a truncated version of the
input with 0.5 added. Now subtract this from the original input, to get the
low-order part of the fraction. This operation is exact, because the resulting
exponent is not larger than the exponent of the input. To improve rounding
during range reduction, we use high and low-order double values,

frac = case base of
MO2 → dfs v (dfs v3Bytes offset)
MOe → dfma v invLog2Low

(dfms v invLog2 (dfs v3Bytes offset))
MOeX2 → dfma v invLog2LowX2

(dfms v invLog2X2 (dfs v3Bytes offset))
MO2m1 → dfnma v (undoubles2 1)

(dfs v3Bytes offsetM1)
MO2p1 → dfs v (dfs v3Bytes offsetM1)
MOem1 → dfma v invLog2Low

(dfnma v invLog2 (dfs v3Bytes offsetM1))

62

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

MOep1 → dfma v invLog2Low
(dfms v invLog2 (dfs v3Bytes offsetM1))

MO10 → dfma v log10InvLog2 (dfs v3Bytes offset)

Then, table values are looked up using the vScaledOffset . The range reduction
factor c0 is in the same interval as frac. The corresponding value of function
exp2c0 , also includes the integer part = 2[x]+c.

[c0 , exp2c0] = map (lookupOpcode vScaledOffset vScaledOffset 1)
[1, 2]

debug = lookupOpcodeDebug vScaledOffset vScaledOffset 1

Now, we reduce the range using first lookup value.

fracMOffset = dfmaX (undwrds2 0x3ff8000000000000) frac c0

2x−[x]−c is calculated using a minimax polynomial evaluated by Maple. The
following Maple code calculates the minimax polynomial.
Digits := 50;

pExp := numapprox[minimax](x -> 2^x, -1/256 .. 1/256

,[4, 0], 1, ’er’);

log[2](er);

lprint([seq(roundDbl(coeff(pExp, x, j)), j = 0 .. 4)]);
In case of 2x − 1 (i.e., isM1Case ≡ True)

pExp := numapprox[minimax](x -> limit((2^y-1)/y,y = x)

,-1/256 .. 1/256, [4, 0], 1, ’er’);

log[2](er);

lprint([seq(roundDbl(coeff(pExp, x, j)), j = 0 .. 4)]);

evalPoly � = hornerVDbl coeffs fracMOffset
evalPoly = if isM1Case then dfm evalPoly � fracMOffset

else evalPoly �

The resultant polynomial evaluation is multiplied with the second lookup value
to generate the result.

result = if isM1Case then dfma evalPoly exp2c0
$ dfs exp2c0 (undoubles2 1)
else dfm evalPoly exp2c0

63

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

11.2 Exp Lookup Instruction

module ExpLookup
where

We put the integral part of input [x] into the desired bit position in
the mantissa by adding a power to 2, bumped by 0.5 for rounding. In our
software implementation of exponential family, we scaled the integer part of
the input into the high-order 11 bits of the mantissa. An additional 1023 is
already added into integer part to account for biasing. This offset number is
fed to the expLookup instruction which, based on table lookup, generates c0
such that fracMc0 = x− [x]− c0 ∈ [−2−N , 2−N], and 2[x]+c0.

expLookup :: Integer → (Integer , Integer)
expLookup xOffset = (fstLookup, sndLookup)
where

We have calculated the table of size 2n, such that it divides the range
[−0.5, 0.5] into 2n segments.

(n, table) = (8, exp2Table)

The lookup key is the n-bits followed by the integer part of the input.

lookupKey = bits (40− n) 40 xOffset

We know the first table value, representing 2c0, belongs in the range [
�

1/2,
√
2].

We only need to store the last bit of its exponent and mantissa bits. Similar
modifications could be made to c0, based on the smallest table value other than
0, to reduce the size of table. This requires decomposing, storing, and com-
posing in the hardware, which is not of particular interest as far as algorithm
is concerned.

(lastBitExpC0 ,mantissaC0 , c0) = table !! fromIntegral lookupKey

expBits represents the value [x]+ 0x3ff.

expBits = bits 40 52 xOffset

64

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

In case the input is > 1021.5, expBits represents the the exponent of
2[x]. Since exp2IpC0 = 2[x]+c0 = 2[x] × 2c0, multiplication by a power of 2 is
just the addition of exponent bits.

exp2IpC0
| expBits > 0x801 = (bits 0 11 expBits − 1 + lastBitExpC0)

∗ (2 ↑ 52) +mantissaC0

If the input is less than −1021.5, we need to construct the subnormal numbers
for 2[x]+c0. mantissaC0 is added to the implied 1 and shifted by the amount of
rotation required. The rounded shift is used to minimize the error introduced
because of fallen bits.

| otherwise = roundShiftR (2 ↑ 52 +mantissaC0)
(fromIntegral $ 0x7ff − expBits + 2

+ 1− lastBitExpC0)

Finally, the input is checked for special output values.

