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Sometimes 
we need 
both.

2

We can write safe software.

We can write fast software. 
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Performance = 
Parallelism

• 384-way ||ism

• 4-way SIMD
• 8-way cores
• 6-times unrolling
• double buffering
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Cell BE
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Roadmap
• SIMD Parallelism

extensible DSL captures patterns
verification via graph transformation
generated library shipping (Cell BE SDK 3.0)

• Multi-Core Parallelism
model on ILP
generation via graph transformation
linear-time verification
run time

• Distant Parallelism
verification via model checking
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Layers of Domain 
Specific Languages
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Higher Order Functions

• examples
• map
• zip

• matrix multiplcation
• SIMD parallelization
• multi-core parallelization
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map

• apply a function to a list

• overhead

• increment pointer

• increment pointer

• increment counter

• compare counter

• branch
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for (i=0; i<10; i++) {
 out[i] = fun(in[i]);
}

fun

fun

fun

fun

fun



Anand-Kahl - Coconut - Google 2008

Map Loop Overhead

• one arithmetic instruction
• in/out pointers + induction variable + hint
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Low Level DSL
• declarative assembly
• support functions
• polynomial approximation
• table lookup in registers

• verify assertions @ compile time
• compile time computation

• user extensible

9
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Compact Code
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C E L L S P U M a t h L ib r a r y
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F igure 2: Six teen approxima t ing polynomial segments, above, and t he corresponding error in bi ts,
below.

5.3 H y p er b olic Si ne

H yperbolic sine is defined by

sinh x =
e x − e − x

2
. (10)

I t is di  cul t to approxima te by polynomials over large ranges, because i t grows exponent ially.
T herfore, for large values we use (10), but for small values of x , such t ha t e x and e − x are close in
value:

(i) precision loss grows as n where x = 2 − n , because of similarity, and
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C E L L S P U M a t h L ib r a r y

l ook2 = shu f b l ook1 l ook1
$ unby t e s [ 1 , 1 , 1 , 1 , 5 , 5 , 5 , 5 , 9 , 9 , 9 , 9 , 13 , 13 , 13 , 13 ]

l ook3 = s e l b ( unw r ds4 0x00010203 ) l ook2 ( unw r ds4 0x1c1c1c1c )

To improve t he accuracy of the polynomial approxima t ions, we found i t necessary to evalua te t he
polynomials

po l y = ho r ne r V ( con t i gLookup a r c s i nTab l e l ook3 ) xCen t r ed

using interval-centered coordina tes
xCen t r ed = f s xPos i t i v e o f f s e t

where i t is very impor t ant t ha t t he same lookup key is used to look up t he o  set to cent re t he inpu t ,
ot herwise boundary cases could produce arbi t rary errors.

[ o f f s e t ] = con t i gLookup ( con t i gTab l e o f f s e t s ) l ook3

For t he first intervals we now have t he final answer, bu t for t he second intervals we need to apply
t he square root and sub t ract from π / 2.

p i Ov e r 2sq r t P = f s p i Ov e r 2 ( sq r t SPU po l y )

T he appropria te final resul t is chosen wit h a select mask
yPos i t i v e = s e l b po l y p i Ov e r 2sq r t P sw i t ch

which must again be looked up using t he same key, to prevent problems wi t h edge cases.
[ sw i t ch ] = con t i gLookup ( con t i gTab l eWo r d sw i t che s ) l ook3

To ensure synchroniza t ion, t he following const ants are printed from M aple to H askell:
sw i t che s = [ [ 0 , 0 , 0 , 0 , - 1 , - 1 , - 1 , - 1 ] ]
o f f s e t s = [ [ 0 , 0 . 1875 , 0 . 3125 , 0 . 4375 , 0 . 5625 , 0 . 6875 , 0 . 8125 , 1 ] ]

5.2 H y p er b olic Ta ngen t

H yperbolic t angent is defined by

t anh( x ) =
e x − e − x

e x + e − x , (9)

but using t his defini t ion for compu t a tion would be di  cul t because we would run into problems wi t h
sub t ract ion of similar numbers, and division of similar large and small numbers, all of which int ro-
duce addi t ional error. For t una tely, hyperbolic t angent rises very quickly to 1, arct anh(1 − 2 − 24 ) =
8.6643397420981601947, and can be approxima ted by polynomials in t he range [ − 8.664339, 8.664339].
So any number larger t han t his in magnit ude should round to ± 1.

