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Abstract

Pixel values in MR images are linear combinations of contributions from mul-
tiple tissue fractions. The tissue fractions can be recovered using the Moore-
Penrose pseudo-inverse if the tissue parameters are known, or can be deduced
using machine learning. Acquiring sufficiently many source images may be
too time consuming for some applications. In this thesis, we show how tissue
fractions can be recovered from partial k-space data, collected in a fraction of
the time required for a full set of experiments. The key to reaching significant
sample reductions is the use of regularization. As an additional benefit, reg-
ularizing the inverse problem for tissue fractions also reduces the sensitivity
to measurement noise. Numerical simulations are presented showing the effec-
tiveness of the method, showing three tissue types. Clinically, this corresponds
to liver imaging, in which normal liver, fatty liver and blood would need to be
included in a model, in order to get an accurate fatty liver ratio, because all
three overlap in liver pixels (via partial voluming).
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Preface

In this thesis we show that the quantification of multiple tissues using multiple
magnetic resonance images can be done from incomplete data, and that the
quantitative and qualitative measures of the results can be improved by using
regularization. Partial sampling of images saves scanning time dramatically
(relative to conventional methods) but leads to artifacts and unwanted noise
in the final segmented images. Considering the chemical property of tissues
and the way tissue molecules respond in magnetic fields, we can model the
problem as an inverse problem. In this thesis we describe the inverse problem
in general, but focus on the reduction of sampling time. Numerical simulation
shows that adding regularization to our inverse problem improves the results
and enables us to remove errors and artifacts. Results show that by solving
the regularized inverse problem, we can save up to 61% of scanning time and
get acceptable segmented tissues.

The thesis contains seven chapters with three main topics, namely, the
basics of MRI, MR k-space data and inverse problem modeling of the seg-
mentation/quantification problem. We have attempted to make this thesis
self-contained and accessible to be a general audience by giving a short intro-
duction to MRI in chapter 1, and try to explain the concepts that are needed
to better understand our problem. Basic MRI introduces the concepts be-
hind the problem as used in later chapters. In the second chapter, we present
a critical appraisal of the current status of semiautomated and automated
methods for the segmentation of anatomical medical images and also intro-
duce terminology and important issues in image segmentation. In chapter 3,
we talk about the MR readout signal and its properties in terms of k-space.
The Dixon fat and water separation method is presented in chapter 4, and we
extend this technique to separation of any arbitrary number of tissues. We
introduce the modeled-based segmentation inverse problem in chapter 5 and
go through details of each component of the problem and show how to use
regularization to overcome the ill-poseness of the problem. Finally we report
on numerical experiments with and without partial sampling, simulated noise,

xix
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and regularization in chapter 6.
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Chapter 1

Basic MRI

1.1 Introduction

In this chapter we will review the basic concepts of medical imaging with
concentration on magnetic resonance imaging. Different image acquisition
techniques and their applications are presented focusing on their applications.
We will talk about physics principles of MRI, and finally we describe termi-
nology and related concepts that are needed to understand our segmentation
problem.

1.2 Medical Imaging

Medical imaging refers to the techniques and procedures used to visualize the
inside of the human body for clinical purposes or medical science [40]. This
process consists of various aspects such as:

• Computer processing, analysis and modeling

• Instrumentation and image acquisition

• Physics of image

Medical imaging is a rich source of mathematical inverse problems. From the
effect (the observed image), the property of tissues can be inferred. For exam-
ple, a 2D image of a body containing a cancerous tissue can be diagnosed by
modeling the problem in comparison to a healthy tissue of the same anatomy.
The most common image acquisitions are:

• Fluoroscopy

1
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• Magnetic Resonance Imaging (MRI)

• Nuclear Medicine

• Photoacoustic Imaging

• Projection Radiography

• Tomography

• Ultrasound

In the following sections, we will go through different image acquisi-
tion techniques, and discuss the advantages and disadvantages of each one.
Finally, we will explain the fundamentals of the technique we chose for our
image-segmentation problem, MRI, in detail and compare it with other imag-
ing techniques.

1.2.1 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging uses the polarized and excited hydrogen nuclei
(single proton) in water molecules in human tissue to produce a detectable
signal which is spatially encoded, resulting in images of the body [11]. Three
different kinds of electromagnetic fields are involved in the process of image
acquisition:

1. a static magnetic field to polarize the hydrogen nuclei called B0,

2. a radio frequency (RF) field for excitation of the hydrogen atoms to
produce detectable signals, collected through an RF antenna,

3. a gradient field G varying linearly in space, used to specially encode the
hydrogen atoms.

The strength of the three mentioned magnetic fields are

RF < G < B0

Further details regarding magnetic resonance imaging are described in sec-
tion 1.3.

2
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1.2.2 Tomography

Tomos means “a section” or “a cutting” in Greek. Tomography is the method
of imaging a single plane, or slice, of an object resulting in a tomogram. In to-
mography we usually gather projection data from multiple directions and feed
the data into a tomographic reconstruction software algorithm processed by
a computer. Among the several forms of tomography, computed tomography
(CT) is the most common technique.

CT or CAT scan is a noninvasive procedure that produces a 2D image
of the structures in a thin slice of the body [6]. Ionizing x-ray beams are
directed to the body, and collected and measured after passing through the
body. The strength of the signals is inversely proportional to the absorption
of different tissue and shows the density of corresponding tissues.

1.2.3 Ultrasound

Medical ultrasonography is a real-time scanning process that uses high-frequency
sound waves between 2.0 to 10.0 MHz that are reflected (echo) by tissue with
different mechanical properties to produce a 2D image. Ultrasound has several
advantages which make it ideal for real-time application. Unlike CT, ultra-
sound is not harmful to the body. It is also relatively cheap and quick to
perform. 3D ultrasound is a technique that can be used to visualize a three-
dimensional view of the fetus during pregnancy [1]. However, the images are
low quality compared to MRI or CT, and that limits the application of ultra-
sound imaging.

1.2.4 MRI vs CT

A computed tomography (CT) scanner is based on x-ray technology, using
ionizing radiation during data acquisition. It performs reasonable scans on
tissues composed of elements of a relatively higher atomic number than the
tissue surrounding them, such as bone and calcified tissues within body. This
radiation can alter the chemical structure of cells and are harmful in general.
As far as the human body is concerned, there are three systems which are
affected by x-rays:

1. Genitalia: May have a negative effect on progeny.

2. Skin: Causes rash, hair loss and, apart from being cosmetically harmful,
also predisposes to cancer.
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3. Blood: Red and white blood cells exposed to x-rays may cause anaemia
or disorders of the immune system.

On the other hand, MRI uses non-ionizing radio frequency (RF) signals
for acquiring its images and is very well suited for non-calcified tissues. It is not
harmful to the body and can reveal more detailed information about different
tissues. Therefore, MRI is best suited for cases where a patient is to undergo
the exam several times, as it avoids the hazard of ionizing radiation.

Both CT and MRI scanners are capable of generating multiple two-
dimensional cross-sections (slices) of tissue and also three-dimensional recon-
structions. Figure 1.2.4 on page 6 shows different slices of human brain in
order to reconstruct a 3D model. One of the major differences between MRI
and CT scans is that, unlike CT, we can set different parameters in MRI scans
in order to get images with different contrasts. By changing scanning param-
eters, such as gradient fields and RF pulse, tissue contrast can be altered in
various ways to point out different and more desired features. In section 1.4 we
will talk more about the features and properties of a MRI scan and will show
an example of MRI scan with different gradient-field strength in Figure 1.7 on
page 17.

Another advantage of an MRI scan is the capability of generating cross-
sectional scans in any plane (including oblique planes). CT is limited to acquir-
ing images in the axial (or near axial) plane. For purposes of tumor detection
and identification, MRI is generally superior. However, CT usually is more
widely available, faster, much less expensive, and easier for patients, unlike
MRI, which takes a long scanning time and has a loud disturbing noise.

1.3 Basic MRI

The human body is largely made up of water and fat. Water is the major
source of hydrogen in the body, followed by fat. Only considering these two
elements, 63% of human body consists of hydrogen atoms. Because of the
magnetic property of all hydrogen nuclei (protons) caused by a moving electric
charge, they behave as small rotating magnets called nuclear spin. It means
they generate an nuclear magnetic resonance (NMR) signal [23]. These electric
charges spin very fast and produce a small, but noticeable magnetic field. The
faster the spin speed, the larger the magnetic field. Each hydrogen atom can
be considered as a tiny magnet, represented by a vector, passing through the
center of the atom in order to define the spin direction. Figure 1.2 shows how to
specify the spin direction. In MRI, the electron does not contribute to obtain
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Figure 1.1: Multiple two-dimensional cross sections (slices) of the brain, start-
ing from the right ear and ending at at the left ear. Derived from [38].

a signal. However, there is different process for electron excitation similar to
proton excitation called electron spin resonance. For further information you
can refer to [27].

5



M.Sc. Thesis – M. Mozafari – McMaster – Computing and Software

Figure 1.2: Spin direction is defined by a vector passing through the hydrogen
atom.

The magnetic vector of spinning protons can be decomposed into two
orthogonal components: a longitudinal or Z component and a transverse com-
ponent lying on the XY plane. In the absence of an external magnetic field,
all hydrogen atoms are randomly ordered and the net magnetization vector,
(NMV) or Mφ, that points to the Z direction is zero. When protons are ex-
posed to a strong external magnetic field, B0, they tend to leave their current
behavior and align with the direction of the magnetic field. After a while
the spinning vector of all protons is either inline or in the opposite direction
of B0 with the same frequencies. In this case, the net magnetization vector,
Mφ, is the sum of magnetization of all protons together in the Z direction.
By applying this technique, a new criteria is introduced to keep track of any
further changes in the behavior of protons. By considering the state of being
aligned with B0 as the initial state, any alteration, such as the frequency or
magnetization change, can be measured in comparison to the initial state.

1.3.1 Resonance and Relaxation

A new concept introduced here is called resonance. Resonance is the exchange
of energy between two systems at a specific frequency. In the presence of
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B0, all the protons will settle to an equilibrium state. Magnetic resonance
corresponds to the energetic interaction between spins and radio frequency
electromagnetic waves.

The Larmor equation specifies the resonance frequency of each nucleus
shown in equation (1.1), where γ is the gyromagnetic ratio, specific to each
atom, between the external field and the resonance frequency, ωφ is the angular
frequency of precession of the nucleus in an external magnetic field, and B0 is
the strength of the external magnetic field. The stronger the B0, the higher
the resonance frequency ωφ.

ωφ = γB0 (1.1)

By applying a magnetic RF pulse on resonance, the protons can absorb
extra energy, and tend to disarrange and start spinning in a different direction
from B0. Only protons with resonant frequencies similar to the magnetic RF
pulse will respond to that RF pulse.

The magnetic vector of spinning protons can be divided into two or-
thogonal components:

• A longitudinal component that goes along the Z axis and is aligned with
B0.

• A transverse component, lying on the XY plane.

In the case of a pulse applied to a nucleus in the rest state, the ini-
tial magnetization vector MZ that points along the Z direction (longitudinal)
starts an spiral down toward XY plane shown in Figure 1.3. This modification
in spin equilibrium and absorption of energy from the RF pulse is called ex-
citation. During excitation time, longitudinal magnetization decreases and a
transverse magnetization MXY appears. It causes an asynchronization in spin-
ning of protons in the direction of B0. On the other hand, there is relaxation
time when the spinning proton returns from this state of imbalance to equi-
librium. In the relaxation time, the electromagnetic energy gained from RF
pulse is retransmitted. That is called the NMR signal1. Relaxation combines
two mechanisms:

• Longitudinal relaxation corresponds to magnetization recovery in the Z
direction.