(fstLookup, sndLookup)
| isNan xOffset = (0, 0x7ff8000000000000)
| bits 63 64 xOffset ≡ 1 = (0x7ff8000000000000, 0)
| bits 32 63 xOffset < 0x40b7cd80 = (0x7ff8000000000000, 0)
| bits 32 63 xOffset > 0x40bfff80 = (0, 0x7ff0000000000000)
| otherwise = (2 ↑ 63 + c0 , exp2IpC0)

65

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

66

Chapter 12

Trigonometric Family Functions

Trigonometric functions are calculated using the following standard identities:

sin(θ + φ) = sin(θ)cos(φ) + cos(θ)sin(φ)

cos(θ + φ) = cos(θ)cos(φ)− sin(θ)sin(φ)

The accurate table used for the calculation of trigonometric functions is dif-
ferent from the tables of other functions. In this trigonometric table, we need
to have three accurate values, the angle θ, and its sine and cosine values. We
have calculated the table such that for each interval in the first half-quadrant,
we found two integers such that the sum of their squares is as close to n2 as
possible. These integers are then converted to double floating point represen-
tations and stored as sin(θ) and cos(θ). Then both high and low parts of θ are
calculated using high precision Maple. For the second half-quadrant, we just
switch between the sin and cos values; the high and low parts of corresponding
angles are stored in the table.

12.1 Trigonometric Functions Software Imple-

mentation

module TrigSoft
where

trigFamily :: PowerType a ⇒ VR a → (VR a,VR a,VR a)
trigFamily v = (sin, cos , tan)
where

67

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

We mask off the sign bits from the input.

absV = andc v signBitDbl

Since we are using 27-segment intervals dividing the [0, pi/2) range, we multiply
the input by 29/(2π) to convert the angle in radians to an angle in fraction of
rotations, where each rotation is divided into 29 intervals. We add the offset
= 252 to put the integral part of the segment number into the last 9-bits of
the mantissa bits, where the bits from 9 leftward represent the number of
rotations.

vScaledOffset = dfma scaleHigh absV offset

The fractional part of the segment is dropped off in the calculation of vScaledOffset,
hence subtracting the offset from vScaledOffset returns the integer part of the
segment.

intSegments = dfs vScaledOffset offset

Now we calculate the fractional part of the segment, by subtracting intSegments
from the segment = 29v/(2π) itself. We use both high and low parts of
vOverPiHigh to get accuracy for the fractional part of the segment.

vOverPiHigh = dfm absV scaleHigh
vOverPiLow = dfms absV scaleLow vOverPiHigh
vOverPiReducedHigh = dfms absV scaleHigh intSegments
vOverPiReduced = dfma absV scaleLow

vOverPiReducedHigh

Hardware lookup instructions return the high and low parts of the distance
of the angle with accurate values (its sine and cosine) from the start of the
segment. We use extended precision doubles for sine and cosine values in order
to handle the exceptional cases and very large inputs.

[thetaHigh, thetaLow , costheta, sintheta]
= map (lookupOpcode vScaledOffset vScaledOffset 6) [1, 2, 3, 4]

We subtract both parts of the theta from the fractional part of the segment.
We use dfmaX in order to get 0 as fracMOffset for very large inputs.

fracMOffset = dfmaX oneX
(dfmaX oneX vOverPiReducedHigh thetaHigh)
(dfma absV scaleLow thetaLow)

68

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Since series expansions of both sine and cosine have interleaved powers of the
input, we calculate the minimax polynomial in terms of fracMOffset2.

fracMOffsetSquared = dfm fracMOffset fracMOffset

We calculate the minimax polynomials of the following functions to calculate
the sine and cosine in the reduced range.

polySin(x2) = minimax

�
sin(x)− x

x3

�
,

polyCos(x2) = minimax

�
cos(x)− 1

x2

�
,

where x is scaled to represent the fractional part of the segment. The Maple
code needed to generate these polynomials is:

Digits := 50;

numSegments := 128;

polyOrd := 2;

b := Pi/2 / numSegments;

pSin1:=numapprox[minimax](x->limit((sin(y)-y)/(y^3),y=sqrt(x))