T he funct ion is unrolled to process two inpu ts a t once because the 16-way lookup can be bet ter
amor t ized t his way.

For t he final step, we put the sign back:
f t anh ( v1 , v2 ) = ( s e l b r e su l t 1O r One v1 s i gnB i t , s e l b r e su l t 2O r One v2 s i gnB i t )
whe r e

t ake the posi t ive par t
v1Pos i t i v e = andc v1 s i gnB i t
v2Pos i t i v e = andc v2 s i gnB i t

compare to arct anh(1 − 2 − 24 ) because t his is t he smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

i sB i g1 = f cmg t v1Pos i t i v e ( un f l oa t s4 $ 8 . 6643397420981601947 )
i sB i g2 = f cmg t v2Pos i t i v e ( un f l oa t s4 $ 8 . 6643397420981601947 )

which is applied to the final resul t:
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r e su l t 1O r One = s e l b r e su l t 1 ( un f l oa t s4 1 ) i sB i g1
r e su l t 2O r One = s e l b r e su l t 2 ( un f l oa t s4 1 ) i sB i g2

do parallel lookup for two vector inputs (8 floa ts) of polynomial coe  cients, genera ted by M aple:
c s = ( coe f f s t anhLkup t anhC ( v1Pos i t i v e , v2Pos i t i v e ) )

evalua te polynomials using Horner’s rule:
r e su l t 1 = ho r ne r V ( map f s t c s ) v1Pos i t i v e
r e su l t 2 = ho r ne r V ( map snd c s ) v2Pos i t i v e

where t he inst ruct ions to form t he lookup key and t he break points between intervals are calucula ted
using the ut ili ty funct ion
t anhLkup = c a l cB r e a k s 2 2 3 8 . 6644

T hese break points are t hen copied into t he M aple code to compu te and package the coe  cients
for the polynomials:
i : =0 ; a x : =numapp r ox [ m i n i ma x ] ( x - > l i m i t ( ( t anh ( y ) / y - 1 ) / y , y=x ) , ( b r e a k s [ i +1 ] ) . . ( b r e a k s [ i +2 ] )

, [ po l yO r d - 2 , 0 ] , x - >x , ’ da [ i ] ’ ) ;
a a [ 0 ] : =x - >x* ( 1+x*a x ( x ) ) ;
f o r i f r om 1 t o 15 do

a a [ i ] : =numapp r ox [ m i n i ma x ] ( x - > t anh ( x ) , ( b r e a k s [ i +1 ] ) . . ( b r e a k s [ i +2 ] ) , [ po l yO r d , 0 ] , x - >x , ’ da [ i ] ’ ) ;
od ;
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D eclarative Assembly

For tanhSP U this requ ires eight l ines of H askel l, w hich generate 48 machine instructions
an d 34 128-bit constants. A higher-order D SL fu nction then generates a code grap h in-
cl u d ing loop o v erhea d to i m p lement map tanhSP U sixteen floats at a ti me, w ith a 122 in-
struction loop bod y ha v ing an u p per-bou n d 90.7% processor uti l i z ation (nearl y balancing
instructions from the t w o execution p i pel ines).

