
Symbolic Generation of Parallel Solvers
for Inverse Imaging Problems

Jessica L. M. Pavlin pavlinjl@mcmaster.ca

Christopher Kumar Anand anandc@mcmaster.ca

Department of Computing and Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1

c© 12 September 2014

Medical Image Reconstruction is characterized by requirements to (1) pro-
cess high volumes of data quickly so sick patients need not wait or be called
back for re-imaging, and (2) provide the highest level of software quality, in-
cluding both correctness and safety. Parallelization today allows very high
levels of performance, at the cost of duplicating hardware resources and
increasing software complexity. Software complexity makes it harder to en-
sure correctness and safety in a domain where errors can easily arise out of
miscommunication between domain experts and software developers.

To solve these problems, we propose a development environment which
transforms simple mathematical models into parallel programs via term
graph transformations and code generation to an intermediate language we
call Atomic Verifiable Operations (AVOps), which we have previously in-
troduced together with a linear-time verification method. In this paper,
we will describe a variation on AVOps which supports multi-core systems,
and, for the first time, the Coconut Expression Library, a Domain Specific
Language (DSL) for domain experts to specify mathematical models in the
form of objective functions, and for performance experts to provide rule-
based transformations to compute gradients, algebraic simplifications and
finally parallelizations expressed using AVOps.

Computing and Software Report CAS-14-05-CA

Contents

1 Motivation: Using Phase Contrast Angiography (PCA) 2

2 Domain Specific Languages (DSLs) 5
2.0.1 Model Expressions . 6
2.0.2 Term Graph Transformations 6

3 Differentiation in CEL 7

4 Runtime & Verification 10
4.0.3 Multi-Core Runtime 10
4.0.4 Verification . 12
4.0.5 Performance . 12

5 Parallelization and Supporting Transformations 12

6 Conclusion and Work in Progress 14

The authors thank NSERC, MITACS, Optimal Computational Algorithms,
Inc., and IBM Canada for financial support.

1

The Coconut (COde CONstructing User Tool) Project aims to provide
each domain expert collaborating on high-performance, safety-critical sci-
entific software their own interface allowing for the separate specification
of all ingredients from mathematical models down to efficient instruction
scheduling, with all transformations providing proofs of correctness and
safety. Initial work focussed on instruction selection and scheduling [1],
already providing novel views on abstraction, including a declarative assem-
bly language. Later components have added higher-level abstractions, and
intermediate languages essential for proofs of safe parallelization.

This paper provides the first description of the highest level of ab-
straction, the Coconut Expression Library (CEL), in which domain ex-
perts can transparently specify mathematical models and regularizers, in-
dependent of implementation considerations, and of subsequent optimized
code generation—including algebraic simplifications, symbolic differentia-
tion, common subexpression elimination (CSE), and parallelization—via
term graph transformation rules. In the following, we define by example
the type of model for which we would like to generate efficient code; we
exhibit examples of domain specific languages for modelling and term graph
transformation; we explain a novel approach to differentiation required; we
specify a verification method for eliminating parallel hazards which extends
our previous framework for distributed computation; and finally, we describe
parallelization rules targeting this framework.

1 Motivation: Using Phase Contrast Angiography
(PCA)

We use Magnetic Resonance Imaging (MRI) as a use case. MRI is interesting
from a computational stand point, as the manner in which each MRI imaging
experiment is carried out allows for encoding of a wide variety of physically
important properties, which can be fit with varying complexity of mathe-
maticla models. For this particular application, we focus on a problem in
phase contrast angiography, or PCA. In PCA, velocity fields are encoded as
a phase modulation to a complex-valued image. Velocity profiles generated
via PCA can help physicians diagnose and track congenital heart disorders,
brain aneurisms, and circulatory diseases, and plan brain surgery to avoid
major blood vessels. Unfortunately, due to the nature of the data, image
acquisition times are prohibitive, leaving PCA techniques under-utilized in
current practice. Using techniques collectively known as parallel imaging,
image acquisition times can be reduced by selectively undersampling the

2

MRI data, instead using data from multiple, geometrically distinct receivers
to supplement the usual Fourier encoding.

