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Abstract

One important topic in Magnetic Resonance Imaging (MRI) is a desire for
faster and more efficient scanning, with an elimination, or at least minimiza-
tion, of artifacts in the resulting image. Reducing patient discomfort, increas-
ing scanner throughput, difficulties in imaging dynamic elements (cardiovas-
cular system), and minimization of movement artifacts motivate faster scan
times. To this end, more complicated and mathematically intense sampling
strategies have been developed which either under-sample or ignore portions
of k-space. These missing samples manifest themselves as specific artifacts
indicative of the sampling strategy and the amount of under-sampling.

Durga uses pseudo-random, volumetric and velocity insensitive k-space
trajectories, which are derived from second-order cone optimization prob-
lems [2]. Under-sampling a random trajectory results in artifacts which re-
semble incoherent noise [19] instead of aliased images. Velocity insensitive
trajectories do not require rewinders to balance first or higher order moments.
Further, volumetric or 3D k-space sampling strategies can choose to ignore
slice select rewinders by beginning and terminating sampling readout at the
centre of k-space, interspersed with a finite time around the RF pulse. These
combine to increase the sampling duty-cycle, resulting in increased efficiency
and decreased imaging time.

The initial experiments described in this thesis indicate Durga’s poten-
tial for use in various ultra-fast MR applications, in particular time-sensitive,
high contrast applications, where the presence of random, white-noise does
not represent a major detriment to the images. In particular, the efficacy of
magnetic resonance angiography (MRA), albeit in simulated, static experi-
ments, is investigated with positive results.

This dissertation is intended to be a summary of the implementation of
Durga on a 3.0T GE MRI system, required in the fulfillment of a M.A.Sc
in Biomedical Engineering from McMaster University. Included is basic MR
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theory, overview of various sampling strategies and techniques, outline of the
hardware and software tools, results and discussion.
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Chapter 1

Magnetic Resonance Theory

1.1 Spin Physics

Quantum spin is a fundamental property of matter – every particle (ie. elec-
trons, protons, even whole atoms) has a total spin. This number is a non-
negative integral multiple of 1/2. Electrons, protons, neutrons all have a
spin of 1/2, and these spin numbers are the same for all elementary particles
in all atoms. What follows is a terse description of the underlying quantum
properties – for a more thorough examination of these and the Stern and
Gerlach experiment behind the discovery of quantum spin, consult [9] [18].

Spin is fundamental to describing the magnitude of angular momentum
in quantum mechanics, given as1

‖S‖ = h̄
√
s(s+ 1) (1.1)

where s is the spin number, and h̄ is the reduced Planck constant (h̄ = h
2π

).
The proportionality between the vector angular momentum S and the mag-
netic moment µ can be expressed as

µ = γS (1.2)

where γ is the gyromagnetic ratio. For the proton, this value is

γ = 2.675× 108 rad · s−1 · T−1 (1.3)

1In this text, vector quantities are denoted in boldface (B), while scalars are in regular
face (B).
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Nucleus Spin γ (= γ
2π

) (MHz · T−1) Human Brain Abundance
1H 1/2 42.58 88 M
17O 5/2 -5.772 16 mM
19F 1/2 40.08 4 µM

23Na 3/2 11.27 80 mM
31P 1/2 17.25 75 mM

Table 1.1: Nuclei with their associated spins (increments of h̄), gyromagnetic
ratios, and human brain abundances (M = mole · L−1).

For MRI, we are only concerned with nuclei that have a non-zero mag-
netic moment, and thus by (1.2), a non-zero angular momentum. Nuclei with
even/even numbers of protons/neutrons (16O, 12C) have zero total angular
momentum, and thus cannot be imaged with MR techniques. However, there
are many other nuclei naturally occurring in the body which have angular
momentum. Table 1.1 summarizes some of these nuclei, but the most com-
monly imaged is 1H, because of its relative abundance in the form of water
in the human body.

In the absence of an external magnetic field, the direction of angular
momentum exists in only one state. However, in a magnetic field B these
states become quantized into 2s+1 possible values for the azimuthal quantum
number ms, which takes on the values:

ms = −s,−s+ 1,−s+ 2, ...s− 2, s− 1, s (1.4)

The main magnetic field B is usually defined as being oriented along the
z -axis in MRI, and thus

B = B0ẑ (1.5)

From the results of the Stern-Gerlach experiments, we know that the angular
momentum will be quantized into distinct states. Using this, we can relate
ms to the z-component of the angular momentum in the external magnetic
field as

Sz = msh̄ (1.6)

2Negative gyromagnetic ratios correspond to a magnetic moment that is aligned anti-
parallel to the angular momentum vector.

2
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Figure 1.1: Zeeman splitting in main magnetic field B0, higher energy state
at the top.

If we now consider the classical potential energy of a magnetic dipole in an
external magnetic field B, we have:

E = −µ ·B (1.7)

From (1.2), (1.6), and (1.5), we find an expression for the energy of a magnetic
moment dipole in an MRI experiment:

E = −γmsh̄B0 (1.8)

If we consider the case for 1H (ie. the proton), the values for ms are ±1/2.
By (1.8), we see that two energy levels are predicted – this is an example
of the Zeeman effect, or “splittings” in the nuclear energy levels of magnetic
moments in an external magnetic field (see Figure 1.1).

The amount of energy released or absorbed by a transition between the
energy states is denoted by ∆E, and using (1.8) has the expression:

∆E = Ems=−1/2 − Ems=1/2

∆E =
1

2
γh̄B0 − (−1

2
γh̄B0)

∆E = γh̄B0 (1.9)

3
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From (1.9), we define the Larmor precession frequency as the ratio of the
change in energy per reduced Planck constant

∆E

h̄
= ω0 = γB0 (1.10)

The Larmor frequency is the frequency of precession of the magnetic moments
about the main magnetic field. It is at this frequency that we must trigger
an RF pulse in order to “tip” our magnetization vector from the z -axis into
the xy-plane. We will return to this idea in a later section.

1.2 Spin Density

There are two energy states for the proton – a lower state and a higher
state, corresponding to spins of 1/2 and −1/2. With regards to common
nomenclature, the spins parallel to B, or “spin-up” are at the lower energy
state, while the anti-parallel “spin-down” protons are at the higher energy
state. At equilibrium, the number of spins in either state is almost equal,
with a slight excess of spins in the lower energy state. This point is critical
to MRI experiments – it is this slight excess that wholly provides our signal.

It is important to note that the spin orientations are not rigid, and for the
two-spin state the protons are continuously changing from parallel to anti-
parallel and back. For a system at equilibrium this implies that for every
change from spin-up to spin-down, there is another change from spin-down
to spin-up, thereby maintaining our net total spin excess.

If we consider a proton as being connected to a larger lattice of spins at
a temperature T , we can quantify the probability of a spin being in a given
state using the Boltzmann factor:

P (ε) =
e−ε/kT∑
ε e−ε/kT

(1.11)

where ε is the energy of the small system (ie. a proton), P (ε) denotes the
probability of the system being in that energy state (ie. the probability of
a spin being parallel or anti-parallel), and k is Boltzmann’s constant. Given
our two-state spin system of the proton, and using (1.8), we can express
the probabilities of our spin being either spin-up (ms = 1/2) or spin-down

4
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(ms = −1/2) as

Pms=1/2 = P+ =
eh̄ω0/2kT

e−h̄ω0/2kT + eh̄ω0/2kT
(1.12)

Pms=−1/2 = P− =
e−h̄ω0/2kT

e−h̄ω0/2kT + eh̄ω0/2kT
(1.13)

Let us now consider the spin excess of protons. If the total number of protons
in our system is N , we can separate this into the two components in our
system – the number of protons in a spin-up orientation, and the number in
spin-down, such that N = N+ +N−. Since we are interested in the excess of
protons in the spin-up orientation (ie. N+ −N−) we note that this is equal
to the difference in probabilities between the spin-up and spin-down states,
multiplied by the number of total spins

N+ −N− = N(P+ − P−)

N+ −N−
N

= P+ − P− (1.14)

Since P+ > P−
3, the ratio of the number of spin excess protons to the total

number will also be positive. For a system at human body temperature of
310K, and a magnetic field of 1.5T , (1.14) works out to be about 5 excess
protons for every million total. Although this might appear to be too small to
derive any useful signal in MRI, consider that in a few grams of tissue, there
are Avogadro’s constant (6.022×1023) number of molecules4. In consideration
of this fact, we can see that the practical application of MRI for human body
tissue is viable.

1.3 RF Signals and Magnetization Vectors

As previously mentioned, we can apply an RF pulse to our system at equi-
librium in order to “tip” our magnetization vector from the z -axis into the
xy-plane. The energy required to do this is the energy gap stated by (1.9),

3But just barely. In fact, given human body temperature of 310 K, and a B0 field
strength of 1.5 T, P+ ≈ 0.500002476, while P− ≈ 0.499997524.

4In 1mL of water, we have 2
18 × 6.022× 1023 number of protons, so that the total spin

excess is ≈ 3.3138× 1017

5
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and we require an RF pulse at the frequency of the Larmor precessional fre-
quency (1.10). In this section, a classical approach to RF tipping will be
taken – for a more rigorous quantum approach, consult [9].

We should first more formally define what we mean by “magnetization
vector”. Let us consider a sufficiently small volume V such that the main
magnetic field can be assumed to be uniform over the region. We can ex-
press our magnetization vector M as the vector sum of the of the individual
magnetic moments in that volume:

M =
1

V

∑
V−protons

µi (1.15)

As discussed in the previous section, the protons at equilibrium are slight-
ly more likely to be aligned parallel to B and thus our magnetization vector
is also parallel to B. The protons are not static at equilibrium, but rather
are precessing at the Larmor frequency, much in the manner of a spinning
gyroscope suspended from a string. However, whereas the gyroscope’s pre-
cession is due to gravity operating perpendicular to its spin axis, in MRI
the torque is created by the spins aligning along the magnetic field direction.
The interaction of the proton’s spin and the magnetic field B0 produces the
magnetic moment, which causes the precession of the proton about the z -
axis. This precession is not evident in our magnetization vector, because the
relative phases of our protons are equally distributed such that the vector
sum of any transverse xy-components is zero.

When the spins are excited by an RF pulse at the Larmor frequency, they
are “tipped” into the xy-plane. This RF magnetic field is usually denoted
as B1, and the angle from the z -axis to the tipped magnetization vector is
called the flip angle, and can be expressed as

θ = γB1τ (1.16)

where θ denotes the flip angle, B1 is the magnitude of the RF magnetic field,
and τ the time interval for which the RF pulse is turned “on”. Since the
value for γ is constant for 1H protons, for a given flip angle we see that short
values of τ require large values for B1, which increase the specific absorption
rate, or SAR values for a human patient. We will discuss SAR limits in a
later section.

6
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Figure 1.2: “Spiralling” of magnetization vector (red vector) toward the xy-
plane in main magnetic field, B (blue).

1.4 T1, T2, T
∗
2 and the Bloch Equations

After the application of the RF pulse, the magnetization vector “spirals”
down toward the xy-planefrom its equilibrium positive orientation along the
z -axis (see Figure 1.2).

After the pulse is switched off, the magnetization vector relaxes towards
its equilibrium aligned along the z -axis; however, this relaxation is actually
the result of two separate relaxation components – a longitudinal relaxation
along the z -axis, and a transverse relaxation process which occurs in the
xy-plane.

Longitudinal relaxation, also called spin-lattice interaction, occurs as a
result of individual proton spins re-aligning with the main magnetic field
after being tipped into the transverse plane. It is shown in [9] that the rate
of spin-lattice relaxation for the magnetization vector is proportional to the
amount of magnetization that has already recovered – if M0 is the initial
magnitude of the vector before the application of the RF pulse, and Mz is
the magnitude at a given time t > 0, then

7
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dMz

dt
=
M0 −Mz

T1

(1.17)

We see here the introduction of the longitudinal relaxation factor T1, which
governs the rate of regrowth of Mz. T1 is measured in milliseconds, is
determined experimentally, and varies from tissue to tissue (very short for
bone, and much longer for CSF and water).

Transverse, or spin-spin relaxation occurs as a result of the various proton
spins interacting with each other. When the magnetization vector is flipped
into the transverse plain, the individual spins are all in phase, as they rotate
through the xy-plane around the z -axis. Each proton is affected not only by
the main magnetic field, but also by their interactions with their neighbours
– hence the term spin-spin relaxation. We can model the effective magnetic
field experienced by a given proton by

Beff = B0(1− σ) (1.18)

where σ represents the amount of magnetic shielding a proton experiences
due to its neighbours. These interactions cause local field inhomogeneities,
such that the protons are not precessing about the z -axis at the Larmor
frequency, but rather (potentially) slower or faster. This has the effect of
dephasing the xy-component of the magnetization vector, causing the vectors
to “fan out” over time. This occurs because although all the magnetization
vectors are aligned after the RF pulse, their individual deviations from the
main magnetic field cause their precession to be either slower or faster than
the ideal Larmor frequency. This transverse relaxation is governed the factor
T2, which, like T1, is measured in milliseconds. T2 is usually much smaller
than T1 for a given tissue.