1Nuclei possesses an angular momentum called spin while being in the vicinity of an
external magnetic field. The signal generated by nuclei spinning is called a NMR signal that
can be calculated using the Larmor equation 1.1.

7



M.Sc. Thesis – M. Mozafari – McMaster – Computing and Software

• Transverse relaxation corresponds to magnetization decay in the XY
plane.

Figure 1.3: RF pulse wobbles the equilibrium and make the magnetization
vector MZ spiral down toward the XY plane.

These relaxation times are called T1 and T2 and can be used to distin-
guish between different tissues, in the common case that they have different
T1 and T2 values. In the following section, they are described in detail. We
consider an excitation with a 90-degree flip angle relative to the Z component
of magnetization vector before the RF transmitter is turned off:

1.3.2 Longitudinal Relaxation T1

Longitudinal or T1 relaxation corresponds to the energy exchange between
the spin and the lattice in the vicinity of the protons in order to re-establish
the thermal equilibrium. When the transmitted RF pulse is stopped, the RF
energy of the spinning proton is released back into the surrounding lattice.
The recovery of longitudinal magnetization behaves as an exponential curve.
T1 is the time it takes during longitudinal relaxation to return to 63% of its
final value (equilibrium state). The higher the strength of the main field, the
longer T1. As an example, at 1.5 T (Tesla), T1 values are approximately 200
to 3000 ms. The behavior of longitudinal relaxation is shown in equation (1.2).
Figure 1.4 shows the T1 relaxation time in 63% of energy relaxation time

MZ(t) = MZ,eq(1− e
−t
T1 ) (1.2)

where T1 is the decay constant for recovery of the Z component of the nuclear
spin magnetization, MZ , and MZ,eq is the thermal equilibrium value.
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Figure 1.4: T1 Relaxation of hydrogen atom with RF = 1.5T (Tesla) excita-
tion.

1.3.3 Transverse Relaxation T2

T2 relaxation takes place in the transverse plane (XY plane). Also called
spin-spin relaxation, it happens when spins are getting out of phase or switch
between high and low energy state and exchange energy. If the energy is
absorbed by the surrounding lattice, it results in the loss of transverse mag-
netization. Having different characteristics and different physical mechanisms
makes T1 and T2 independent of each other.

The loss in phase causes decay in magnetization that can be shown as
an exponential curve. T2 is the time it takes transverse magnetization to lose
63% of its original value because it is the time constant of the first impulse
response. It is the same as considering T2 at 37% of its energy. The behavior
of transverse relaxation is shown in equation (1.3)

MXY (t) = MXY (0)e
−t
T2 (1.3)

where T2 is the decay constant for the component of M perpendicular to B0

and MXY (0) is the initial value of magnetization vector in the XY plane.
T2 is tissue-specific and is always shorter than T1. Transverse relax-

ation is faster than longitudinal relaxation. The T2 relaxation is temperature
dependent. When the temperature is low it reduces the decay time and T2 as
well.
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Figure 1.5: T2 Relaxation of hydrogen with RF = 1.5T (Tesla) excitation.

The same anatomy appears differently depending on the scanning method
(T1 or T2). Figure 1.6 shows two images from the same anatomy but acquired
with two different relaxation times.

1.4 MRI Scanner

The MRI scanner can be used for cross-sectional views of the body. The output
of the machine is different images from different layers of a particular anatomy.
The three major components of an MRI scanner are:

1. A static magnetic field

2. An RF transmitter and receiver

3. Three orthogonal, controllable magnetic gradients

While the patient lies in the MRI scanner, they are in a static magnetic field
10,000 to 30,000 times stronger than the magnetic field of earth. The external
RF field causes excitation of hydrogen atoms. Tissues with less hydrogen
atoms, such as bones, are darker while tissues with more hydrogen atoms,
such as fat, are brighter in the final image, because of the stronger signals that
result from the increased atom excitation.
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(a) (b)

Figure 1.6: Image acquisition based on different relaxation times from the same
anatomy result in different images. (a)Data acquisition using T1 relaxation
(b)Data acquisition using T2 relaxation [29].

The magnetic field B0 is generated by either permanent magnets or elec-
tromagnets. There is a trade-off between the image quality and the strength
of B0. Higher magnetic fields increase signal-to-noise ratio, permitting higher
resolution or faster scanning [11]. However, higher field strengths require more
costly magnets with higher maintenance costs, and have increased safety con-
cerns2. 1.0 − 1.5T field strengths are a good compromise between cost and
performance for general medical use. However, for certain specialist uses (e.g.,
brain imaging), higher field strengths may be desirable (3T and higher).

The RF transmission is generated by a RF synthesizer, power amplifier
and transmitting coil, and the receiver consists of the coil, preamplifier and
signal-processing system [11]. Depending on the coil used here, data can be
acquired in parallel which allows accelerated imaging. The most frequently
used techniques are SENSE and GRAPPA. Sensitivity encoding (SENSE) is a
technique that reduces MRI scan time considerably. The spatial information
related to the coils of a receiver array are utilized for reducing conventional

2Because of the very strong magnetic field, the MRI suite can be a very dangerous place
if strict precautions are not observed. Metal objects can become dangerous projectiles if
they are taken into the scan room.
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Fourier encoding [4]. In principle, SENSE can be applied to any imaging
sequence and k-space trajectory. For further information about SENSE you
can refer to [30].

Gradient coils are used to spatially encode the positions of protons.
The gradient field causes the magnetic-field strength B = B0 + G to vary
(increase or decrease) linearly across the imaging volume. These gradients are
employed for slice selection, phase encoding and frequency encoding which are
discussed in the following section. Scan speed is dependent on performance of
the gradient system. Stronger gradients allow for faster imaging, or for higher
resolution.

1.4.1 Phase Encoding

MR signals can be located by altering the phase of spins in one dimension with
a pulsed magnetic-field gradient along that dimension prior to the acquisition
of the signal. Images reconstructed at various levels of phase encoding show im-
age sharpness to improve as the number of phase-encoding steps increases [9].
However, there is a trade-off between scanning time and the phase-encoding
process. Figure 1.7 shows the steps during phase encoding.

1.4.2 Frequency Encoding

Reading out a signal in the presence of a constant gradient is called frequency
encoding. It is a static gradient field which is necessary to acquire a set of
signals with different frequencies in order to reconstruct the distribution of the
sources along the direction of gradient field. We can use the Fourier transform
to separate these signals.
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Figure 1.7: Using different gradients for phase encoding. Resolution increases
with the number of phase-encoding steps [9].
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Chapter 2

Segmentation

In this chapter we talk about different common segmentation techniques, com-
menting on their advantages and disadvantages. We also review basic ter-
minology and important issues regarding segmentation and then present the
quantification technique we are using in our optimization problem. Quantifi-
cation gives more information about tissue composition than segmentation.
Its potential applications in MRI are a superset of the applications of segmen-
tation.

2.1 Introduction

In order to segment different objects and shapes in an image, the image needs
to be parsed and analyzed by different algorithms. These algorithms that
delineate anatomical structures and patterns in an image are known as seg-
mentation techniques. Segmentation is the process of partitioning a digital
image into its constituent parts that have similar characteristics or proper-
ties, such as texture, intensity or color [28]. In general there are two types of
segmentation:

1. An image can be split to multiple images, each containing a certain
constituent.

2. Contours can be used to indicate different constituents in one image.

We use the first approach in our segmentation problem, identifying tissue frac-
tion in voxels containing multiple tissues. Figure 2.1 shows the two approaches.
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(a)

(b) (c) (d) (e)

Figure 2.1: Different approaches toward image segmentation. (a) shows an
image with three item to be segmented, (b) is the segmentation by means of
contours to show different constituents in one image together (c)-(d) shows
the segmented items as a separate image.

2.1.1 Diagnostic Imaging

Diagnostic imaging is an invaluable tool in medicine. MRI, CT, digital mam-
mography, and other imaging modalities provide an effective means for ac-
quiring the subject’s anatomy [28]. These technologies have greatly increased
knowledge of normal and diseased anatomy for medical research, and are criti-
cal components in diagnosis and treatment planning. Segmentation algorithms
play an important role in many biomedical imaging applications such as:

• Computer-guided surgery

• Diagnosis
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• Localization of tumors and other pathologies

• Quantification of tissue volume

• Study of anatomical structure

• Treatment planning

Or in different field of studies such as:

• Automatic traffic-controlling systems

• Face recognition

• Fingerprint recognition

• Locating objects in satellite images (roads, forests, etc.)

• Machine vision

However, the amount of the acquired data in both CT and MRI is very
large (multiple images of the same anatomy), and it often takes physicians a
lot of time to compare and analyze images correctly. Therefore, segmentation
algorithms are intended to identify regions of interest in the images. In the
following section, we describe a few techniques used for image segmentation.

2.2 Image Segmentation Methods

There are now a wide variety of image segmentation techniques, some consid-
ered general purpose and some designed for specific classes of images. Several
general-purpose algorithms and techniques have been developed for image seg-
mentation. Different segmentation algorithms might find different solutions.
In some problems, these techniques often have to be combined with domain
knowledge in order to effectively solve the problem. In the following section,
we will describe various segmentation techniques.

2.2.1 Thresholding

The thresholding technique segments images by creating two partitions based
upon the image intensities [32]. It is also called histogram-based model-image
segmentation. The most important job is to choose an intensity value, called
the threshold, which separates the desired classes. The segmentation is then
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achieved by grouping all pixels with intensities greater than the threshold into
one class and all other pixels into another class.

Thresholding is often used as an initial step in the sequence of image
processing operation. One application of thresholding is tumor detection in
mammography which is done be dividing tissues into two classes, considered
as healthy and cancerous. An example of image segmentation by means of
thresholding is shown in Figure 2.2.

(a) (b)

Figure 2.2: Image segmentation using thresholding. (a) is the original image
and (b) is the segmented image with two regions.

The main drawback is that, in its simplest form, only two classes are
generated, and it cannot be applied to multichannel images. In addition,
thresholding typically does not take into account the spatial characteristics
of an image. This causes the segmented images to be very sensitive to noise,
which can occur in MR images [21].

2.2.2 Histogram-Based Methods

A simple improvement is introduced in thresholding called histogram-based
segmentation. It separates the different parts of an image by thresholding
the histogram. It assumes that an image is composed of regions with different
gray levels, and separates it into a number of peaks, each corresponding to one
region. With this technique, segmentation is done using only one pass through
the pixels [10]. A histogram is computed using all pixel values and then for
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each individual pixel, the peaks and valleys in the histogram are used to as-
sign the pixel to a cluster. Histograms are based on different measurements,
such as color or intensity. One of the disadvantages of the histogram-based
segmentation is the difficulty in identifying significant peaks and valleys in the
image.

2.2.3 Deformable Models (Active Contours)

This technique, also known as active contours or snakes, tries to delineate
region boundaries by using closed parametric curves or surfaces that deform
under the influence of internal and external forces. The first step in segmenta-
tion is to manually place a closed curve near the desired boundary and apply
an iterative relaxation process [28]. The task is to minimize the force associ-
ated with the current contour as a sum of an internal and external force [18].
Internal forces are computed from within the curve to keep it smooth through-
out the deformation. External forces are usually derived from the image to
drive the curve or surface toward the desired feature of interest. Figure 2.3
shows the steps of segmentation using a contour which initiated from a circle,
and deforms and grows until is reaches the boundary of the region of interest.