While collecting the full MRI data for this experiment requires the pa-
tient to be in the machine for upwards of 40 minutes. Recent reports of
time to reconstruct the flow fields times are even worse: for example, an
image size of 128 × 128 required 13 minutes for computation [7], and a 3-
dimensional 128× 128× 128 volume required between 180 minutes and 780
minutes for computation [8]. Some experiments collecting less data and us-
ing better mathematical optimization techniques have demonstrated some
promising results for low resolution images. For example, the problem has
been solved using 28% of the data at a resolution of 128× 128 (meaning the
patient spends about 12 minutes in the MRI machine) in five minutes [6].
Typically, however, integrating parallel imaging with model based recon-
structions adds significant complexity to the model both in form and in the
size of the accompanying data.

PCA is especially interesting because, by adding multiple phase modu-
lations to a base MRI image for comparison, it contains redundancy which
lends itself to sparse sampling and regularization. Next we explain the phys-
ical model for PCA, exhibiting (in CEL) a problem-specific regularizer which
can benefit from independent mathematical models and code optimization
strategies.

MRI samples magnetic fields created by precessing hydrogen nuclei. The
frequency of precession is proportional to the strength of an external mag-
netic field, just as a top spins faster on earth than on the moon. We use
linear variations in field strength to encode geometric information, and by
balancing opposite variations in time, create phase variations proportional
to velocity. See [9] for details. The important point is that all MRI samples
the Fourier Transform (FT) of the model variables we want to know, and in
the case of PCA, the model variables are further modulated by the velocity:

m̃G = ρ · eiG·V (1)

where the known gradient G, and unknown velocity V and base image ρ
combine to produce the measurement mG = ft(m̃G).

This formulation is sufficient when complete datasets are collected, but
for accelerated (sparsely sampled) experiments, our model incorporates the
physical measurements, which come from the Fourier Transform of the com-
plex image. Since MRI measurements contain independent, identical, nor-
mally distributed errors, the least-squares solution is a maximum likelihood

3

estimate (MLE). ∑
G∈G

∥∥∥mG − πG ft(ρ · eiG·V)
∥∥∥2, (2)

where the norm is the `2 vector norm summing the individual differences
over the subset of measurements represented here by projecting, for each
G—via πG onto a linear subspace of the complete measurements of the
Fourier Transform, and G is a set of gradient sensitizations—which are pa-
rameterized by vectors in R3. Realistic models are further complicated by
the fact that multiple antennae are used to measure modulated views of the
data, introducing exploitable redundancy.

While sparsely sampling the Fourier Transforms saves time, it leads to
underdetermined or numerically ill-conditioned models. This can be mit-
igated by regularizing—adding a penalty term to the MLE (2)—as intro-
duced by Tikhonov [10]:

min

∑
G∈G

∥∥∥mG − πG ft(ρ · eiG·V)
∥∥∥2 + λR(V)2

 , (3)

with λ providing a relative weighting of the a priori information represented
by the regularizer R versus the need to fit the data. The simplest such
penalty is the `2-norm of the model variables. Other common penalties
involve `2- or `1-norms of differences of neighbours.

Such penalties can and should be predefined functions in CEL, but this
would exclude the definition of novel problem-specific penalties. In the case
of PCA, Conservation of Mass (CoM) can be formulated as a penalty, since
any flow into the volume of interest should be balanced by outflow. This
property has been used as a regularizer in meteorological optimization prob-
lems [5, 2], where it has reduced solving time, but not to our knowledge,
in medical imaging. Consider a cubic sample at coordinates (i, j, k) in the
discretization of the imaging volume. The difference between the velocity
component entering versus the component leaving opposite faces results in
a gain or loss of material. Summing over three pairs of faces, we obtain a
quantity which should be zero. There are different ways of approximating
this, but the simplest is

(vx(i+1,j,k)−vx(i,j,k)) + (vy(i,j+1,k)−vy(i,j,k)) + (vz(i,j,k+1)−vz(i,j,k)) (4)

which gives a scalar quantity at each sample. Since the discretization is an
approximation, we do not expect this quantity to be exactly zero, so we

4

form a penalty function by summing the squares of this quantity over all
samples.

To accommodate standard as well as such problem-specific regularizers in
a transparent and extensible way, we provide, in CEL, a structured higher-
order function we call a Sparse-Convolution-Zip (SCZ), which forms new
discretized quantities by combining neighbouring values at fixed offsets from
one or more input discretized quantities. In the study of partial differential
equations, such operations are called stencil computations. Providing such
a construct is allows us to treat discretization vectors as first-class objects
and compute efficiently using them.