,-1.5*b..1.5*b,[polyOrd,0],x->x^2,’erSin’);

pSin:=convert(evalf(eval(x + x^3 * pSin1(x^2)

,x=2*Pi*x/(2^9))),horner);

log[2](erSin);

lprint([seq(roundDbl(coeff(pSin,x,2*j+1)),j=0..polyOrd+1)]);

polyOrd := 3;

pCos1:=numapprox[minimax](x->limit((cos(y)-1)/(y^2),y=sqrt(x))

,-1.5*b..1.5*b,[polyOrd,0],x->x^2,’erCos’);

pCos:=convert(evalf(eval(1 + x^2 * pCos1(x^2)

,x=x*2*Pi/(2^9))),horner);

log[2](erCos);

lprint([roundDbl(1),seq(roundDbl(coeff(pCos,x,2*j+2))

,j=0..polyOrd)]);

We calculate the sine and cosine of the leftover value.

sinInSeg = dfm fracMOffset
$ hornerVDbl sinCoeffs fracMOffsetSquared

cosInSeg = hornerVDbl cosCoeffs fracMOffsetSquared

69

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

We use the mathematical identities given above to calculate the sine and cosine
of the absolute value of the input.

absSin = dfmaX sintheta cosInSeg
(dfmaX costheta sinInSeg zeroX)

cos = dfmaX costheta cosInSeg
(dfm (dfmaX sintheta sinInSeg zeroX) (undoubles2 $−1))

In the case of sine, we put back the sign.

sin = xor absSin (PowerType.and v signBitDbl)

We use the ratio of sine and cosine to calculate the tangent of the input.

tan = recipFamily True cos sin

12.2 Trig Lookup Instruction

module TrigLookup
where

The lookup instruction returns the high and the low parts of the difference
of the angle with accurate sine and cosine values from the start of the seg-
ment. The sine and cosine values are returned in extended precision double
representation to handle the exceptional values.

trigLookup :: Integer → (Integer , Integer , Integer , Integer)
trigLookup xOffset = (thetaHigh, thetaLow , cos , sin)
where

The lookup key is constructed using the last 7 bits of the xOffset , representing
the segment in the quadrant. Bits 7 and 8 represent the quadrant in which
the input lies.

lookupKey = bits 0 7 xOffset
quadrant = bits 7 9 xOffset

We retrieve the theta values from the table. In the case of large inputs, we
return the value NaN as it would return zero as the result of range reduction.

70

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

[thetaHigh, thetaLow]
| bits 52 63 xOffset
�≡ 0x433 = [nan0X , nan0X]

| otherwise = let [a, b] = snd sincosTable
!! fromIntegral lookupKey

in [2 ↑ 63 + a, 2 ↑ 63 + b]

We construct the sine and cosine values from the table values, and we switch
between the lookup key and its complement-based values based on whether
the input lies in the odd or the even half-quadrant.

(costheta, sintheta) = case (quadrant , div lookupKey (2 ↑ 6)) of
(0, 0) → fromKey lookupKey
(0, 1) → switch $ fromKey (xor lookupKey (2 ↑ 7− 1))
(1, 0) → let (a, b) = fromKey lookupKey
in (2 ↑ 63 + b, a)

(1, 1) → let (a, b) = fromKey (xor lookupKey (2 ↑ 7− 1))
in (2 ↑ 63 + a, b)

(2, 0) → let (a, b) = fromKey lookupKey
in (2 ↑ 63 + a, 2 ↑ 63 + b)

(2, 1) → let (a, b) = fromKey (xor lookupKey (2 ↑ 7− 1))
in (2 ↑ 63 + b, 2 ↑ 63 + a)

(3, 0) → let (a, b) = fromKey lookupKey
in (b, 2 ↑ 63 + a)

(3, 1) → let (a, b) = fromKey (xor lookupKey (2 ↑ 7− 1))
in (a, 2 ↑ 63 + b)
→ error "trigHWLookup.impossible happened"

Finally, we look for exceptional cases and return the corresponding values.