Figure 2.3: Segmentation by means of a growing contour.
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2.2.4 Clustering Methods

Clustering methods are based on the concept of clustering algorithms such
as the k-means algorithm, the fuzzy c-means algorithm and the expectation-
maximization (EM) algorithm. The most commonly used algorithm is the
k-means algorithm. It clusters n objects, based on certain attributes, into k
partitions where k < n [16]. The segmentation is done iteratively and starts
by partitioning an image into k clusters and computing the mean intensity for
each class. The basic algorithm is:

1. Use a heuristic function to pick k cluster centers.

2. Assign each pixel in the image to the cluster that minimizes the distance
between the pixel and the cluster center.

3. Recompute the cluster centers by averaging all of the pixels in the cluster.

4. Repeat steps 2 and 3 until convergence is attained.

The distance can be defined as either a squared or absolute difference
between each pixel value within the cluster and a cluster center, possibly in-
cluding differences in intensity, pixel color, texture, and location, or a weighted
combination of these factors. k can be selected manually, randomly, or by a
heuristic. The quality of the solution depends on the initial set of clusters and
the value of k. Figure 2.4 shows how the k-means algorithm segments objects
by minimizing the squared error function.

2.2.5 Region Growing Method

Region growing is a technique for extracting a region in an image that is defined
based on some certain criteria such as intensity information or edges in the
image [15]. It takes a manually selected seed point as an input along with
the image and extracts all pixels connected to the initial seed based on some
predefined criteria during iterative steps. The difference between a pixel’s
intensity value and the region’s mean, δ, is used as a measure of similarity.
The pixel with the smallest difference measured this way is allocated to the
respective region. This process continues until all pixels are allocated to a
region.

The region growing method is typically used for the delineation of small,
simple structures such as tumors and lesions. The primary disadvantage of
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(a) (b)

(c) (d)

Figure 2.4: k-means algorithm used for segmentation of randomly spread
points [37] (a) choose 3 cluster center (b) shows the 3 clusters (c) choose a
new center (d) set point to the corresponding cluster by minimizing the dis-
tance of each point to the center.

region growing is that it requires manual interaction to obtain the seed point.
Thus, for each region that needs to be extracted, a seed must be planted.
Region growing can also be sensitive to noise, causing extracted regions to
have holes or even become disconnected [28].
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2.2.6 Artificial Neural Networks

Artificial neural networks (ANNs) are parallel-network nodes that simulate
biological learning. Each node is capable of performing elementary compu-
tations. Learning is achieved through the adaptation of weights assigned to
the connections between nodes [7]. ANNs represent a paradigm for machine
learning and can be used in a variety of ways for image segmentation.

2.2.7 Atlas-Guided/Model-Based Segmentation

Atlas-guided approaches are powerful tools for medical image segmentation
when a standard atlas or template is available. The primary assumption of
such an approach is that structures of interest/organs have a repetitive form
of geometry called an atlas. The atlas is generated by compiling information
on the anatomy that requires segmenting [28]. This atlas is then used as a
reference frame for segmenting new images. The atlas introduces constraints
which favor a certain shape.

Atlas-guided segmentation can also be considered as an image-registration
problem. Image registration is the process of transforming the different sets of
data into one coordinate system. Registration is necessary in order to be able
to compare or integrate the data obtained from different measurements [42].
Such a task involves:

1. Registration of the training examples to a common pose by means of a
transformation (called atlas warping).

2. Probabilistic representation of the variation of the registered samples.

3. Statistical inference between the atlas and the image.
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Chapter 3

k-Space

In this chapter we present the technique used for data acquisition from mag-
netic resonance (MR) signals. For 2D imaging, k-space can be thought of as a
2D complex matrix that stores the acquired MR data organized by the phase
and frequency content. We will explain the different properties of k-space and
how to move between k-space and image space using Fourier transformations.
Then we will present how undersampling of the k-space helps us improve data-
acquisition time, discussing the trade-off between undersampling and image
quality in detail.

3.1 Introduction

In this section we will talk about the concept of k-space and the Fourier trans-
form. We will also show a sample MR signal and its constituents.

3.1.1 What Is k-Space?

The task of an MRI scanner is to recognize and collect MR signals and store
them in a specific order which is recognizable for further analysis. At each RF
excitation, a combination of different excitations are collected as one complex
signal as shown in Figure 3.2 on page 35. The read-out MR signal is stored
in a 2D array called k-space, containing samples of the continuous Fourier
transform of the object’s magnetization.

In MRI theory [26], we can derive the equation for MR signals as

S(t) =

∫
x

∫
y

m(x, y)e−i2π[kx(t)x+ky(t)y]dxdy, (3.1)
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where

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ, ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ, (3.2)

m(x, y) is the transverse nuclear magnetization, and Gx, Gy are gradient fields
in the x and y directions respectively [31]. Comparing the signal equation
(3.1) with the Fourier transform of m(x, y),

M(kx, ky) =

∫
x

∫
y

m(x, y)e−i2π[kxx+kyy]dxdy, (3.3)

we can see that
s(t) = M(kx, ky), (3.4)

or

s(t) = M(
γ

2π

∫ t

0

Gx(τ)dτ,
γ

2π

∫ t

0

Gy(τ)dτ). (3.5)

Thus, kx and ky are in units of spatial frequency, typically cycles/cm. This is
the most important relationship in MRI. At any given time t, s(t) equals the
value of the 2D Fourier transform of m(x, y) at some spatial frequency. The
total recorded signals s(t) therefore maps directly to a trajectory through the
spatial-frequency (Fourier transform) space as determined by the time integrals
of the applied gradient waveforms Gx(t) and Gy(t). In the MR literature [24]
and [36], the Fourier-transform space is often called k-space, where k represents
the spatial-frequency variable. To form an image, the trajectories given by s(t)
should cover a sufficient part of the k-space to allow reconstruction of m(x, y).

The relation/tranformation between k-space data and image space is
the Fourier transform. The Fourier transform of complete data, e.g. the Fast
(Uniform) Fourier Transform, is an invertible transformation, and no data loss
happens during each step of transformation.

k-space⇐ ft2D
ift2D ⇒ image-space (3.6)

3.1.2 Conjugate Symmetry of k-Space Data

One of the most important properties of k-space that helps us reduce scanning
time and reconstruct image is the conjugate symmetry of data. The entries
in k-space are complex numbers that distinguish between signals with similar
frequency but different phases. Figure 3.1 shows the conjugate symmetry of
data in k-space.

Considering the conjugate symmetry of data, the full k-space infor-
mation is redundant, and an image can be reconstructed using only part of
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(a) (b) (c)

Figure 3.1: Image space and k-space [5] (a)Image space (b)k-space
(c)Conjugate symmetry of k-space.

k-space. However, the MRI scanner is a very noisy environment and recon-
structing the entire image using only a quarter of k-space data may result
in a noisy and erroneous image. Different techniques such as Half Scan or
Partial Fourier [20] scan can save a lot time during phase encoding. On the
other hand, techniques such as half echo allow lower frequency-sampling rates
and/or shorter echo times during frequency encoding.

3.1.3 Data in k-Space

The read-out signal is a mixture of different MR signals caused by spinning
nuclei with different frequencies from all over the object being imaged. Fig-
ure 3.2 shows how different signals can combine together and build a complex
signal.

By means of the Fourier transform, the constituent parts of each MR
signal can be decomposed into a sum of sine waves of different frequencies,
phases and amplitude. Knowing frequency, amplitude and phase of each sine
wave, it is possible to reconstruct the signal (inverse Fourier transform). The
Fourier transform can tell us what these signals are with their exact frequency
and amplitude. The challenge is to find the amplitude of the read-out signal
at a certain voxel and translate it to a grayscale value in order to visualize the
output image. By mapping the different amplitudes to a pixel value, k-space
can be presented as an image. The higher the amplitude, the brighter the
pixel shows up in k-space and vice versa. Figure 3.3 shows how each row in
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(a) (b)

Figure 3.2: Different constituents of a sample MR signal from a MRI scanner
(a)Constituents of read-out MR signal (b)MR signal containing information
from all over the image.

k-space is acquired. By applying the proposed technique n times for an n× n
image, we obtain a complex 2D matrix used for visualizing k-space.

The location of the data in k-space depends on the strength and the
duration of the gradient field [35]. The higher the strength of the gradient, the
faster the sampling position moves in k-space. The center of k-space1 contains
information of low spatial frequency. These signals have low frequencies and
high magnitude. That is why the center of k-space is always brighter than the
sides of k-space. On the other hand, the sides of k-space contain information
of high spatial frequency. By applying a low-pass filter and high-pass filter,
we can better show the role of each kind of signal in the layout of an image. If
we omit different parts of k-space, the resulting image would better describe

1Considering an image as a 2D matrix of size n×n, the center of k-space is image(n
2 , n

2 ).
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(a) (b)

Figure 3.3: Visualizing k-space by mapping amplitude of signal to each pixel
value (a) Sampling the first row in k-space. (b) Building k-space row by row.

the kind and location of data in k-space. Figure 3.4 shows different frequency
filters applied to k-space data.

The periphery of k-space corresponds to high spatial frequencies in k-
space. It is not possible to guess the general layout and edges in an image by
examining the visualization of k-space. As an example, Figure 3.5 on page 38
shows four different images with almost the same appearance in k-space yet
the result of the inverse Fourier transform turns out to be very different.

3.2 Full and Partial k-Space

Acquiring complete data (full k-space) is a long and expensive process. Many
patients complain about staying still for a long time in a noisy scanner. Even
a small movement by the patient during scanning can ruin the whole scanning
process, and make unclear and blurry images. It is called motion artifact
and results in a strong ghost in the image. There are techniques to reduce
scanning time. When the MRI machine tries to scan the entire image, we will
get a very detailed and clear image, but it takes a longer time. Partial Fourier
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(a) (b) (c)

Figure 3.4: Location of certain information in k-space [17] (a)Full k-space with
very detailed image (b) Low-pass filter, center of k-space contains low special
frequencies signals and information of contrast in image (c) High-pass filter,
borders of k-space contain high spatial frequencies and information of edges.

reconstruction is a technique that reduces the scanning time by skipping over
some data and sampling certain rows of k-space. By reducing the amount of
data to be collected, the scanning time will be reduced dramatically.

MRI machines are capable of scanning certain patterns of data in k-
space. Scanning patterns can vary according to the needs and how detailed the
image should be. k-Space data is collected row by row, and the MRI machine
can easily skip scanning rows and substitute the whole row with zeros. In this
case, the k-space appears with a bunch of black lines that correspond to the
skipped rows of data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Presentation of image in both image-space and k-space (a)-
(d)image-space (e)-(f) k-space.

3.2.1 Half Fourier Projection

Half Fourier or Half Scan is a scanning technique that only samples half the
k-space data and then reconstructs the other part of the image from acquired
data. Scanners can make use of the conjugate symmetry (figure 3.1 on page 34)
of k-space to reduce scan time. It can be done by using the upper or lower
part of k-space to reconstruct the other part without any extra scanning.
Theoretically the reconstruction of the full k-space can be done only using one
quadrant of k-space. The rest of k-space can be created and filled from that,
but in practice the conjugate symmetry is not perfect. The noisy environment
of the scanner and motion artifacts are obstacles toward using only small data.
Figure 3.6 shows the image obtained from half k-space data.