With this problem as a guide, we set the goals for the Coconut Expression
Library (CEL), in order to capture such problems:

1. create a DSL close to current use by applied mathematicians and sci-
entists in informal model development, see § 2; this must include

2. first-class vector variables, § 2,

3. derivation with respect to vector variables, § 3,

4. built-in linear operators with optimized implementations like the FFT,
§ 2,

5. user-defined zip-shift-map operations generalizing stencils, § 2; and

6. an interface for computer scientists to specify simplification and par-
allelization operations algorithmically, §5;

7. an efficient parallel run-time system to execute generated code, § 4;

8. an efficiently verifiable model of synchronization, § 4;

9. an efficient parallel unconstrained optimizer into which to plug gen-
erated function and gradient evaluators, which we will describe in a
future paper.

2 Domain Specific Languages (DSLs)

Domain Specific Languages trade off general expressivity for the right level
of abstraction for a particular domain. Embedded DSLs are really libraries
in another language [4], often a functional language like Haskell. We use two
DSLs to organize the work of CEL, each tuned to a different set of domain
experts.

5

2.0.1 Model Expressions

The first DSL is the declarative algebraic expression language designed to
look like applied mathematics as used in physical models and optimization
problems. To save trouble later—when efficient code generation will depend
on not recalculating common subexpressions—each expression is encoded as
a node in a hash table, where each entry is either a basic node (a variable,
differential, or constant) or an operation combining multiple other nodes.
The hash table is implemented using a Haskell IntMap, but this type is
wrapped in classes which hide the implementation from the user. The user
can even work interactively to build up an expression, such as a 3D Fourier
transform, ft(x+ iy) of a complex vector composed of real vectors x and y:

> let x = var3d (16,16,16) "x"

> let y = var3d (16,16,16) "y"

> ft (x +: y)

(FT((x(16,16,16)+:y(16,16,16))))

This DSL has classes for real and complex vector spaces, and instances
of these corresponding to regular hexahedral (cubic) discretizations of one-,
two-, three- and four-dimensional spaces. For example, the x component of
tissue velocity is a field in R3, which we approximate using a discretization
var3d with specified resolution. Another example is the problem-specific
conservation-of-mass regularizer is

massConservation (ThreeD vx , ThreeD vy , ThreeD vz)
= norm2 (conv3Zip1ZM com vx vy vz)

where
com (vX, vY, vZ) = (vX[1 , 0 , 0] − vX[−1 ,0 ,0])

+ (vY[0 , 1 , 0] − vY[0 , −1 ,0])
+ (vZ [0 , 0 , 1] − vZ [0 ,0 , −1])

where conv3ZipZM constructs a stencil computation with assumed zero mar-
gins for out-of-bounds references, norm2 is the norm squared, and we use
familiar array subscript notation for relative indexing of neighbouring val-
ues for the three velocity components.

The result is an environment for constructing term graphs also called
directed acyclic graphs (DAGs), which looks to the mathematician a lot like
expressions appearing in papers and technical reports.

2.0.2 Term Graph Transformations

Once the model is set, it is up to a second set of experts to transform the
declarative expressions, encoded via expression hashes, into a parallel pro-
gram. Simplification, factoring, differentiation and pre-parallelization make

6

up 4500 lines of literate Haskell, kept manageable (and readable) by the de-
velopment of a second DSL for term graph rewriting, with two components:
pattern matching and construction. We do not have room to adequately
describe this language, but we can convey its flavour with two examples:

| Just (x) <− (M. invFt ‘ o ‘ M. f t) exprs node = x exprs
| Just (x ,) <− (M. xRe ‘ o ‘ M. reIm) exprs node = x exprs

which perform rewrites ft ◦ ft−1(x) 7→ x and <(x + iy) 7→ x. The match-
ing module is imported qualified (i.e., M.*) with each function matching
an operation and returning constructor(s) for source nodes (i.e., x). Pat-
tern matchers can be chained together using composition syntax (i.e., ‘o‘),
and alternative matches are chained together using Haskell pattern guards
(i.e., |). Composition is designed to have syntax very close to that of the
modelling DSL, although the semantics are subtly different. Currently, com-
plicated and conditional term rewriting must access the underlying Haskell
data structures, but we are working on improving the expressivity of the
matching calculus.