In actual MRI experiments, there is a further dephasing factor introduced
by B0 inhomogeneities. We can classify these losses as a separate decay factor
T ′2, and we relate this factor to T2 as:

1

T ∗2
=

1

T2

+
1

T ′2
(1.19)

This defines the term T ∗2 , which qualitatively is the combination of transverse
relaxation due to local, random spin interactions and field inhomogeneities.
With some pulse sequences (notably, spin-echo experiments), the T ′2 effects
can be recovered, leading to a total transverse relaxation factor approaching
T2.

8
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If we define our transverse magnetization vector to be

MT = Mxx̂+Myŷ (1.20)

then from [9] and relating the derivative of angular spin momentum to mag-
netic moment and external magnetic field5, we can find a differential equation
for the transverse magnetization vector:

dMT

dt
= γMT ×B −

1

T2

MT (1.21)

If we separate equation (1.21) into its components, we have, along with equa-
tion (1.17) the Bloch differential equations used to describe the magnetization
vector in a constant external magnetic field:

dMx

dt
= ω0My −

Mx

T2

(1.22)

dMy

dt
= −ω0Mx −

My

T2

(1.23)

If we consider that the RF pulse is switched off at time t = 0, and that

Mz(∞) = M0

Mx(∞) = My(∞) = 0

then the solution to the Bloch equations (1.17, 1.22, 1.23) becomes

Mx(t) = e−t/T2(Mx(0) cos(ω0t) +My(0) sin(ω0t)) (1.24)

My(t) = e−t/T2(My(0) cos(ω0t)−Mx(0) sin(ω0t)) (1.25)

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (1.26)

It is important to note that the above solutions are only applicable to the
static field case (ie. RF pulse switched off), and do not take T ∗2 effects or
other field inhomogeneities into consideration.

5 dS
dt = µ×B. For a more in-depth discussion of torque in a magnetic field, consult a

basic physics textbook.
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1.5 Free Induction Decay

After the application of the RF pulse, the magnetization vector decays ac-
cording to the Bloch equations and is governed by the two decay factors,
T1 and T2. It is this decay which creates our signal, from which we can gen-
erate an image. According to Faraday’s law, a voltage is generated in any
coil through which a magnetic flux changes. We can describe this as:

V (t) = −dΦ

dt
(1.27)

where the magnetic flux through the coil is a surface integral over the coil
area

Φ =
∫
coil area

B · dS (1.28)

We can write an expression for the signal in the receiver coil as

s(t) = ω0Λ
∫
V
MT ∗(r, t)BT ∗(r) dr3 (1.29)

where the expression is a volume integral, evaluated at all locations where the
net magnetization is non-zero. Λ is a constant representing the gain factors
from the signal detection electronics, MT ∗ is the complex representation of
the magnetization factor in the transverse plane6, and BT ∗ is the complex
“receive” field produced by the detection coil in the transverse plane7. For a
thorough discussion of the derivation, consult [9].

We can see from (1.29) that our detected signal depends upon the Larmor
frequency – this implies that the higher our main magnetic field (B0), the
more signal we can expect from our MRI experiment. We will discuss signal
to noise calculations in a later section.

1.6 Gradients

It should be noted that the free induction decay (FID) in the receiver coil is
due to the entire object being imaged. In order to spatially localize the FID,
we can apply magnetic field gradients which perturb the Larmor frequency
experienced by the proton spins [13]. In the simplest case, we apply a linear

6MT∗ = Mx + iMy, and MT∗(r, t) = e−t/T2(r)e−iω0tMT∗(r, 0)
7BT∗ = Bx + iBy
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gradient along the z -axis, and find that the resulting magnetic field in the
z -direction is

Bz(z, t) = B0 + zG(t) (1.30)

and the precessional frequency experienced by a given proton is

ω(z, t) = ω0 + γzG(t) (1.31)

Now consider the simple case of trying to obtain a 1D image; what we
term an “image” is actually the spin density of protons, which we define as
ρ(z) in the z -direction. If time t = 0 is when the RF pulse is applied to our
sample, and we ignore any transverse relaxation effects, from [16], we can
write the FID signal:

s(t) =
∫
ρ(z)e−iγz

∫ t

0
G(t′)dt′dz (1.32)

If we define k(t) as k(t) = γ/(2π)
∫ t

0 G(t′)dt′, we can then write (1.32) as

s(t) =
∫
ρ(z)e−i2πzkdz (1.33)

where k = k(t) is our set of spatial frequencies. We can see that (1.33) is
simply the Fourier transform of our spin density, ρ(z):

s(k) = F{ρ(z)} (1.34)

which thus implies that our spin density function ρ(z) (and therefore our
resulting image) can be recovered with the inverse Fourier transform of our
signal

ρ(z) = F−1{s(k)} (1.35)

Thus ρ(z) and s(k) form a Fourier transform pair, and our sample ρ(z)
is said to be frequency encoded along the z -direction (although the usual
methodology is to frequency encode along the x -axis).

Gradients, because they disturb the precessional frequencies of the spins,
actively dephase the FID, not unlike T ′2 effects (1.19). Gradient echo se-
quences seek to minimize the dephasing caused by the gradients themselves,
by adding “rephasing” lobes in an effort to recapture lost signal. The signal
will also dephase over time, thereby decreasing the resulting signal to noise
ratio.
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1.7 Sampling and Fourier Transform

The equation (1.35) in the previous section describes the resulting image
if and only if the underlying signal s(k) is continuous and complete in k-
space. Qualitatively, k-space is frequency space, or data space of the image,
and results as a consequence of the FID. Ideally, we would collect the data
continuously across all of k-space, but this is impractical for two reasons –
we do not have an infinite amount of time to collect the data, and because
of relaxation effects the FID will decay to zero in a finite period. Thus,
we sample the resulting FID with an analog to digital converter, thereby
collecting discrete data points with which to reconstruct our image. We
might imagine that collecting more data samples results in a “better” image
– this is correct, but this also increases our scanning time, which (especially
in fast scanning) we wish to minimize as much as possible. The optimization
problem of acquiring what data, and in which order is referred to as a “k-
space trajectory”, and is the focus of many papers in the literature ([1] [2]
[6] [8] [12] for example).

We would like to minimize the sampling time, but still acquire enough
samples in k-space for “sufficient” coverage – that is, be able to reconstruct
an image with little or no artifacts with the available k-space data. The
process of sampling can be defined as a sum of delta functions in k-space,
and we specify this as

u(k) = ∆k
∞∑

p=−∞
δ(k − p∆k) (1.36)

where ∆k is the difference between successive sampling points in k-space,
This operation is also known as a “comb” or “sampling” function in the
frequency domain. As might be guessed from the limits of the summation,
(1.36) represents an infinite sampling function, and the resulting sampled
signal when combined with the actual k-space signal s(k) is

s∞(k) = s(k)u(k)

= ∆k
∞∑

p=−∞
s(p∆k)δ(k − p∆k) (1.37)

where the sampled signals are given by s(p∆k). If we then take the inverse
Fourier transform of (1.37) in order to obtain a 1D image, we find
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Figure 1.3: 1D object of length A repeated at intervals of 1/∆k or the FOV.

ρ̂(x) = ∆k
∞∑

p=−∞
s(p∆k)ei2πp∆kx (1.38)

where ρ̂(x) represents the image derived from our process of infinitely sam-
pling the frequency domain, in order to differentiate it from the actual image,
ρ(x). Examining (1.38), we can see that p̂(x) will be periodic where ei2πp∆kx

takes on identical values, which in this case will be for values of x′ = x+1/∆k,
so that

ρ̂(x) = ρ̂(x+ 1/∆k) (1.39)

The inverse of the spacing of data samples in k-space, or 1/∆k represents the
Field of View, or FOV. We can describe the FOV as the interval over which
the reconstructed image ρ̂(x) repeats itself. (see Figure 1.3).

For simplicity, if we consider an object in one dimension (x -direction),
whose length along x is given as A, we would like the FOV to be larger, such
that

FOV > A or ∆k < 1/A (1.40)

This represents the Nyquist criterion, and specifies the theoretically max-
imum sampling spacing, ∆k, we can have before we get an artifact from
under-sampling, usually called aliasing. Aliasing manifests itself as image
“wrap-around”, as part of an image overlaps with another because the FOV
is less than the length in the x -direction. Although undesirable, we tolerate
some aliasing in an effort to decrease scanning time – in fact, some imag-
ing techniques (such as SENSE [23]) use aliasing and “un-roll” the complete
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image via post imaging processing.
In order to remove the multiple images which are described by (1.39), we

can pass our single s(k) through a “windowing” function or filter. We can
model this truncation by the use of the rect function, and thus equation (1.37)
becomes

sm(k) = s(k)u(k) rect

(
k + 1

2
∆k

2n∆k

)

= ∆k
n−1∑
p=−n

s(p∆k)δ(k − p∆k) (1.41)

where the total number of sampled points is no longer infinite, but is equal
to 2n. Our reconstructed image then becomes

ρ̂m(x) = ∆k
n−1∑
p=−n

s(p∆k)ei2πp∆kx (1.42)

and we can see that (1.39) still holds, and so too the Nyquist criterion.
Examining (1.42) we can see that it resembles the form of the Discrete

Fourier Transform

g
(
qL

2n

)
≡ D−1(G) =

1

2n

n−1∑
p=−n

G
(
p

L

)
ei2πpq/2n (1.43)

where q = −n,−n+ 1, . . . , n− 2, n− 1

If we sample along the x -direction at a discrete number of points (instead of
continuously), we see that we can write x = q∆x, where ∆x is the distance
between successive points. Using this, the fact that ρ̂(x) and s(p∆k) are
a Fourier transform pair, and making the substitutions 1/L = ∆k and
L = 2n∆x in (1.42) we find a form more easily applicable to our MR
imaging equation:

ρ̂m(q∆x)∆x =
1

2n

n−1∑
p=−n

s(p∆k)eiπpq/n (1.44)

where q = −n,−n+ 1, . . . , n− 2, n− 1 as before. What this indicates is that
the inverse discrete Fourier transform of our sampled k-space data is equal to
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our spin density (at discrete points) times the distance between points in the
x -direction (although we can easily expand (1.44) into three dimensions, such
that the ∆x term represents the voxel volume). (1.44) represents our goal in
MRI, and describes the general principle behind the imaging technique.

Theoretically, we can choose any number of points N , such that N = 2n.
However, for practical purposes we would like to be able to use a fast Fourier
transform (FFT) algorithm in order to perform the above transformation,
and as such we choose N such that N = 2m, where m is some positive
integer.

1.8 k-space

If we extend our discussion in the previous section to more than the x -
direction, such that we have a vector quantity r = (x, y) for a 2D image,
or r = (x, y, z) for three dimensions, we can then write the result of our
previous section as ρ̂(r). This is a complex quantity which arises out of our
imaging because of the global and local phase shifts in the process due to
magnet inhomogeneity, gradient non-linearity etc., and there is a local and
global phase error inherent in our calculated proton density. Thus we find

ρ̂(r) = ρ(r)eiφ (1.45)

where φ represents our phase error. We can overcome the deviations caused
by the phase error in the real part of our acquired image ρ̂(r) by taking the
magnitude image, or

‖ρ̂(r)‖ =
√
<[ρ̂(r)]2 + =[ρ̂(r)]2 (1.46)

This is the most common technique in clinical use, and is usually the “image”
referred in MRI. However, the phase image provides additional information
with each pixel proportional to the calculated local phase value, and some
imaging methodologies use this information (ie. thermometry and suscepti-
bility weighted imaging). We can obtain φ(r) from

φ(r) = arctan

(
=[ρ(r)]

<[ρ(r)]

)
(1.47)

Because arctan is periodic over multiples of 2π, the phase image is also
periodic over this interval.
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As a consequence of ρ(r) being real, we can use the fact that the negative
portion of k-space is simply the complex conjugate of the positive portion,
or

ρ̂(−r) = ρ̂∗(r) (1.48)

We can use this relation to decrease our acquisition time, since we theoret-
ically only need to acquire half of k-space, and then easily derive the rest.
However, this technique results in a loss in signal to noise ratio (see Sec-
tion 1.12) by a factor of

√
2, because of the noise inherent in the signal.

When we use conjugate symmetry, we are including this noise in our derived
data point. Of course, there would still be noise if we actually acquire the
data – but because noise is random, it is more likely to cancel out and thus
impact our signal less.

One useful characteristic of k-space is in regard to low versus high spatial
frequencies. The lower spatial frequencies are necessary for slow spatially
changing parts of the imaged object, while for finer detail and smaller struc-
tures, the higher spatial frequencies are required. Thus the overall contrast
and shape of the object is due to the low spatial frequencies, or centre of
k-space, while the higher frequencies, or periphery of k-space, provides edge
detection of the object. Because of these facts, the centre is k-space is gen-
erally more valuable in terms of image reconstruction, and the centre of
k-space provides the best value for sampling time. Many k-space trajectories
acquire the centre of k-space first, when the signal is strongest, and acquire
the periphery of k-space later for the same FID echo.