3.2.2 Removing Lines

The most efficient sampling strategy is to interleave rows of k-space with step
size k where 1 ≤ k ≤ n

2
. Figure 3.7 and Table 3.1 better describe partial

sampling of k-space. However, undersampling the k-space more than a certain
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Figure 3.6: Full vs half k-space

amount of data causes unacceptable reconstruction errors. Any distortion or
artifact in the image is known as an aliasing error. Figure 3.7.b and 3.7.c
show different aliasing problems while undersampling data less than a certain
amount. Aliasing may be acceptable if the energy of the alias is lower than
the energy of the noise, or if the aliasing is localized away from the anatomy of
interest. By sampling sufficient data, the reconstructed image appears without
visible artifacts as shown in Figure 3.7.d.
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(a) (b) (c) (d)

Figure 3.7: Different partial sampling of k-space causes aliasing and artifact
in reconstructed image. The corresponding sampling of k-space is presented
in Table 3.1.

Experiments Zero Rows in k-space
Figure 3.7.a Full k-space
Figure 3.7.b 1/4 Rows: (2, 5, 9,..., n)
Figure 3.7.c 1/10 Rows: (2, 12, 22,..., n)
Figure 3.7.d 1/30 Rows: (2, 32, 62,..., n)

Table 3.1: Different partial sampling of k-space.
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Chapter 4

Tissue Quantification

In this chapter, we will present a quantification technique based on the chem-
ical properties of molecules in tissue. This technique is a modification of the
Dixon method [8] for fat and water separation in medical imaging. We ex-
tended this technique in order to be able to quantify any arbitrary number
of tissues. We will show that each MR experiment can be quantified using a
linear transformation S from pixel value to tissue concentration. Finally we
will explain our tissue quantification technique by an example.

4.1 Quantification Techniques

Tissue quantification refers to the problem of estimating different tissue quan-
tities from a region of interest in an image to build up an anatomical structure.
This technique provides very important quantitative information about differ-
ent tissue types regardless of their physical distribution and can be used in
many clinical applications. Tissue quantification can be considered a segmen-
tation strategy, where the acquired image is split into its constituent regions
(here tissues). In cases where distinct tissue types are physically well separated
and are large relative to image resolution, quantitative tissue volumes have
been successfully extracted from qualitative images by different techniques
such as active contours (snakes), either manually or automatically. However,
these methods of tissue seperation are based on selectively suppressing tissue
from undesired components, and they are sensitive to main field inhomogene-
ity. If there is a voxel that contains a portion of multiple tissues together,
quantifying each particular tissue is out of reach and is called partial voluming
effect. Most quantification methods can only quantify anatomies containing
well-separated tissues. Therefore, they are unsuitable for tissues co-located at
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the image resolution.
Due to various limitations for the existing tissue-quantificaton methods,

a new approach is introduced in this chapter, which modifies and improves the
conventional Dixon method [8]. Dixon methods were proposed to separate fat
and water in tissues. The result leads to two separate images with improved
contrast and a reduction of artifact caused by the interference of fat and water.
We observed that we can apply this quantification method in order to quantify
any number of tissues.

However, before we get into the technical subtleties, we first introduce
the generalized Dixon method, that represents the whole idea of our tissue-
quantification technique.

4.2 Tissue Quantification Using the Dixon Method

4.2.1 A Model for Tissue Quantification

For a voxel that consists of m different tissue types with concentrations

(ρ1, ρ2, . . . , ρm) ∈ Rm

which is imaged n times by varying the pulse sequence, the resulting signals
(I1, I2, . . . , In) ∈ C, are given by:

I1 = a11ρ1 + a12ρ2 + . . .+ a1mρm,
I2 = a21ρ1 + a22ρ2 + . . .+ a2mρm,

...
In = an1ρ1 + an2ρ2 + . . .+ anmρm,

where by definition a complex Ik = Mx(k) +
√
−1My(k) is the projection of

the magnetization of the Mkth tissue to the x − y plane, which is identified
with the complex plane, and aij ∈ C gives the expected signal in image i
of a unit quantity of tissue j [41]. Therefore, the coefficient matrix SC =
((aij)n×m) defines a linear transformation from tissue concentrations to signal
measurements. This applies to all voxels equally, and is not dependent on
position. For efficient low-level implementation, we do not want to rely on
the compiler to handle complex quantities efficiently. If S is considered as a
real matrix having twice the number of rows as the complex coefficient matrix
SC = ((aij)n×m) by splitting the real and imaginary parts of aij into two
adjacent rows, and rank(S) = m, then we can invert this linear system to find
the tissue concentration. This is the basic idea of tissue quantification, and
we will show how to quantify multiple tissues from multiple images.
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4.3 Dixon Method

All imaging methods in MR are based on understanding (and working with)
the behavior of solutions to the Bloch equation [3]. The Dixon method uses
chemical differences between tissues, which manifest themselves as different
external field values, and hence different resonant frequencies. Dixon observed
that for fat and water, if one image is acquired while both are in phase and
one while they have opposite phases, the resulting images are simple linear
combinations of the fat and water components, combined using S:

SC =

(
1 1
1 −1

)
in the real number format, S =


1 1
0 0
1 −1
0 0

 (4.1)

In this case an addition and subtraction of acquired images is all that
is required to recover the original fat and water concentrations. The difference
between the effective excitation and effective measurement time is called echo
time. Dixon fixed the phase relation by altering the echo time, but ignored
differences caused by relaxation.

Dixon introduced the principle of separating different tissue types by
manipulating the phase relationships, which can be easily extended to more
cases than fat and water. The linear transformation S used in the Dixon
method are simple by design and therefore usually not written in matrix form.
Not doing so obscured the fact that more general linear combinations of tissue
densities can be used for tissue quantification.

If there are n experiments and t tissues, S can be presented as a complex
matrix of n × t in (4.2). Each row corresponds to pure tissue concentrations
of a certain experiment.

SC
n×t =


a11 a12 . . . a1t

a21 a22 . . . a2t
...

an1 an2 . . . ant

 (4.2)

4.3.1 An Example

In order to better understand how the Dixon method quantifies tissues even
when a voxel contains mixture of multiple tissue values (partial volume effect),
we use a simple example. Having the experiments, we are trying to separate
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each tissue from each voxel using S. This is the problem we want to solve. The
forward problem would be to build MR images having pure tissue values and S
transformation. Each pixel in MR image is built up of the linear combination
of different tissues:

In = an1ρ1 + an2ρ2 + . . .+ anmρm, (4.3)

where ρi is pure tissue i and anm is element of SC. The transformation used to
generate experiments, (S), is defined as a matrix containing complex numbers.
Elements of S are the density of pure tissues in their corresponding experiment.

Figure 4.1 is a 2D view of three geometric phantoms. These grayscale
pictures represent MR images and each one contains a distinct tissue. In
chapter 6 we will present a 3D view of phantom in a layer of body.

This example is to better understand the use of the generalized Dixon
method and the transformation S. By having the portion of pure tissue in each
voxel, we can set the density of tissues in all voxels. By adding all densities of
all tissues together in a voxel, we will be able to build the MR experiments.

Figure 4.1: Three simulated tissue fractions (ρ1, ρ2, ρ3) shown in separate im-
ages.

4.4 Specifying the Transformation S

Each experiment has a specific transformation. If there are n experiments and
t distinct tissues, S will be an n × t matrix and each row corresponds to one
of the experiments as shown in Figure 4.2. Each entry of S represents the
concentration of a pure tissue in a certain experiment. As an example, aij is
the concentration of pure tissue j in experiment i. A simple way of finding
aij is to manually specify a pixel in the acquired image i in a region that only
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(a) (b) (c)

Figure 4.2: Having the portion of each tissue in each voxel, we can find the
density of each voxel in different experiment. Real and imaginary parts for
one experiment for each tissue after applying the S transformation.

(a) (b)

Figure 4.3: Linear combination of tissue using S. (a) Real part (b) Imaginary
part
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contains pure tissue j and figure out the pure tissue concentration. This can be
done either manually by a medical technician or radiologist, or by means of a
machine learning algorithm, which we consider as a future work of this thesis.
In chapter 5, S transformation is used in the modeling of the segmentation
problem. More details about the structure and elements of S will be discussed
later.
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Chapter 5

Inverse Problem

In this chapter, we present a new model to solve the tissue-quantification
problem. Medical image processing is a well-suited platform to propose inverse
problems. Having the medical images, we are looking for the causes, such
as cancer detection. To better understand the concept of inverse problems,
first we explain how to build up images from segmented tissue, using forward
problems. Then we discuss how to model our problem as an inverse problem.
Regularization can be used to make an ill-posed problem well-posed [12]. Here
we used regularization both for noise reduction and to remove the singularity
caused by ill-conditioning [39] and [33].

5.1 Forward Problem

The forward problem tries to find the effect and the result of interaction be-
tween different elements of a system in a straightforward way. As an example,
consider three rivers with a certain amount of water flowing that merge in a
lake. If we know the exact amount of water in each river, we can easily esti-
mate the total amount of water accumulated in the lake. Here the elements
of the system are amount of water and number of rivers, and the interaction
between them results in a certain amount of water in the lake.

Let t be the number of different tissues in the target anatomy. We are
given n images, Cj : Z2 → R; each containing the per-pixel concentration
of a single tissue, where the pixels are indexed by pairs of integers in Z2.
The forward problem is to find the expected MR images, Ii. In other words,
knowing the number of experiments, we try to mix all these t pure tissue
images in order to make MR experiments. We can easily solve this problem by
having the S matrix (explained in chapter 4) that specifies the contribution of
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each tissue in different experiments:

Ii = S Ci (5.1)

where this product is to be understood as a pointwise product operating in
parallel on each pixel.

5.2 Inverse Problem

Any time we want to know model variables based on experimental measure-
ments with a known mathematical model connecting variable values to ex-
pected experimental outcomes, we have an inverse problem. As a diagram:

Data→ Modeled Parameter (5.2)

5.2.1 Linear Inverse Problem

In this class of problem, the relationship between data and modeled variables
is linear, e.g.

Ax = b (5.3)

where A is a linear operator, and b and x represent data and model parameters
and the job is to find x. Our quantification problem can be described this way.

In other words, having the MR experiments, we are trying to find the
tissue fractions that would result in the observed images. We can define an
optimization problem in which the objective function measures the likelihood
of observing image pixel values given underlying tissue concentrations. If the
measurement error is independent and normally distributed, then this is the
L2 distance between the measured MR experimental images and the images
predicted by the forward problem. When we only collect partial k-space data,
we have to include the effect of the Fourier transform. The job is to solve a
least-squares problem. In other words, we minimize the distance between the
measured MR experimental images and the images predicted by the forward
problem.

5.2.2 Linear Least Squares

Linear least squares is a mathematical function that finds an approximation
for a system of linear equations that may have no exact solution. It arises pri-
marily in applications when it is desired to optimally fit a linear mathematical
model to data obtained from experiments. Mathematically, it can be stated as
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the problem of finding an approximate solution of an overdetermined1 system
of equations. If A ∈ Rmn is a known m× n matrix and x ∈ Rn is an unknown
n-dimensional parameter vector and b ∈ Rm is a known m-dimensional mea-
surement vector, the least-squares function is defined as the Euclidean norm
squared of the residual Ax− b:

||Ax− b||22 (5.4)

Linear least-squares problems admit a closed-form solution, in contrast
to non-linear least-squares problems, which have to be solved by an iterative
procedure.

In the following section we will describe each component of our least-
squares problem in detail.