3 Differentiation in CEL

While first-class symbolic vectors have many advantages, it is not possible
to build up gradients (and higher-order derivatives) from partial derivatives,
as taught in vector calculus. Instead, we must use the exterior derivative
or a functional equivalent involving implicit differentiation, together with
algebraic simplifications to put the resulting expressions into normal forms,
from which gradients can be extracted. Since we are targeting large problems
for which exact second derivatives would be computationally inefficient, we
have only implemented first-order differentiation, but higher-order deriva-
tives could be similarly computed.

To preserve common subexpressions for later code generation, differen-
tiation is implemented by adding subexpressions to the hash table of subex-
pressions in the original function. Although existing symbolic calculators
implement exterior derivatives, e.g., Maple’s Forms package, we are not
aware of an implementation capable of calculating derivatives with respect
to vector variable, and of collecting subexpressions common to both the
function and gradient computations and preserving the multi-dimensional
discretization structure, to enable more efficient code generation than would
be expected using Automatic Differentiation.

Consider the scalar function
∥∥ft(x+ iy)

∥∥
2

given by the `2-norm of the
Fourier Transform of a complex vector. We can calculate the exterior deriva-

7

tive with respect to the real variable X using a simple recursion through the
DAG as

>> diff (mp ["X"]) (norm2 (ft (x +: y)))

((((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Re(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Re(FT((X[16][16][16]+:Y[16][16][16]))))))

+ (((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))

+ ((Im(FT((d(X[16][16][16])+:0.0[16,16,16])))).(Im(FT((X[16][16][16]+:Y[16][16][16])))))))

but this flat representation is deceptively long as it hides the redundancy
tracked by CEL internally. Differentiating with respect to both real variables

d
∥∥ft(x+ iy)

∥∥
2
.

would double the above length, but not with sharing:

sum

sum

sum

dot

dot

<
<
=
=

ft

ft

+i

+i
dx

dy

x

y

;;

##

��
;;

##
JJ

33
++

33
++

##

++

33

;;

//

// 33
++

33
++

(5)

which maintains the structure of the efficient computation graph, but does
not explicitly contain the gradient.

To extract the gradient, we need to put the exterior derivative into a
normal form, which we derive by considering the derivative of the Taylor
series of a function f(X,Y) at (X0, Y0):

f(X,Y) = f(X0, Y0)+(X−X0)·∇Xf+(Y −Y0)·∇Y f+(higher order), (6)

whose derivative is

df(X,Y) = 0 + dX · ∇Xf + dY · ∇Y f + (higher order). (7)

If the derivative exists and we can transform the expression for the exterior
derivative into a sum of dot products—with the left-hand arguments of
the dot products being independent exterior differentials, plus higher-order
terms, then the right-hand arguments of the dot products are the desired
gradients.

To produce this normal form, we apply simplification rules which

• transform a dot product containing a sum into a sum of dots

• swap arguments of a dot product with a differential in the right argu-
ment

8

• transform a dot product whose left argument is a linear function ap-
plied to a term containing a differential, by popping the linear function
from the left argument and applying its adjoint to the right argument

and apply additional transformations which are tied to the specific represen-
tation of special operations, and are beyond the scope of this paper. The key
point is that we can view the arguments of the dot product as two stacks and
we keep popping linear operations off one and pushing their adjoints onto the
other. Because some operations are defined on complex values while the dot
product is only defined for real values, some linear operations do not have
simple adjoints and must be replaced by sums of real and imaginary parts,
etc. In the following example, we look at the pop/push operations after the
other simplifications have finished, and use the operator (+i0) to mean the
embedding of a real value into a complex value by adding a zero imaginary
part. This is a simplification of the actual procedure, which interleaves the
application of different rules, and also recombines the real and imaginary
parts after the pop/push operations to avoid multiple applications of the
Fourier Transform.