1.9 Pulse Sequences

Pulse sequences can be separated into two methodologies – 2D and 3D
sequences. 2D sequences use a slice selection gradient (usually in the z -
direction) at the same time as a selective RF pulse to excite a “slice” of
protons. Once excited, the ky and kx (often referred to as “phase encode”
and “frequency encode” respectively) gradients are used to navigate through
k-space and collect the data (see Figure 1.4). In comparison, 3D sequences
use a volumetric RF pulse (sometimes with no slice-select – see explanation
of Durga below), and then the z gradient acts as a second phase encoding to
move through k-space. They require three-dimensional FFT’s to obtain an
image, and have some advantages over a multi-slice 2D approach:
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Figure 1.4: k-space trajectory on a Cartesian grid, samples (denoted by ‘X’)
acquired in both kx and ky directions.

• ability to change slice thickness with ∆z, as opposed to multi-slice 2D,
which relies on RF amplitude and duration

• “gaps” between slices are necessary in multi-slice 2D to prevent RF
leakage – these are not required in 3D

• reducing RF duration results in a large bandwidth, thereby exciting a
large volume

• short TE and potentially fine resolution can be used to reduce T ∗2 de-
phasing

• potential for superior SNR, albeit at increased imaging times

Most pulse sequences collect k-space data in a Cartesian grid. These
Cartesian k-space trajectories acquire equidistant points in Fourier space, so
that for 2D imaging ∆kx and ∆ky are constant throughout the sequence. 3D
imaging on a Cartesian grid has the ∆kz component acting as the second
phase encoding gradient.
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Figure 1.5: Steady-state imaging. Magnetization level on vertical axis, in-
creasing TR count on bottom axis.

1.9.1 Steady-state Imaging

Steady-state imaging is the result of using shorter TRs and partial flip angles
to leave the resulting FID in a steady-state condition, such that the amount
of longitudinal magnetization recovered by the sequence becomes equal to the
amount tipped into the transverse plane. Phase shifts must remain constant,
and the resulting image contrast is determined by a complex, non-linear
interaction between T1 and T2. Spoiled steady-state imaging uses crusher
gradients or phase cycled RF pulses to eliminate or reduce the transverse
magnetization between pulses, such that the image contrast would essentially
be determined solely upon T1.

The optimal flip angle, or Ernst angle is the flip angle which results in
the largest FID in steady-state imaging. This is determined by:
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cosαE = e−TR/T1 (1.49)

1.10 Gradient Moments

Gradient moments, and specifically gradient moment nulling, are useful tools
in analyzing the effects of gradients in different pulse sequences. Gradient
moments are defined in MRI in a similar fashion to their use in mechanics
or physics, such that

mn(t) =
∫ t

0
G(u)un du (1.50)

where u is the integration variable in time. We can see from (1.50) that the
zeroth, or m0 moment, is simply the area under the gradient for single point
of interest in time. Most pulse sequences have the m0 moment nulled, since
this nulls any phase angles static spins acquire while a gradient is on.

If we consider moving spins, such as those in a constant velocity periph-
eral vein or artery, we can see a moving spin will acquire more phase angle
(assuming that the gradient is positive) than a static spin. This occurs be-
cause the spins experience a changing magnetic field as they move. We can
see the effect of this in Figure 1.6.

It is obvious that in this case simply applying a negative lobe, equal in
area to the positive lobe which created the phase angle, will not null the
moving spins as they would the static spins. In order to null both spin types,
we must null the m1 and m0 gradient moments as demonstrated by a simple
gradient sequence shown in Figure 1.7.

First order nulling is often called velocity compensation or flow compen-
sation, since it effectively nulls constant velocity spins. Higher order moment
nulling (ie. acceleration compensation for second order moments) techniques
also exist; however, these are rarely implemented because of increasing com-
plexity and increasing the minimum TE.
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Figure 1.6: Phase angle accumulation comparison of static and moving spins
in a constant gradient field.
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Figure 1.7: First gradient moment nulling pulse sequence and accumulated
phase angle.
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1.11 non-Cartesian k-space Trajectories

Expanding our arguments to 2D k-space we define a vector k such that

k = kxx̂+ kyŷ (1.51)

Although in MR imaging the Cartesian grid is still the most common method-
ology, non-Cartesian algorithms have been demonstrated to possess several
advantages. Ahn, Kim and Cho [1] proposed a spiral trajectory, which begins
at the centre of k-space (low frequencies) and samples discrete points along
a spiral arm. If the set of discrete points in k-space is expressed in polar
coordinates, such that kr =

√
k2
x + k2

y and kθ = arctan[ky/kx], we can define

the spacing between successive arms (∆kr) to be constant, and each point
separated by a constant angle (∆kθ).

However, spiral and other non-Cartesian strategies suffer from the fact
that the sampling points in k-space do not fall on a regular Cartesian grid, so
the image cannot be obtained by a direct application of the FFT. Although
different methods exist for attaining an image from non-Cartesian k-space
data (including a non-uniform FFT [25]), the most common method is the
use of a regridding kernel to transform the data to lie on a grid. Then
the FFT can be used to resolve an image in the usual way. Because of
the non-uniform sampling density for spiral trajectories, we apply a density
compensation function (DCF) to the k-space data. This has the purpose of
minimizing reconstruction errors, particularly in the centre of k-space where
the sampling density is high.

We can express the full gridding as follows – if s(k) is our signal, u(k)
our sampling or “comb” function, w(k) the DCF, C(k) the regridding kernel,
and r(k) a function that defines a Cartesian grid8, then

sc(k) = (((s(k) · u(k) · w(k)) ∗ C(k)) · r(k)) ∗−1 C(k) (1.52)

where sc(k) is the regridded k-space data, and ∗−1 is the inverse convolution
operation. While many methodologies exist for the DCF (including numer-
ical methods [21]) a common form combines the sampling and regridding
functions

w(k) =
u(k)

u(k) ∗ C(k)
(1.53)

8r(k) =
∑

i

∑
j δ(kx − i, ky − j)

22



M.A.Sc Thesis - Paul Polak McMaster - Biomedical Engineering

As for the regridding kernel C(k), the most common technique is to use the
analytic Kaiser-Bessel function, although considerable literature exists in this
area [11] [3]. By applying the inverse Fourier transform to (1.52), we obtain
our complex image ρ̂(r):

ρ̂(r) = F−1 {((s(k) · u(k) · w(k)) ∗ C(k)) · r(k)} · 1

c(r)
(1.54)

where the final term in (1.54) is the deapodization term, and is used to
remove the effect of the convolution kernel in the image. We denote the
Fourier transform of the convolution kernel C(k) as c(r).

The k-space trajectory, sampling, and truncation operations, in addition
to any density compensation or regridding required for non-Cartesian modal-
ities, have the effect of a filter on the sampled k-space data. If the k-space
data is s(k), and our object is described by ρ(r), we can describe the cumu-
lative effect of our k-space operations as H(k), and write

ρ̂(r) = F−1{s(k)H(k)}
= ρ(r) ∗ h(r) (1.55)

The function h(r) is called the point spread function (psf) of our imaging
operations, and it can be easily seen that ρ̂(r) = h(r) if we are imaging a
delta function. The psf is a useful metric for comparing different MR imaging
techniques, with the theoretical ideal being a delta function (ie. k-space
operations have no effect on the produced image, such that ρ̂(r) = ρ(r)).
Of course this is impossible in reality – widening of the central peak of a
psf results in blurring in the resultant image, and regular structures outside
the main peak (ie. rings) can result in aliasing in the final image. We can
identify the image resolution from the width of the centre peak of the psf, as
the full-width at half maximum (FWHM).

1.12 SNR, CNR, SAR Calculations

MR images contain noise, both systematic and random. With regards to
Durga, we have noise from both effects, particularly since we are actively
under-sampling k-space in order to decrease the scan time, with the trade-
off being an increase in random noise. We begin our analysis by stating
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that white noise has a frequency spectrum that is evenly distributed and
uncorrelated. If our true signal is s(k), and a white noise factor ε(k) is
added to give our measured signal, then

sm(k) = s(k) + ε(k) (1.56)

We can describe the factor ε(k) as being Gaussian or normally distributed by
the central limit theorem, since it is sum of a large number of independent
factors, with an equal probability of ε(k) being either positive or negative.
Thus we can say that our Gaussian white noise has a mean of zero and a
variance of σ2

m. From [9] we can write the standard deviation of the image
domain of k-space as

σimage(p∆x) =

√
σm
N

(1.57)

where N is the number of samples. Note that (1.57) is only for one dimension,
but we can easily expand that to multiple directions, with Nx, Ny, and
Nz representing the number of samples taken in the x, y, and z directions
respectively.

Intuitively, we might imagine that the signal for any given voxel would
be dependent on the volume size – the larger the voxel, the more precess-
ing protons contained in that volume, and hence a larger number of spins
available for the FID signal. Formally given in [9], we can write

signal ∝ ∆x∆y∆z (1.58)

A useful metric for evaluating the quality of an image is the signal
to noise ratio, or SNR. By unifying (1.57) and (1.58), and noting that
noise ∝

√
BWreadout, we can write:

SNR/voxel ∝ ∆x∆y∆z√
BWreadout

NxNyNz

(1.59)

From (1.29), the signal is proportional to ω0, and thus from (1.10), B0.
However, also from (1.29) we also see that the signal is dependent on the
transverse magnetization vector, which is also proportional to ω0. Thus we
can write

SNR ∝ B0
2 (1.60)
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However, this simplistic case is not completely accurate in the general sense.
Consult [9] for a more thorough discussion, although for the remainder of
this paper, it is assumed that (1.60) holds.

A simple definition for SNR is:

SNRAB = SA/σimage (1.61)

This is commonly used to define SNR over a region of interest, and is the
method used in this paper. Another important metric is the contrast-to-noise
ratio, or CNR. Contrast allows us to differentiate tissues (ie. diseased versus
healthy tissue) – excellent SNR is not useful from a clinical perspective if the
contrast between different tissues is poor. If we define the contrast between
two tissues A and B as their difference in signals, or CAB = SA − SB, then
the CNR becomes:

CNRAB =
SA − SB
σimage

= SNRA − SNRB (1.62)

There are a variety of techniques used in clinical MRI to enhance the con-
trast between tissues, such as the use of contrast agents (ie. gadolinium
compounds), selection of TE and TR imaging parameters, MR techniques
(ie. fat saturation), etc. The expressions given above for SNR and CNR
can be used for both magnitude and complex images, but in this paper only
magnitude images will be used.

Specific Absorption Rate, or SAR, is a measure of the amount of heat
accrued in a patient by the deposition of energy from RF sources, and it is
measured in W/kg. There are strict limits for both average and peak SAR
allowed during a scan – the FDA limits are 3W/kg and 4W/kg respectively.
Estimates or measurements of SAR are quite complicated, since they involve
a variety of factors: Larmor frequency, type of RF pulse (shape and flip
angle), TR, type of coil, volume of tissue imaged, anatomical configuration
etc. However, from [20] we present a proportionality

SAR ∝ B2
0α

2d (1.63)

where α is the flip angle of the RF pulse, and d is the duty cycle of the pulse
(ratio of the average to the peak of the pulse). Although SAR estimation is
complicated by the factors listed above, from [20] we can use
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SAR = ‖E‖2 σ

2ρ

τNPNS

TR
(1.64)

whereE is the electric field, σ and ρ are the tissue dependencies (representing
the conductivity and density respectively), τ the pulse duration, and NP and
NS the number of pulses and number of slices in the particular pulse sequence.

26



M.A.Sc Thesis - Paul Polak McMaster - Biomedical Engineering

Chapter 2

Methods and Materials

2.1 MR hardware

A 3.0T MRI scanner (GE Healthcare R©, Milwaukee, WI) shown in Figure 2.1
was used in developing the Durga pulse sequence. It is located in the Imaging
Research Centre at St. Joseph’s Healthcare, Hamilton, Ontario, Canada.
Relevant statistics and capabilities are related in Table 2.1. Owing to the
complexity of a multi-coil SENSE-like reconstruction, a single-channel coil
was used in these experiments.

2.2 Durga Pulse Sequence

Anand et al [2] have formulated a new k-space sampling scheme entitled
Durga, which uses asymmetric pseudo-random trajectories (see Figure 2.3)
formulated by the optimization of second order cone problems. Durga under-
samples k-space, less than the Nyquist criterion; however, this does not result
in aliasing, since random trajectories tend to produce non-coherent artifacts
(ie. noise) instead of aliased images [19]. Some of the key features of this
pulse sequence design are: (for a complete review, consult [2])

• incorporation of gradient waveform constraints (peak, slew rate) in the
trajectory design

• 3D, volumetric modality
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Magnetic Field Strength (T) 3.0
Water Centre Frequency (Hz) 127 799 074
Maximum FOV (cm) 60
Shimmed area (cm) 45× 48
Gradient Rise Time (µs) 268
Gradient Max Amplitude (mT/m) 40
Gradient Slew Rate (T/m/s) 150
Sampling Bandwidth (kHz) 500
Software OS Version 12M5

Table 2.1: MR hardware parameters of GE Signa Excite 3.0T

Figure 2.1: 3.0T scanner located in the Imaging Research Centre
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Figure 2.2: Single Durga trajectory – length 12.7 ms.
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Figure 2.3: Subset of Durga trajectories. Colour added for viewing ease.
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Figure 2.4: Durga point spread function.