5.3 Modeling the Quantification Problem

Considering the general form of an inverse problem in (5.3), we describe the
quantification problem, where b is the experimental data collected from MRI
scanners which is both incomplete and noisy with white Gaussian noise in
k-space. In order to consider the effect of incomplete data (partial k-space)
b needs to be in Fourier space. Therefore, we need to use a Fourier transfor-
mation in our modeling strategy. A is a transformation from pure tissue to
pixel values. We used the S transformation in the Dixon method described in
chapter 4. In order to make both sides of equation (5.3) in the same space, A
also needs to include the effect of Fourier transformation. Finally, the modeled
parameters, x, are the fractions of pure tissues in each voxel. Having A and b,
the task is to find x in a way that fit in (5.4).

In case of least-squares problem, ||Ax − b||22, A and b are described as
follow:

A = P · FT · Sp (5.5)

b = P · FT · Ii, (5.6)

where the projection onto partial data P , the Fourier transform FT , and the
block form of S are explained in the following section.

1In mathematics, a system of linear equations is considered overdetermined if there are
more equations than unknowns.
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5.3.1 Projection P

The phantoms used here are completely sampled in k-space. We can simulate
the partial k-space data by projecting the full k-space data onto a subspace.
It is possible to sample different patterns of data in a way similar to that of a
MRI scanner.

projection× full k-space = partial k-space

The projection can be done by zeroing rows of FT ×S that correspond
to k-space rows not collected. This approach enables us to choose a variety of
projection matrices for each specific experiment. If e is the number of different
MR experiments, P is a block-diagonal matrix with e blocks of projection.
Each block initially is an identity matrix where zeros are placed on the diagonal
in order to indicate unsampled rows in k-space (simulate partial k-space). Each
block presents the sampling map for a certain experiment. Figure 5.1 shows
the structure of block-diagonal P matrix for e experiments.

P =

 Experiment 1

  Experiment 2


. . .  Experiment e




Figure 5.1: Structure of block-diagonal matrix P for e experiments.

In order to show different phases and frequencies of MR signals, all
the acquired data are complex. We separate the real and imaginary part of
all complex numbers in order to use real-valued linear algebraic operations.
Real arithmetic enables us to also implement the solver efficiently in other
programming languages such as C. However, separating real and imaginary
parts of data doubles the number of rows in P . C is a complex number and
R represents the same number with separated real and imaginary parts.

C = αi+ β, R =

(
α
β

)
(5.7)
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In this case, P contains pairs,

(
1

1

)
or

(
0

0

)
, depending on whether

a row of k-space is selected or not. Figure 5.2 shows how to separate the
elements of P .


1

0
1

0
1


5×5

→



1
1

0
0

1
1

0
0

1
1


10×5

(a) (b)

Figure 5.2: A sample 5×5 block of P . (a)Sampling complex data (b)Sampling
data with separated real and imaginary part.

However, removing rows from k-space may cause A to be singular, i.e.,
not invertible. We can reduce the size of the matrix by deleting the rows in P
blocks that contain zeros, thereby saving many extra computations (without
requiring the use of sparse linear algebra). Figure 5.3 shows the compressed
matrix for each block of P .

5.3.2 Fourier Transformation FT

If e is the number of experiments, FT is a block-diagonal constant matrix of
1D Fourier transformations with e blocks. Since we either fully sample or do
not sample rows, the error associated with raw data and data transformed
in the row direction are both independent, identically distributed Gaussian
noise. We can reduce the problem size significantly if we consider one or a
small number of columns at a time, but using row-transformed data in the
model rather than raw data. In all our computations, we separate the real
and imaginary parts of all elements. To perform only real computations, the
real and imaginary parts are separated, and the complex elements of the FT
are replaced by 2× 2 blocks:

ft =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(5.8)
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


→


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(a) (b)

Figure 5.3: Removing the singularity of matrix P by deleting rows with zeroes
on the diagonal.

α = −2π × (i− 1)× (j − 1)/n; i, j = 1 . . . n

Since we sample different rows in k-space for each experiment, the prod-
uct (P ·FT ) with zero rows removed varies from image to image. The product
(P ·FT ) also is a block-diagonal matrix with e blocks, and each block represents
a specific Fourier transform for each partially sampled experiment. Figure 5.4
shows the product (P · FT )

P · FT =

(
FT

Experiment 1

)
(

FT
Experiment 2

)
. . . (

FT
Experiment e

)


Figure 5.4: The product (P · FT ) is also a block-diagonal matrix.
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5.3.3 Pixelwise Sp Transformation

S is a pixelwise matrix2 and we will use the same letter for the transformation
from tissue density to pixel values for particular experiments, and for the block-
matrix generalization, which would be block diagonal with identical blocks in
a basis where the elements corresponding to a single pixel value are gathered
together. We define t as the number of different tissues and e as the number of
experiments. Each element of S (aij ∈ C) is a complex number that represents
the signal produced by pure tissue j in experiment i. Figure 5.5 shows the
format of matrix S.

T1 T2 · · · Tt

S =

Exp 1
Exp 2

...
Exp e


a11 a12 . . . a1t

a21 a22 . . . a2t
...

...
ae1 ae2 . . . aet


Figure 5.5: Matrix S indicates the signal produced by pure tissue for different
experiments where Expi represents different experiments and Ti represents
different tissues.

We define a new matrix Sp that rearranges the elements of S in order
to fit in our least-squares problem. Remember that each element of S is a
complex number, and we have to separate real and imaginary part as shown
in (5.7).

5.3.4 Experimental Data b

We are trying to find modeled parameter (x) in a way to minimize the dis-
tance between approximated data (P · FT · Sp · x) and experimental data (b).
Therefore, b must be in the same space as the approximated data. It means b
has to be in Fourier space and uses the same projection P . In other words, b
is the row Fourier transform of the collected rows in k-space, which for the nu-
merical simulation are generated by taking column transforms of ideal images
with noise added, and projecting out the unsampled rows. Using the same P
and FT , b is defined as follows:

b = P · FT · Ii (5.9)

2A pixelwise matrix can be transformed by reordering coordinates into a block-diagonal
matrix with identical blocks, where each block acts on a single pixel.
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Sp =


R11

R11

. . .
R11




R12

R12

. . .
R12

 · · ·


R1t

R1t

. . .
R1t




R21

R21

. . .
R21




R22

R22

. . .
R22

 · · ·


R2t

R2t

. . .
R2t


...

... · · ·
...

Re1

Re1

. . .
Re1




Re2

Re2

. . .
Re2

 · · ·


Ret

Ret

. . .
Ret




Figure 5.6: Matrix Sp, having t different tissues and e MR experiments. Rl,m

is al,m in the 2× 1 block format shown in (5.7).

where Ii is the simulated MR data.

5.3.5 Solver

We implemented our algorithm using Matlab. We used the linear least-squares
function (lsqlin) as a solver for our optimization problem. lsqlin is used to
solve constrained linear least-squares problems. The function call and each
argument is described here:

x = lsqlin(A, b, C, d, Aeq, beq, lb, ub) (5.10)

where

min
x
||A · x− b||22, such that,


C · x ≤ d,
Aeq · x = beq,
lb ≤ x ≤ ub.

(5.11)

The objective is to minimize the distance between segmented tissues
and multiple MR experiments. Solving the problem for multiple images in one
step results in a very large and sparse system. For example, if the image size is
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Image Size Size of A Size of b
32× 32 8192× 3072 4096× 1
64× 64 32768× 12288 16384× 1

128× 128 131072× 49152 65536× 1
256× 256 524288× 196608 262144× 1
512× 512 2097152× 786432 1048576× 1

1024× 1024 8388608× 3145728 4194304× 1

Table 5.1: Solving the problem in a single step, rather than several columns
at a time, results in very large matrix sizes in ||Ax− b||22.

n×n and we have e experiments with t tissues, the size of A and b in equation
(5.11) will be approximately:

A ≈ 2 · n2 · e× n2 · t (5.12)

b ≈ 2 · n2 · e× 1 (5.13)

which requires more than available memory, even for moderate image sizes
(128× 128). Table 5.1 shows the size of the least-squares problem for different
image sizes.

However, we can split the problem into smaller parts and solve it for k
columns of the image at a time and cover the whole image through iteration.
The simplest case is when k = 1. Depending on the regularization method
being used, k can be chosen in the interval 1 ≤ k ≤ bN/2c. If we call s the
step size, each iteration segment s column of the image(s < k). However,
at the end of the iterations, there might be cases where the set of columns
left are less than k. In other words, if the iterations pass N − k, there are
less columns to be chosen in sets of size k. This problem can be recovered
by appending extra zero columns at the end of the image. Although, there is
a trade-off between the number of appended zero columns and the clarity of
the segmented images at the image borders. The bigger the k, the better and
more accurate the segmentation, but there is less image clarity at the borders
of the image. Depending on the choice of regularization method, our algorithm
is capable of solving the problem for different numbers of columns (k’s). We
obtained good results by picking k = 4, 6, 8. Figure 5.7 shows the pseudo-code
for the segmentation problem iterating through column groups.

By this approach, we reduce the size of A and b to acceptable sizes
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[tissues] = Quantification(images,k,s)

A = P(n,k) * FT(n,k) * Sp(n,k);

for i = 1 : imageSize with Step Size s;

tissues = lsqlin(A, Column i to i+k of Image);

end;

Figure 5.7: Pseudo-code for segmentation k columns at a time, where P(n,k),
etc., set up the block matrices for images of size n× k.

for lsqlin(). It also allows parallel computation using a number of processors
which can scale linearly with the image width. We consider solving the problem
in parallel as future work.

5.3.6 Constraints

Since tissue density is expected to be non-negative, and the sum of all tissue
densities in a voxel is bounded by voxel size, it would make sense to intro-
duce linear constraints into the least-squares problem, thereby reducing the
expected noise. In particular, we have made some experiments with non-
negativity constraints on tissue concentrations, but the best form for doing
this is still an open question.

5.4 Regularization

Minimizing the least-squares term ||Ax− b||22 defines an approximate solution,
x, to the equation Ax = b. However, if A is singular or ill-conditioned, and
b is the result of measurement contaminated by noise, the estimate may be
inaccurate and there may be a large number of solutions. Regularization can
be used to make an ill-posed problem well posed by introducing additional
information about the solution. Additional information such as an assumption
on the smoothness or a bound on the norm. The problem is then changed to
a new problem with improved conditioning.

If A : X → Y and Ax = y, a mathematical problem is well posed [12]
when:

1. For each datum y in a given class of function Y there exists a solution x
in a prescribed class X such that Ax = y (Existence);
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2. The solution x is unique in X. Ax1 = Ax2 → x1 = x2 (Uniqueness);

3. The dependence of x upon y is continuous, i.e., when the error on the
data y tends to zero, the induced error on the solution x tends also to
zero which means A−1 is continuous (Continuity).

If a problem does not satisfy one of these three conditions, it is called an
ill-posed problem. Inverse problems are not usually well posed, and in order
to be solvable, a variety of regularization techniques can be applied to solve
the problem [2]. There are many regularization techniques available and are
categorized in to three classes:

• optimization-based

• filtering-based

• iteration-based

5.5 Tikhonov Regularization

One of the easily designed regularization methods for linear problems is Tikhonov
regularization [34]. It is also known as ridge regression.

Assume X, Y are Hilbert spaces3 where x ∈ X and b ∈ Y . A linear
system is defined by the following equation:

Ax = b+ η (5.14)

where η is noise in the experiment. From the linear point of view, A is an
m × n matrix, x is a column vector of length n, and b is a column vector of
length m. If m > n, the problem is to find an approximate solution of an
overdetermined system by minimizing

T (x) = ||Ax− b||22 + αP (x), (5.15)

for some penalty function P . When the penalty is quadratic, we can write the
problem as

xα ∈ argmin
x∈X

||Ax− b||22 + α||Rx||22 (5.16)

3Hilbert space generalizes the notion of Euclidean space in a way that extends methods
of vector algebra from the two-dimensional plane and three-dimensional space to infinite-
dimensional spaces.
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xα is an approximate solution to the fit-to-data term ||Ax− b||22, depending on
the penalty weight, α.

