
Anand-Kahl - Coconut - Google 2008

Christopher Kumar Anand
Wolfram Kahl

Coconut:
 Code Constructing User

Tool

McM aster U n i versi t y http://ocalgorithms.com

Anand-Kahl - Coconut - Google 2008

Sometimes
we need
both.

2

We can write safe software.

We can write fast software.

Anand-Kahl - Coconut - Google 2008

Performance =
Parallelism

• 384-way ||ism

• 4-way SIMD
• 8-way cores
• 6-times unrolling
• double buffering

3

Cell BE

Anand-Kahl - Coconut - Google 2008

Roadmap
• SIMD Parallelism

extensible DSL captures patterns
verification via graph transformation
generated library shipping (Cell BE SDK 3.0)

• Multi-Core Parallelism
model on ILP
generation via graph transformation
linear-time verification
run time

• Distant Parallelism
verification via model checking

➳

½
✔

✔

✔

✔
➳

∞

Sc
he

du
lin

g:
 E

xS
SP

✔

Anand-Kahl - Coconut - Google 2008

Layers of Domain
Specific Languages

5

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Anand-Kahl - Coconut - Google 2008

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Higher Order Functions

• examples
• map
• zip

• matrix multiplcation
• SIMD parallelization
• multi-core parallelization

6

Anand-Kahl - Coconut - Google 2008

map

• apply a function to a list

• overhead

• increment pointer

• increment pointer

• increment counter

• compare counter

• branch

7

for (i=0; i<10; i++) {
 out[i] = fun(in[i]);
}

fun

fun

fun

fun

fun

Anand-Kahl - Coconut - Google 2008

Map Loop Overhead

• one arithmetic instruction
• in/out pointers + induction variable + hint

8

vector n

16 unroll -4 unroll 16 rem unused

pIn count pOut unused a (int add)

rotqbyi 8

store(s)

load(s)

rotqbii 2

rotqby
pIn countpOut unused

2 bits

unusedloop: exit:
hint /

branch

(1) (2)

(3)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

shufb
(4)

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

0
1

0
2

0
3 0 0 0 0

body

vector 2
vector 1

vector n

vector 2
vector 1

Anand-Kahl - Coconut - Google 2008

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Low Level DSL
• declarative assembly
• support functions
• polynomial approximation
• table lookup in registers

• verify assertions @ compile time
• compile time computation

• user extensible

9

Anand-Kahl - Coconut - Google 2008

Compact Code

10

C E L L S P U M a t h L ib r a r y

0

0.2

0.4

0.6

0.8

1

2 4 6 8

–40

–30

–20

–10

0
2 4 6 8

F igure 2: Six teen approxima t ing polynomial segments, above, and t he corresponding error in bi ts,
below.

5.3 H y p er b olic Si ne

H yperbolic sine is defined by

sinh x =
e x − e − x

2
. (10)

I t is di cul t to approxima te by polynomials over large ranges, because i t grows exponent ially.
T herfore, for large values we use (10), but for small values of x , such t ha t e x and e − x are close in
value:

(i) precision loss grows as n where x = 2 − n , because of similarity, and

13

C E L L S P U M a t h L ib r a r y

l ook2 = shu f b l ook1 l ook1
$ unby t e s [1 , 1 , 1 , 1 , 5 , 5 , 5 , 5 , 9 , 9 , 9 , 9 , 13 , 13 , 13 , 13]

l ook3 = s e l b (unw r ds4 0x00010203) l ook2 (unw r ds4 0x1c1c1c1c)

To improve t he accuracy of the polynomial approxima t ions, we found i t necessary to evalua te t he
polynomials

po l y = ho r ne r V (con t i gLookup a r c s i nTab l e l ook3) xCen t r ed

using interval-centered coordina tes
xCen t r ed = f s xPos i t i v e o f f s e t

where i t is very impor t ant t ha t t he same lookup key is used to look up t he o set to cent re t he inpu t ,
ot herwise boundary cases could produce arbi t rary errors.

[o f f s e t] = con t i gLookup (con t i gTab l e o f f s e t s) l ook3

For t he first intervals we now have t he final answer, bu t for t he second intervals we need to apply
t he square root and sub t ract from π / 2.

p i Ov e r 2sq r t P = f s p i Ov e r 2 (sq r t SPU po l y)

T he appropria te final resul t is chosen wit h a select mask
yPos i t i v e = s e l b po l y p i Ov e r 2sq r t P sw i t ch

which must again be looked up using t he same key, to prevent problems wi t h edge cases.
[sw i t ch] = con t i gLookup (con t i gTab l eWo r d sw i t che s) l ook3

To ensure synchroniza t ion, t he following const ants are printed from M aple to H askell:
sw i t che s = [[0 , 0 , 0 , 0 , - 1 , - 1 , - 1 , - 1]]
o f f s e t s = [[0 , 0 . 1875 , 0 . 3125 , 0 . 4375 , 0 . 5625 , 0 . 6875 , 0 . 8125 , 1]]

5.2 H y p er b olic Ta ngen t

H yperbolic t angent is defined by

t anh(x) =
e x − e − x

e x + e − x , (9)

but using t his defini t ion for compu t a tion would be di cul t because we would run into problems wi t h
sub t ract ion of similar numbers, and division of similar large and small numbers, all of which int ro-
duce addi t ional error. For t una tely, hyperbolic t angent rises very quickly to 1, arct anh(1 − 2 − 24) =
8.6643397420981601947, and can be approxima ted by polynomials in t he range [− 8.664339, 8.664339].
So any number larger t han t his in magnit ude should round to ± 1.