• elimination of the slice rewinders and integration of first-moment nul-
ling in the readout gradients resulting in increased sampling efficiency

• randomness of trajectories means that the Nyquist criteria is not appli-
cable, so that under-sampling appears as noise – in fact, we can trade
off noise for reduced scan time

• point spread function performance is excellent, with a FWHM value of
1 mm, a slight aliasing ring at 8% of the peak height, plus other smaller
peaks which will appear as noise (see Figure 2.4)

• excellent frame rate performance (five-fold decrease in scan time) when
compared to other fast sequences for dynamic imaging (blood flow,
cardiac imaging)

Durga is inherently sensitive to magnet inhomogeneities and gradient
eddy currents since it is designed as a steady-state sequence. These can
combine to disrupt the steady-state system, resulting in increased artifacts,
decreased SNR, loss of contrast and overall loss of image quality.
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Gradient Parameter Set A Set B Set C
TR 16.7 ms 16.7 ms 16.7 ms
Gradient Points / Trajectory 1210 2068 3176
Sampling Points / Trajectory 2420 4136 6352
Sampling Time / Trajectory 4.84 ms 8.272 ms 12.704 ms
Sampling Efficiency (compared to TR) 29.0 % 49.5 % 76.1 %
Number of Trajectories 525 296 177
Total Scan Time 8.77 s 4.94 s 2.96 s

Table 2.2: Durga Gradient Set details

Figure 2.5: Durga pulse diagram Set A for one TR (16.7 ms)
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Figure 2.6: Durga pulse diagram Set B for one TR (16.7 ms)
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Figure 2.7: Durga pulse diagram Set C for one TR (16.7 ms)
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Any given set of trajectories is the result of only one invocation of the
Durga algorithm; this fact allows Durga to be tuned to particular applica-
tions as required. Three different gradient sets were designed for these exper-
iments, all of which are spoiled, steady-state sequences. The details of the
different sets (hereafter referred to as Gradient Sets A, B, and C ) are found
in Table 2.2. All sets are designed such that they are to be run sequentially,
each trajectory beginning and ending at k = 0. The implementations use a
short, hard RF pulse (300 µs) for excitation, random crusher gradients at the
end of each trajectory to disperse the transverse magnetization, and a fixed
number of disabled acquisitions at the beginning of the sequence to “build-
up” to steady-state conditions before sampling begins. The reconstructions
in the paper were to a resolution of 256× 256, resulting in Durga acquiring
about 18% of the total k-space data available, or a speed-up factor of five.
See Figures 2.5, 2.6 and 2.7 for the pulse sequence diagrams implemented on
the GE scanner.

2.3 Software

There are four distinct software stages required to obtain Durga images from
the GE scanner:

1. create GE compatible gradient files from files output by the Durga
trajectory design algorithm

2. run the pulse sequence on the physical hardware and collect the k-space
data

3. process the raw data and create the k-space trajectory information,
by presenting the data in a format to be read by the reconstruction
algorithm

4. reconstruct the data

Parts 1 and 3 are handled by Perl scripts, and their details and the code
is given in Appendix A. For 2 and 4, please see sections 2.3.1 and 2.3.2.
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2.3.1 EPIC

Creating pulse sequences for GE scanners requires the use of their software
package Environment for Pulse programming In C (EPIC). EPIC is a propri-
etary system, used in the Imaging Research Centre under license – as such,
details of the software or code listings is prohibited. However, what can be
said about EPIC is that it is essentially a C programming environment with
additional macros, preprocessing and libraries packaged together. The result
is that EPIC is not very well documented, not completely flexible, and is a
trial to understand [26]. It works best when making small changes to the
stock sequences which are written for use with the scanner.

Durga, with its very short TR and non-uniform trajectories is unlike
any clinical sequence, and this necessitated writing the pulse sequence from
scratch. This presented unique challenges – while this methodology avoided
extraneous code which may have broken the sequence or had unintended con-
sequences, it did require a more thorough understanding what is, and is not,
necessary in creating a working GE pulse sequence. For further discussion of
these challenges, see Section 2.4.

In order to run the Durga sequence on the scanner, gradient values for the
trajectories needed to be read in by the sequence. The memory requirements
for all three gradient boards cannot exceed 4 MB due to hardware limitations.
This limits the size of each individual gradient file to be 1.3 MB, with some
slack being left for overhead in the scanner software. Thus, the maximum
number of gradient points that can be run by the scanner is 650000, although
this number can be distributed among any number of trajectories (as long as
each trajectory is equal in length). More details about the format of these
files can be found in Appendix A.

Since an off-line data reconstruction scheme was used, the pulse sequence
was designed to instruct the scanner to save the raw k-space data (or “P-
File” in GE parlance) sequentially – that is, save the data in the same order
as it was acquired. The sequence was created such that the trajectories were
played out in sequence, acquiring a complex data point every 2 µs. As the
gradients were designed at a resolution of 4 µs, a simple linear interpolation
was used to generate k-space trajectory information at 2 µs. Each line of
sampling along a trajectory produced (in GE terms) one frame of data, and
the number of frames was equal to the number of trajectories.

For Set C and using the data from Table 2.2, we see that the k-space
data from one scan produced 177 frames, with 6352 complex data points /
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Parameter Description Value Variable
Grid Dimension 256 N
Regrid Matrix Size 256× 256× 256 A
Data Frame Size 2420, 4136, or 6352 frsize

⇒ 2 × gradient points
Number of Data Frames 525, 296, or 177 nframes

⇒ number of trajectories
k-space Spatial Frequency Limits ±0.5 kmin

∆k |2(kmin)|
N−1

deltak

Kaiser-Bessel kernel Beta 6 beta
Kaiser-Bessel kernel Window 4 Wn

Table 2.3: Reconstruction parameters

frame. Each complex point is arranged as a [real, imaginary] pair in the
P-File. With 2 bytes / value, we see that the raw data size for a single scan
was: 177 × 6352 × 4 bytes = 4497216 bytes. For a multiple-coil scan, the
data size would be the number of coils × 4497216 bytes.

Using the same methodology, Set A gradients produce 525 × 2420 ×
4 bytes = 5082000 bytes for a single coil scan, and Set B data is 4897024
bytes for the one coil configuration.

2.3.2 Reconstruction

Imaging with Durga on the scanner in the Imaging Research Centre entails
three major parts – the setup and running of the actual sequence, processing
the gradient input files and k-space data, and the reconstruction itself which
is done via a MATLAB R© script. The reconstruction algorithm uses a general
regridding algorithm, as outlined in 1.11. A brief description of the algorithm
and the code follows here – for a full listing, refer to Appendix B.

Table 2.3 outlines the parameters used to define the k-space grid, k-space
data size, and Kaiser-Bessel kernel parameters.

The regridding kernel (C(k) from section 1.11) used is a standard Kaiser-
Bessel window, as described by
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wn =

 1
W
· I0

(
β
[
1−

(
2n
W

)2
])
−W ≤ 2n ≤ W

0 otherwise
(2.1)

The code defined k-space on a grid ranging from [−0.5, 0.5] for each or-
thogonal direction, while MATLAB matrix indices must be positive integers
(1, 2, . . .). MATLAB functions tok.m and tomatrix.m converted the matrix
index between one coordinate system and the other.

After reading in the trajectory information processed from the grads file,
the code linearly interpolated gradient information to a resolution of 2 µs,
as the sampling rate was 500 kHz or one complex data point every 2 µs.
Complex k-space data was read in a similar fashion and stored in an internal
MATLAB array. These intermediate arrays were saved as files in MATLAB
format to facilitate debugging and decrease run time upon subsequent exe-
cutions.

Before the regridding operation can be started, an appropriate DCF was
calculated using the standard form shown in Equation 1.53. A similar block
of code then utilized the DCF and the k-space data to regrid onto a 2563

Cartesian grid. Both phase and magnitude images were available to the
user in the MATLAB environment by using the correct command syntax.
Deapodization or “rolloff correction” was provided to the image by taking the
Fourier transform of the kernel window. Images presented in this document
use the MATLAB reconstruction code as described above.

2.4 Challenges

Understanding the overall system architecture was a natural and obvious
place to begin the research. Because of the software license in place in the
Imaging Research Centre, it is not possible to describe in any detail the
various components (hardware, software components) involved in running
the Durga sequence on the 3.0T magnet. However, this section will give an
overview of selected problems and solutions encountered in the development
of Durga.

1. Design the gradient sequence execution.

• With the advice given by [26], it was decided to create the gra-
dients in three separate gradient files in EPIC compatible for-
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mat (see Appendix A), and load these files in memory just before
the sequence is executed. While the scan is executing, a pointer
switches to subsequent memory locations in real-time to run the
various trajectories. An alternative methodology was considered,
with each RF pulse and trajectory running concurrently in the
same TR. However, this “long TR” idea was quickly abandoned
in favour of the “short TR” sequence (ie. 1 RF pulse and trajec-
tory per TR) described above because of the difficulties in getting
the long TR sequence to download to the scanner hardware.

2. Overrange gradient current errors.

• The Durga-designed gradients proved troublesome to run. Al-
though designed within the magnet’s specifications, the gradient
points were at a lower resolution than the gradient boards’ resolu-
tion of 4 µs. The scanner does no automatic interpolation for the
gradient boards. If a sequence attempts to run gradients which
are too extreme for the gradient boards, it produces either a Gra-
dient overrange error or warning, depending on the severity. An
error stopped the executing sequence immediately. A warning al-
lowed the sequence to continue, but since the trajectory was likely
warped or altered, the frame of k-space data associated with that
trajectory was bad or invalid.

Simple linear interpolation helped matters to some extent, but
it was still not possible to run the gradients “full-strength”, and
some measure of attenuation was required. Eventually, the Durga
gradient software was changed to design gradients at a resolution
of 4 µs, and this resolved the gradient current errors.

3. Invalid data acquisition and noisy / missing k-space echoes.

• After the initial problem of getting the sequence to run correctly
was solved, there remained the difficulties of collecting valid echoes
(ie. where k = 0). After determining a method of arranging the
data in the P-file (see 2.3.1) and the correct EPIC function call,
the data collected was essentially “white noise” with no discernible
echoes. It was eventually determined through trial-and-error that
the pulse width was too wide (3200 µs) for a volumetric sequence,
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and that a narrower width was required for adequate signal. The
current version of the sequence uses a hard pulse width of 300 µs.

4. Echoes in data not aligning with k = 0 in k-space

• Comparing the k-space data and the trajectory information in-
dicated that the echoes were not located at the correct location
in the frame data, based on where they should have appeared
as a consequence of the k-space trajectory position. Due to a
misunderstanding with how this variable is set, the sequence was
acquiring at the default rate of just over 31 kHz instead of the
desired 500 kHz. This was confirmed when comparing the k = 0
positions with the echoes in the data (they were off by a geometric
factor). Correcting this bug fixed this echo position problem.

After setting the receiver bandwidth correctly, the acquisition de-
lay still had to be set correctly. The acquisition delay corrects
for the amount of time between when the gradients are turned
“on”, and when they are actually running. This delay occurs be-
cause of the internal system electronics and gradient hardware
being unable to force a large current instantaneously through the
system. The data acquisition subsystem, on the other hand, has
no such delay. Because Durga acquires data the entire time that
the gradients are active, it is vital that this delay be set correctly
such that the echoes appear in the k-space frame precisely where
the trajectory data indicates they should. This was determined
heuristically, analyzing the k-space echoes and gradient informa-
tion, and confirmed through subsequent trials and tests.

5. Reconstructed data producing unrecognizable images.

• The initial Durga gradients contained a Cartesian portion of k-
space, named a “fly-by”, where the data could be easily extracted
and Fourier-transformed into low-resolution images. This was
done for testing purposes and to try to isolate bugs in the se-
quence from potential bugs in the reconstruction. However, the
initial data obtained from imaging a spherical phantom produced
unrecognizable, obviously wrong images, and the phase images
had many phase changes over the FOV. Deducing that the prob-
lem was in the data itself, a simple projection view sequence was
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substituted into the code in place of the Durga gradients. This
data was then 1-D Fourier transformed. The result was still incor-
rect, indicating a more fundamental problem with the sequence.

The projection gradient was then placed into a simple, working
gradient echo stock sequence, and the data from this produced the
correct 1-D profile. Comparing this working projection sequence
with the Durga sequence indicated two missing lines of code in the
Durga sequence – these lines are necessary to set an intermediate
demodulation frequency, critical in correctly setting up the data
collection procedure. Without this frequency set, the data was
probably shifted by most of a Nyquist band, potentially explaining
the erratic phase term. Changing the demodulation frequency
shifts the reconstructed object in the encoding direction, which in
the case of Durga would have unpredictable consequences based
on the nature of the trajectories.

6. Unable to reduce the effective TR below a time of 16.7 ms.

• By examining the running Durga gradients with an oscilloscope,
it was determined that the effective TR was set to value of about
16.7 ms, regardless of what the TR parameter was set to in the
sequence. As other GE sequences run with TRs of a shorter du-
ration, it is evident that this should be a solvable problem, and
thus shorter TRs possible. At the time of writing, this problem
remains outstanding as a “known bug”.