(cos , sin)
| isNan xOffset = (nan0X , nan0X)

We detect very large inputs by comparing the exponent of the offsetted value
with the exponent of the offset we added. If the input is very large, we return
1/
√
2 for both sine and cosine values.

| bits 52 63 xOffset
�≡ 0x433 = (nan2X , nan2X)

| otherwise = (costheta, sintheta)

71

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

We construct the extended precision double values for the sine and cosine
values, which we get from the table.

fromKey key = let ((cosE , cosM), (sinE , sinM))
= fst sincosTable !! (fromIntegral key)

in (construct (cosE , cosM)
, construct (sinE , sinM))

construct (0, 0) = 0
construct (0x3ff, 0) = 0x3ff8000000000000
construct (e,m) = (0x400 + 0x3fe− e) ∗ (2 ↑ 51)

+m ∗ (2 ↑ (51− 32 + e + 1))

switch is a small helper function.

switch (a, b) = (b, a)

72

Chapter 13

Inverse Trigonometric Family
Functions

We implement all the inverse trigonometric functions using the atan2 function,
with appropriate arguments. The core function, atan2, uses a hardware lookup
instruction to provide an angle for angle reduction and its tangent value. These
arguments are used to reduce the inputs to smaller range near the x-axis, using
the following rotation matrix.

�
x�

y�

�
=

1�
1 + tan2(θ)

�
1 tan(θ)

− tan(θ) 1

� �
x

y

�
(13.1)

Since we still need to divide the inputs after the rotation by −θ, the common

factor
1�

1 + tan2(θ)
is omitted in the computation.

13.1 Inverse Trigonometric Functions Software

Implementation

module InverseTrigSoft
where

atan2Family :: PowerType a ⇒ VR a → VR a → VR a
atan2Family y x = result
where

73

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

The six hardware lookup instructions return the ordered inputs, the rotation
angle, its tangent, and the adjustment we need to make based on the half-
quadrant of the input co-ordinates.

[u, v , tanTheta, theta, adjust1 , adjust2]
= map (lookupOpcode y x 7) [1 . . 6]

debug = lookupOpcodeDebug y x 7

We find the new co-ordinates after rotating by angle θ, to get co-ordinates in
the segment near 0.

uInSegment = dfma v tanTheta u
vInSegment = dfnms u tanTheta v

We find the ratio of the new co-ordinates, representing the tangent of the angle
in the segment.

tanInSegment = divDbl uInSegment vInSegment

The power series of the arctan function has the interleaved power in polyno-
mial.

atan(x) = x− 1/3x3 + 1/5x5 +O(x6) (13.2)

We therefore find the minimax polynomial using Maple and the interleaved
powers.

poly(x2) = minimax

�
atan(x)− x

x3

�
(13.3)

The following maple code is used.
Digits := 50;

polyOrd := 2;

numSegment := 2^(12);

b := 2/numSegment;

p := numapprox[minimax](x->limit((arctan(y)-y)/y^3,y=sqrt(x)),

-b..b,[polyOrd,0],1,’er’);log[2](er);

seq(roundDbl(coeff(p(x),x,i)),i=0..polyOrd);

tanInSegmentSquared = dfm tanInSegment tanInSegment
evalPoly = hornerVDbl ((undoubles2 1) : coeffs)

tanInSegmentSquared

The rotation angle is added to the evaluation of polynomial.

74

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

atanInSegmentPTheta = dfma tanInSegment evalPoly theta

Finally, the adjustments are made based on the half-quadrant in which the
inputs lie.

result = dfma adjust1 atanInSegmentPTheta adjust2

Inverse sine and cosine functions are calculated using the atan2 function
with appropriate arguments.

asin(v) = atan2(v,
√
1− v2)

acos(v) = atan2(
√
1− v2, v)

asincosFamily :: PowerType a ⇒ Bool → VR a → VR a
asincosFamily isSin v = result
where

We calculate
√
1− v2 for getting the second argument of atan2 .

oneMvSquare = dfnms v v (undoubles2 1)
sqrtOneMvSquare = rsqrtFamily False oneMvSquare

We call the atan2 function with right arguments.

result = if isSin
then atan2Family v sqrtOneMvSquare
else atan2Family sqrtOneMvSquare v

13.2 Inverse Trig Lookup Instruction

module InverseTrigLookup
where

Inverse Trig instruction returns the inputs, the rotation angle, its tangent,
and the adjustments we need to make based on the half-quadrant in which the
inputs lie.

inverseTrigLookup
:: Integer → Integer

75

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

→ (Integer , Integer , Integer , Integer , Integer , Integer)
inverseTrigLookup b a = (newU , newV , c0 , atanC0 , adjust1 , adjust2)
where

We use the table of the 2n-intervals, representing first half quadrant of a
rotation theta ∈ [0, π/4).

n = 12

Since we calculate the inverse tangent in the first half quadrant,

arctan (min(a, b)/max(a, b)) ,

we have to compare the inputs to get the ordering. Because we are comparing
the first n + 2 bits of the mantissas instead of the full mantissas, we need to
include the extra interval with values (1, π/4). We also need to extend the
range of polynomial evaluation from [0, 2−n) to [−2−n, 2−n]. Moreover, we also
have to adjust the inputs such that, when we rotate the input co-ordinates to
co-ordinates near zero, we do not loose precision in the y-axis or saturate to
infinity in the x-axis. We also need to boost the subnormal inputs to normal
range, to get the lookup key. u = max(a, b) and v = min(a, b). We will use
an extra 2-bits for the approximate calculations, so that we will get a better
lookup key.