T he funct ion is unrolled to process two inpu ts a t once because the 16-way lookup can be bet ter
amor t ized t his way.

For t he final step, we put the sign back:
f t anh (v1 , v2) = (s e l b r e su l t 1O r One v1 s i gnB i t , s e l b r e su l t 2O r One v2 s i gnB i t)
whe r e

t ake the posi t ive par t
v1Pos i t i v e = andc v1 s i gnB i t
v2Pos i t i v e = andc v2 s i gnB i t

compare to arct anh(1 − 2 − 24) because t his is t he smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

i sB i g1 = f cmg t v1Pos i t i v e (un f l oa t s4 $ 8 . 6643397420981601947)
i sB i g2 = f cmg t v2Pos i t i v e (un f l oa t s4 $ 8 . 6643397420981601947)

which is applied to the final resul t:

11

A n a n d , L i , S h a r m a & S r i va s t ava

r e su l t 1O r One = s e l b r e su l t 1 (un f l oa t s4 1) i sB i g1
r e su l t 2O r One = s e l b r e su l t 2 (un f l oa t s4 1) i sB i g2

do parallel lookup for two vector inputs (8 floa ts) of polynomial coe cients, genera ted by M aple:
c s = (coe f f s t anhLkup t anhC (v1Pos i t i v e , v2Pos i t i v e))

evalua te polynomials using Horner’s rule:
r e su l t 1 = ho r ne r V (map f s t c s) v1Pos i t i v e
r e su l t 2 = ho r ne r V (map snd c s) v2Pos i t i v e

where t he inst ruct ions to form t he lookup key and t he break points between intervals are calucula ted
using the ut ili ty funct ion
t anhLkup = c a l cB r e a k s 2 2 3 8 . 6644

T hese break points are t hen copied into t he M aple code to compu te and package the coe cients
for the polynomials:
i : =0 ; a x : =numapp r ox [m i n i ma x] (x - > l i m i t ((t anh (y) / y - 1) / y , y=x) , (b r e a k s [i +1]) . . (b r e a k s [i +2])

, [po l yO r d - 2 , 0] , x - >x , ’ da [i] ’) ;
a a [0] : =x - >x* (1+x*a x (x)) ;
f o r i f r om 1 t o 15 do

a a [i] : =numapp r ox [m i n i ma x] (x - > t anh (x) , (b r e a k s [i +1]) . . (b r e a k s [i +2]) , [po l yO r d , 0] , x - >x , ’ da [i] ’) ;
od ;

12

C E L L S P U M a t h L ib r a r y

l ook2 = shu f b l ook1 l ook1
$ unby t e s [1 , 1 , 1 , 1 , 5 , 5 , 5 , 5 , 9 , 9 , 9 , 9 , 13 , 13 , 13 , 13]

l ook3 = s e l b (unw r ds4 0x00010203) l ook2 (unw r ds4 0x1c1c1c1c)

To improve t he accuracy of the polynomial approxima t ions, we found i t necessary to evalua te t he
polynomials

po l y = ho r ne r V (con t i gLookup a r c s i nTab l e l ook3) xCen t r ed

using interval-centered coordina tes
xCen t r ed = f s xPos i t i v e o f f s e t

where i t is very impor t ant t ha t t he same lookup key is used to look up t he o set to cent re t he inpu t ,
ot herwise boundary cases could produce arbi t rary errors.

[o f f s e t] = con t i gLookup (con t i gTab l e o f f s e t s) l ook3

For t he first intervals we now have t he final answer, bu t for t he second intervals we need to apply
t he square root and sub t ract from π / 2.

p i Ov e r 2sq r t P = f s p i Ov e r 2 (sq r t SPU po l y)

T he appropria te final resul t is chosen wit h a select mask
yPos i t i v e = s e l b po l y p i Ov e r 2sq r t P sw i t ch

which must again be looked up using t he same key, to prevent problems wi t h edge cases.
[sw i t ch] = con t i gLookup (con t i gTab l eWo r d sw i t che s) l ook3

To ensure synchroniza t ion, t he following const ants are printed from M aple to H askell:
sw i t che s = [[0 , 0 , 0 , 0 , - 1 , - 1 , - 1 , - 1]]
o f f s e t s = [[0 , 0 . 1875 , 0 . 3125 , 0 . 4375 , 0 . 5625 , 0 . 6875 , 0 . 8125 , 1]]

5.2 H y p er b olic Ta ngen t

H yperbolic t angent is defined by

t anh(x) =
e x − e − x

e x + e − x , (9)

but using t his defini t ion for compu t a tion would be di cul t because we would run into problems wi t h
sub t ract ion of similar numbers, and division of similar large and small numbers, all of which int ro-
duce addi t ional error. For t una tely, hyperbolic t angent rises very quickly to 1, arct anh(1 − 2 − 24) =
8.6643397420981601947, and can be approxima ted by polynomials in t he range [− 8.664339, 8.664339].
So any number larger t han t his in magnit ude should round to ± 1.

