
A Domain-Specific Architecture for
Elementary Function Evaluation

Anuroop Sharma
Christopher Kumar Anand anandc@mcmaster.ca

Department of Computing and Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1

c© 12 September 2014

We propose a Domain-Specific Architecture for elementary function com-
putation to improve throughput while reducing power consumption as a
model for more general applications: support fine-grained parallelism by
eliminating branches, eliminate the duplication required by co-processors
by decomposing computation into instructions which fit existing pipelined
execution models and standard register files. Our example instruction archi-
tecture (ISA) extension supports scalar and vector/SIMD implementations
of table-based methods of calculating all common special functions, with
the aim of improving throughput by (1) eliminating the need for tables in
memory, (2) eliminating all branches for special cases, (3) reducing the total
number of instructions. Two new instructions are required, a table-lookup
instruction and an extended-precision floating-point multiply-add instruc-
tion with special treatment for exceptional inputs.

To estimate the performance impact of these instructions, we imple-
mented them in a modified Cell/B.E. SPU simulator and observed an av-
erage throughput improvement of 2.5 times for optimized loops mapping
single functions over long vectors.

Computing and Software Report CAS-14-06-CA

The authors thank NSERC, MITACS, Optimal Computational Algorithms,
Inc., and IBM Canada for financial support.

Elementary function libraries are often called from performance-critical
code sections, and hence contribute greatly to the efficiency of numerical
applications, and the performance of these and libraries for linear algebra
largely determine the performance of important applications. Current hard-
ware trends impact this performance as

• longer pipelines and wider superscalar dispatch favour implementa-
tions which distribute computation across different execution units
and present the compiler with more opportunities for parallel execu-
tion, but make branches more expensive;

• Single-Instruction-Multiple-Data (SIMD) parallelism makes handling
cases via branches very expensive;

• memory throughput and latency which is not advancing as fast as
computational throughput hinders the use of lookup tables;

• power constraints limit performance more than area.

The last point is interesting, and is gives rise to the notion of “dark silicon”
in which circuits are designed to be un- or under-used to save power. The
consequences of these thermal limitations vs silicon usage have been analyzed
[6], and a number of performance-stretching approaches have been proposed
[16] including the integration of specialized co-processors.

Our proposal is less radical: instead of adding specialized co-processors,
add novel fully pipelined instructions to existing CPUs and GPUs, use the
existing register file, reuse existing silicon for expensive operations, e.g.,
fused multiply-add operations, eliminate costly branches, but add embedded
look-up tables which are a very effective use of dark silicon. In the present
paper, we demonstrate this approach for elementary function evaluation,
i.e., libm functions and especially vector versions of them.

To optimize performance, our approach takes the successful accurate
table approach of Gal et al [8, 9] coupled with algorithmic optimizations
[14, 15] and branch and table unifications [2], to reduce all fixed-power-
, logarithm- and exponential-family functions to a hardware-based lookup
followed by a handful of floating-point operations, mostly fused multiply-
add instructions evaluating a single polynomial. Other functions like pow

require multiple such basic stages, but no functions require branches to
handle exceptional cases, including subnormal and infinite values.

Although fixed powers (including square roots and reciprocals) of most
finite inputs can be efficiently computed using Newton-Raphson iteration
following a software or hardware estimate [7], such iterations necessarily

1

introduce NaN intermediate values, which can only be corrected using ad-
ditional instructions (branches, predication, or selection). Therefore, our
proposed implementations avoid iterative methods.

For evaluation of the approach, the proposed instructions were imple-
mented in a Cell/B.E. [4] SPU simulator, and algorithms for a standard
math function library were developed that leverage these proposed addi-
tions. Overall, we found the new instructions would result in an aver-
age 2.5 times throughput improvement on this architecture, versus current
published performance results (Mathematical Acceleration Subsystem, 5.0,
IBM). Given the simple data dependency graphs involved, we expect similar
improvements from implementing these instructions on all two-way SIMD
architectures supporting fused multiply-add instructions. Higher-way SIMD
architectures would likely benefit more.