(u, v , switch) = case (bits 52 63 a, bits 52 63 b) of
(0, 0) → approxCompare (n + 2)

(53 ∗ (2 ↑ 52) + normalizeDenorm a)
(53 ∗ (2 ↑ 52) + normalizeDenorm b)

(0,) → if bits 52 63 b � 52 + 1023
then (b, a, 1)
else ((53 + 52) ∗ (2 ↑ 52) + b,

53 ∗ (2 ↑ 52) + (normalizeDenorm a), 1)
(, 0) → if bits 52 63 a � 52 + 1023

then (a, b, 0)
else ((53 + 52) ∗ (2 ↑ 52) + a,

53 ∗ (2 ↑ 52) + (normalizeDenorm b), 0)
(,) → let (y , x , s) = approxCompare (n + 2) a b

in if bits 52 63 y ≡ 0x7fe
∧ bits 52 63 x � 0x7fe− 52
then (y − 2 ↑ 52, x − 2 ↑ 52, s)

76

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

else if bits 52 63 y � 52
then (53 ∗ (2 ↑ 52) + y , 53 ∗ (2 ↑ 52) + x , s)
else (y , x , s)

The maximum error introduced by these calculations is

u(1 + 2−(n+2)) >= v, (13.4)

where u = maxapprox(a, b) and v = minapprox(a, b).
Now, we need to calculate the interval in which the input co-ordinates

lie. We can do so by approximating the v/u. This can be done by looking
up the estimate of the reciprocal of u from the reciprocal lookup table, then
approximating their product based on the leading n-bits of their mantissas.

(eRecipEstU ,mRecipEstU) = recipTable (n + 2) !!
fromIntegral
(bits (52− n − 2) 52 u)

(eApproxVByU ,mApproxVByU) = approxMult (n + 2)
mRecipEstU
(bits (52− n − 2) 52 v)

The maximum error introduced by these calculations is

(u/v)(1 + 2n+2) >= (u/v)approx >= (u/v)(1− 2n+2). (13.5)

The combined error introduced in the lookup key calculation is therefore <

3∗2−(n+2). Since the accurate table values can be at either end of the interval,
we have to double the range of the minimax polynomial.

Now we have to add the implied one to the approximate product and
then shift the resultant value to get the lookup key.

shift = bits 52 63 u − bits 52 63 v
+ 1− eRecipEstU + 1− eApproxVByU + 2

lookupKey = roundShiftR (2 ↑ (n + 2) +mApproxVByU)
(fromIntegral shift)

The values are retrieved from the table.

[c0 , atanC0] = arcTanTable !! fromIntegral lookupKey

According to the signs and ordering of the inputs, we need to adjust the result.

77

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

signA = bits 63 64 a
signB = bits 63 64 b
(sign, rotation) = case (signA, signB , switch) of

(0, 0, 0) → (one, 0)
(0, 0, 1) → (2 ↑ 63 + one, piBy2)
(1, 0, 1) → (one, piBy2)
(1, 0, 0) → (2 ↑ 63 + one, pi)
(1, 1, 0) → (one, 2 ↑ 63 + pi)
(1, 1, 1) → (2 ↑ 63 + one, 2 ↑ 63 + piBy2)
(0, 1, 1) → (one, 2 ↑ 63 + piBy2)
(0, 1, 0) → (2 ↑ 63 + one, 0)

Finally, we look for special inputs and overwrite the constants for u
and v . These constants are returned because we do not want to generate NaN
as a result of the calculation.