For the real/x part of the term graph (5), the pop/push proceeds as

Left ↑
<
ft
(+i0)
dx

·

Right
↓
<
ft
(+i0)
x

7→

Left ↑
ft
(+i0)
dx ·

Right
↓
(+i0)
<
ft
(+i0)
x

7→

Left ↑
(+i0)
dx

·

Right
↓
ft−1

(+i0)
<
ft
(+i0)
x

7→

Left ↑
dx

·

Right
↓
<
ft−1

(+i0)
<
ft
(+i0)
x

The resulting term graph (including imaginary part) is

sum

scale

scale

2

dot

dot

dx

<

<

ft−1

ft−1

+i

+i

0

<

=
ft +i

x

y

77

''
&&
88

//

//

&&
88

//

//

//

//

//

88
&&
//

//

''
77 //

77

''
(8)

Being a simple example, the full set of transformations would also iden-
tify the adjoints < and (+i0), as well as ft and ft−1 as inverses and collapse
the right-hand side to the single term x. This does not happen for interesting
models, e.g., including under sampling.

9

4 Runtime & Verification

So far, we have looked at high-level specifications and model-level trans-
formations. Back-end transformations, including parallelization, cannot be
understood without understanding the target. We currently support Single
Instruction Multiple Data (SIMD), distributed (cores have private memory)
and multi-core (cores access shared memory) parallelism, and are working
towards supporting heterogeneous systems. We ensure the correctness of
SIMD parallelism through testing, because it has proven adequate, while dis-
tributed and multi-core parallelism introduce hazards (“heisenbugs”) which
are very difficult to discover through testing. To support compile-time ver-
ification, these levels of parallelism are factored through a virtual machine
which executes Atomic Verifiable Operations (AVOps)—indivisible compo-
nents of pure computation or communication, including synchronization via
signalling. Problem-specific pure computations are extracted from the model
by the compiler. A single sequence of AVOps of both types defines the comp-
tuation, although computation may occur out of order, as in an out-of-order
processor. Unlike most CPU instructions, the AVOp runtime does not man-
age out-of-order execution and buffer renaming to preserve serial semantics.
Instead, characteristics of the run-time are used by a linear-time verifier run
at compile time.

In previous implementations [3], signalling was the central research fo-
cus, with the assumption that, as on the Cell/B.E., signalling has hardware
support, but many multi-core systems lack hardware signals (and private
memory). As such, we implemented an alternative run-time system which
does not support signals, but in which synchronization is guaranteed by
finite-sized ring buffers and the insertion of no-ops to guarantee the com-
pletion of previously dispatched computations prior to the commencement
of the preceding computations. No-ops are used where other parallelization
frameworks would require a barrier.

4.0.3 Multi-Core Runtime

The basic idea behind the runtime system is to have the main thread, known
as the dispatcher, dedicated entirely to offloading work to a set of worker
threads. Each of the worker threads operates independently and continu-
ously to execute the AVOps placed by the distributor in the worker-specific
ring buffer, as in Figure 1. The AVOps can be thought of as instruc-
tions on a virtual machine, with pointers corresponding to registers. As
the worker thread finishes operations, it marks the corresponding AVOp

10

as completed. Each worker executes as a pthread, using the non-portable
function pthread_setaffinity_np to tie each worker thread to a core to keep
threads close to their data in cache.

!"#$

%&'

#()

*()

+()

,-./
0()

1()

2()

!"#$%#&'"#%&(

333
4.-"56752(895:50(895;51(895
4.-"59752(6<5:50(6<5;51(6<
4.-"5=752(9>5:50(9>5;51(9>5
4.-"5>752(>?5:50(>?5;51(>?
4.-"5)752()555:50()555;51()
4.-"5675+(895:5#(895@5*(895
4.-"5975+(6<5:5#(6<5@5*(6<
4.-"5=75+(9>5:5#(9>5@5*(9>5
4.-"5>75+(>?5:5#(>?5@5*(>?
4.-"5)75+()555:5#()555@5*()

!"#$

%&'

!"#$%#&'"#%&)

!"#$

%&'

!"#$%#&'"#%&*

!"#$

%&'
#(>?

*(>?

+(>?

!"#$

%&'

!"#$%#&'"#%&+

!"#$%#&'"#%&,

-./01234%#

#(9>

*(9>

+(9>

#(6<

*(6<

+(6<

#(89

*(89

+(89

,-./
0(>?

1(>?

2(>?

,-./
0(9>

1(9>

2(9>

AB%,0$2CB!D

EFG,5H$-"0'

Figure 1: AVOps distributed onto worker core ring buffers

At dispatch, the dispatcher thread receives a stream of AVOps to allo-
cate. Each AVOp has been marked with a designated core. Before providing
each core with the next AVOp, the dispatcher first checks that there is suf-
ficient room on the corresponding worker thread’s ring buffer. If there is
insufficient room, the dispatcher waits. The ring buffer implementations are
lock-free, with only one thread having write permission to a given buffer ele-
ment at a time. Because writes and reads can be reordered, vendor-provided
memory fence instructions (_mm_lfence and _mm_sfence) are inserted using
processor intrinsics in C to insure that both the dispatcher and worker have
a consistent view of the ring buffer.