In the following, the main approach is developed, and the construction
of two representative functions, log x and log(x+1), are given in detail, pro-
viding insight by example into the nature of the implementation. In some
sense these represent the hardest case, although the trigonometric functions
require multiple tables, and there is some computation of the lookup “keys”,
the hardware instructions themselves are simpler. For a complete specifica-
tion of the algorithms used, see [13].

1 New Instructions

Driven by hardware floating-point instructions, the advent of software pipelin-
ing and shortening of pipeline stages favoured iterative algorithms (see,
e.g., [12]); the long-running trend towards parallelism has engendered a
search for shared execution units [5], and in a more general sense, a focus on
throughput rather than low latency. In terms of algorithmic development
for elementary functions, this makes combining short-latency seed or table
value look ups with standard floating point operations attractive, exposing
the whole computation to software pipelining by the scheduler.

In proposing Instruction Set Architecture (ISA) extensions, one must
consider four constraints:

• the limit on the number of instructions imposed by the size of the ma-
chine word, and the desire for fast (i.e., simple) instruction decoding,

• the limit on arguments and results imposed by the architected number
of ports on the register file,

2

function cycles
double

cycles
double Speedup max error table poly log2M

new SPU (%) (ulps) size(N) order

recip 3 11.3 376 0.500 2048 3 ∞
div 3.5 14.9 425 1.333 recip 3

sqrt 3 15.4 513 0.500 4096 3 18

rsqrt 3 14.6 486 0.503 4096 3 ∞
cbrt 8.3 13.3 160 0.500 8192 3 18

rcbrt 10 16.1 161 0.501 rcbrt 3 ∞
qdrt 7.5 27.6 368 0.500 8192 3 18

rqdrt 8.3 19.6 229 0.501 rqdrt 3 18

log2 2.5 14.6 584 0.500 4096 3 18

log21p 3.5 n/a n/a 1.106 log2 3

log 3.5 13.8 394 1.184 log2 3

log1p 4.5 22.5 500 1.726 log2 3

exp2 4.5 13.0 288 1.791 256 4 18

exp2m1 5.5 n/a n/a 1.29 exp2 4

exp 5.0 14.4 288 1.55 exp2 4

expm1 5.5 19.5 354 1.80 exp2 4

atan2 7.5 23.4 311 0.955 4096 2 18

atan 7.5 18.5 246 0.955 atan2 2+3

asin 11 27.2 247 1.706 atan2 2+3+3

acos 11 27.1 246 0.790 atan2 2+3+3

sin 11 16.6 150 1.474 128 3+3 52

cos 10 15.3 153 1.025 sin 3+3

tan 24.5 27.6 113 2.051 sin 3+3+3

Table 1: Accuracy, throughput and table size (for SPU/double precision).

• the limit on total latency required to prevent an increase in maximum
pipeline depth,

• the need to balance increased functionality with increased area and
power usage.

As new lithography methods cause processor sizes to shrink, the relative
cost of increasing core area for new instructions is reduced. The net cost
may even be negative if the new instructions can reduce code and data size,
thereby reducing pressure on the memory interface (which is more difficult

3

...

lookup fn 1

fmaX fma fma

fma or fm

lookup fn 2

x
f(x)1

c

i

ii & iii

Figure 1: Data flow graph with instructions on vertices, for log x, roots
and reciprocals. Most functions follow the same basic pattern, or are a
composition of such patterns.

to scale).

To achieve a performance benefit, ISA extensions should do one or more
of the following

• reduce the number of machine instructions in compiled code,

• move computation away from bottleneck execution units or dispatch
queues, or

• reduce register pressure.

Considering the above limitations and ideals, we propose to add two
instructions, the motivation for which follows below:

d = fmaX a b c an extended range floating-point multiply-add, with
the first argument having 12 exponent bits and 51 mantissa bits, and
non-standard exception handling;

t1 = lookup a b f t an enhanced table look-up based on one or two
arguments, and containing immediate argument specifying the func-
tion number and the sequence of the lookup, e.g. the first lookup used
for range reduction or the second lookup used for function reconstruc-
tion.