Since our problem is linear and finite dimensional, we can consider lin-
ear penalty functions as a matrix R with α weighting. In this case, all penalties
and fit-to-data terms can be combined in a single least-squares minimization.
Equation 5.17 shows the merged least-squares problem.

||Ax− b||22 + α||Rx||22 →∥∥∥∥( A
αR

)
x−

(
b
0

)∥∥∥∥2

2

. (5.17)

In the case that R is the identity and α is strictly positive, we can write

xα = (A∗A+ αI)−1A∗b (5.18)

5.5.1 Choice of Regularization Operator R

The penalty term is sometimes called a discrete smoothing norm. It indicates
that high frequencies in the solution are penalized and converge to zero, but
low frequencies remain unregularized. It behaves as a low-pass filter.

In Tikhonov regularization, the operator R is usually I, an identity
matrix of n × n (considering Am×n in 5.17). Different weightings are applied
to R through α, the regularization parameter. In our segmentation problem
we used the L2 norm of the differences of neighbours in both column and row
directions. We can subtract each pixel from the neighbors in both row and
column directions. We can substitute a pixel value by average of neighbor
pixels. We discuss each case in detail.

Regularization in Column Direction

In this case, the term R, named Col, should be designed in a way that by
multiplying it to pure tissue vector x, subtract current pixel value from its
lower neighbor pixel. For this means, we use an identity matrix of size n× n
with −1 on upper sub-diagonal. Figure 5.8 shows the structure of the matrix
for regularization in the column direction.

Regularization in Row Direction

Regularization can also be done in the row direction. In this case we use the
right neighbor of each pixel to regularize the current pixel value. The matrix
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Col =


1 −1

1 −1
. . . . . .

1 −1
1


n×n

Figure 5.8: Col matrix used to regularize image in column direction

Row =


1 | −1

1 | −1
. . . | . . .

1 | −1
1 | −1


n×2n

Figure 5.9: Col matrix used to regularize image in column direction

needed here is the vertical concatenation of two matrices. The first one is an
identity matrix and the second on is an identity matrix with −1 coefficient.
We name this block Row with the size n × 2n. By multiplying this block to
the vector of pure tissue, each pixel value is substituted by its value being
subtracted from its neighboring pixel value. In Figure 5.9, the structure of the
row regularization matrix is illustrated.

We described the simple block of Row and Col. We have to combine
these 2 blocks together as follows:

R =

(
Col
Row

)
2n×2n

(5.19)

Remember that in the solution we proposed earlier, we processed mul-
tiple columns of an image at a time. In the least-squares solver, if we process
k columns at each iteration, we need k blocks of Col and k− 1 blocks of Row.

As an example, if k = 4 the structure of

(
A
R

)
2m×2n

in (5.17) is as
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(A)
(A)

(A)
(A)

(Col)
(Col)

(Col)
(Col)

( Row )
( Row )

( Row )


n×2n

Figure 5.10: Regularizing operator R consists of both row and column regu-
larization.

figure 5.10.

5.5.2 Regularization Parameter

The regularization parameter α must be chosen in order to balance the need
to fit the experimental data and the a priori information represented by the
penalty term. There is no specific range for variation of α. There are regularization-
parameter selection techniques that have been proposed in the literature in
order to find a good regularization term α. Techniques such as the L-curve
method, cross validation, discrepancy principle and unbiased predictive risk
estimator. In the following, we explain some of these techniques and L-curve
parameter selection in detail for our regularization problem.

Discrepancy Principle

[19], [25] If δ is the expected value of ||e||2, then the regularization parame-
ter should be chosen so that the norm of the residual corresponding to the
regularized solution ||xreg|| is τδ; that is,

||Axreg − b||2 = τδ (5.20)

where τ > 1 is some predetermined real number. It is obvious that δ → 0,
xreg → xtrue. For example, if the signal-to-noise ratio is known, this method
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could be used.

L-curve

The L-curve for a Tikhonov-regularized solution of an ill-posed problem is a
parametric plot of the norm of the regularized solution with stabilizer param-
eter ||Rxα||2 versus the corresponding residual norm for each set of param-
eter values ||Axα − b||2, and was introduced by Lawson and popularized by
Hansen [13]. Figure 6.16 shows a sample plot of an L-curve in the plane of
||Axα − b||2 , ||Rxα||2. The L-curve thus gives insight into the properties of
the underlying regularization method, and it is used to determine an optimal
regularization parameter α for the given data.

5.5.3 Determination of the Regularization Parameter
via the L-curve Approach

Considering the first derivative with respect to α of ||Axα − b||22 and ||Rxα||22,
||Rxα||22 monotonically decreases with respect to α while ||Axα − b||22 mono-
tonically increases with respect to α. This defines a correspondence between
||Axα − b||22 and ||Rxα||22 which when plotted parametrically defines a curve,
known as the L-curve, because of the shape it commonly takes.

Choosing a good α can be done by considering a trade-off between
accuracy and the smoothness of the solution. Depending on various regions
of interest, different α’s can be chosen for different purposes. As an example,
the regularization parameter for smoothing background in an image needs to
be larger than α for regularizing edges.

We define two parameters rα and sα below, in order to better illustrate
the trade-offs between accuracy and smoothness of a regularized solution.

rα = ||Axα − b||22 (5.21)

sα = ||Rxα||22 (5.22)

where the residual rα determines the accuracy of the solution while sα deter-
mines the smoothness of the solution. Clearly, the smaller the rα, the better
and more accurate the solution for 5.21; and also the smaller sα, the smoother
the solution.

The behavior of the L-curve with respect to α was explained by Lung
and Lu in [22]. If A and R can be simultaneously decomposed, i.e., with the
same eigen- or singular-vectors, then the terms rα and sα, and their derivatives
with respect to α, can be expanded in series depending on the singular values,
from which the high and low slopes in the L-curve follow by taking limits.
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Figure 5.11: The L-curve for standard form Tikhonov regularization [14]. The
points marked by circles correspond to different regularization parameters, α.

Considering a sample plot of the L-curve in Figure 6.16, the left portion
of the L-curve behaves as a vertical line and hence its curvature is small. It is
obvious than any point on this portion of the L-curve corresponds to a xα with
good solution accuracy (i.e. small rα) but poor smoothness. For large values
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of α, sα and its derivatives are small while rα is independent of α. The right
portion of the L-curve corresponds to bigger α’s and large rα. The curvature
in that part of the curve is small. It means this part of the curve has xα with
smooth points yet poor solution accuracy.

Considering the trade-off between smoothness and accuracy of xα, the
best α is located at the very corner of the curve.

We can summarize the steps toward finding a good α as follows:

1. Calculate various number of points ( ||Axα − b||22 , ||Rxα||22) for varying
α over a wide range of data.

2. Plot the points, and interpolate parametrically if necessary.

3. Choose a value of α giving a point in the expected range for the fit-to-
data and penalty terms and relatively more curvature by inspection.

Considering the behavior of the L-curve and how it alters the solution
of the least-squares problem, we can consider it as a filter which filters out
singular components that are small (relatively) while retaining components
that are large. In this sense, it is called a Tikhonov filter. In the next chapter
we will show how Tikhonov filtering affects the results. It helps us overcome
the inaccurate segmentation caused by noisy and partial MRI data acquisition,
yet makes the results look smoother and clearer.
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Chapter 6

Numerical Results

In this chapter, we present the results of a proposed algorithm and the show
how regularization improves the results.

6.1 Geometrical Phantoms

We simulated three tissue numerical phantoms with simple geometrical shapes,
including partial volume effects1. It includes a cylinder obliquely intersecting
the image plane, a cube, and a sphere representing separate tissues. Figures 6.1
and 6.2 show each tissue and their combination.

(a) (b) (c)

Figure 6.1: Geometrical phantoms representing different tissues in a target
anatomy. An oblique cylinder, a box, and a sphere in one layer.

1There might be situations where each voxel in the images represents more than one
tissue type. This phenomenon is referred to as the partial-volume effect.
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(a) (b)

(c) (d)

Figure 6.2: 3D view of simulated tissues from different angles (a) top view
(b)-(d) side view.

Recall from the first chapter that an MR image shows different tissues
within a layer of the body with a certain thickness. We simulated each layer
by a 3D volume that is shown in Figure 6.3. In order to be able to process the
layer, we have to flatten the 3D layer to obtain a 2D MR image of size n× n.
We can approximate the tissue concentration of each voxel2 by splitting it into

2A voxel is a volume element, representing a value on a regular grid in three-dimensional
space. This is analogous to a pixel, which represents 2D image data.
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subvoxels shown in Figure 6.3 and find the sum of the subvoxels that belong
to a certain tissue. Each voxel is of size l×w×a where l is the length, w is the
width and a is the height. If the the image size is n×n, the tissue concentration
of pixel (i, j) of tissue t can be calculated by dividing the number of subvoxels
containing tissue t at their centers by the total number of subvoxels.

Figure 6.3: A 3D view of a layer of body, divided in to voxels. The structure
of the top right voxel is shown separately, divided into subvoxels.

Each voxel has a value between 0 and 1 (0 ≤ voxel ≤ 1). The brightness
of a pixel corresponds to the concentration of the tissue in the corresponding
voxel. In our experiments we used an image size of 128 × 128 and divided
voxels into units of 10 × 10 × 30. Figure 6.4 shows a flattened layer of tissue
used for MR experiments.

Our algorithm works on multiple MR images acquired from one similar
anatomy, but with different patterns of data acquisition. We also added white
Gaussian noise with different powers using the wgn() function in Matlab, in
order to simulate the noisy environment of MRI scanners. Four different exper-
iments are manipulated from the non-noisy fully sampled image in Figure 6.4.
We used different patterns of data acquisition for each specific experiment. In
the following section, we will present different results of our segmentation algo-
rithm on various experiments. We will also show how the regularization term
helps to reduce the noise and artifacts in the reconstructed tissue densities.
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Figure 6.4: Simulated phantom representing flattened MR experiments shown
in Figure 6.2.

6.2 Tissue Quantification

Having completely sampled pure tissues, we can manipulate different experi-
ments with different tissue densities using S matrix below. We use 3 distinct
tissues containing the effect of partial voluming. Rows in S represents differ-
ent experiments and columns are different tissues. Considering the geometric
shapes in Figure 6.1, the first column corresponds to the sphere, the second
column corresponds to the cube, and the third column shows the tissue density
of the oblique cylinder. Figure 6.5 (a)-(h) shows the real and imaginary parts
of four distinct experiments of size 128 × 128, which is used as a base for all
our experiments. Segmented tissues also appear in images of size 128 × 128
separately.

S =


1 + 0i 1 + 0.15i 0.8 + 1i

0.25 + 1i 0 + 0.3333i 0.4− 1i
0.325 + 0i 0.2 + 1i 0.3− 0.5i

1 + 0i 0 + 0.2i 1− 1i

 (6.1)

We show reconstructed images under three conditions:

1. Full sampling with zero noise (resulting in reproductions of the model
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densities).