(newU , newV , adjust1 , adjust2)
| isZero a ∧ isZero b = (1, 1, 0, nan)
| isInf a ∧ isInf b = (1, 1, 0, nan)
| isNan a ∨ isNan b = (1, 1, 0, nan)
| isZero a ∨ isZero b = (1, 1, 0, rotation)
| isInf a ∨ isInf b = (1, 1, 0, rotation)
| otherwise = (absU , absV , sign, rotation)

absU = bits 0 63 u
absV = bits 0 63 v

The following values recipExtU or approxUByV are useful for understand-
ing the semantics of the instruction. These values are constructed for debug
purpose.

recipEstU = bits 63 64 u ∗ (2 ↑ 63) +
(2046− bits 52 63 u
+ eRecipEstU − 1) ∗ (2 ↑ 52)
+mRecipEstU ∗ (2 ↑ (52− n))

approxVByU = xor (bits 63 64 u) (bits 63 64 v) ∗ (2 ↑ 63)
+ (bits 52 63 v − bits 52 63 u
+ 1023− 1 + eRecipEstU
+ eApproxVByU − 1) ∗ (2 ↑ 52)
+mApproxVByU ∗ (2 ↑ (52− n))

78

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

This function boosts subnormal inputs to normal ranges by multiplying by
252.

normalizeDenorm :: Integer → Integer
normalizeDenorm n = (bits 63 64 n) ∗ (2 ↑ 63)

+ (52− fromIntegral leading0s) ∗ (2 ↑ 52)
+mod (shiftL mantissa (leading0s + 1)) (2 ↑ 52)

where
(, leading0s) = countLeadingZeros 52 52 (bits 0 52 n)
mantissa = mod n (2 ↑ 52)

This function compares the absolute values of the inputs based on the leading
n-bits of the mantissas.

approxCompare :: Int → Integer → Integer → (Integer , Integer , Int)
approxCompare n a b = if bits (52− n) 63 a � bits (52− n) 63 b

then (a, b, 0)
else (b, a, 1)

This is the approximate multiplication of the mantissas based on the first n-
bits only. Since the result is ∈ [1, 4), we will return n-bits of the mantissa of
the result and the exponent value ∈ {1, 2}.

approxMult :: Int → Integer → Integer → (Integer , Integer)
approxMult n a b = case div result (2 ↑ n) of

1 → (1,mod result (2 ↑ n))
→ (2,mod (roundShiftR result 1) (2 ↑ n))

where
m = (2 ↑ n + a) ∗ (2 ↑ n + b)
result = div m (2 ↑ n)

79

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

80

Chapter 14

Evaluation

We have implemented two types of simulations of these instructions. First, to
test our accuracy claims, we implemented the new instructions in the Coconut
interpreter, adding them to the existing interpreter for Cell/B.E. SPU instruc-
tions. The results were compared to results calculated by Maple with 500 sig-
nificant digits of precision, and are reported in Table 14.1. As expected, the
accuracy results match the results for implementations using current Cell/B.E.
SPU instructions. As the next step towards hardware implementation, we then
implemented the instructions for logarithm using arrays of bits and logical op-
erations, and verified that the results match the original implementations,
which are written using integer and arbitrary-precision floating-point types in
Haskell, and therefore both faster and easier to read.

14.1 Accuracy

We tested each of the functions by simulating execution using Coconut for at
least 20000 pseudo-random inputs over the full range and compared the results
to computations carried out in Maple with 500 significant digits of precision.
We found the maximum error of two ulps over all the functions. For details
see table 14.1.

14.2 Performance

Since the dependency graphs (Figure 4.1) are nearly linear, the performance of
software-pipelined loops will be proportional to the number of floating-point

81

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

instructions. We report in Table 14.1 the expected throughput for vector math
functions which would result from adding these new instructions, assuming no
other changes in the SPU execution model.

Table 14.1 reports the accuracy and performance statistics for the dif-
ferent elementary functions. The size of the specific table is only reported
once. No entry for the table size implies the table is being shared with some
other instruction. The number of zero bits of excess precision in the accurate
table values is given, including the case log2 M = ∞ when all the table values
can be chosen to be exact with the given table sizes. Other interpretation of
M is that some of the table values are exact, whereas other values are within
1

M
of an ulp of an IEEE representable floating point number.