It is easiest to see them used in an example. Figure 1 describes the data
flow graph (omitting register constants), which is identical for a majority
of the elementary functions. The correct lookup specified as an immediate
argument to lookup, and the final operation being a fma for the log functions
and fm otherwise. All of the floating point instructions also take constant
arguments which are not shown. For example, the fmaX takes an argument
which is −1.

4

The dotted box in Figure 1 represents a varying number of fused multiply-
adds used to evaluate a polynomial after the multiplicative range reduction
performed by the fmaX. The most common size for these polynomials is or-
der three, so the result of the polynomial (the left branch) is available four
floating point operations later (typically about 24-28 cycles) than the result
1/c. The second lookup instruction performs a second lookup, for example,
the log x, it looks up log2 c, and substitutes exceptional results (±∞, NaN)
when necessary. The final fma or fm instruction combines the polynomial
approximation on the reduced interval with the table value.

The gray lines indicate two possible data flows for three possible imple-
mentations:

i the second lookup instruction is a second lookup, using the same input;

ii the second lookup instruction retrieves a value saved by the first
lookup (in final or intermediate form) from a FIFO queue;

iii the second lookup instruction retrieves a value saved in a slot accord-
ing to an immediate tag which is also present in the corresponding
first lookup.

In the first case, the dependency is direct. In the second two cases the
dependency is indirect, via registers internal to the execution unit handling
the look-ups.

All instruction variations have two register inputs and one or no outputs,
so they will be compatible with existing in-flight instruction and register
tracking. On lean in-order architectures, the variants with indirect depen-
dencies — (ii) and (iii) — reduce register pressure and simplify modulo loop
scheduling. This would be most effective in dedicated computational cores
like the SPUs in which pre-emptive context switching is restricted.

The variant (iii) requires additional instruction decode logic, but may
be preferred over (ii) because tags allow lookup instructions to execute in
different orders, and for wide superscalar processors, the tags can be used
by the unit assignment logic to ensure that matching lookup instructions
are routed to the same units. On Very Long Instruction Word machines,
the position of lookups could replace or augment the tag.

In low-power environments, the known long minimum latency between
the lookups would enable hardware designers to use lower power but longer
latency implementations of most of the second lookup instructions.

To facilitate scheduling, it is recommended that the FIFO or tag set be
sized to the power of two greater than or equal to the latency of a floating-
point operation. In this case, the number of registers required will be less

5

than twice the unrolling factor, which is much lower than what is possible
for code generated without access to such instructions. The combination of
small instruction counts and reduced register pressure eliminate the obsta-
cles to in-lining these functions.

We recommend that lookups be handled by either a load/store unit,
or, for vector implementations with a complex integer unit, by that unit.
This code will be limited by floating-point instruction dispatch, so moving
computation out of this unit will increase performance.

1.0.1 Exceptional Values

A key advantage of the proposed new instructions is that the complications
associated with exceptional values (0, ∞, NaN, and values which over- or
under-flow at intermediate stages) are internal to the instructions, eliminat-
ing branches and predicated execution.

Iterative methods with table-based seed values cannot achieve this in
most cases because

1. in 0 and ±∞ cases the iteration multiplies 0 by ∞ producing a NaN;

2. to prevent over/underflow for high and low input exponents, matched
adjustments are required before and after polynomial evaluation or
iterations.

By using the table-based instruction twice, once to look up the value used in
range reduction and once to look up the value of the function corresponding
to the reduction, and introducing an extended-range floating point repre-
sentation with special handling for exceptions, we can handle both types of
exceptions without extra instructions.

In the case of finite inputs, the value 2−e/c, such that

2−e

c
· x− 1 ∈ [−2−N ..2−N]

returned by the first lookup is a normal extended-range value. In the case
of subnormal inputs, extended-range are required to represent this lookup
value because normal IEEE value would saturate to ∞. Treatment of the
large inputs which produce IEEE subnormals as their approximate recip-
rocals can be handled (similar to normal inputs) using the extended range
representation. The extended range number is biased by +2047, and the
top binary value (4095) is reserved for ±∞ and NaNs and 0 is reserved for