T he funct ion is unrolled to process two inpu ts a t once because the 16-way lookup can be bet ter
amor t ized t his way.

For t he final step, we put the sign back:
f t anh (v1 , v2) = (s e l b r e su l t 1O r One v1 s i gnB i t , s e l b r e su l t 2O r One v2 s i gnB i t)
whe r e

t ake the posi t ive par t
v1Pos i t i v e = andc v1 s i gnB i t
v2Pos i t i v e = andc v2 s i gnB i t

compare to arct anh(1 − 2 − 24) because t his is t he smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

i sB i g1 = f cmg t v1Pos i t i v e (un f l oa t s4 $ 8 . 6643397420981601947)
i sB i g2 = f cmg t v2Pos i t i v e (un f l oa t s4 $ 8 . 6643397420981601947)

which is applied to the final resul t:

11

A n a n d , L i , S h a r m a & S r i va s t ava

r e su l t 1O r One = s e l b r e su l t 1 (un f l oa t s4 1) i sB i g1
r e su l t 2O r One = s e l b r e su l t 2 (un f l oa t s4 1) i sB i g2

do parallel lookup for two vector inputs (8 floa ts) of polynomial coe cients, genera ted by M aple:
c s = (coe f f s t anhLkup t anhC (v1Pos i t i v e , v2Pos i t i v e))

evalua te polynomials using Horner’s rule:
r e su l t 1 = ho r ne r V (map f s t c s) v1Pos i t i v e
r e su l t 2 = ho r ne r V (map snd c s) v2Pos i t i v e

where t he inst ruct ions to form t he lookup key and t he break points between intervals are calucula ted
using the ut ili ty funct ion
t anhLkup = c a l cB r e a k s 2 2 3 8 . 6644

T hese break points are t hen copied into t he M aple code to compu te and package the coe cients
for the polynomials:
i : =0 ; a x : =numapp r ox [m i n i ma x] (x - > l i m i t ((t anh (y) / y - 1) / y , y=x) , (b r e a k s [i +1]) . . (b r e a k s [i +2])

, [po l yO r d - 2 , 0] , x - >x , ’ da [i] ’) ;
a a [0] : =x - >x* (1+x*a x (x)) ;
f o r i f r om 1 t o 15 do

a a [i] : =numapp r ox [m i n i ma x] (x - > t anh (x) , (b r e a k s [i +1]) . . (b r e a k s [i +2]) , [po l yO r d , 0] , x - >x , ’ da [i] ’) ;
od ;

12

D eclarative Assembly

For tanhSP U this requ ires eight l ines of H askel l, w hich generate 48 machine instructions
an d 34 128-bit constants. A higher-order D SL fu nction then generates a code grap h in-
cl u d ing loop o v erhea d to i m p lement map tanhSP U sixteen floats at a ti me, w ith a 122 in-
struction loop bod y ha v ing an u p per-bou n d 90.7% processor uti l i z ation (nearl y balancing
instructions from the t w o execution p i pel ines).

tanhSPU = use16X2lookup tanhLookup tanhC tanhK eyResult
tanhK eyResult coe s v = (key, result)

where
key = andc v signB it
polyVal = hornerV coe s key
isB ig = fcmgt key (unfloats4 tanh Treshold)
result OrOne = selb polyVal (unfloats4 1) isB ig
result = selb result OrOne v signB it

Sixteen-w a y register look u p can be perfor med for t w o keys at a ti me more efficientl y
than on t w o keys separatel y, so w e use a t w o-w a y parallel “shared u nrolling ” of the tanh
fu nction. T his is not stan d ard u nrolling, in w hich the loop bod y is d u p licated, because
some of the instructions are shared. B y i m p lementing this pattern w ith a higher-order
fu nction,

tanh = use16X2look u p tanhLookup tanhC tanh’

tanhSP U coe s v = (key, result)
where

H y perbolic tangent is an od d fu nction, i.e. t anh(− x) = − t anh(x), an d the absol ute v al ue of
the argu ment is used for key generation an d pol y nom ial ev al uation, obtained by mask ing
out the signBit bit pattern (of each w ord element):

key = andc v signBit

T his key is used by use16X2look u p to look u p coe s, an d to ev al uate the resu lting pol y no-
m ials using H orner ’s ru le:

polyVal = horner V coe s key

We also com pare (using the floating-point “ greater-than ” com parison instruction fcmgt)
the key to tanhSaturate, the largest representable n u mber w hich does not rou n d to 1. T his
com parison prod uces a select mask