7. Evident oval artifact in some images.

• Examining some of the images obtained with Durga, there is an
“oval artifact” present, especially in regular, high proton-density
images (ie. spherical phantom). The artifact seems regularly posi-
tioned, and appears in approximately the same positions between
scans of the same phantom. Although this issue is still outstand-
ing, two possible sources of this artifact exist:

– an underlying bias with the Durga trajectories - perhaps with
the implementation of the algorithm itself

– an error in the reconstruction code
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Of these two possibilities, the latter seems most likely to be the
source. A simple debugging technique would be to reconstruct
Durga images with other software, either a regridding technique
or a more formal iterative method. If this eliminates the artifact,
then the fault lies with the reconstruction code used for these
images.
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Chapter 3

Results

3.1 Phantoms

Three phantoms were used to evaluate the effectiveness of the Durga al-
gorithm, with representative images generated by the three trajectory sets
presented. Each dataset is accompanied by reference images from approxi-
mately the same slice positions, collected by a stock GE pulse sequence. ROIs
accompany the images - the ROI positions are consistent for each image in
the dataset, and the ROI positions are indicated in the reference image for
each set. ROIs were square, and are dimensioned 16 x 16 for Sets A and B,
and 12 x 12 for Set C, unless otherwise noted. The discrepancy is accounted
for by the difference in FOV between Sets A, B, and C (see 3.2), such that
ROIs represent approximately equal amounts of signal regardless of the gra-
dient trajectories. See equations (1.61) and (1.62) for definitions of SNR and
CNR.

The phantoms’ specifications are as follows:

• Spherical GE provided phantom. Plastic exterior, water-filled, with a
mass of 2.9 kg and diameter of 18.1 cm.

• GE resolution phantom. Cylindrical, plastic exterior and water-filled.
Measures 26.8 cm long and 11 cm in diameter with a mass of 8 kg.

• MRA constructed phantom. Plastic tube, with plastic stoppers on
each end. Water doped with Gadolinium to approximate the T1 of
hemoglobin. Measures 59.5 cm long, outer diameter of 1 cm, inner
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Trajectories % of Image FOV (diameter / % of Image)
Set A 51.9 35 cm
Set B 53.1 34 cm
Set C 39.4 46 cm

Table 3.1: Effective FOV for Trajectories A, B, and C

diameter of 0.8 cm, and a mass of 100 g. Some air bubbles inside the
tube were unavoidable during construction.

The following sections detail Durga results using the three trajectory sets
over the three phantoms. The sections follow a similar format – images
from approximately the same position in the phantom are shown for each
trajectory set, and these are accompanied by one reference image for each
phantom location. A table summarizes the SNRs and CNRs for the various
ROIs. Details of the effective FOVs for the three trajectories are provided in
the next section.

3.2 Field of View Calculations

Durga, because of its iterative, algorithmic design, does not have an easy
theoretical method to calculate FOV, unlike more regular non-Cartesian tra-
jectories (ie. 2-D spiral). However, by imaging objects of a known size
Durga’s effective FOV, based on the trajectory set, can be determined. For
simplicity, images of the spherical phantom at the centre of the image set
were chosen for these calculations. Consult Table 3.1 for the results.
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Figure 3.1: Reference image for spherical phantom with ROIs.

3.3 Spherical Phantom Measurements

Images were acquired axially with two ROIs used for measurements on this
simple phantom. ROI1 is in the interior, while ROI2 is in the location of the
oval artifact described in section 2.4. Images of sets A, B, and C are provided
by Figures 3.2, 3.3, and 3.4. See Figure 3.1 for a reference.

Examining the images and Table 3.2, we can see that the results mirror
a qualitative analysis. The images from Set A produced the best SNR and
CNR, Set C the worst with B in between. Ideally, ROI2 would have a low
SNR being outside the image proper – the coherent oval artifact is manifested
in the low CNR12 for all three sets. The dimpling artifact in A may indicate
a spike in the k-space data for this group of images, since data from this set
as a whole do not show this artifact. Conversely, the streaking in the Set C
image is prevalent in other images from these trajectories, and indicates that
these are inherent to the set. The oval artifact is apparent in images from
all three sets, with the major axis oriented top left to bottom right.
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Figure 3.2: Set A image for spherical phantom.

Figure 3.3: Set B image for spherical phantom.
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Figure 3.4: Set C image for spherical phantom.

Trajectories SNR1 SNR2 CNR12

Set A 36.3 13.3 23.0
Set B 27.2 10.6 16.6
Set C 21.9 9.8 12.0

Table 3.2: Spherical phantom imaging results
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Trajectories SNR1 SNR2 SNR3 CNR14 CNR24 CNR34

Set A 14.4 14.0 18.4 11.4 11.5 15.9
Set B 9.9 7.8 12.5 7.6 5.5 10.2
Set C 8.4 9.4 8.7 5.5 6.5 5.7

Table 3.3: GE resolution phantom, Image 1 results

3.4 GE Phantom Measurements

This resolution phantom is provided by GE to test stock and custom pulse
sequences. Axially, it is comprised of various slices with vastly differing pro-
ton densities. Two representative reference images are selected (Figures 3.5
and 3.9), as these exhibit sparse and intense signal respectively. As before,
images are compared between all three trajectory sets.

Comparing the images for Figures 3.6, 3.7, and 3.8, qualitatively the im-
ages from Sets A and C produce the best images. The comb-like structure
in the upper left is plainly visible, as is the small capital ‘A’ roughly in the
centre of the image, although the GE logo in the upper right is partially
smeared by noise. Although not as high quality (and with a larger FOV),
Figure 3.8 from Set C still produces a reasonable image, with the major
structures identifiable, if not clear. Set B suffers from considerable smear-
ing and produces an image of low quality. The ROI data for these images
is presented in Table 3.3, and given the sparse nature of these images the
measurements for SNR and CNR are understandably low.

The images presented in Figures 3.10, 3.11, and 3.12, are higher quality
images than their counterparts for the previous slice location. It should be
noted than the reference image in Figure 3.9 is not in the precise location
of the data images – there is a horizontal dark bar not in evidence in the
reference image because of slice location. Images for Sets A and B produce
good images with reasonable CNRs, keeping in mind that ROI2 should be
a dark location, producing high contrast with ROI1. Dimpling and noise
obscure Set C’s image, although the major features are identifiable. Full
ROI measurements are contained in Table 3.4.
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Figure 3.5: Reference image 1 for GE phantom with ROIs.

Figure 3.6: Set A, image 1 for GE phantom.
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Figure 3.7: Set B, image 1 for GE phantom.

Figure 3.8: Set C, image 1 for GE phantom.
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Figure 3.9: Reference image 2 for GE phantom with ROIs.

Figure 3.10: Set A, image 2 for GE phantom.
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Figure 3.11: Set B, image 2 for GE phantom.

Figure 3.12: Set C, image 2 for GE phantom.
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Trajectories SNR1 SNR2 CNR12

Set A 49.8 10.4 39.5
Set B 27.8 7.4 20.4
Set C 18.2 13.3 4.9

Table 3.4: GE resolution phantom, Image 2 results
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Trajectories SNR
Image 1 Image 2 Image 3

Set A 14.9 23.1 36.0
Set B 19.7 16.1 17.3
Set C 30.7 23.4 14.8

Table 3.5: MRA resolution phantom results

3.5 MRA Phantom Measurements

The MRA phantom was coiled in the 1-channel array such that the phantom
was roughly circular in the coronal plane. However, it was also helically
aligned anteriorly/posteriorly such that different coronal slices could image
different parts of the helix.

Reference images are provided to a give a general overview of the phan-
tom, but ROI locations are not provided because of the difficulty in aligning
the reference scans to the trajectory images. Instead, SNR measurements
are given in Table 3.5, and are calculated by comparing an ROI centred on
a brightest portion of the image, and an equal area of noise in the middle
of the coiled phantom. Unlike the previous measurements, ROIs are square
with an area of 4 x 4, to account for the small image size and the desire to
have an ROI completely in the signal portion of the image.

SNR measurements are hampered by evident noise in the images across
all the trajectories, although the main features of the slice in relation to
the signal in the phantom can be discerned fairly easily. The measurements
themselves are highly reliant on the positioning of the ROI and the noise area
respectively, and are given only as general guidelines to the image quality.
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Figure 3.13: Reference image 1 for MRA phantom.

Figure 3.14: Reference image 2 for MRA phantom.
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Figure 3.15: Set A, image 1 for MRA phantom.

Figure 3.16: Set A, image 2 for MRA phantom.
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Figure 3.17: Set A, image 3 for MRA phantom.

Figure 3.18: Set B, image 1 for MRA phantom.
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Figure 3.19: Set B, image 2 for MRA phantom.

Figure 3.20: Set B, image 3 for MRA phantom.
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Figure 3.21: Set C, image 1 for MRA phantom.

Figure 3.22: Set C, image 2 for MRA phantom.
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Figure 3.23: Set C, image 3 for MRA phantom.
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Figure 3.24: Consecutive MRA slices, Set A.

3.6 Consecutive MRA slices

This section details consecutive coronal slices of the MRA phantom for all
trajectory sets and the same section of phantom. Although this data is
perhaps better presented as a series of slides in a video-like fashion, they
are given here as static images. Slides run in order across and then down,
starting with the image in the upper left. It should be noted that since Sets
A and B both have a smaller FOV than Set C, they produce a greater number
of images over the volume of interest, and this is reflected in the number of
slides presented and the subsequent differences between consecutive images.
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Figure 3.25: Consecutive MRA slices, Set B.
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Figure 3.26: Consecutive MRA slices, Set C.
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Chapter 4

Discussion and Future Research

Examining the data from the previous section, it is clear that of the three
phantoms, Durga performs best with the sphere, followed by the MRA, and
the poorest results are from the GE resolution phantom. This is not alto-
gether surprising – the finer details present in the resolution phantom were
always the most likely to be obscured by the levels of noise we are prepared
to accept in Durga as a trade-off for shorter scan times. In particular, the im-
ages from location 1 (Figures 3.6, 3.7, and 3.8) are indicative of the problems
these Durga trajectories have in imaging objects with fine details.

Conversely, Durga does comparatively well with the more homogeneous
phantoms, with better SNR and overall image quality evident in the spher-
ical phantom images (Figures 3.2, 3.3, and 3.4), and location 2 from the
GE phantom (Figures 3.10, 3.11, and 3.12). Tempering these results is the
evident oval artifact presented in Section 2.4. It would appear that the inten-
sity of the artifact is positively correlated with either the spin density or the
symmetry present in the object, as the artifact is less noticeable or absent in
the sparser images of the GE or MRA phantoms.

Comparing the trajectories’ images from across all phantoms, we can see
that Sets A and B were approximately equal with regards to SNR, CNR, and
overall image quality, and were superior in these regards to Set C. This is
perhaps to be expected – Sets A and B have longer periods of “dead-time”
after the imaging gradients as is shown in Section 2.2, and this is reflected
in their associated sampling efficiencies. Balanced against the inferior image
quality from Set C is its short sampling time which makes it particularly
attractive to future experiments in MRA.

Investigating the source of the image quality differences, one is led to
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the difference in sampling times between the three sets. It is possible that
a phase error is built up during the readout of the gradients, and thus the
longer readout time present in Set C produces more error and inferior im-
ages to those of Sets A and B. Another explanation concerns the physical
characteristics of the gradients. It was observed during development that
sometimes Durga would cause gradient current errors or warnings on the
physical scanner, even though the gradients themselves were at or below the
stated hardware specifications. Relaxing the demands on the hardware by
attenuating the gradient amplitudes seemed to alleviate this problem, al-
though it is possible that there was still a mismatch between the prescribed
k-space position, and the actual one played out by the gradients. This would
account for some of the image distortions evident in the images. However, it
is perhaps unwise to draw too many conclusions from comparisons for only
three sets of Durga trajectories – clearly more exploration needs to be done
in these areas.

Imaging the MRA phantom produced some interesting results, as all of
the trajectories were able to adequately image the same “loop” of signal in
the upper portion of the phantom images. Examining the consecutive coro-
nal slices, we see that if we arrange the images in a flipbook fashion, we
can create something like a MRA “movie”, in that the images appear to be
tracking the passage of a bright bolus through the phantom. Of course, this
is merely an illusion, since the Gadolinium-doped water is static, and the
“movement” of the signal is simply an optical trick from the helical position-
ing of the phantom. However, it does suggest a potential clinical application
in angiography imaging. There would be significant hurdles to overcome,
and it is unclear how well Durga would do in regards to imaging moving
spins, although its inherent velocity compensation would indicate a degree
of optimism. The images of the MRA phantom present an interesting clin-
ical progression for Durga – the data indicates a starting point for Durga’s
efficacy in MRA applications, although more experiments need to be con-
ducted and the trajectories refined. Durga’s low SNR images indicate that
it is better suited to high contrast imaging, where the presence of noise can
be easily ignored or overlooked by the eye. Conversely, applications that are
SNR sensitive (ie. thermometry) are not well-suited for Durga trajectories.

Durga shows potential for use in non-Cartesian SENSE techniques [22] –
although this would require an iterative reconstruction technique, it promises
a shorter scan time coupled with increased image quality. With regards to
reconstruction, a more advanced reconstruction technique (ie. iterative tech-
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niques, Sparse MRI[15]) would improve Durga significantly. These techniques
would allow us to remove much of the noise inherent in the images, increasing
overall image quality.

It is evident that Durga benefits from a DCF [6], although what the
optimum function might be is an area for further research. The procedure
described in Section 1.11 (convolution with a kernel, and FFT) is a simple
and general strategy, although it is likely a superior, more Durga-specific
method exists.