6

function finite > 0 +∞ −∞ ±0 finite < 0

recip (2
−e

c)ext, (2
−e

c)sat 0, 0 0, 0 0, ±∞ (−2−e

c)ext, (−2−e

c)sat

sqrt (2
−e

c)ext,
2e/2

c 0, ∞ 0, NaN 0, 0 0, NaN

rsqrt (2
−e

c)ext,
2−e/2

c 0, 0 0, NaN 0, ∞ 0, NaN

log2 (2
−e

c)ext, e+log2 c 0, ∞ 0, NaN 0, −∞ 0, NaN

exp2 c, 2I · 2c 0, ∞ NaN, 0 0, 1 c, 2−I · 2c

+ext finite −∞ ∞ NaN

finite c c c 0

−∞ c c 0 0

∞ c 0 c 0

NaN c c c 0

∗ext finite −∞ ∞ NaN

finite6= 0 c 2 2 2

−∞ −∞f −∞f −∞f −∞f

∞ ∞f ∞f ∞f ∞f

NaN0 NaNf NaNf NaNf NaNf

NaN1 2f 2f 2f 2f
NaN2 1/

√
2f 1/

√
2f 1/

√
2f 1/

√
2f

NaN3 0f 0f 0f 0f

Table 2: top: Values returned by lookup instructions, for IEEE
floating-point inputs (−1)s2ef , which rounds to the nearest integer I =
rnd((−1)s2ef). In case of exp2, inputs < −1074 are treated as −∞ and
inputs > 1024 are treated as ∞. For inputs < −1022, we create subnormal
numbers for the second lookup. bottom: Treatment of exceptional values by
fmaX follows from that of addition and multiplication. The first argument
is given by the row and the second by the column. Conventional treatment
is indicated by a “c”, and unusual handling by specific constant values.

±0 similar to IEEE floating point. When these values are supplied as the
first argument of fmaX, they override the normal values, and fmaX simply
returns the corresponding IEEE bit pattern.

The the second lookup instruction returns an IEEE double except when
used for divide, in which case it also returns an extended range result.

In Table 2, we summarize how each case is handled, and describe it
in detail in the following section. Each cell in Table 2 contains the value
used in the reduction, followed by the corresponding function value. The
first is given as an extended-range floating-point number which trades one
bit of stored precision in the mantissa with a doubling of the exponent
range. In all cases arising in this library, the extra bit would be one of
several zero bits, so no actual loss of precision occurs. For the purposes

7

of elementary function evaluation, subnormal extended-range floating point
numbers are not needed, so they do not need to be supported in the floating
point execution unit. As a result, the modifications to support extended-
range numbers as inputs are minor.

Take, for example the first cell in the table, recip computing 1/x for a
normal positive input. Although the abstract values are both 2−e/c, the
bit patterns for the two look ups are different, meaning that 1/c must be
representable in both formats. In the next cell, however, for some subnormal
inputs, 2−e/c is representable in the extended range, but not in IEEE floating
point, because the addition of subnormal numbers makes the exponent range
asymmetrical. As a result, the second value may be saturated to ∞. The
remaining cells in this row show that for ±∞ input, we return 0 from both
lookups, but for ±0 inputs the first lookup returns 0 and the second lookup

returns ±∞. In the last column we see that for negative inputs, the returned
values change the sign. This ensures that intermediate values are always
positive, and allows the polynomial approximation to be optimized to give
correctly rounded results on more boundary cases. Both lookups return
quiet NaN outputs for NaN inputs.

Contrast this with the handling of approximate reciprocal instructions.
For the instructions to be useful as approximations 0 inputs should return∞
approximations and vice versa, but if the approximation is improved using
Newton-Raphson, then the multiplication of the input by the approximation
produces a NaN which propagates to the final result.

The other cases are similar in treating 0 and ∞ inputs specially. Note-
worthy variations are that log2 x multiplicatively shifts subnormal inputs
into the normal range so that the normal approximation can be used, and
then additively shifts the result of the second lookup to componsate; and 2x

returns 0 and 1 for subnormal inputs, because the polynomial approximation
produces the correct result for the whole subnormal range.