Anand-Kahl - Coconut - Google 2008

• Literate Haskell

• code inside LaTeX

• machine ops

• patterns

11

v

pre

mkResult
0

coeffs
2

w

mkKey
1

key

1

result

2

1

2

Figure 8. mk K eyResult example

v1

pre

mkResult
0

v2

pre

mkResult
0

coeffs1
2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs
0

result1

1

w2

mkKey

1

key2
1

result2

2

1 2

0 1

Figure 9. use16X2lookup applied

6. Cube Root
The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(− 1)sign 2e (1 + frac) (− 1)sign 2q 2 r / 3 f (1 + frac) (3)

where q and r are integers such that

e = 3 q + r, 0 ≤ r < 3, (4)

and f (x) is a piecewise order-three polynomial minimax approxi-
mation of (x) 1 / 3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrt Assert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSP U :: forall v (SP U Type v, H asJoin v) v v
cbrtSP U v = assert cbrt Assert " cb r t SPU " result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrt Exp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrt Exp = selb signM ant
(join $ map (f f expD iv3shift16 7)

[shli, rotqbii])
(unwrds4 $ 2 31 − 2 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expD iv3shift16 :: v
expD iv3shift16 = approxD iv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shuf B1 expD iv3shift16 $
(padLeft To 4 shufb0x00 (:[])) =<< [2, 6 . .]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values
20 , 21 / 3 , 22 / 3 .

one OrCbrt2 :: v
one OrCbrt2 = selb (unfloats4 1) (whatIs T his 1)

(cgti remainder (2 6))
cbrtRem :: v
cbrtRem = selb one OrCbrt2 (whatIs T his 2)

(cgti remainder (2 7))
whatIs T his k = unfloats4 $ (1 + 2 (− 24)) 2 (k / 3)

Combine the byte containing the sign bit with the bytes with the
mantissa of 1, 21 / 3 , 22 / 3 .

signM ant = shuf B v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 22 2 , 22 1 , 22 0 and form a lookup
key, then use it to look up length expCoe s24bits coefficients
from register values constructed using the polynomial coefficients
expCoe s24bits.

coe s = lookup8Word (22, 20) expCoe s24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coe s frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxD iv3 at top level; we used it above at its general type.

approxD iv3 :: (SP U Type v) v v
approxD iv3 = divShiftMA 1 3 (2 expB ias) 16
expB ias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxD iv3 at type
Val Val, where Val is the interpreter type for SPU vectors.

cbrt Assert :: Bool
cbrt Assert = List .and

[divMod i 3 extract D ivMod (approxD iv3 $ bias i)
| i [expB ias − 255 . . expB ias]]

where
bias :: Integer Val
bias i = unwrds4 $ i + expB ias
extract D ivMod w = case bytes w of

: v1 : v2 : (v1 − expB ias, div v2 64)
 error " i mposs i b l e "

7. Other Features
In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

v

pre

mkResult
0

coeffs
2

w

mkKey
1

key

1

result

2

1

2

Figure 8. mk K eyResult example

v1

pre

mkResult
0

v2

pre

mkResult
0

coeffs1
2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs
0

result1

1

w2

mkKey

1

key2
1

result2

2

1 2

0 1

Figure 9. use16X2lookup applied

6. Cube Root
The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

(− 1)sign 2e (1 + frac) (− 1)sign 2q 2 r / 3 f (1 + frac) (3)

where q and r are integers such that

e = 3 q + r, 0 ≤ r < 3, (4)

and f (x) is a piecewise order-three polynomial minimax approxi-
mation of (x) 1 / 3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrt Assert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSP U :: forall v (SP U Type v, H asJoin v) v v
cbrtSP U v = assert cbrt Assert " cb r t SPU " result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrt Exp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrt Exp = selb signM ant
(join $ map (f f expD iv3shift16 7)

[shli, rotqbii])
(unwrds4 $ 2 31 − 2 23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expD iv3shift16 :: v
expD iv3shift16 = approxD iv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shuf B1 expD iv3shift16 $
(padLeft To 4 shufb0x00 (:[])) =<< [2, 6 . .]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values
20 , 21 / 3 , 22 / 3 .

one OrCbrt2 :: v
one OrCbrt2 = selb (unfloats4 1) (whatIs T his 1)

(cgti remainder (2 6))
cbrtRem :: v
cbrtRem = selb one OrCbrt2 (whatIs T his 2)

(cgti remainder (2 7))
whatIs T his k = unfloats4 $ (1 + 2 (− 24)) 2 (k / 3)

Combine the byte containing the sign bit with the bytes with the
mantissa of 1, 21 / 3 , 22 / 3 .

signM ant = shuf B v cbrtRem
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 22 2 , 22 1 , 22 0 and form a lookup
key, then use it to look up length expCoe s24bits coefficients
from register values constructed using the polynomial coefficients
expCoe s24bits.