With regards to imaging humans, Durga presents an interesting chal-
lenge. Heating limits are well established, and thus it is necessary to ensure
accurate SAR calculations to guarantee that the sequence is within those
limits. However, the issue with dB/dt is not as clear – the FDA states that
they consider MRI to be a significant risk when dB/dt is sufficient to pro-
duce severe discomfort or painful nerve stimulation [7], while other research
indicates that a limit of 20 T/s be observed [24]. Patient comfort levels must
be monitored particularly closely, especially in initial experiments, because
of Durga’s unique gradient design.
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Appendix A

Scripts for Gradient and Raw
Data Processing

A.1 makegrads.pl – create scanner gradient

files

The makegrads.pl script creates the binary gradient files used by the pulse
sequence when executing on the scanner. It expects four command-line ar-
guments:

• filename format - base filename (see below)

• N - filename index (see below)

• source resolution - in µs, this is legacy and is usually 4, which is the
resolution of gradient boards on the scanner

• omit level - legacy of previous testing and development, not used any-
more – should be set to 0

There is one trajectory’s worth of data in each input file.
Input filenames are in a format such that they are: basename + num +

num + gradient board + .GRD. For example:

test001004X.GRD

test001004Z.GRD

test010001Y.GRD

...
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The basename in the above case would be “test”, while N is one more
that the maximum number used in the input files. For example, continuing
the example above, if the last gradient file was named test015015Z.GRD,
then N would be set to 16.

The script will ignore (with a warning) any “missing” input files – that is,
any files that are missing in a strict numerical sense (ie. test002004X.GRD

exists, but not test002005X.GRD).
The GE scanner expects all gradient information to be in 16-bit signed,

even, and big-endian format, and that each trajectory has an even number
of points (the script will add a 0 at the end of each trajectory if it has an
odd number of points). The script will make all gradients even (rounding
toward 0), and will crop data (with a warning) where |data| > 32666. It
also checks to ensure that the slew rate is not violated between successive
points, and finally gives a warning whenever the number of gradient points
changes between different trajectories – these checks ensure that the Durga
code designing the gradients presents the information in a coherent and sane
format.

There is one gradient file created per gradient board, named xgrad,
ygrad, and zgrad. After successful completion of the makegrads.pl script,
the number of created trajectories and gradient points per trajectory is noted,
and the gradient files can be uploaded onto the scanner for use in the Durga
pulse sequence.

Listing A.1: makegrads.pl code

#!/ usr / b in / p e r l

use s t r i c t ;

use Bit : : Vector ;

use constant TRUE => 1 ;
use constant FALSE => 0 ;
use constant MAX => 32766 ;
use constant MIN => −32766;
use constant MAXGRAD => 0 . 0 4 0 ; # T/m
use constant MAX SLEW => 155 ; # T/m/ s
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use constant GRAD RES => 4e−6; # 4 us

my $numargs = $#ARGV + 1 ;

i f ( $numargs != 4) {
print ”Usage : $0 [ f i l ename format ] [N ( as NxN) ]

[ source r e s o l u t i o n ( in us ) ] [ omit l e v e l ]\n” ;
exit 1 ;

}

my $format = $ARGV[ 0 ] ;
my $N = $ARGV[ 1 ] ;
my $ r e s = $ARGV[ 2 ] ;
my $omitnum = $ARGV[ 3 ] ;

$ | = 1 ; # don ’ t b u f f e r STDOUT;

my $cpts ;
for (my $ i =1; $i<=$omitnum ; $ i++) {

$cpts += $ i ;
}

my @grads = ( ”X” , ”Y” , ”Z” ) ;
my ( $grad res , $n t ra j ) ;
my $ l a s t g r a d r e s = 0 ;

print ”Number o f t r a j e c t o r i e s to omit : ” . ( 4 ∗
$cpts ) . ”\n” ;

print ” Total number o f t r a j e c t o r i e s to c r e a t e : ” . ( $N ∗
$N − 4 ∗ $cpts ) . ”\n” ;

# s e t omit matrix to FALSE
# i e . a l l t r a j e c t o r i e s are i n c l u d e d in ? grad f i l e s
my @omit ;
for (my $ i =0; $i<$N ; $ i++) {

for (my $ j =0; $j<$N ; $ j++) {
$omit [ $ i ] [ $ j ] = FALSE;

}
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}

# remove t r a j e c t o r i e s from g r a d i e n t f i l e s
for (my $ i =0; $i<$N/2 ; $ i++) {

for (my $ j =0; $j<$N/2 ; $ j++) {
my $vsum = $ i + $ j + 2 ;
i f ( $vsum <= $omitnum + 1) {

# e l i m i n a t e t r a j e c t o r y from each
corresponding corner

$omit [ $ i ] [ $ j ] = TRUE;
$omit [ $ i ] [ $N − $ j − 1 ] = TRUE;
$omit [ $N − $ i − 1 ] [ $ j ] = TRUE;
$omit [ $N − $ i − 1 ] [ $N − $ j − 1 ] = TRUE;

}
}

}

# Right now , the s c r i p t i s dumb , and assumes in source
r e s o l u t i o n i s

# 16 us i f not 4 us
i f ( $ r e s > 4) {

print ”Expand grad i en t f i l e s to 4us . . . ” ;

# Expand g r a d i e n t s to 4 us f i r s t −− w r i t e to
s e p e r a t e output f i l e s

mkdir( ”4us” ) ;

foreach my $grad ( @grads ) {
while ( glob ( ”16 us/” . $format . ”∗” . $grad . ” .GRD” ) )
{
my $in = $ ;
/ˆ16 us \/( $format (\d{3}) (\d{3}) . ∗ ) $ / ;
my $out = ”4us/” . $1 ;
my $row = int ( $2 ) ;
my $co l = int ( $3 ) ;

next i f ( $omit [ $row ] [ $ co l ] ) ; # s k i p
omit ted t r a j e c t o r i e s
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open ( INFILE , $ in ) | | die ( ”$ !\n” ) ;
open (OUTFILE, ”>$out ” ) | | die ( ”$ !\n” ) ;

my @l ines = r e a d l i n e INFILE ;
my $outcount = 0 ;

my $ l a s t ;
my $ s e t = FALSE;
for (my $ i =0; $i<=$#l i n e s ; $ i++) {

next i f ( $ l i n e s [ $ i ] =˜ /ˆ#/) ;

my $ l = $ l i n e s [ $ i ] ;
chomp $ l ;
my ( $val , $tmp) = sp l i t ( ” ” , $ l ) ;

i f ( $ s e t ) {
my $step = ( $va l − $ l a s t ) / 4 ;

for (my $ j =1; $j<=4; $ j++) {
my $v = int ( $ l a s t + $ j ∗

$step ) ;
print OUTFILE $v . ”\n” ;
$outcount++;

}
}
else {

$ s e t = TRUE;
print OUTFILE $val . ”\n” ;
$outcount++;

}

$ l a s t = $va l ;
}

# add 1 l i n e to make the number o f p o i n t s
even

i f ( ( $outcount % 2) == 1) {
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print OUTFILE ”0\n” ;
$outcount++;

}

$g rad r e s = $outcount ;

i f ( $ l a s t g r a d r e s != $g rad r e s ) {
print ”Warning : Gradient r e s o l u t i o n

changed from : $ l a s t g r a d r e s to
$g rad r e s −− $out\n” ;

}

$ l a s t g r a d r e s = $grad r e s ;

close OUTFILE;
close INFILE ;

}
}

print ”done\n” ;
}
else {

rename( ”4us” , ”4us−o r i g ” ) ;
mkdir( ”4us” ) ;

foreach my $grad ( @grads ) {
while ( glob ( ”4us−o r i g /” . $format .

”∗” . $grad . ” .GRD” ) ) {

my $in = $ ;
/ˆ4us−o r i g \/( $format (\d{3}) (\d{3}) . ∗ ) $ / ;
my $out = ”4us/” . $1 ;
my $row = int ( $2 ) ;
my $co l = int ( $3 ) ;

open ( INFILE , $ in ) | | die ( ”$ !\n” ) ;
open (OUTFILE, ”>$out ” ) | | die ( ”$ !\n” ) ;
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my $outcount = 0 ;
my $ l a s t v a l = 0 ;
my $maxslew = 0 ;
my $maxslewl ine = 0 ;

while(<INFILE>) {
next i f ( $ =˜ /ˆ#/) ;
my ( $val , $tmp) = sp l i t ( ” ” , $ ) ;
$outcount++;

i f ( $va l > MAX) {
$va l = MAX;
print ”Warning : MAX value cropping
−− f i l e : $in , l i n e :
$outcount\n” ;

}
e l s i f ( $va l < MIN) {

$va l = MIN;
print ”Warning : MIN value cropping
−− f i l e : $in , l i n e :
$outcount\n” ;

}

my $s lew = ( ( $va l − $ l a s t v a l ) / MAX ∗
MAXGRAD) / (GRAD RES) ;

i f ( $s lew > $maxslew ) {
$maxslew = $slew ;
$maxslewl ine = $outcount ;

}

$ l a s t v a l = $val ;

print OUTFILE ” $va l \n” ;
}

# ensure l a s t p o i n t in o u t f i l e i s 0
i f ( $ l a s t v a l != 0) {
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print OUTFILE ”0\n” ;
$outcount++;

}

# make number o f p o i n t s even
i f ( ( $outcount % 2) == 1) {

print OUTFILE ”0\n” ;
}

i f ( $maxslew > MAX SLEW) {
print ”Warning : Maximum slew v i o l a t e d
−− $out : ” . int ( $maxslew ) . ” , l i n e :
$maxslewl ine \n” ;

}

$g rad r e s = $outcount ;

i f ( $ l a s t g r a d r e s != $g rad r e s ) {
print ”Warning : Gradient r e s o l u t i o n

changed from : $ l a s t g r a d r e s to
$g rad r e s −− $out\n” ;

}

$ l a s t g r a d r e s = $grad r e s ;

close OUTFILE;
close INFILE ;

}
}

print ”done\n” ;
}

print ” Create binary g rad i en t f i l e s . . . ” ;

# Create xgrad , ygrad , and zgrad b inary f i l e s
foreach my $grad ( @grads ) {

my $out ;
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i f ( $grad eq ”X” ) {
$out = ”xgrad” ;

}
e l s i f ( $grad eq ”Y” ) {

$out = ”ygrad” ;
}
else {

$out = ” zgrad ” ;
}

open (OUTFILE, ”>$out ” ) | | die ( ”Could not wr i t e
$out : $ ! ” ) ;

$n t r a j = 0 ;

for (my $ i =0; $i<$N ; $ i++) {
for (my $ j =0; $j<$N ; $ j++) {

next i f ( $omit [ $ i ] [ $ j ] ) ; # s k i p omit ted
t r a j e c t o r i e s

my $in = sprintf ( ”4us/ t e s t %.3d%.3d%s .GRD” ,
$i , $j , $grad ) ;

i f (−e $ in ) {
open ( INFILE , $ in ) | | die ( ”$ !\n” ) ;

}
else {

print ”Warning : sk ipp ing $ in f i l e −−
Does not e x i s t \n” ;

next ;
}

$n t ra j++;

while (<INFILE>) {
my $va l = $ ;
chomp $va l ;
$va l = makeeven ( $va l ) ;
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my $vec = Bit : : Vector−>new Dec (16 ,
$va l ) ;

print OUTFILE pack ( ”H∗” , $vec−>to Hex ) ;
#p r i n t $vec−>to Hex .”\n ” ;

}

close INFILE ;
}

}

close OUTFILE;

print ” $out ” ;
}

print ”\n” ;
#p r i n t t r a j (\@traj ) ;

print ” Gradient Reso lut ion : $g rad r e s \n” ;
print ”Number o f T r a j e c t o r i e s : $n t ra j \n” ;

print ”done\n” ;

sub makeeven ( $ ) {
my $x = sh i f t ;

i f ( ( $x % 2) == 1) {
return ( $x > 0) ? $x − 1 : $x + 1 ;

}

return $x ;
}

sub p r i n t t r a j ( $ ) {
my $ r e f = sh i f t ;
my @traj = @$ref ;
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for (my $ i =0; $i<$N ; $ i++) {
for (my $ j =0; $j<$N ; $ j++) {

( $ t r a j [ $ i ] [ $ j ] ) ? print ”O ” : print ” ” ;
}

print ”\n” ;
}

}

A.2 concatgrads.pl – create k-space position

from gradients

The concatgrads.pl script takes as inputs the ?grad files created with
makegrads.pl and gives as an output a grads file, which is used by the
reconstruction code as the k-space positions of the data. The script requires
that the gradient files are located in the same directory, and the number tra-
jectories as a command-line argument. To calculate the k-space positions,
the code uses a simple running total (ie. zeroth moment). The code as-
sumes that there is no accumulated phase between trajectories (ie. each new
trajectory starts its count at 0).