*****

tanhSPU = use16X2lookup tanhLookup tanhC tanhK eyResult
tanhK eyResult coe  s v = (key, result)

where
key = andc v signB it
polyVal = hornerV coe  s key
isB ig = fcmgt key (unfloats4 tanh Treshold)
result OrOne = selb polyVal (unfloats4 1) isB ig
result = selb result OrOne v signB it

***

Sixteen-w a y register look u p can be perfor med for t w o keys at a ti me more efficientl y
than on t w o keys separatel y, so w e use a t w o-w a y parallel “shared u nrolling ” of the tanh
fu nction. T his is not stan d ard u nrolling, in w hich the loop bod y is d u p licated, because
some of the instructions are shared. B y i m p lementing this pattern w ith a higher-order
fu nction,

tanh = use16X2look u p tanhLookup tanhC tanh’

tanhSP U coe  s v = (key, result)
where

H y perbolic tangent is an od d fu nction, i.e. t anh( − x ) = − t anh( x ), an d the absol ute v al ue of
the argu ment is used for key generation an d pol y nom ial ev al uation, obtained by mask ing
out the signBit bit pattern (of each w ord element):

key = andc v signBit

T his key is used by use16X2look u p to look u p coe  s, an d to ev al uate the resu lting pol y no-
m ials using H orner ’s ru le:

polyVal = horner V coe  s key

We also com pare (using the floating-point “ greater-than ” com parison instruction fcmgt)
the key to tanhSaturate, the largest representable n u mber w hich does not rou n d to 1. T his
com parison prod uces a select mask
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• Literate Haskell

• code inside LaTeX

• machine ops

• patterns
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Figure 8. mk K eyResult example
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Figure 9. use16X2lookup applied

6. Cube Root
The rest of this section is an unedited example of literate source
code.
Cube Root is defined to be the unique real cube root with the

same sign as the input. We calculate it using

( − 1)sign 2e (1 + frac)   ( − 1)sign 2q 2 r / 3 f (1 + frac) (3)

where q and r are integers such that

e = 3  q + r, 0 ≤ r < 3, (4)

and f ( x ) is a piecewise order-three polynomial minimax approxi-
mation of ( x ) 1 / 3 on the interval [1, 2).

Warning: This function uses divShiftMA for fixed-point divi-
sion. This is computation is inexact, but cbrt Assert tests all the
values which can occur as a result of extracting the exponent bits
for the input float. If you modify the code you must modify the
assertion.

cbrtSP U :: forall v  (SP U Type v, H asJoin v)  v  v
cbrtSP U v = assert cbrt Assert " cb r t SPU " result

where

Since we process the input in components, we cannot rely on
hardware to round denormals to zero, and must detect it ourselves
by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and
combine them using floating-point multiplication,

unsigned = fm signCbrt Exp evalPoly

Insert the exponent divided by three into the sign and mantissa of
the cube root of the remainder of the exponent division.

signCbrt Exp = selb signM ant
(join $ map (  f  f expD iv3shift16 7)

[shli, rotqbii ])
(unwrds4 $ 2  31 − 2  23)

Use the function extractExp to extract the exponent bits, dropping
the sign bit, and placing the result into the third byte:

exponent = extractExp 3 v

expD iv3shift16 :: v
expD iv3shift16 = approxD iv3 exponent

Put the high two bits of the remainder, known to be accurate, into
the low-order byte of each word, and set all other bytes to zero.

remainder = shuf B1 expD iv3shift16 $
(padLeft To 4 shufb0x00  (:[ ])) =<< [ 2, 6 . . ]

By comparing the remainder with 0 · 64, 1 · 64, 2 · 64 we can form
masks and use them to select 2remainder from pre-calculated values
20 , 21 / 3 , 22 / 3 .

one OrCbrt2 :: v
one OrCbrt2 = selb (unfloats4 1) (whatIs T his 1)

(cgti remainder (2  6))
cbrtRem :: v
cbrtRem = selb one OrCbrt2 (whatIs T his 2)

(cgti remainder (2  7))
whatIs T his k = unfloats4 $ (1 + 2   ( − 24))  2   (k / 3)

Combine the byte containing the sign bit with the bytes with the
mantissa of 1, 21 / 3 , 22 / 3 .