coe s = lookup8Word (22, 20) expCoe s24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coe s frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxD iv3 at top level; we used it above at its general type.

approxD iv3 :: (SP U Type v) v v
approxD iv3 = divShiftMA 1 3 (2 expB ias) 16
expB ias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxD iv3 at type
Val Val, where Val is the interpreter type for SPU vectors.

cbrt Assert :: Bool
cbrt Assert = List .and

[divMod i 3 extract D ivMod (approxD iv3 $ bias i)
| i [expB ias − 255 . . expB ias]]

where
bias :: Integer Val
bias i = unwrds4 $ i + expB ias
extract D ivMod w = case bytes w of

: v1 : v2 : (v1 − expB ias, div v2 64)
 error " i mposs i b l e "

7. Other Features
In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16

:: DSL

SPUSim/ghci
interactive

development

codegraph

.c
.s

ExSSPpretty
printer

instanceinstance

visualization
Anand-Kahl - Coconut - Google 2008

Multiple Instances

12

Anand-Kahl - Coconut - Google 200813

REG33 0

1 REG30 1

2

REG34 2

stqd 0
2

REG4 3

3

<>4

bi jump
0

REG33 5

a
0

rotqbyi 8

rotqbii 2

lqd 0
1

REG30 6

1

shufb
0 1

REG4 8

hbr jump
1

rotqbyi 0

<>9

0

REG32 10

rotqbyi 0

REG31 11

cflts 14REG41 12

fnms
1

fnms
1

REG42 13

2

REG43 14

shufb
0 1

REG44 15

shufb
0 1

REG47 16

rotqbyi 0

fma
0 1

fm
0 1

REG48 17

selb
1

REG49 18

andbi 128

REG36 19

fm
0

REG5 20

fma
0

REG50 21

shufb
2

shufb
2

REG40 22

1

REG45 23

fma
2

REG46 24

1

0

REG3 25

fma
0

REG51 26

1

REG52 27

2
<>28

23

<>29

24

<>30

0

<>31

0

REG4 32

rotqby
0

REG6 33

2

REG7 34

0

REG8 35

fm
1

REG9 36

a
1

REG10 37

0

REG11 38

fnms
0

REG12 39

2

REG13 40

fnms
2

REG14 41

shufb
0

REG15 42

1

REG16 43

0

REG17 44

2

REG18 45

2

REG19 46

shufb
0

REG20 47

1

REG21 48

shufb
0

REG22 49

1

REG23 50

0

REG24 51

1
REG25 52

0

REG26 53

1

REG27 54

shufb
0

REG28 55

1

REG29 56

2

REG35 57

fma
2

REG37 61

2

REG38 65

1

REG39 68

xor
0

REG37 71

1

REG53 74

1

REG45 83

rotqbii 2

xor
0

REG42 85

2

REG52 91

22

REG51 92

21

REG3 93

20

REG50 94

16
2

2

2

2

REG5 95

15fma 0

0

REG36 96

14

REG54 97

1

REG40 98

17

REG49 99

13

REG48 100

12

REG47 101

11

REG46 103

19

REG45 104

18

REG44 105

10

REG43 106

9
1

REG42 107

8

REG41 108

7

1

REG40 111

1

REG40 112

2

REG54 115

1

REG48 122

cgtbi -1

REG38 129

fma
0

REG36 131

1

1 2

REG37 132

fi
1

REG55 133

frest

0

0

REG31 136

2

REG48 141

csflt 0

REG45 142

rotqbyi 0

rotmai -14

REG54 144

0

REG32 148

5

0

REG38 149

1

REG31 156

6

<>157<>158

4

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18 19

20 2122

23

24

25

26

27

28

29

30

31

32

33

3435

36

37

38

39 40

4142

43 44

45 46

4748

49

0 1

01

Figure 5. Scheduled assembly code graph for tanSP U.

25 c y c l e s
l oop : f ma $55 , $47 , $47 , $12

shu f b $37 , $23 , $24 , $50
c f l t s $54 , $31 , 14
shu f b $38 , $25 , $26 , $50
f nms $31 , $10 , $41 , $42
hb r j ump , $4
f ma $53 , $3 , $51 , $52
r o t qby i $42 , $32 , 0
f ma $51 , $5 , $40 , $37
l qd $32 , 0 ($33)
f m $5 , $47 , $47
r o t qby i $34 , $33 , 8
s e l b $50 , $16 , $48 , $18
f r e s t $37 , $55
f ma $52 , $46 , $38 , $45
r o t qb i i $38 , $33 , 2
a $45 , $54 , $9
shu f b $40 , $19 , $20 , $50
f m $3 , $36 , $46
shu f b $54 , $14 , $15 , $50
r o t ma i $48 , $45 , - 14
r o t qby i $46 , $47 , 0
f i $36 , $55 , $37
r o t qby i $45 , $45 , 0
f nms $47 , $7 , $41 , $31
shu f b $35 , $21 , $22 , $50
f ma $40 , $5 , $54 , $40
shu f b $39 , $27 , $28 , $50
c s f l t $41 , $48 , 0
r o t qby i $54 , $4 , 0
f m $31 , $32 , $8
r o t qb i i $48 , $45 , 2
andb i $37 , $49 , 128
r o t qby $4 , $4 , $38
a $33 , $33 , $30
shu f b $49 , $43 , $43 , $29
f nms $38 , $55 , $36 , $13
shu f b $30 , $30 , $30 , $6
cg t b i $43 , $48 , - 1
shu f b $48 , $44 , $44 , $17
f ma $40 , $5 , $40 , $35
s t qd $53 , 0 ($34)
f nms $42 , $11 , $41 , $42
xo r $44 , $45 , $43
xo r $45 , $39 , $37
l nop
f ma $36 , $38 , $36 , $36