There is no communication between asynchronous worker threads, and
parallelization hazards are avoided by spacing potentially conflicting AVOps
in the input stream so that the first AVOp must have been completed and
retired from it’s ring buffer before the second AVOp is dispatched.

11

4.0.4 Verification

While a majority of the computation for the target applications is, by na-
ture, hazard free, there are still potential hazards. For example, several
easy-to-parallelize linear operations on large vectors are followed by a dot
product requiring a sum across cores. By design, AVOps do not contain
standard locking mechanisms (such as monitors, semaphores and locks) to
guard memory and avoid corruption. We, therefore, implement a verifica-
tion system (in C) to check that a stream of AVOps is safe, based on three
rules:

1. Reads and writes on the same core are safe.

2. Reads on different cores are safe.

3. No other core can read or write to a core that is writing.

These rules are enforced by running the stream of AVOps to be verified
through ring buffers of the predetermined size for the specified number of
cores. Before each dispatch, it checks that all inputs and outputs for the
new AVOp and all AVOps currently in ring buffers obey the three rules.
If it is safe to add that AVOp, it is added to the appropriate ring buffer
(overwrites one or more old AVOps as it loops around the ring buffer). If
the AVOp is not safe, the verifier stops and reports the hazard.

4.0.5 Performance

Although our synchronization is lock-free, and designed for the type of weak
memory model multi-core CPUs use to achieve high performance, the spins
used to achieve this utilize clock cycles without progress, which will some-
what reduce efficiency. Based on the total CPU time reported by unix time,
we found overhead under 5% when scaling up to 10 cores, [9].

5 Parallelization and Supporting Transformations

Now we turn the term graph derived from a mathematical model into a
sequence of AVOps to execute with our run-time system. As part of this
process we also define new pure-computation AVOps.

Efficient parallel performance is about putting data close to computation,
whether on the same node, same core or, in the case of SIMD, same slot.
Some tasks are embarrassingly parallelizable, while others are serial and
most are somewhere in between. The main advantage to having a term

12

graph with high-level nodes is that we can analyze both the global and the
local structure of the computation. Some nodes can perform operations in
place, which is an advantage if the global computation can be structured so
that all other consumers of the input have finished execution or have their
own copies of the data.

Different nodes put other constraints on memory allocation: A single
FT node requires that all input data be contained in a single memory space,
whereas a vector addition requires that corresponding elements of both vec-
tors be in the same memory space, but otherwise memory can be arbi-
trarily distributed across the system. As a prelude to parallelization, we
make transformations which reduce the constraints on memory distribution
and transform constraints to make adjacent constraints compatible, such as
breaking a 2D FT node into a composition of two 1D FTs which only require
that each row or column be contained in the same memory.

Specific hardware favours some implementations over others. On cached
architectures, chunks of data fitting in cache lines will be processed faster, so
computation should be subdivided along cache lines, and the complete cache
line should be processed together, and as many operations performed before
storing back to main memory. In-register SIMD favours operations which
combine elements stored at address equivalent modulo the SIMD-size. This
means that, in the case of the Fourier transform, for instance, multiple row
FTs of interleaved rows can be much faster than row FTs of non-interleaved
data.

Knowing these effects on parallel performance, we annotate the compu-
tation graph with parallelization instructions one node at a time, starting
with the nodes with the strictest constraints on memory distribution and ex-
tending to up- and down-stream nodes which have strictly weaker memory
constraints and which can be performed in-place. Some operations can-
not be performed in-place, or have constraints which are incompatible with
their neighbours, and this is ok. So, for example, our column FT nodes are
marked as in-place operations with computation subdivided into a multiple
of the SIMD-size columns.

Note that for our target domains, this greedy process works because the
Fourier Transform is both the most constrained and the most computation-
ally intensive. Some loss of efficiency in other computations will be overcome
by improvements in the efficiency of the FTs.