signM ant = shuf B v cbrtRem
[ 0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31 ]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant 23 v

Using either the argument or the fractional bits which have been
extracted, take the bits with values 22 2 , 22 1 , 22 0 and form a lookup
key, then use it to look up length expCoe  s24bits coefficients
from register values constructed using the polynomial coefficients
expCoe  s24bits.

coe  s = lookup8Word (22, 20) expCoe  s24bits v

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coe  s frac

One of the patterns we use only calculates an accurate value
under a complicated set of preconditions, so we define the function
approxD iv3 at top level; we used it above at its general type.

approxD iv3 :: (SP U Type v)  v  v
approxD iv3 = divShiftMA 1 3 (2  expB ias) 16
expB ias = 127

We test that for all input values we are going to use, the precondi-
tion that the first two fractional bits in the approximate division by
three are correct holds; for this purpose we use approxD iv3 at type
Val  Val, where Val is the interpreter type for SPU vectors.

cbrt Assert :: Bool
cbrt Assert = List .and

[ divMod i 3  extract D ivMod (approxD iv3 $ bias i)
| i  [ expB ias − 255 . . expB ias ] ]

where
bias :: Integer  Val
bias i = unwrds4 $ i + expB ias
extract D ivMod w = case bytes w of

: v1 : v2 :  (v1 − expB ias, div v2 64)
 error " i mposs i b l e "

7. Other Features
In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support
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cbrt Assert :: Bool
cbrt Assert = List .and

[ divMod i 3  extract D ivMod (approxD iv3 $ bias i)
| i  [ expB ias − 255 . . expB ias ] ]

where
bias :: Integer  Val
bias i = unwrds4 $ i + expB ias
extract D ivMod w = case bytes w of

: v1 : v2 :  (v1 − expB ias, div v2 64)
 error " i mposs i b l e "

7. Other Features
In addition to special function support, we exploit code generation
in several other aspects of this project: support for iteration, support

10 2007/6/16
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Figure 5. Scheduled assembly code graph for tanSP U.
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3.4 Using this Definition
As we will explain in Sect. 4, we can now use tanhSPU to calculate
the application of t anh to each floating-point number in two four-
tuples within G H C i. we use lists at the interface, coerce the type
with idSim to an interpretable instance, and need to pack and
unpack between F loat lists and vectors:

(floats ‘prod‘ floats) $ tanhSPU
(idSim $ unfloats [ 0.1, 0.2, 0.3, 0.4 ], unfloats [ 1 . . 4 ])

The class functions unfloats and floats pack and unpack Haskell
Doubles into SPU register values, and idSim coerces the result to
the interpretable instance.

This capability is extremely convenient for testing the numeric
properties of a function definition like that of tanhSPU; for the

direct test above, one would compare the resulting numbers with
the results of the Haskell library function

map tanh ([ 0.1, 0.2, 0.3, 0.4 ] ++ [ 1 . . 4 :: F loat ])

We also have special testing wrappers for such functions which
eliminate the explicit interaction with the type system at the in-
terface, filter and tabulate results.

For SPU assembly code generation, the function tanhSPU is
used at a different type, as will be explained in Sect. 4.2 below, to
generate a code graph in the sense of [9]. In the context of a vector
math library, a second-order function containing loop overhead
corresponding to Haskell’s Array.map (see Sect. 7) is applied to
tanhSPU before conversion to a code graph.

From this point on, code generation is a matter of graph ma-
nipulation, and several types of debug output are available in graph

5 2007/6/16
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Fine Print on Comparison
•pink bars = C-callable vector SPU MASS 

•e.g., vsexp (in C-ABI library) 

•generated/scheduled by Coconut 

•distributed in SDK 3.0 and with xlc 

                           http://www-306.ibm.com/software/awdtools/mass 

•single vector version slightly slower 

•distributed as (cryptic) C 

•e.g. expf4 

•blue bars = SimdMath (circa SDK 3.0) 

•developed and distributed in readable C 

•scheduled by spuxlc 

15
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Ultimate Assembler
• access to machine instructions

• write patterns in Haskell

• unit test declarative assembly code 

• where does performance come from?