j ump : b i $54

Figure 6. t anSPU . s

3.4 Using this Definition
As we will explain in Sect. 4, we can now use tanhSPU to calculate
the application of t anh to each floating-point number in two four-
tuples within G H C i. we use lists at the interface, coerce the type
with idSim to an interpretable instance, and need to pack and
unpack between F loat lists and vectors:

(floats ‘prod‘ floats) $ tanhSPU
(idSim $ unfloats [0.1, 0.2, 0.3, 0.4], unfloats [1 . . 4])

The class functions unfloats and floats pack and unpack Haskell
Doubles into SPU register values, and idSim coerces the result to
the interpretable instance.

This capability is extremely convenient for testing the numeric
properties of a function definition like that of tanhSPU; for the

direct test above, one would compare the resulting numbers with
the results of the Haskell library function

map tanh ([0.1, 0.2, 0.3, 0.4] ++ [1 . . 4 :: F loat])

We also have special testing wrappers for such functions which
eliminate the explicit interaction with the type system at the in-
terface, filter and tabulate results.

For SPU assembly code generation, the function tanhSPU is
used at a different type, as will be explained in Sect. 4.2 below, to
generate a code graph in the sense of [9]. In the context of a vector
math library, a second-order function containing loop overhead
corresponding to Haskell’s Array.map (see Sect. 7) is applied to
tanhSPU before conversion to a code graph.

From this point on, code generation is a matter of graph ma-
nipulation, and several types of debug output are available in graph

5 2007/6/16

Anand-Kahl - Coconut - Google 2008

4X Faster
than C

14

5 cycles

96 cycles

Anand-Kahl - Coconut - Google 2008

Fine Print on Comparison
•pink bars = C-callable vector SPU MASS

•e.g., vsexp (in C-ABI library)

•generated/scheduled by Coconut

•distributed in SDK 3.0 and with xlc

 http://www-306.ibm.com/software/awdtools/mass

•single vector version slightly slower

•distributed as (cryptic) C

•e.g. expf4

•blue bars = SimdMath (circa SDK 3.0)

•developed and distributed in readable C

•scheduled by spuxlc

15

Anand-Kahl - Coconut - Google 2008

Ultimate Assembler
• access to machine instructions

• write patterns in Haskell

• unit test declarative assembly code

• where does performance come from?