In Table 2, we list the handling of exceptional cases. All exceptional
values detected in the first argument are converted to the IEEE equivalent
and are returned as the output of the fmaX, as indicated by sub-script f (for
final). The subscripted NaNs are special bit patterns required to produce
the special outputs needed for exceptional cases. For example, when fmaX

is executed with NaN1 as the first argument (one of the multiplicands) and
the other two arguments are finite IEEE values, the result is 2 (in IEEE
floating point format).

fmaX NaN1 finite1 finite2 = NaN1 · finite1 + finite2 = 2

If the result of multiplication is an ∞ and the addend is the ∞ with the

8

opposite sign, then the result is zero, although normally it would be a NaN.
If the addend is a NaN, then the result is zero. For the other values, indi-
cated by “c” in table 2, fmaX operates as a usual fused multiply-accumulate
except that the first argument (a multiplicand) is an extended range floating
point number. For example, the fused multiplication and addition of finite
arguments saturate to ±∞ in the usual way.

Finally, for exponential functions, which return fixed finite values for a
wide range of inputs (including infinities), it is necessary to override the
range reduction so that it produces an output which results in a constant
value after the polynomial approximation. In the case of exponential, any
finite value which results in a non-zero polynomial value will do, because the
second lookup instruction returns 0 or ∞ and multiplication by any finite
value will return 0 as required.

Lookup Internals The lookup instructions perform similar operations for
each of the elementary functions we have considered. The function number
is an immediate argument. In assembly language each function could be a
different macro, while in high level languages the pair could be represented
by a single function returning a tuple or struct.

A simplified data-flow for the most complicated case, log2 x, is repre-
sented in Figure 2. The simplification is the elimination of the many single-
bit operations necessary to keep track of exceptional conditions, while the
operations to substitute special values are still shown. Critically, the dia-
gram demonstrates that the operations around the core look-up operations
are all of low complexity. The graph is explained in the following, where
letter labels correspond to the blue colored labels in Figure 2. This rep-
resentation is for variant (ii) or (iii) for the second lookup and includes a
dotted line on the centre-right of the figure at (a), deliniating a possible set
of values to save at the end of the first lookup where the part of the data
flow below the line is computed in the second lookup instruction.

Starting from the top of the graph, the input (b) is used to generate two
values (c) and (d), 2−e/µ and e+log2 µ in the case of log2 x. The heart of the
operation are two look up operations (e) and (f), with a common index. In
implementation (i) the look ups would be implemented separately, while in
the shared implementations (ii) and (iii), the lookups could be implemented
more efficiently together.

Partial decoding of subnormal inputs (g) is required for all of the func-
tions except the exponential functions. Only the leading non-zero bits are
needed for subnormal values, and only the leading bits are needed for normal
values, but the number of leading zero bits (h) is required to properly form

9

input

sign exp mant

drop leading zeros

numZeros+1

12 bit lookup

lowExpBit0b1111111111

add

switch

~

s e12 m51
lookup output

s e11 m52
retreive output

subs 0x7ff

>=1

exp

add 1

expP1

adjustedE

switch

e (last 10 bits)

subs 0b10..0

subs 0b0..0

12 bit lookup

bitRot

rotate pad 10 left by

add 0x7ff

low10Bits ~

add 0x3ff

switch

concatenate bit

xor

add drop carry

add left justified,
 drop carry

drop up to 22 leading-
zeros and first 1, round

subtract from
0x3ff + 10 moreThan22Zeros

subs 0b0..0

<1

isNot12

concatenate bit

51

42

42+1

44

30

31

52

52

52

11

11

11
52

12

~

22

complement bits

bits in data path

add add/subtract, right-justified inputs
unless stated

rotate bits, either to clear leading
zeros or according to second
(length) argument

select one of two inputs or
immediate according to logical input
(not shown for exceptions)

(c)

(b)

(d)

(e)

(f)

(g)

recommended lookup/retreive
boundary requiring 46 bit storage

lower 10

11

(h)

(i)

(j)

(k)

6

leading12Mant

4

(a)

(p)

(r)

(o)

(l)

(m)

(n)

(q)

(s)

(t)

(u)

(v)

5

Figure 2: Bit flow graph with operations on vertices, for log x lookup. Shape
indicates operation type, and line width indicates data paths width in bits.
Explanation of function in the text.