SCIMD = 
    Single Complex Instruction Merged Data

16
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Verification
• transform graphs 

• break 128-bit register values up

• easy for “pure” SIMD

17
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Difficult for Creative 
Bit Shuffling

• easiest case:  byte rotate by constant

• hardest case:  rotate bits by register value
18
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Status - SIMD
• code generation

• rapid prototyping 

• peak performance

• lots of work supporting other patterns

• e.g. interpretting bit operations on floats

• verification

• equivalent to symbolic execution

• useful for debugging linear algebra

• needs more transformation rules

19
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Multi-Core = 
ILP Take 2

Instruction Level 
Parallelism

Multi-Core 
Parallelism

CPU Chip
Execution Unit Core

Register Buffer / Signal
Load/Store Instruction DMA 

Arithmetic Instruction
Computational 

Kernel



Anand-Kahl - Coconut - Google 2008

The Catch:  Soundness

• on CPUs hardware maintains OOE

• instructions execute out of order

• hardware hides this from software

• ensures order independence

• in our Multi-Core virtual CPU

• compiler inserts synchronization

• soundness up to software

• uses asynchronous communication

21
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Asynchronous

• no locks

• locking is a multi-way operation

• a lock is only local to one core

• incurs long, unpredictable delays

• use asynchronous messages

• matches efficient hardware

22
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1. Overview of the Cell Broadband Engine Processor
This handbook presents both an overview and considerable detail about the extensive program-
ming facilities of the Cell Broadband Engine (CBE) processor. The CBE processor is the first 
implementation of a new family of multiprocessors conforming to the Cell Broadband Engine 
Architecture (CBEA). The CBEA is a new architecture that extends the 64-bit PowerPC Architec-
ture™. The CBEA and the CBE processor are the result of a collaboration between Sony, 
Toshiba, and IBM known as STI, formally begun in early 2001.

Although the CBE processor is initially intended for applications in media-rich consumer-elec-
tronics devices such as game consoles and high-definition televisions, the architecture has been 
designed to enable fundamental advances in processor performance. These advances are 
expected to support a broad range of applications in both commercial and scientific fields. 

This handbook is written for the complete range of programmers, including those developing 
applications (user programs), libraries, device drivers, middleware, compilers, and operating 
systems. It assumes the reader is an experienced C/C++ programmer. It describes and presents 
examples of both basic and advanced programming concepts for single-instruction, multiple-data 
(SIMD) vector applications and the system software that supports such applications. 

The handbook is system-independent, making no assumptions about development-tool or oper-
ating-system environments, other than the C/C++ language environment. The examples are 
chosen to highlight the general principals required for CBE-processor programming, such that an 
experienced programmer can apply this knowledge to their particular system environment.

Figure 1-1 shows a block diagram of the CBE-processor hardware. This figure is referred to later 
in this chapter and in subsequent chapters. 

Figure 1-1. Cell Broadband Engine Overview 
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Bound
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Async Signals
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Multi-Core Language

Computation operation bufferList
do a computation with local 

data

SendData localBuffer remoteBuffer tags
start DMA to send local data 

off core

WaitData localBuffer tag
wait for arrival of DMAed 

data

WaitDMA tag
wait for locally controlled 

DMA to complete 

LoadMem localBuffer remoteBuffer tag start distant data load

SendSignal core signal send a signal to distant core

WaitSignal signal wait for signal to arrive



Anand-Kahl - Coconut - Google 2008

1. Scheduling

• hide latency to eliminate stalls

2. WaitSignal / WaitData

• stall when necessary, hardware won’t

• timing less predictable

27

Concurrent Control-
Flow



N ested C ode G raphs for Multi- C ore P aral lel ism 23

index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s  c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s  c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A ) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s  c2
5 SendSignal s  c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s  c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s  c2
6 WaitSignal s