Listing A.2: concatgrads.pl code

#!/ usr / b in / p e r l

use s t r i c t ;

use Bit : : Vector ;
use F i l e : : stat ;

use constant SIGNED => ” s∗” ;
use constant UNSIGNED => ”S∗” ;
use constant BIG => ”n∗” ;

my $numargs = $#ARGV + 1 ;
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i f ( $numargs != 1) {
print ”Usage : $0 [ number o f t r a j e c t o r i e s ]\n” ;
exit 1 ;

}

my $ t r a j = $ARGV[ 0 ] ;

open (XGRAD, ”xgrad” ) | | die ( ”$ !\n” ) ;
open (YGRAD, ”ygrad” ) | | die ( ”$ !\n” ) ;
open (ZGRAD, ” zgrad ” ) | | die ( ”$ !\n” ) ;

open (OUTFILE, ”>grads ” ) | | die ( ”$ !\n” ) ;

my $ s t a t s = stat ( ”xgrad” ) ;
my $grad pts = ( $s ta t s−>s i z e / 2) / $ t r a j ;

for (my $ i =0; $i<$ t r a j ; $ i++) {
my ( $kx , $ky , $kz ) ;
$kx =

$ky =
$kz = 0 ;

for (my $ j =0; $j<$grad pts ; $ j++) {
my ( $xval , $yval , $zva l ) ;

read XGRAD, $xval , 2 ;
read YGRAD, $yval , 2 ;
read ZGRAD, $zval , 2 ;

my $x = unpack SIGNED, pack UNSIGNED, unpack
BIG , $xval ;

my $y = unpack SIGNED, pack UNSIGNED, unpack
BIG , $yval ;

my $z = unpack SIGNED, pack UNSIGNED, unpack
BIG , $zva l ;

$kx += $x ;
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$ky += $y ;
$kz += $z ;

print OUTFILE ”$kx $ky $kz\n” ;
}

}

close OUTFILE;

close XGRAD;
close YGRAD;
close ZGRAD;

A.3 raw.pl – process raw P-File

The raw.pl script takes as an input the name of the “P-File” that was
used in the Durga scan. Besides writing an output file(s) in the format
pfile-coil#-complex, the script also displays an assortment of data that
is packaged along with the “P-File”, among these the scan date, frame size
and number of frames, the number of receive coils, and the raw data size (see
section 2.3.1). Data is organized in the output files as a real, imaginary pair,
one data point per line. One output file is created for each receive coil used
in the scan.

Listing A.3: raw.pl code

#!/ usr / b in / p e r l

use s t r i c t ;

use Time : : Local ;
use Time : : localtime ;
use Getopt : : Std ;

use constant HEADER REC SIZE => 2048 ;
use constant HEADER PER PASS TAB SIZE => 4096 ;
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use constant HEADER UNLOCK RAW SIZE => 4096 ;
use constant HEADER DATA ACQ TAB SIZE => 20480 ;
use constant HEADER NEX TAB SIZE => 2052 ;
use constant HEADER NEX ABORT TAB SIZE => 2052 ;
use constant HEADER TOOL SIZE => 2048 ;
use constant HEADER EXAM SIZE => 1040 ;
use constant HEADER SERIES SIZE => 1028 ;
use constant HEADER IMAGE SIZE => 1044 ;

use constant DATA START => 66072 ;

use constant SEQ NUM OFF => 8 ;
use constant SEQ NUM SIZE => 2 ;
use constant RUN NUM OFF => 10 ;
use constant RUN NUM SIZE => 6 ;
use constant SCAN DATE OFF => 16 ;
use constant SCAN DATE SIZE => 10 ;
use constant SCAN TIME OFF => 26 ;
use constant SCAN TIME SIZE => 8 ;
use constant RAW DATA TYPE OFF => 44 ;
use constant RAW DATA TYPE SIZE => 2 ;
use constant SCAN TYPE OFF => 54 ; # 15 b i t s
use constant SCAN TYPE SIZE => 2 ;

use constant NUM SLICES OFF => 68 ;
use constant NUM SLICES SIZE => 2 ;
use constant NUM ECHOES OFF => 70 ;
use constant NUM ECHOES SIZE => 2 ;
use constant NUM EXCITATIONS OFF => 72 ;
use constant NUM EXCITATIONS SIZE => 2 ;
use constant NUM FRAMES OFF => 74 ; # yres
use constant NUM FRAMES SIZE => 2 ;
use constant FRAME SIZE OFF => 80 ; # x r e s
use constant FRAME SIZE SIZE => 2 ;
use constant NUM BASELINES OFF => 76 ;
use constant NUM BASELINES SIZE => 2 ;

use constant NUM 3D VOLS OFF => 86 ;
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use constant NUM 3D VOLS SIZE => 2 ;

use constant HEADER RAW PASS SIZE OFF => 116 ;
use constant HEADER RAW PASS SIZE SIZE => 4 ;

use constant RECEIVE COILS OFF => 200 ;
use constant RECEIVE COIL START=> 0 ;
use constant RECEIVE COIL STOP => 2 ;
use constant RECEIVE COIL NUMBER SIZE => 2 ;

use constant IMAGE SIZE Y OFF => 858 ;
use constant IMAGE SIZE Y SIZE => 2 ;
use constant FREQ KSPACE STEP OFF => 864 ;
use constant FREQ KSPACE STEP SIZE => 4 ;
use constant PHASE KSPACE STEP OFF => 870 ;
use constant PHASE KSPACE STEP SIZE => 4 ;

use constant ASCII => ”A∗” ;
use constant FLOAT => ” f ∗” ;
use constant SHORT => ”v∗” ;
use constant SIGNED => ” s∗” ;
use constant LONG => ”V∗” ;

my $numargs = $#ARGV + 1 ;
i f ( $numargs != 1) {

print ”Usage : raw . p l [P− f i l e ]\n” ;
exit ;

}

my $ i n f i l e = $ARGV[ 0 ] ;
open ( INFILE , $ i n f i l e ) | | die ( ”Could not open $ i n f i l e :

$ !\n” ) ;

my $seq num = GetHeaderVal (∗ INFILE , SEQ NUM OFF,
SEQ NUM SIZE , ASCII ) ;

my $run num = GetHeaderVal (∗ INFILE , RUN NUM OFF,
RUN NUM SIZE, ASCII ) ;
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my $scan date = GetHeaderVal (∗ INFILE , SCAN DATE OFF,
SCAN DATE SIZE, ASCII ) ;

my $scan t ime = GetHeaderVal (∗ INFILE , SCAN TIME OFF,
SCAN TIME SIZE , ASCII ) ;

my $tm = ProcessDateTime ( $scan date , $scan t ime ) ;
my $ l t = localtime ($tm) ;

my $data type = GetHeaderVal (∗ INFILE ,
RAW DATA TYPE OFF, RAW DATA TYPE SIZE, SHORT) ;

my $ n s l i c e s = GetHeaderVal (∗ INFILE , NUM SLICES OFF,
NUM SLICES SIZE , SHORT) ;

my $nechoes = GetHeaderVal (∗ INFILE , NUM ECHOES OFF,
NUM ECHOES SIZE, SHORT) ;

my $nex = GetHeaderVal (∗ INFILE , NUM EXCITATIONS OFF,
NUM EXCITATIONS SIZE, SHORT) ;

my $ f rames i z e = GetHeaderVal (∗ INFILE , FRAME SIZE OFF,
FRAME SIZE SIZE , SHORT) ;

my $nframes = GetHeaderVal (∗ INFILE , NUM FRAMES OFF,
NUM FRAMES SIZE, SHORT) ;

my $ n b a s e l i n e s = GetHeaderVal (∗ INFILE ,
NUM BASELINES OFF, NUM BASELINES SIZE , SHORT) ;

my @rcvco i l s = GetRece iveCo i l In fo (∗ INFILE) ;

my $ r a w p a s s s i z e = GetHeaderVal (∗ INFILE ,
HEADER RAW PASS SIZE OFF,
HEADER RAW PASS SIZE SIZE , LONG) ;

my $ image s i z e y = GetHeaderVal (∗ INFILE ,
IMAGE SIZE Y OFF , IMAGE SIZE Y SIZE , SHORT) ;

my $ f r e q k s p a c e s t e p = GetHeaderVal (∗ INFILE ,
FREQ KSPACE STEP OFF, FREQ KSPACE STEP SIZE, FLOAT) ;

my $phase kspace s t ep = GetHeaderVal (∗ INFILE ,
PHASE KSPACE STEP OFF, PHASE KSPACE STEP SIZE ,
FLOAT) ;

###
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# Print Header Informat ion

print ”P−F i l e : $ i n f i l e \n” ;

print ”Data F i l e Number : $run num\n” ;

my $data type name ;
i f ( $data type == 0) {

$data type name = ”EMP” ;
}
e l s i f ( $data type == 1) {

$data type name = ”NOREC” ;
}
else {

$data type name = ”NOPROC” ;
}
print ”Data Type : $data type name\n” ;

# Assume j u s t the f i r s t s t r u c t u r e i s used . . .
print ” Receive Co i l Numbers :

” . $ r c v c o i l s [0]−>{” s t a r t ” } . ” to
” . $ r c v c o i l s [0]−>{” stop ” } . ”\n” ;

print ” Total Co i l s Used : ” . ( $ r c v c o i l s [0]−>{” stop ”} −
$ r c v c o i l s [0]−>{” s t a r t ”} + 1) . ”\n” ;

print ”Number o f S l i c e s : $ n s l i c e s \n” ;
print ”Number o f Echoes : $nechoes\n” ;
print ”Number o f Exc i t a t i on s : $nex\n” ;
print ”Frame S i z e ( xre s ) : $ f r ames i z e \n” ;
print ”Number o f Frames ( yre s ) : $nframes\n” ;
print ”Number o f B a s e l i n e s : $ n b a s e l i n e s \n” ;

print ”Raw S i z e : $ r a w p a s s s i z e \n” ;

#e x i t 1 ;

# Extrac t Real / Imaginary in format ion
my ( @real , @imag) ;
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my $pos ;
my ( $rva l , $ i va l , $r , $ i ) ;
my $data len = $ f rames i z e ∗ $nframes ;

print ”\n” ;

# Skip f i r s t frame (?) −− no?
# Organize data c o i l f i r s t , then rhnframes , then

r h f r s i z e
for (my $ c o i l=$ r c v c o i l s [0]−>{” s t a r t ” } ;

$ c o i l<=$ r c v c o i l s [0]−>{” stop ” } ; $ c o i l++) {
my ( @treal , @timag ) ;

for (my $ i =0; $i<$nframes ; $ i++) {
$pos = DATA START + (4 ∗ $ c o i l ∗ $data len ) +

(4 ∗ $ i ∗ $ f rames i z e ) ;
seek INFILE , $pos , 0 ;

for (my $ j =0; $j<$ f rames i z e ; $ j++) {
read INFILE , $rva l , 2 ;
read INFILE , $ iva l , 2 ;
my $r = unpack(SIGNED, $ rva l ) ;
my $ i = unpack(SIGNED, $ i v a l ) ;
push @treal , $r ;
push @timag , $ i ;

}
}

@real [ $ c o i l ] = [ @trea l ] ;
@imag [ $ c o i l ] = [ @timag ] ;

print ” Processed Coi l data : $ c o i l \n” ;
}

close INFILE ;

print ”\n” ;
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# Output to data f i l e s
for (my $ c o i l=$ r c v c o i l s [0]−>{” s t a r t ” } ;

$ c o i l<=$ r c v c o i l s [0]−>{” stop ” } ; $ c o i l++) {
my $out = ” $ i n f i l e −$ c o i l−complex” ;
open (OUT, ”>$out ” ) | | die ( ”Could not open $out :

$ !\n” ) ;

for (my $ i =0; $i<$data len ; $ i++) {
print OUT $ r e a l [ $ c o i l ] [ $ i ] . ”

” . $imag [ $ c o i l ] [ $ i ] . ”\n” ;
}

close OUT;

print ” Fin i shed wr i t i ng : $out\n” ;
}

close OUT;

sub GetHeaderVal ( $$$$ ) {
my $in = sh i f t ;
my $ o f f = sh i f t ;
my $ s i z e = sh i f t ;
my $temp = sh i f t ;
my $va l ;

seek $in , $o f f , 0 ;
read $in , $val , $ s i z e ;

return unpack( $temp , $va l ) ;
}

sub ProcessDateTime ( $$ ) {
my $date = sh i f t ;
my $time = sh i f t ;

$date =˜ /(\d+)\/(\d+)\/(\d+) / ;
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my $mon = $1 − 1 ;
my $day = $2 ;
my $year = 1900 + $3 ;

$time =˜ /(\d+) : ( \ d+) / ;
my $hour = $1 ;
my $min = $2 ;

return t i m e l o c a l (0 , $min , $hour , $day , $mon ,
$year ) ;

}

sub GetRece iveCo i l In fo ( $ ) {
my $in = sh i f t ;
my $va l ;
my @ret ;

for (my $ i =0; $i <4; $ i++) {
seek $in , RECEIVE COILS OFF + ( $ i ∗ 4) +

RECEIVE COIL START, 0 ;
read $in , $val , RECEIVE COIL NUMBER SIZE ;
$ r e t [ $ i ]−>{” s t a r t ”} = unpack(SHORT, $va l ) ;

seek $in , RECEIVE COILS OFF + ( $ i ∗ 4) +
RECEIVE COIL STOP, 0 ;

read $in , $val , RECEIVE COIL NUMBER SIZE ;
$ r e t [ $ i ]−>{” stop ”} = unpack(SHORT, $va l ) ;

}

return @ret ;
}
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Appendix B

Reconstruction Software

This appendix contains the reconstruction code as described in section 2.3.2.