function cycles
double

cycles
double Speedup max error table poly log2 M

new SPU (%) (ulps) size(N) order

recip 3 11.3 376 0.500 2048 3 ∞
div 3.5 14.9 425 1.333 recip 3
sqrt 3 15.4 513 0.500 4096 3 18
rsqrt 3 14.6 486 0.503 4096 3 ∞
log2 2.5 14.6 584 0.500 4096 3 18

log21p 3.5 n/a n/a 1.106 log2 3
log 3.5 13.8 394 1.184 log2 3

log1p 4.5 22.5 500 1.726 log2 3

exp2 4.5 13.0 288 1.791 256 4 18
exp2m1 5.5 n/a n/a 1.29 exp2 4
exp 5.0 14.4 288 1.55 exp2 4

expm1 5.5 19.5 354 1.80 exp2 4

atan2 7.5 23.4 311 0.955 4096 2 18
atan 7.5 18.5 246 0.955 atan2 2+3
asin 11 27.2 247 1.706 atan2 2+3+3
acos 11 27.1 246 0.790 atan2 2+3+3

sin 11 16.6 150 1.474 128 3+3 52
cos 10 15.3 153 1.025 sin 3+3
tan 24.5 27.6 113 2.051 sin 3+3+3

Table 14.1: Accuracy and throughput (using Cell/B.E. SPU double precision)
of standard functions with table sizes.

82

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Overall, the addition of hardware instructions to the SPU results in a
3× improvement. Performance improvements on other architectures will vary,
but would be significant.

The results (Table 14.1) show that the multiplicative reduction accurate
table method achieves nearly correctly rounded results for some functions like
recip, log2 and roots and high throughput for almost all the functions. On the
Cell/B.E. SPU, data-dependent branches are expensive, so we chose to imple-
ment these functions in branch-free form, which costs several cycles to handle
exceptional cases, but saves tens of cycles for mispredicted branches. For some
inputs, typical implementations of the Newton-Raphson method produce in-
correct results where producing correct results is considered too expensive.
For example, in some implementations, recip is frequently allowed to saturate
to ∞ for some subnormal inputs although the correcly rounded output would
be finite. This may be unacceptable for some applications, and it is a re-
markable property of the library using the proposed instructions that no such
compromises in the handling of rare cases were necessary.

83

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

84

Chapter 15

Conclusion

We have demonstrated that when supported by a hardware lookup instruction
and an extended-range fused multiply-add, we can achieve considerable per-
formance and accuracy improvements for the elementary functions. In some of
the functions, maximum errors as low as 0.500 ulps are achieved by combining
multiplicative reduction using a fused multiply-add and accurate (or exact) ta-
bles. Overall, using accurate tables for all the functions bounds the maximum
error to 2.051 ulps compared to more than 1000 ulps of error reported for the
SPU MASS library. Our analysis has shown that new algorithms based on
the proposed hardware instructions would triple throughput on the Cell/B.E.
SPU.

We showed by example that the new instructions are simple enough,
certainly much simpler than floating point arithmetic, and would fit into the
latency and register-use requirements of conventional processors. We were
also able to handle all the exceptional cases internally in hardware, thereby
eliminating the need for data dependent branches.

The work has been reported in a joint patent application [AES10] with
IBM. To further reduce register pressure, we also proposed variants of the
new instructions with hidden internal state, and discuss the impact of such a
decision on superscalar dispatch and required operating system support.

Although we have not explored it in this thesis, these methods are
equally applicable to higher- and lower-precision floating point function eval-
uation, although the table sizes and polynomial orders should be adjusted if
greater performance is required processing 32-bit floats or better accuracy is
required processing 128-bit (or higher) floats.

Finally, we acknowledge that although the proposed methods will pro-

85

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

vide very high performance, some functions are not as accurate as we would
like, particularly, div , the exponentials and the trigonometric functions, but
there is some hope that taking rounding into account [BC07] when searching
for both tables and polynomial values could reduce the maximum error.

86

Bibliography

[ACG+86] Ramesh C. Agarwal, James W. Cooley, Fred G. Gustavson,
James B. Shearer, Gordon Slishman, and Bryant Tuckerman. New
scalar and vector elementary functions for the IBM System/370.
IBM J. Res. Dev., 30(2):123–144, 1986.

[AES10] Christopher K. Anand, Robert Enenkel, and Anuroop Sharma.
Hardware instructions to accelerate table-driven mathematical
function evaluation. United States Patent Application 12/788570,
filed May 27, 2010.

[AK08] Christopher K. Anand and Wolfram Kahl. Synthesising and ver-
ifying multi-core parallelism in categories of nested code graphs.
In Michael Alexander and William Gardner, editors, Process Alge-
bra for Parallel and Distributed Processing. Chapman & Hall/CRC,
2008.

[AK09] Christopher K. Anand and Wolfram Kahl. An optimized Cell BE
special function library generated by Coconut. IEEE Transactions
on Computers, 2009.

[AS09] Christopher K. Anand and Anuroop Sharma. Unified tables for
exponential and logarithm families. AdvOL Report 2009/2, Mc-
Master University, 2009.