Anand-Kahl - Coconut - Google 2008

locally Sequential 
Program

• total order for instructions

• easier to think in order

• send precedes wait(s)
28
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index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s  c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s  c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A ) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s  c2
5 SendSignal s  c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s  c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s  c2
6 WaitSignal s
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NOT sequential

• can execute out of order

29
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index core 1 core 2 core 3
1 long compu ta t ion
2 SendSignal s  c2
3 WaitSignal s
4 compu t a t ion
5 SendSignal s  c2
6 WaitSignal s

R emember t ha t each core executes independent ly of t he ot her cores, except
where explici t wait inst ruct ions block execut ion unt il some kind of commu-
nica t ion (signal, change in da t a t ag, D M A ) is confirmed to have completed.
T herefore, in t his case t he most likely inst ruct ion complet ion order has core 3
execu t ing t he SendSignal as soon as i t is queued, allowing t he signal to be sent
before core 2 has received t he core 1’s signal and cleared t he signal hardware:

index core 1 core 2 core 3
2 SendSignal s  c2
5 SendSignal s  c2

second signal over laps the first, only one registered
1 long compu ta t ion
3 WaitSignal s
4 compu t a t ion

no signal is sent, so the next WaitSignal blocks
6 WaitSignal s

To be precise, complet ion of the SendSignal means t ha t the signal has been
ini t ia ted by t he sender, and recep t ion may be delayed, so t he signal from core
3 could even arrive before t he signal from core 1. In ei t her case, nei t her signal
will arrive after t he first WaitSignal, so t he second WaitSignal will wai t forever,
and t his program execu t ion will not termina te.

T he problem is caused because t here are no signals or da t a t ransmissions
enforcing complet ion of inst ruct ion 5 to follow complet ion of inst ruct ion 3.

T his example, when considered as par t of a longer program, also demon-
st ra tes a possible safety viola t ion wi t h t he valid complet ion order:

index core 1 core 2 core 3
1 long compu ta t ion
5 SendSignal s  c2
3 WaitSignal s

4
compu t a t ion

usi ng
w rong assu m p t ions

2 SendSignal s  c2
6 WaitSignal s
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does NOT imply 
order independent

30
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Linear-Time Verification

• must show  

• results are independent of execution order

• no deadlocks

• need to keep track of all possible states

• linear in time = one-pass verifier

• constant space

• i.e. possible states at each instruction

31
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Impact

• no parallel debugging !!

• every optimization trick used for ILP can be 
adapted

• ready for algorithm “skeletons” 

• e.g. map, reduce

• enables optimization for power reduction:  

• replace caching with data in-flight

32
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SPU ISA

SIMD patterns

control flow patterns

distribution patterns

user code

ExSSP

Haskell

Instruction Scheduling

33

• Explicitly Staged Software 
Pipelining (ExSSP)

• Min-Cut to Chop into 
Stages

• Principled Graph 
Transformation

• supports control flow 
(MultiLoop)
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Software Pipelining

• hide latency

• same length loop body
34
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Min-Cut Preparation

35

• cut into 
stages

• one by one

• minimize live 
registers
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Bad Cut

• c produced 
in later 
stage

• c used in 
earlier 
stage

36
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Transformation
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Cycles / Float

38
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Not Just Faster

• why a new algorithm?

• higher assurance

• principled graph transformation

• not just scheduling instructions

• novel control flow

• via nested control flow graphs
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Example 1: MultiLoop
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Coconut

• so far

• functional-assembly programming

• SIMD++

• unbeaten scheduler

• multi-core distribution

• proof of soundness

• next

• Multi-Core Patterns
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Legal Notices

• Cell Broadband Engine is a trademark of Sony 
Computer Entertainment, Inc., in the United 
States, other countries, or both.

• IBM is a registered trademark of International 
Business Machines Corporation in the United 
States, other countries, or both.

• Other company, product, and service names 
may be trademarks or service marks of others.
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Thanks
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