SCIMD =
 Single Complex Instruction Merged Data

16

REG

SplitFLOAT

REG

SplitFLOAT

FLOAT

fm
0

FLOAT

fm
0

FLOAT

fm
0

FLOAT

fm
0

FLOAT

1

FLOAT

1

FLOAT
1

FLOAT

1

FLOAT

MergeFLOAT
0

FLOAT
1

FLOAT
2

FLOAT

3

REG

1

1 2

0
12 3 01

2
3

REG

fm

0
REG

1

REG

1

12

Anand-Kahl - Coconut - Google 2008

Verification
• transform graphs

• break 128-bit register values up

• easy for “pure” SIMD

17

REG

128
8

REG

1

UINT8

8
128

13

UINT8

14

UINT8

15

UINT8

0

UINT8

1

UINT8

2

UINT8

3

UINT8
4

UINT8
5

UINT8

6

UINT8

7

UINT8

8

UINT8

9

UINT8

10

UINT8

11

UINT8

12

1

0123456
7 8

91011
12131415

REG

rotqbyi 3

REG

1

1

Anand-Kahl - Coconut - Google 2008

Difficult for Creative
Bit Shuffling

• easiest case: byte rotate by constant

• hardest case: rotate bits by register value
18

Anand-Kahl - Coconut - Google 2008

Status - SIMD
• code generation

• rapid prototyping

• peak performance

• lots of work supporting other patterns

• e.g. interpretting bit operations on floats

• verification

• equivalent to symbolic execution

• useful for debugging linear algebra

• needs more transformation rules

19

Anand-Kahl - Coconut - Google 2008

Multi-Core =
ILP Take 2

Instruction Level
Parallelism

Multi-Core
Parallelism

CPU Chip
Execution Unit Core

Register Buffer / Signal
Load/Store Instruction DMA

Arithmetic Instruction
Computational

Kernel

Anand-Kahl - Coconut - Google 2008

The Catch: Soundness

• on CPUs hardware maintains OOE

• instructions execute out of order

• hardware hides this from software

• ensures order independence

• in our Multi-Core virtual CPU

• compiler inserts synchronization

• soundness up to software

• uses asynchronous communication

21

Anand-Kahl - Coconut - Google 2008

Asynchronous

• no locks

• locking is a multi-way operation

• a lock is only local to one core

• incurs long, unpredictable delays

• use asynchronous messages

• matches efficient hardware

22

Programming Handbook

Cell Broadband Engine

BE_Handbook_BE_Overview.fm.1.0
April 19, 2006

Overview of the Cell Broadband Engine Processor
Page 33 of 876

1. Overview of the Cell Broadband Engine Processor
This handbook presents both an overview and considerable detail about the extensive program-
ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first
implementation of a new family of multiprocessors conforming to the Cell Broadband Engine
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony,
Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-
tronics devices such as game consoles and high-definition televisions, the architecture has been
designed to enable fundamental advances in processor performance. These advances are
expected to support a broad range of applications in both commercial and scientific fields.

This handbook is written for the complete range of programmers, including those developing
applications (user programs), libraries, device drivers, middleware, compilers, and operating
systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents
examples of both basic and advanced programming concepts for single-instruction, multiple-data
(SIMD) vector applications and the system software that supports such applications.

The handbook is system-independent, making no assumptions about development-tool or oper-
ating-system environments, other than the C/C++ language environment. The examples are
chosen to highlight the general principals required for CBE-processor programming, such that an
experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later
in this chapter and in subsequent chapters.

Figure 1-1. Cell Broadband Engine Overview

RAM RAM

XIO
XIO

PPE

MIC

IOIF_1

IOIF_0

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

EIB

FlexIO
1234

5

6

0

11

10987
FlexIO

Unit ID

BEI Cell Broadband Engine Interface
EIB Element Interconnect Bus
FlexIO Rambus FlexIO Bus
IOIF I/O Interface

MIC Memory Interface Controller
PPE PowerPC Processor Element
RAM Resource Allocation Management
SPE Synergistic Processor Element
XIO Rambus XDR I/O (XIO) cell

BE
I

Anand-Kahl - Coconut - Google 2008

Memory
Bound

23

Programming Handbook

Cell Broadband Engine

BE_Handbook_BE_Overview.fm.1.0
April 19, 2006

Overview of the Cell Broadband Engine Processor
Page 33 of 876

1. Overview of the Cell Broadband Engine Processor
This handbook presents both an overview and considerable detail about the extensive program-
ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first
implementation of a new family of multiprocessors conforming to the Cell Broadband Engine
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony,
Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-
tronics devices such as game consoles and high-definition televisions, the architecture has been
designed to enable fundamental advances in processor performance. These advances are
expected to support a broad range of applications in both commercial and scientific fields.

This handbook is written for the complete range of programmers, including those developing
applications (user programs), libraries, device drivers, middleware, compilers, and operating
systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents
examples of both basic and advanced programming concepts for single-instruction, multiple-data
(SIMD) vector applications and the system software that supports such applications.

The handbook is system-independent, making no assumptions about development-tool or oper-
ating-system environments, other than the C/C++ language environment. The examples are
chosen to highlight the general principals required for CBE-processor programming, such that an
experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later
in this chapter and in subsequent chapters.

Figure 1-1. Cell Broadband Engine Overview

RAM RAM

XIO
XIO

PPE

MIC

IOIF_1

IOIF_0

SPE0

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

EIB

FlexIO
1234

5

6

0

11

10987
FlexIO

Unit ID

BEI Cell Broadband Engine Interface
EIB Element Interconnect Bus
FlexIO Rambus FlexIO Bus
IOIF I/O Interface

MIC Memory Interface Controller
PPE PowerPC Processor Element
RAM Resource Allocation Management
SPE Synergistic Processor Element
XIO Rambus XDR I/O (XIO) cell

BE
I

Comp
Bound

Anand-Kahl - Coconut - Google 2008

f (x)

x

f (x)

g(f (x))

g(f (x))

h(g(f (x)))

h(g(f (x)))

1

2

y

1

1

1

1

2

core 1 core 2 core 3 core 4 core 5

further
computation

Anand-Kahl - Coconut - Google 2008

Async Signals

x

1

1

SendSignal

WaitData

WaitSignal
SendData

N
o

re
ad

s
or

w

ri
te

s
to

 b
uf

fe
r

un
ti

l p
as

t
ba

rr
ie

r W
ai

tD
at

a

N
o

w
ri

te
s

to

bu
ffe

r
un

ti
l

D
M

A

co
m

pl
et

io
n

is
 c

on
fir

m
ed

WaitDMA

.

.

.
other

operations
.
.
.

.

.