10

the exponent for the multiplicative reduction. The only switch (i) needed
for the first lookup output switches between the reciprocal exponents valid
in the normal and subnormal cases respectively. Accurate range reduction
for subnormals requires both extreme end points, e.g. 1/2 and 1, because
these values are exactly representable. As a result, two exponent values
are required, and we accommodate this by storing an exponent bit (j) in
addition to the 51 mantissa bits.

On the right hand side, the look up (e) for the second lookup operation
also looks up a 4-bit rotation, which also serves as a flag. We need 4 bits
because the table size 212 implies that we may have a variation in the ex-
ponent of the leading nonzero bit of up to 11 for nonzero table values. This
allows us to encode in 30 bits the floating mantissa used to construct the
second lookup output. This table will always contain a 0, and is encoded
as a 12 in the bitRot field. In all other cases, the next operation concate-
nates the implied 1 for this floating-point format. This gives us an effective
31-bits of significance (l), which is then rotated into the correct position in
a 42-bit fixed point number. Only the high-order bit overlaps the integer
part of the answer generated from the exponent bits, so this value needs to
be padded. Because the output is an IEEE float, the contribution of the
(padded) value to the mantissa of the output will depend on the sign of the
integer exponent part. This sign is computed by adding 1 (m) to the biased
exponent, in which case the high-order bit is 1 if and only if the exponent
is positive. This bit (n) is used to control the sign reversal of the integer
part (o) and the sign of the sign reversal of the fractional part, which is
optimized by padding (p) after xoring (q) but before the +1 (r) required
to negate a two’s-complement integer.

The integer part has now been computed for normal inputs, but we
need to switch (s) in the value for subnormal inputs which we obtain by
biasing the number of leading zeros computed as part of the first step. The
apparent 75-bit add (t) is really only 11 bits with 10 of the bits coming from
padding on one side. This fixed-point number may contain leading zeros, but
the maximum number is log2((maximum integer part) − (smallest nonzero
table value)) = 22, for the tested table size. As a result the normalization
(u) only needs to check for up to 22 leading zero bits, and if it detects that
number set a flag to substitute a zero for the exponent (v) (the mantissa
is automatically zero). The final switches substitute special values for ±∞
and a quiet NaN.

If the variants (ii) or (iii) are implemented, the hidden registers must
either be saved on context/core switches, or such switches must be disabled

11

recip
div
sqrt
rsqrt
cbrt
rcbrt
qdrt
rqdrt
log2
log
log1p
exp2
exp
expm1
atan2
atan
asin
acos
sin
cos
tan

0 5 10 15 20 25 30

Figure 3: Throughput, measured in cycles per double, for implementations
of elementary function with (upper bars) and without (lower bars) the novel
instructions proposed in this paper.

during execution of these instructions, or execution of these instructions
must be limited to one thread at a time.

2 Evaluation

Two types of simulations of these instructions were carried out. First, to test
accuracy, our existing Cell/B.E. functional interpreter, see [1], was extended
to include the new instructions. Second, we simulated the log lookups and
fmaX using logical operations on bits, i.e., a hardware simulation without
timing, and verified that the results match the interpreter.

Performance Since the dependency graphs (as typified by Figure 1) are
close to linear, and therefore easy to schedule optimally, the throughput and
latency of software-pipelined loops will be essentially proportional to the
number of floating-point instructions. Table 1 lists the expected throughput
for vector math functions with and without the new instructions. Figure 3
demonstrated the relative measured performance improvements. Overall,
the addition of hardware instructions to the SPU results in a mean 2.5×
throughput improvement for the whole function library. Performance im-
provements on other architectures will vary, but would be similar, since the

12

acceleration is primarily the result of eliminating instructions for handling
exceptional cases.