2. Partial k-space sampling with noise without regularization (resulting in
unacceptable noise and artifacts).

3. Partial k-space sampling with noise reconstructed using regularization.
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6.2.1 Full Sampling

Segmentation of fully sampled experiments results in reconstruction of pure
tissues. Figure 6.5 (i)-(k) shows three tissues with a very clear segmentation.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.5: Fully sampled experiments are simulated using the Bloch equations
from pure tissues as shown in Figure 6.4 using the S transformation. (a)-(d)
is the real part and (e)-(h) is the imaginary part of the experiments, (i)-(k) is
the quantified tissues from fully sampled MR experiments.
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In order to make the phantoms more realistic, we added white Gaussian
noise to all experiments. The Matlab function wgn(m,n, p) creates an 2D array
of size m × n relative to p that indicates the power. By adding the noise to
both real and imaginary parts of k-space, we will obtain noisy experiments as
shown in Figure 6.6 (a)-(h). The noise is being added to the experiments as
follows:

expNoisei = ifft(fft(expi) + wgn(n, n, p) +i ∗ wgn(n, n, p)) (6.2)

where fft() and ifft() are Fourier and inverse Fourier transform functions. Re-
sults show that the segmentation is acceptable for experiments with slight
noise in Figures 6.6 and 6.7, but adding noise with more power causes unclear
segmentation with artifacts in the results as shown in Figure 6.8.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.6: Fully sampled experiments contaminated by white Gaussian noise
with low power p = 0.1 and its corresponding quantification. (a)-(d) is the
real part and (e)-(h) is the imaginary part of the experiments. (i)-(k) is the
segmented tissues from fully sampled noisy MR experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c)

Figure 6.7: Fully sampled experiments contaminated by stronger white Gaus-
sian noise with higher power p = 10 and its corresponding quantification which,
(a)-(d) is the real part and (e)-(h) is the imaginary part of the experiments,
and (i)-(k) is the segmented tissues from fully sampled noisy MR experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c)

Figure 6.8: Fully sampled experiments contaminated by higher white Gaussian
noise with higher power p = 20 and its corresponding quantification, which is
not clear and contains lots of noises. (a)-(d) is the real part and (e)-(h) is the
imaginary part of the experiments. (i)-(k) is the segmented tissues from fully
sampled but very noisy MR experiments.
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6.2.2 Quantification From Partially Sampled Data (With-
out Regularization)

In the previous section, we used the fully sampled experiments and showed
how noisy data can ruin the segmentation result. In this section, we will
present the image reconstruction from incomplete data (partial k-space). In
each figure, the sampling used is listed in the corresponding table. Each figure
uses a different sampling pattern. We decrease the number of sampled rows in
each subsequent figure. Results show that having both noisy and incomplete
data, the segmentation is erroneous. Regularizing image segmentation is the
approach applied to mitigate the aliasing problem which is presented the next
section. For all noisy experiments and their segmentation, we also calculate
the Signal to Noise Ratio (SNR) as follows:

SNR =
1

error

where

error =
∑

i∈pixels

(norm(ρi − ρi,estimate))
2

n2

where the image size is n × n and ρi and ρi,estimate are the basis for segmen-
tation and result of noisy experiment segmentation respectively. Note, the
eigenvalues of S∗S give a lower bound on the SNR, but both regularization
and the interaction between test problem geometry and sampling patterns may
increase the SNR.
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(a) (b) (c)

Figure 6.9: Segmented tissues from partially sampled non-noisy MR experi-
ments with mapping shown in Table 6.2.2. The first two rows of the figure
are the real and imaginary parts of the experiments, (a)-(c) are the segmented
tissues from partial k-space. 58% of complete data was used. The results are
without artifacts.

Experiment Collected Rows in k-space
1 (1, 2, 3, . . . , 3

4
n)

2 (1, 2, 3, . . . , 1
2
n)

3 (1, 4, 7, 10, . . . , n)
4 (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, . . . , n)

Table 6.1: Sampling of rows from k-space of experiments shown in Figure 6.9.
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(a) (b) (c)

Figure 6.10: Segmented tissues from partially sampled non-noisy MR exper-
iments with mapping shown in Table 6.4. The first two rows of the figure
are the real and imaginary parts of the experiments, (a)-(c) is the segmented
tissues form partial k-space. 48% of complete data was used.

Experiment Collected Rows in k-space
1 (1, 2, 3, . . . , 1

2
n)

2 (1
2
n, . . . , n)

3 (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, . . . , n)
4 (1, 4, 7, 10, . . . , n)

Table 6.2: Sampling of rows from k-space of experiments shown in Figure 6.10.
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(a) (b) (c)

Figure 6.11: Segmented tissues from partially sampled non-noisy MR exper-
iments with mapping shown in Table 6.3. The first two rows of the figure
are the real and imaginary parts of the experiments, (a)-(c) is the segmented
tissues from partial k-space. 39% of complete data was used.

Experiment Collected Rows in k-space
1 (2, 4, 6, . . . , n)
2 (1, 2, . . . , 1

2
n)

3 (1, 4, 7, 10, . . . , n)
4 (4, 8, 12, 16, . . . , n)

Table 6.3: Sampling of rows from k-space of experiments shown in Figure 6.11.
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(a) (b) (c)

Figure 6.12: Segmented tissues from partially sampled noisy MR experiments
with mapping shown in Table 6.4. The first two rows of the figure are the real
and imaginary parts of the experiments, (a)-(c) is the segmented tissues from
partial k-space. 48% of complete data was used. The results are still fine in
spite of having noise.

Experiment Collected Rows in k-space
1 (1, 2, 3, . . . , 1

2
n)

2 (1
2
n, . . . , n)

3 (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, . . . , n)
4 (1, 4, 7, 10, . . . , n)

Table 6.4: Sampling of rows from k-space of experiments shown in Figure 6.12.
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(a) (b) (c)

Figure 6.13: Segmented tissues from partially sampled noisy MR experiments
with mapping shown in Table 6.3. The first two rows of the figure are the real
and imaginary parts of the experiments, (a)-(c) is the segmented tissues from
partial k-space. 39% of complete data was used. Having noise and incomplete
data, the segmentation result is full of noise and includes artifacts. We need
to add a regularizer to change the problem.
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6.2.3 Partial k-Space Sampling with Noise Reconstructed
Using Regularization

In the previous section, we showed that undersampling of noisy experiments
causes aliasing and unwanted artifact in the results (Figure 6.13 (a)-(c)). In
this section, we regularize the problem in order to get smoother results with
less noise. Later we use the L-curve method to pick a good regularization
weight. In Figure 6.17 we compare the three different results. Figure 6.17
(a)-(c) is the unregularized segmentation from noisy data. Figure 6.17 (d)-(f)
is the regularized quantification when α = 1. Finally Figure 6.17 (g)-(i) shows
the weighted regularized quantification with regularization parameter α = 3.5.
In the end we will show the L2 norm of residual as a graph showing the lower
error in the results with regularization.
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(a) (b) (c)

(d) (e) (f)

Figure 6.14: Segmentation of partially sampled experiments. Using un-
weighted regularization (α = 1) in both row and column direction improves
the noise, especially in the background, removes the artifacts, and also adds a
bit of smoothness to the segmented tissues. (a)-(c) are segmentation without
regularization (α = 0), (d)-(f) are the segmentation of the same tissue using
unweighted (α = 1) regularization.

6.2.4 L-curve

In order to select the best regularization parameter α, we use the L-curve
to find a good compromise. In the previous section, the regularization term
improved the results by reducing the artifacts and background noise. The
regularization parameter used before was α = 1. We can apply different
weightings to α within a certain range of data. If α is very big, we will get
over-smoothed results, and if it is very small, the results will look under-
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smoothed. An over-smoothed image reduces the noise, but doesn’t show the
details such as edges and contrasts. Figure 6.15 shows over-smoothing and
under-smoothing in segmentation.

(a) (b) (c)

(d) (e) (f)

Figure 6.15: Choosing very big or very small α causes over-smoothing and
under-smoothing respectively. (a)-(c) are over-smoothed tissues, (d)-(f) are
under-smoothed tissues.

We can defined a bounded range of data [A,B] and try to solve the
problem for all α ∈ [A,B]. We set the regularization parameter as follows:

α = (
√

2)i, i = −10, . . . , 10

By changing αi in ||Ax − b||22 + αi||Rx||22 we will get different solutions xαi
.

Each xαi
can be used to find the trade-off between the fit-to-data term and

the regularization term:

(||Axαi
− b||2, ||Rxαi

||2)
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By using the L-curve technique, we can find a good trade-off α which is located
at the very left of the curvature shown in Figure 6.16, e.g. α = 3.5. Figure 6.17
(g)-(i) show the weighted regularization with better and more smooth results.

Figure 6.16: L-curve (zoomed-in by using a linear-linear scale).
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Experiment Tissue1 Tissue2 Tissue 3
Tissues (a)-(c) 1.7327 2.9124 1.32870
Tissues (d)-(f) 105.6959 31.7963 151.3333
Tissues (g)-(i) 110.2940 35.1466 157.0307

Table 6.5: Signal to Noise Ratio (SNR) related to segmented tissues shown in
Figure 6.17 with the same order as tissues are presented.

6.2.5 Standard Deviation of Noise

Finding a good regularization parameter is one of the criteria for having the
visually best results. However, we can also calculate the error in the segmented
image caused by incomplete data sampling and noise. We can consider the
pure and non-noisy tissue shown in Figure 6.5 (i)-(k) as a basis and compare it
to our results. Standard deviation is a measure of how spread out the data are
compared to a basis. If there are n different images, the standard deviation
Sn is defined as:

Sn =

√√√√ n∑
i∈pixels

(xi − x̄i)2 (6.3)

where x̄ is the basis (pure tissue).

Table 6.6 shows the standard deviation of the noise in our segmented
images. Results show that using weighted regularization decreases the L2 norm
of residual error.

Segmented Image ||residual||L2

Full k-space, No Noise 0
Full k-space with Noise, α = 0 6.4397
Partial k-space With Noise, α = 0 13.995
Regularized Image, α = 1 5.561
Regularized Image, α = 3.5 4.556

Table 6.6: Standard deviation of results of different problems.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.17: A comparison between different segmentations applied on the
same partially sampled experiment with sampling patterns shown in 6.3 and
with the same amount of noise. We obtained better segmentation results using
weighted regularization. (a)-(c) is an unregularized segmentation(α = 0), (d)-
(f) is the segmentation using unweighted regularization (α = 1), (g)-(i) is the
regularized tissue segmentation with regularization parameter (α = 3.5). Only
using 39% complete data used for image reconstruction. Table 6.2.4 shows the
SNR of the segmented tissues.
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6.2.6 Execution Time

All tests were performed on Power Mac G5 which contains the PowerPC 970
(2.2) Dual CPU and 2 GB of RAM. Matlab version 7.0.4.352(R14) was used.
Table 6.7 shows the execution time as a function of problem size. When k-
space is fully sampled, the A in fit-to-data term has the maximum size. Where
k-space is partially sampled, the A would be smaller because we remove the
rows to prevent singularity of matrix. Results show that the elapsed time
increases by increasing the size and number of images.

Experiment Size Elapsed Time (s) Elapsed Time (min)
16× 16 0.979 0.016
32× 32 10.55 0.17
64× 64 109.171 1.8

128× 128 935.524 15
256× 256 38230.05 637

Table 6.7: Regularized segmentation. Execution time increases by increasing
the size of the image.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have formulated tissue quantification from multiple MR images with differ-
ent contrasts as an inverse problem. We have shown that incomplete k-space
sampling may introduce random and structured noise in the reconstructed tis-
sue fractions, although the results of solving one inverse problem are better
than the results obtained by reconstructing the images separately and doing
the quantification pixel by pixel. Further reduction in apparent noise results
from using the Tikhonov-Phillips regularization as part of the inverse prob-
lem. This also reduces noise in the quantification, when the simulated data
contains significant noise. In the regularized case, we were able to undersample
experiments in order to save 61% of the full scan time, without introducing
noticeable artifacts. The improvements in image quality were reflected in stan-
dard measurements of SNR.