.
other

operations
.
.
.R

eo
rd

er

W
in

do
w

R
eo

rd
er

W

in
do

w

H
az

ar
d

Anand-Kahl - Coconut - Google 2008

Multi-Core Language

Computation operation bufferList
do a computation with local

data

SendData localBuffer remoteBuffer tags
start DMA to send local data

off core

WaitData localBuffer tag
wait for arrival of DMAed

data

WaitDMA tag
wait for locally controlled

DMA to complete

LoadMem localBuffer remoteBuffer tag start distant data load

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive

Anand-Kahl - Coconut - Google 2008

1. Scheduling

• hide latency to eliminate stalls

2. WaitSignal / WaitData

• stall when necessary, hardware won’t

• timing less predictable

27

Concurrent Control-
Flow

N ested C ode G raphs for Multi- C ore P aral lel ism 23

index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s c2
5 SendSignal s c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s c2
6 WaitSignal s

Anand-Kahl - Coconut - Google 2008

locally Sequential
Program

• total order for instructions

• easier to think in order

• send precedes wait(s)
28

N ested C ode G raphs for Multi- C ore P aral lel ism 23

index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s c2
5 SendSignal s c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s c2
6 WaitSignal s

Anand-Kahl - Coconut - Google 2008

NOT sequential

• can execute out of order

29

N ested C ode G raphs for Multi- C ore P aral lel ism 23

index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s c2
5 SendSignal s c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s c2
6 WaitSignal s

Anand-Kahl - Coconut - Google 2008

does NOT imply
order independent

30

Anand-Kahl - Coconut - Google 2008

Linear-Time Verification

• must show

• results are independent of execution order

• no deadlocks

• need to keep track of all possible states

• linear in time = one-pass verifier

• constant space

• i.e. possible states at each instruction

31

Anand-Kahl - Coconut - Google 2008

Impact

• no parallel debugging !!

• every optimization trick used for ILP can be
adapted

• ready for algorithm “skeletons”

• e.g. map, reduce

• enables optimization for power reduction:

• replace caching with data in-flight

32

Anand-Kahl - Coconut - Google 2008

SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Instruction Scheduling

33

• Explicitly Staged Software
Pipelining (ExSSP)

• Min-Cut to Chop into
Stages

• Principled Graph
Transformation

• supports control flow
(MultiLoop)

Anand-Kahl - Coconut - Google 2008

Software Pipelining

• hide latency

• same length loop body
34

A

b

a

B

C

D

c

d e

e

known above

known below

looking
for new
cut

Anand-Kahl - Coconut - Google 2008

Min-Cut Preparation

35

• cut into
stages

• one by one

• minimize live
registers

Anand-Kahl - Coconut - Google 2008

Bad Cut

• c produced
in later
stage

• c used in
earlier
stage

36

bad cut

A

b

a

B

C

D

c

d e

e

known above

known below

Anand-Kahl - Coconut - Google 2008

Transformation

37

A

b

a

B

C

D

c

d e

e

known above

known below

s

t

collapse assigned

b

B

C

c

d e

nodes and edges
become nodes

1.0

1.0

1.0

1.0

weight 1 production
edges

b

1.0

B

C

c

d e

!

1.0

!

1.0

!

1.0

!

t

weight ∞

consumption edges

b

1.0

B

C

c

d e

!

1.0

!

1.0

!

1.0

!

!

!

!

!

t
weight ∞

backwards edges

∞

∞

∞

∞ ∞
∞

∞

∞

Anand-Kahl - Coconut - Google 2008

Cycles / Float

38

Anand-Kahl - Coconut - Google 2008

Not Just Faster

• why a new algorithm?

• higher assurance

• principled graph transformation

• not just scheduling instructions

• novel control flow

• via nested control flow graphs

39

Anand-Kahl - Coconut - Google 2008

Example 1: MultiLoop

40

n1

1

2

2

n

hintable computed
branch

Anand-Kahl - Coconut - Google 2008

Coconut

• so far

• functional-assembly programming

• SIMD++

• unbeaten scheduler

• multi-core distribution

• proof of soundness

• next

• Multi-Core Patterns

41 ∞

Anand-Kahl - Coconut - Google 2008

Legal Notices

• Cell Broadband Engine is a trademark of Sony
Computer Entertainment, Inc., in the United
States, other countries, or both.

• IBM is a registered trademark of International
Business Machines Corporation in the United
States, other countries, or both.

• Other company, product, and service names
may be trademarks or service marks of others.

44 !
Anand-Kahl - Coconut - Google 200842

Anand-Kahl - Coconut - Google 2008

Thanks

43 !

Stephen Adams
Kevin Browne

Shiqi Cao
Nathan Cumpson

Saeed Jahed
Damith Karunaratne

Clayton Goes

Anuroop Sharma
Sanvesh Srivastava
Wolfgang Thaller
Gordon Uszkay

Christopher Venantius
Paul Vrbik
Fei Zhao

Robert Enenkel

IBM Centre for Advanced Studies, CFI, OIT, NSERC and
Apple Canada for research support.

Gabriel Grant
William Hua

Fletcher Johnson
Wei Li

Nick Mansfield
Mehrdad Mozafari

Adam Schulz

Anand-Kahl - Coconut - Google 200843