[AS10] Christopher K. Anand and Anuroop Sharma. Unified tables for
exponential and logarithm families. ACM Transactions on Mathe-
matical Software, 37(3), 2010.

[BC07] N. Brisebarre and S. Chevillard. Efficient polynomial L∞ approxi-
mations. In Proceedings of the 18th IEEE Symposium on Computer
Arithmetic, pages 169–176, Santa Monica, USA, 2007. IEEE Com-
puter Society Press, Los Alamitos, CA.

[Bem63] R. W. Bemer. A note on range transformations for square root and
logarithm. Commun. ACM, 6(6):306–307, 1963.

87

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

[BPBL06] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta.
CellSs: a programming model for the Cell BE architecture. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, page 86, New York, NY, USA, 2006. ACM.

[CKJM05] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones,
and Simon Marlow. Associated types with class. In In POPL
05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1–13. ACM Press,
2005.

[Cor05] International Business Machines Corporation. PowerPC User
Instruction Set Architecture. IBM Systems and Technology
Group, http://www.ibm.com/developerworks/systems/library/es-
archguide-v2.html, 2005.

[Cor08] International Business Machines Corporation. Cell
Broadband Engine Programming Handbook. IBM
Systems and Technology Group, https://www-
01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC,
2008.

[DTSS05] Son Dao Trong, Eric M. Schwarz, and Martin Schmookler. FPU
implementations with denormalized numbers. IEEE Trans. Com-
put., 54(7):825–836, 2005.

[EL93] Miloš D. Ercegovac and Tomás Lang. Multiplica-
tion/division/square root module for massively parallel computers.
Integr. VLSI J., 16(3):221–234, 1993.

[Gal86] Shmuel Gal. Computing elementary functions: A new approach for
achieving high accuracy and good performance. In Proceedings of
the Symposium on Accurate Scientific Computations, pages 1–16,
London, UK, 1986. LNCS 235, Springer-Verlag.

[GB91] Shmuel Gal and Boris Bachelis. An accurate elementary mathe-
matical library for the IEEE floating point standard. ACM Trans.
Math. Softw., 17(1):26–45, 1991.

[IBM06] IBM Corp. Synergistic Processor Unit Instruction Set Architecture.
IBM Systems and Technology Group, Hopewell Junction, NY, Oc-
tober 2006.

[Jon95] Mark P. Jones. Functional programming with overloading and
higher-order polymorphism, 1995.

[KAC06] Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette.
Control-flow semantics for assembly-level data-flow graphs. In

88

M.Sc. Thesis – Anuroop Sharma – McMaster – Computing and Software

Wendy MacCaull, Michael Winter, and Ivo Düntsch, editors,
RelMiCS 2005, volume 3929 of LNCS, pages 147–160. Springer,
2006.

[KM97] Alan H. Karp and Peter Markstein. High-precision division and
square root. ACM Trans. Math. Softw., 23(4):561–589, 1997.

[KM06] Peter Kornerup and Jean-Michel Muller. Choosing starting val-
ues for certain Newton-Raphson iterations. Theor. Comput. Sci.,
351(1):101–110, 2006.

[Mul05] Jean-Michel Muller. On the definition of ulp (x). Technical report,
RR2005-09, LIP, ENS Lyon, France, 2005.

[PJ+03] Simon Peyton Jones et al. The Revised Haskell 98 Report. Cam-
bridge University Press, 2003. Also on http://haskell.org/.

[Rus98] David M. Russinoff. A mechanically checked proof of IEEE com-
pliance of the floating point multiplication, division and square
root algorithms of the AMD K7 processor. LMS J. Comput. Math,
1:148–200, 1998.

[SAG99] Martin S. Schmookler, Ramesh C. Agarwal, and Fred G. Gus-
tavson. Series approximation methods for divide and square root in
the Power3(TM) processor. In ARITH ’99: Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, page 116, Washington,
DC, USA, 1999. IEEE Computer Society.

[Sch95] Eric M. Schwarz. Rounding for quadratically converging algorithms
for division and square root. In ASILOMAR ’95: Proceedings of
the 29th Asilomar Conference on Signals, Systems and Computers
Volume II, page 600, Washington, DC, USA, 1995. IEEE Computer
Society.

[Tak97] Naofumi Takagi. Generating a power of an operand by a table
look-up and a multiplication. In ARITH ’97: Proceedings of the
13th Symposium on Computer Arithmetic (ARITH ’97), page 126,
Washington, DC, USA, 1997. IEEE Computer Society.

89