7.2 Future Work

The next steps in developing this method are to (1) construct a phantom with
known materials and geometry in order to validate the method, and (2) develop
a method of determining tissue properties (i.e. the S transformation) rapidly,
either using the collected data or preliminary low-resolution images, and new
or existing machine learning algorithms (e.g. k-means or more sophisticated
methods using support vector machines).

The most successful partial k-space technique for reducing acquisition
time is Sensitivity encoding (SENSE). SENSE is based on the fact that re-
ceiver sensitivity generally has an encoding effect complementary to Fourier
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preparation by linear field gradients. Thus, by using multiple receiver coils in
parallel, scan time for Fourier imaging can be considerably reduced. The prob-
lem of image reconstruction from sensitivity-encoded data is formulated in a
general fashion and solved for arbitrary coil configurations and k-space sam-
pling patterns. In the future, the methods of this paper should be combined
with SENSE for even greater reductions in acquisition time.

We used the linear least-squares function in Matlab to solve the prob-
lem. However, by using techniques such as Conjugate Gradient, we will be able
to solve larger problems. Tikhonov regularization was successful. However, we
should also try different regularization methods such as Total Variation, which
have shown themselves to be even better on related imaging problems.
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Appendix A: The Matlab Codes

A.1 Function imgSegRealRegMultiCol2.m

function [Rho]=imgSegRealRegMultiCol2(exp, S, projection, rho, alpha)

%-------------------------------------------------------------------------------------------------------------------

%exp: The cell of experiments. Each element of exp

% (e.g. exp{1}) contains an MR experiment of size n*n

%S: A tranformaton from tissue density to pixle value

%rho: The number of tissues to be segmented

%alpha: Regularization parameter

%Rho: A cell which contains the segmented tissues

%-------------------------------------------------------------------------------------------------------------------

%% Variable Assignment

n=size(exp{1},1); %Image Size

e=size(exp,1); %Number of Expriments

t=rho; %Number of Tissues

Rho=cell(t,1); %Declaring output Varibale

Bcell=cell(e,1);

piCell=cell(e,1);

p_ftCell=cell(e,1);

c=4; %Number of Columns processed at each iteration

step=2; %Step Size Used In Regularization

%% Making Sample Projection Matrix pi and Remove the Zero Rows

%Finding the error rows in Projection Matrix

ProTemp=projection;

tempA=[1:n];

for i=1:e
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projection{i}=tempA;

projection{i}(ProTemp{i})=[];

piCell{i}=eye(2*n);

%removing zero rows from each projection matrix

if (size(projection{i},2) ~= 0)

index=[2*projection{i}-1 , 2*projection{i}];

piCell{i}(index,:)=[];

end%end if

end

%% make nxn matrix of 1D Fourier Transform for Real Computation

FT = makefftReal(n); %Makes 2n x 2n Real Fourier Matrix

%% Making a Block Digonal P_FTp With Blocks of (P*FTp)

P_FTp=[];

for i=1:e

P_FTp=blkdiag(P_FTp,piCell{i}*FT);

end

%% Making Sp, a Diagonal Matrix Which Is a Transformation From from tissue

% densiies to pixel values.

Scell=cell(t,1);

SpCell=cell(e,1);

Sp=[];

for i=1:e;

Scell{i}=S(i,:);

for j=1:t

block=[real(Scell{i}(j)); imag(Scell{i}(j))];

SpCell{i}= horzcat(SpCell{i}, blockDiagonal(n,block));

end

Sp=vertcat(Sp,SpCell{i});

end
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%% Buildinf Varibale for Solver A,b in ||A.x-b||

A=P_FTp*Sp;

A_Block=[];

for i=1:c

A_Block=blkdiag(A_Block,A);

end

expReal=cell(e,1);

for i=1:e

expReal{i}=makeReal(exp{i});%separate the real and imaginary part of

%the image and put them together in

%2n x 2n matrix

end

for i=1:e

Bcell{i} = piCell{i}*FT*(expReal{i});

end

% Buliding Tikhonov Regularization matrix

TikhvReg=eye(t*n)+diag(-1*ones(t*n-1,1),1);

Tikhv_Col=[];

for i=1:c

Tikhv_Col=blkdiag(Tikhv_Col,TikhvReg);

end

leftBlock=[];

rightBlock=[];

for i=1:c-1

leftBlock=blkdiag(leftBlock,eye(t*n));

rightBlock=blkdiag(rightBlock,-1*eye(t*n));

end

leftBlock=horzcat(leftBlock,zeros(t*n*(c-1),n*t));

rightBlock=horzcat(zeros(t*n*(c-1),n*t),rightBlock);

Tikhv_Row=(leftBlock+rightBlock);

85



M.Sc. Thesis – M. Mozafari – McMaster – Computing and Software

A_Reg=vertcat(A_Block,alpha*Tikhv_Col,alpha*Tikhv_Row); %A in least squares problem

%% Solving Linear Least Squares

options = optimset(’LargeScale’, ’on’,’Display’, ’iter’);

col=1;

for j=1:step:n-2

b=[];

for k=j:(j-1)+c

for i=1:e

b=vertcat(b,Bcell{i}(:,k));

end%for i

end%for k

b=vertcat(b,zeros(c*n*t,1),zeros((c-1)*n*t,1));

[Rhos(:,col)] = lsqlin(A_Reg,b,[],[],[],[],[],[],[],’options’);

col=col+1;

end

%% Making Output Figure

Rhos(:,col)= zeros(size(A_Reg,2),1);

reshapedRhos=Rhos(1:n*t,1);

for i=2:(n/step)

temp=Rhos( (n*t)+1:3*n*t,i);

reshapedRhos=vertcat(reshapedRhos,temp);

end;%for i

reshapedRhos=vertcat(reshapedRhos,Rhos(3*(n*t)+1:4*n*t,n/step-1));

for j=1:n

%read a column which contains j‘th column inforation of all t tissues

column=reshapedRhos((j-1)*t*n +1:t*n*j,1);

for i=1:t

Rho{i}(:,j)=column( (i-1)*n+1 : i*n,1);

end;%for i

end%end j
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%% Plotting The Segmented Results

figure(1); clf;

set(gcf, ’Position’, [400 600 1000 800]);

i=3;

j=4;

offset=4;

subplot(i,j,1); imshow(abs(real(exp{1}))); title(’Experiment1 Real Part’);

subplot(i,j,1+offset);imshow(abs(imag(exp{1}))); title(’Experiment1 Imaginary Part’);

subplot(i,j,2); imshow(abs(real(exp{2}))); title(’Experiment2 Real Part’);

subplot(i,j,2+offset);imshow(abs(imag(exp{2}))); title(’Experiment2 Imaginary Part’);

subplot(i,j,3); imshow(abs(real(exp{3}))); title(’Experiment3 Real Part’);

subplot(i,j,3+offset);imshow(abs(imag(exp{3}))); title(’Experiment3 Imaginary Part’);

subplot(i,j,4); imshow(abs(real(exp{4}))); title(’Experiment4 Real Part’);

subplot(i,j,4+offset);imshow(abs(imag(exp{4}))); title(’Experiment4 Imaginary Part’);

subplot(i,j-1,7); imshow(real(Rho{1})); title(’Segmented Tissue1’);

subplot(i,j-1,8); imshow(real(Rho{2})); title(’Segmented Tissue2’);

subplot(i,j-1,9); imshow(real(Rho{3})); title(’Segmented Tissue3’);

A.2 Function makeShape.m

function [img1,img2,img3]=makeShape(n)

%--------------------------------------------------------------------------

%This function make 3 different geometric phantoms of size n * n

%n: The size of image

%Img1,Img2,Img3: Built Tissues

%--------------------------------------------------------------------------

%% variables

l=10; %Length of Layer

w=10; %Width of Layer

h=30; %Hight of Layer
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img1=zeros(n);

img2=zeros(n);

img3=zeros(n);

centerE=[2*(n/8)*w,6*(n/8)*l,0];

rE=n/5*l;

%% Bulid an Sphere

offesetjj=1;

offsetii=1;

%we process each voxel separately, we try to sum up the sub voxel of each

%voxel which are part of our shape

for i=1:n % i goes in row direction

for j=1:n % j goes in column direction

sum=0;

for kk=0:h % voxel hight

for jj=offesetjj:w+offesetjj-1 %voxel col

for ii=offsetii:l+offsetii-1 % voxel row

dist=sqrt( (ii-centerE(1))^2 + (jj-centerE(2))^2

if (dist<=rE)

sum= sum+ 1/(l*w*h);

end% end if

end%for ii

end%for jj

end%for kk

if (sum~=0)

img1(i,j)=sum;

end;

offesetjj=offesetjj+w;

end%for j

offesetjj=1;

offsetii=offsetii+l;

end%for i
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%% Building Cube

x1C=5*(n/8)*l;

x2C=7*(n/8)*l;

y1C=(n/2)*w;

y2C=7*(n/8)*w;

z1C=0;

z2C=h;

offesetjj=0;

for i=1:n

offsetii=0;

offesetjj=offesetjj+w;

for j=1:n

sum=0;

for kk=0:h

for jj=offesetjj:w+offesetjj

for ii=offsetii:l+offsetii

dist=sqrt( (ii-centerE(1))^2 + (jj-centerE(2))^2 );

if ( (x1C<=ii)& (ii<=x2C) &(y1C<=jj) && (jj<=y2C) & ...

(z1C<=kk) & (kk<=z2C) )

sum= sum+ 1/(l*w*h);

end% end if

end%for ii

end%for jj

end%for kk

if (sum~=0)

img2(i,j)=sum;

end;

offsetii=offsetii+l;

end%for j

end%for i
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%% Building Oblique Cylinder

C1 = [n/4*l,2*n/8*w,0];

C2 = [n/4*l,6*n/8*w,30];

rC=n/5*l;

syms t;

line = C1 + t*(C2-C1); % line passing middle of inclined cylinder

offesetjj=0;

for i=1:n

offsetii=0;

offesetjj=offesetjj+w;

for j=1:n

sum=0;

for kk=0:h

t=(kk-C1(3) )/(C2(3)-C1(3));

x1=C1(1)+t*(C2(1)-C1(1));

y1=C1(2)+t*(C2(2)-C1(2));

for jj=offesetjj:w+offesetjj

for ii=offsetii:l+offsetii

dist=sqrt( ((ii-x1)^2 + (jj-y1)^2) );

if (dist<=rC)

sum= sum+ 1/(l*w*h);

end% end if

a=2;

end%for ii

end%for jj

end%for kk

if (sum~=0)

img3(i,j)=sum;

end;

offsetii=offsetii+l;
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end%for j

end%for i

end

A.3 Function makefftReal.m

function ft_array = makefftReal(n)

%---------------------------------------------------------------------

% creates the real FT array of size 2n x 2n

%---------------------------------------------------------------------

ft_array=[];

for k=1:n

row=[];

for j=1:n

if (i==1 || j==1)

row=horzcat(row,eye(2));

else

block=[cos((-2*pi*(j-1)*(k-1))/n) -sin((-2*pi*(j-1)*(k-1))/n);

sin((-2*pi*(j-1)*(k-1))/n) cos((-2*pi*(j-1)*(k-1))/n)];

row=horzcat(row,block);

end

end

ft_array=vertcat(ft_array,row);

end
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