Accuracy We tested each of the functions by simulating execution for
20000 pseudo-random inputs over their natural ranges or [−1000π, 1000π]
for trigonometric functions and comparing each value to a 500-digit-precision
Maple [11] reference. Table 1 shows a maximum 2.051ulp error, with many
functions close to correct rounding. This is well within the OpenCL specifi-
cations [10], and shows very good accuracy for functions designed primarily
for high throughput and small code size. For applications requiring even
higher accuracy, larger tables could be used and polynomials with better
rounding properties could be searched for using the lattice-basis-reduction
method of [3].

3 Conclusion

We have demonstrated considerable performance improvements for fixed
power, exponential and logarithm calculations by using novel table lookup
and fused multiply-add instructions in simple branch-free accurate-table
based algorithms. Performance improved less for trigonometric functions,
but this improvement will grow with more cores and/or wider SIMD. These
calculations ignored the effect of reduced power consumption caused by
reducing instruction dispatch, function calls and branching and reducing
memory accesses for large tables, which will mean that these algorithms will
continue to scale longer than conventional ones.

For target applications, just three added opcodes pack a lot of perfor-
mance improvement, but designing the instructions required insights into
the algorithms, and even a new algorithm [2] for the calculation of these
functions. We invite experts in areas such as cryptography and data com-
pression to try a similar approach.

Some work in this paper is covered by US patent application 20110296146.

References

[1] Anand, C.K., Kahl, W.: An optimized Cell BE special function library
generated by Coconut. IEEE Transactions on Computers (2009)

[2] Anand, C.K., Sharma, A.: Unified tables for exponential and logarithm
families. ACM Transactions on Mathematical Software 37(3) (2010)

13

[3] Brisebarre, N., Chevillard, S.: Efficient polynomial L∞ approximations.
In: Proceedings of the 18th IEEE Symposium on Computer Arithmetic.
pp. 169–176. IEEE Computer Society Press, Los Alamitos, CA, Santa
Monica, USA (2007)

[4] Corporation, I.B.M.: Cell Broadband Engine Programming
Handbook. IBM Systems and Technology Group, https://www-
01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC
(2008)

[5] Ercegovac, M.D., Lang, T.: Multiplication/division/square root mod-
ule for massively parallel computers. Integr. VLSI J. 16(3), 221–234
(1993)

[6] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger,
D.: Dark silicon and the end of multicore scaling. SIGARCH Comput.
Archit. News 39(3), 365–376 (Jun 2011)

[7] Fike, C.T.: Starting approximations for square root calculation on ibm
system /360. Commun. ACM 9(4), 297–299 (1966)

[8] Gal, S.: Computing elementary functions: A new approach for achiev-
ing high accuracy and good performance. In: Proceedings of the Sym-
posium on Accurate Scientific Computations. pp. 1–16. LNCS 235,
Springer-Verlag, London, UK (1986)

[9] Gal, S., Bachelis, B.: An accurate elementary mathematical library
for the IEEE floating point standard. ACM Trans. Math. Softw. 17(1),
26–45 (1991)

[10] Group, K.O.W.: The opencl specification version: 1.0 document revi-
sion: 29 (2008)

[11] Maplesoft: Maple 12 User Manual. Maplesoft (2008)

[12] Schmookler, M.S., Agarwal, R.C., Gustavson, F.G.: Series approxima-
tion methods for divide and square root in the Power3(TM) processor.
In: ARITH ’99: Proceedings of the 14th IEEE Symposium on Com-
puter Arithmetic. p. 116. IEEE Computer Society, Washington, DC,
USA (1999)

[13] Sharma, A.: Elementary Function Evaluation Using New Hardware
Instructions. MSc thesis, McMaster University (2010)

14

[14] Tang, P.T.P.: Table-driven implementation of the logarithm function in
ieee floating-point arithmetic. ACM Trans. Math. Softw. 16(4), 378–400
(1990)

[15] Tang, P.T.P.: Table-driven implementation of the expm1 function in
ieee floating-point arithmetic. ACM Trans. Math. Softw. 18(2), 211–
222 (1992)

[16] Taylor, M.B.: Is dark silicon useful?: Harnessing the four horsemen of
the coming dark silicon apocalypse. In: Proceedings of the 49th Annual
Design Automation Conference. pp. 1131–1136. DAC ’12, ACM, New
York, NY, USA (2012)

15