In the next phase, we create a memory map, which, for non-streaming
applications, works as follows: Memory is assigned to inputs and outputs
of the global computation. In our case, the inputs are model variables
and parameters, and the outputs are function values and gradients. Next,

13

the remaining nodes are topologically sorted and unassigned outputs are
assigned to memory. A node which was identified as in-place in the first
step has the memory assignment copied from the overwritten output. A
node which is not in-place but is executed interleaved with its neighbours has
memory allocated for a number of chunks of data equal to workers×pipeline-
depth. The pipeline-depth is the number of operations which can fit in the
ring buffers for each worker and potentially interfere with each other. This is
the most common mechanism for ensuring parallel safety, and it involves no
loss in throughput. Finally, nodes whose consumers use a different memory
division (i.e., row and column FTs) have their total memory requirement
allocated, because generally no downstream computations can start until
this node fully completes.

We can infer that memory requirements and throughput strongly depend
on the exact presentation of the computation graph. We mentioned that
row-FTs are less efficient than interleaved row-FTs (or column-FTs), and
this is the basis of one of our pre-parallelization transformations: Given a
2d FT followed by a projection, π, onto a subspace which is separable (i.e.,
is the composition of a projection onto rows and another onto columns)

π ft + :
X

Y

// //
44

** (9)

we can separate both transformations and interleave them, thereby not com-
puting FTs of rows which would be projected out:

πrow ftrow πcol ftcol + :
X

Y

// // //
44

**
//

(10)

and the remaining computations will go even faster by switching to column-
FTs (and transposes):(

tr πcol

)
ftcol

(
tr πcol

)
ftcol + :

X

Y

// // // // // //
44

** (11)

where we have also used the fact that tr ◦πcol = πrow ◦ tr, and parentheses
mark operations fused into a single AVOp.

6 Conclusion and Work in Progress

We have presented some highlights of recent work on CEL, giving the flavour
of the modelling DSL for mathematicians and physicists and the term graph

14

rewriting DSL used to specify rule-based optimizations. To handle billion-
variable problems, we needed to treat vectors, linear transformations and
generalized stencil computations as first-class objects and not compositions
of scalar values and operations, and this necessitated a novel method for
calculating gradients.

This is more than a proof-of-concept: It has been used to produce a
high-performance MRI reconstruction system for Alltech Medical Systems
America; and we have met the enumerated design goals which close section
§1. But a lot of work remains to encode, as term graph rewriting rules, all
the techniques used by experts in high-performance signal processing and
image reconstruction, and we see a lot of scope for using strong typing to
further enhance software quality.

We thank NSERC, IBM Canada, MITACS and OCA for research assis-
tance.

References

[1] Anand, C.K., Kahl, W.: An optimized Cell BE special function library
generated by Coconut. IEEE Transactions on Computers (2009)

[2] Corpetti, T., Mémin, E., Pérez, P.: Dense Estimation of Flud Flows.
IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3)
(March 2002)

[3] Dobrogost, M., Anand, C., Kahl, W.: Verified Multicore Parallelism
using Atomic Verifiable Operations, pp. 3–45. CRC Press (2013)

[4] Ghosh, D.: Dsl for the uninitiated. Commun. ACM 54(7), 44–50 (Jul
2011), http://doi.acm.org/10.1145/1965724.1965740

[5] Héas, P., Mémin, E., Heitz, D.: Self-similar regularization of optic-flow
for turbulent motion estimation. The 1st International Workshop on
Machine Learning for Vision-based Motion Analysis, 1–12 (2008)

[6] Holland, D.J., Malioutov, D.M., Blake, A., Sederman, A.J., Gladden,
L.F.: Reducing data acquisition times in phase-encoded velocity imag-
ing using compressed sensing. J. Magn. Reson. 203, 236–246 (Apr 2010)

[7] Issa, B., Moore, R.J., et al : Quantification of blood velocity and flow
rates in the uterine vessels using EPI at 0.5T. J Magn Reson Imaging
31, 921–927 (Apr 2010)

15

[8] Marshall, I.: Computational simulations and experimental studies of 3D
phase-contrast imaging of fluid flow in carotid bifurcation geometries.
J Magn Reson Imaging 31, 928–934 (Apr 2010)

[9] Pavlin, J.L.M.: Symbolic Generation of Parallel Solvers for Uncon-
strained Optimization. MSc Thesis, McMaster University (2012)

[10] Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Win-
ston (1977)

16