B.1 recon.m

Listing B.1: recon.m code

%%%
% k−space r e g r i d d i n g a l gor i thm
%
% Part o f re search conducted by :
%
% Paul Polak
%
% f o r use in a t h e s i s f o r :
%
% M.A. Sc Biomedical Engineer ing
% McMaster U n i v e r s i t y
% Autumn 2008
%%%

% d e f i n e g r i d
global kern W nkernval ;

N = 256 ;
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A = zeros (N, N, N) ;
dens i ty = zeros (N, N, N) ;
f r s i z e = 6352 ;
g rad pt s = f r s i z e / 2 ;
nframes = 177 ;
sk ip = 1 ;
t r i k e r n = 0 ;

kmin = −0.5;
d e l t a = (abs (2∗kmin ) ) / (N − 1) ;

beta = 8 ;
Wn = 4 ;
W = Wn ∗ de l t a ;

% data f i l e s
basename = ’ 06144−0 ’ ;
kdata = s t r c a t ( basename , ’−complex ’ ) ;
ksave = s t r c a t ( basename , ’−data . mat ’ ) ;
Asave = s t r c a t ( basename , ’−A. mat ’ ) ;
dens i ty save = ’ dens i ty−data . mat ’ ;
gradsave = ’ grads−data . mat ’ ;
g rads in = ’ grads ’ ;
r o l l o f f s a v e = ’ r o l l o f f . mat ’ ;

t ic ;
s t a r t t i me = toc ;
i n i t i a l = toc ;

disp ( ’ S t a r t i ng r e c o n s t r u c t i o n . . . ’ ) ;

% make k e r n e l look−up array
kernwidth = 16 ;
kernstep = 1e6 ;
n = (−kernwidth /2∗ de l t a ) : ( kernwidth / kernstep ) :

( kernwidth /2∗ de l t a ) ;

i f ( t r i k e r n == 0)
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disp ( ’KB ke rne l ’ ) ;
kern = (1/W) ∗ b e s s e l i (0 , beta ∗ (1 − (2∗n/W) . ˆ 2 ) )

.∗ r e c t (2∗n/W, 1) ;
else

disp ( ’ Tr iang l e k e rne l ’ ) ;
he ight = 100 ;
m = he ight / W;

k = 1 ;
for j = (−kernwidth /2∗ de l t a ) : ( kernwidth / kernstep ) :

( kernwidth /2∗ de l t a )

i f (abs ( j ) > W)
kern ( k ) = 0 ;

else
i f ( j < 0)

kern ( k ) = m ∗ j + he ight ;
else

kern ( k ) = −m ∗ j + he ight ;
end

end

k = k + 1 ;
end

end

now = toc ;
disp ( sprintf ( ’ F in i shed populat ing ke rne l lookup .

Time : %d seconds ’ , round(now − i n i t i a l ) ) ) ;

% read in t r a j e c t o r i e s i f necessary
i f ( ( exist ( gradsave , ’ f i l e ’ ) ) ˜= 2)

disp ( sprintf ( ’ Read t r a j e c t o r y in fo rmat ion from
f i l e ”%s ” . . . (%d l i n e s ) ’ , grads in , g rad pt s ∗
nframes ) ) ;

in = fopen ( grads in , ’ r ’ ) ;
i n t r a j = zeros ( g rad pt s ∗ nframes , 3) ;
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x = 1 ;

for u=1: nframes
for v=1: g rad pt s

l ine = fget l ( in ) ;

i f ( l ine == −1)
disp ( ’EOF reached ? ’ ) ;
return ;

end

[ kx ky kz ] = s t r r e a d ( l ine , ’%f %f %f ’ ) ;

i n t r a j (x , 1) = kx ;
i n t r a j (x , 2) = ky ;
i n t r a j (x , 3) = kz ;
x = x + 1 ;

i f (mod(x , 10000) == 0)
disp ( sprintf ( ’ Read %d l i n e s ’ , x ) ) ;

end
end

end

fc lose ( in ) ;

save ( gradsave , ’ i n t r a j ’ ) ;

disp ( ’ Saved t r a j e c t o r y data ’ ) ;
else

load ( gradsave , ’ i n t r a j ’ ) ;
disp ( ’ Loaded t r a j e c t o r y data ’ ) ;

end

disp ( ’ Create i n t e r p o l a t e d t r a j e c t o r y matrix ’ ) ;

% Get v a l u e to s t a n d a r d i z e kspace to [−kmin , kmin ] ;

93



M.A.Sc Thesis - Paul Polak McMaster - Biomedical Engineering

kmaxval = max(max(abs ( i n t r a j ) ) ) / (abs ( kmin ) ) ;

t r a j = zeros (2 ∗ length ( i n t r a j ) , 3) ;

% i n t e r p o l a t e between k space v a l u e s
for j = 1 : nframes

for k = 1 : ( g rad pt s − 1)
idx = ( j−1) ∗ grad pt s + k ;

for l = 1 :3
t r a j (2∗ idx − 1 , l ) = i n t r a j ( idx , l ) /

kmaxval ;
t r a j (2∗ idx , l ) = ( ( i n t r a j ( idx , l ) +

i n t r a j ( idx +1, 1) ) / 2) / kmaxval ;
end

end

idx = j ∗ grad pt s ;

for l = 1 :3
t r a j (2∗ idx − 1 , l ) = i n t r a j ( idx , l ) / kmaxval ;
t r a j (2∗ idx , l ) = t r a j (2∗ idx − 1 , l ) ;

end
end

clear i n t r a j ;

disp ( ’ F in i shed i n t e r p o l a t e d t r a j e c t o r i e s ’ ) ;

i f ( ( exist ( ksave , ’ f i l e ’ ) ) ˜= 2)
% read in k−space data
disp ( sprintf ( ’ Read k−space data from f i l e ”%s ” . . .

(%d l i n e s ) ’ , kdata , f r s i z e ∗ nframes ) ) ;

in = fopen ( kdata , ’ r ’ ) ;
data = zeros ( f r s i z e ∗ nframes , 1) ;
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x = 1 ;

for u=1: nframes
for v=1: f r s i z e

l ine = fget l ( in ) ;

i f ( l ine == −1)
disp ( ’EOF reached ? ’ ) ;
return ;

end

[ r e im ] = s t r r e a d ( l ine , ’%f %f ’ ) ;
data ( x ) = re + i ∗im ;
x = x+1;

i f (mod(x , 10000) == 0)
disp ( sprintf ( ’ Read %d l i n e s ’ , x ) ) ;

end
end

end

fc lose ( in ) ;

save ( ksave , ’ data ’ ) ;

disp ( ’ Saved k−space data ’ ) ;
else

load ( ksave , ’ data ’ ) ;
disp ( ’ Loaded k−space data ’ ) ;

end

i n i t i a l = toc ;

i f ( ( exist ( dens i tysave , ’ f i l e ’ ) ) ˜= 2)
disp ( ’ Begin dens i ty c a l c u l a t i o n . . . ’ ) ;
i n i t i a l = toc ;
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for j =1: sk ip : length ( t r a j )
i f (mod( j , 1000) == 0)

disp ( sprintf ( ’ F in i shed dens i ty g r idd ing %d
po in t s ’ , j ) ) ;

i f (mod( j , 10000) == 0)
curt ime = toc ;
disp ( sprintf ( ’ Complete in %d seconds ’ ,

round ( ( length ( data ) − j ) / j ∗
( curt ime − i n i t i a l ) ) ) ) ;

end
end

% Trajec tory p o i n t s
t r a j x = t r a j ( j , 1) ;
t r a j y = t r a j ( j , 2) ;
t r a j z = t r a j ( j , 3) ;

% Trans la te t h e s e p o i n t s to matrix i n d i c e s
xbase = tomatr ix ( t ra jx , kmin , d e l t a ) ;
ybase = tomatr ix ( t ra jy , kmin , d e l t a ) ;
zbase = tomatr ix ( t r a j z , kmin , d e l t a ) ;

% s t a r t and end p o i n t s f o r x , y , z
xst = max(−Wn/2 + xbase , 1) ;
xed = min(Wn/2 + xbase , N) ;

yst = max(−Wn/2 + ybase , 1) ;
yed = min(Wn/2 + ybase , N) ;

z s t = max(−Wn/2 + zbase , 1) ;
zed = min(Wn/2 + zbase , N) ;

% make d i s t a n c e matrix f i r s t
d i s t = zeros ( length ( xst : xed ) , length ( yst : yed ) ,

length ( z s t : zed ) ) ;
for u = xst : xed

for v = yst : yed
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for w = z s t : zed
grx = kmin + (u − 1) ∗ de l t a ;
gry = kmin + ( v − 1) ∗ de l t a ;
grz = kmin + (w − 1) ∗ de l t a ;
d i s t (u−xst +1, v−yst +1, w−z s t +1) =

sqrt ( ( t r a j x − grx ) ˆ2 + ( t r a j y −
gry ) ˆ2 + ( t r a j z − grz ) ˆ2) ;

end
end

end

% put i n t o d e n s i t y
%d e n s i t y ( x s t : xed , y s t : yed , z s t : zed ) =

d e n s i t y ( x s t : xed , y s t : yed , z s t : zed ) +
KernelValue ( beta , W, d i s t ) ;

dens i ty ( xst : xed , ys t : yed , z s t : zed ) =
dens i ty ( xst : xed , ys t : yed , z s t : zed ) +
kern (round ( ( d i s t + kernwidth / 2 ∗ de l t a ) /
kernwidth ∗ kernstep ) + 1) ;

end

save ( dens i tysave , ’ dens i ty ’ ) ;
disp ( ’ Saved dens i ty data ’ ) ;

else
load ( dens i tysave , ’ dens i ty ’ ) ;
disp ( ’ Loaded dens i ty data ’ ) ;

end

now = toc ;
disp ( sprintf ( ’ F in i shed c a l c u l a t i n g dens i ty . Time : %d

seconds ’ , round(now − i n i t i a l ) ) ) ;

disp ( ’ Begin c a l c u l a t i n g DCF . . . ’ ) ;
i n i t i a l = toc ;

DCF = zeros ( length ( t r a j ) , 1) ;
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for j =1: sk ip : length ( t r a j )
% Get t r a j e c t o r y p o s i t i o n
t r a j x = t r a j ( j , 1) ;
t r a j y = t r a j ( j , 2) ;
t r a j z = t r a j ( j , 3) ;

xmin = 1 + f loor ( ( t r a j x − kmin ) / de l t a ) ;
xmax = 1 + ce i l ( ( t r a j x − kmin ) / de l t a ) ;
ymin = 1 + f loor ( ( t r a j y − kmin ) / de l t a ) ;
ymax = 1 + ce i l ( ( t r a j y − kmin ) / de l t a ) ;
zmin = 1 + f loor ( ( t r a j z − kmin ) / de l t a ) ;
zmax = 1 + ce i l ( ( t r a j z − kmin ) / de l t a ) ;

grxmin = kmin + ( ( f loor ( ( t r a j x − kmin ) / de l t a ) ) ∗
de l t a ) ;

grxmax = kmin + ( ( ce i l ( ( t r a j x − kmin ) / de l t a ) ) ∗
de l t a ) ;

grymin = kmin + ( ( f loor ( ( t r a j y − kmin ) / de l t a ) ) ∗
de l t a ) ;

grymax = kmin + ( ( ce i l ( ( t r a j y − kmin ) / de l t a ) ) ∗
de l t a ) ;

grzmin = kmin + ( ( f loor ( ( t r a j z − kmin ) / de l t a ) ) ∗
de l t a ) ;

grzmax = kmin + ( ( ce i l ( ( t r a j z − kmin ) / de l t a ) ) ∗
de l t a ) ;

va l = [
grxmin grymin grzmin dens i ty ( xmin , ymin ,

zmin ) ; grxmin grymin grzmax dens i ty ( xmin ,
ymin , zmax) ;

grxmin grymax grzmin dens i ty (xmin , ymax ,
zmin ) ; grxmin grymax grymax dens i ty ( xmin ,
ymax , zmax) ;

grxmax grymin grzmin dens i ty (xmax , ymin ,
zmin ) ; grxmax grymin grzmax dens i ty (xmax ,
ymin , zmax) ;

grxmax grymax grzmin dens i ty (xmax , ymax ,
zmin ) ; grxmax grymax grzmax dens i ty (xmax ,
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ymax , zmax) ;
] ;

for k=1: length ( va l )
d i s t = sqrt ( ( va l (k , 1 ) − t r a j x ) ˆ2 + ( va l (k , 2 ) −

t r a j y ) ˆ2 + ( va l (k , 3 ) − t r a j z ) ˆ2) ;
DCF( j ) = DCF( j ) + ( sqrt (3 ) − d i s t ) ∗ va l (k , 4)

/ 8 ;
end

end

now = toc ;
disp ( sprintf ( ’ F in i shed c a l c u l a t i n g DCF. Time %d

seconds ’ , round(now − i n i t i a l ) ) ) ;

disp ( ’ Begin g r idd ing data . . . ’ ) ;

i n i t i a l = toc ;

i f ( ( exist ( Asave , ’ f i l e ’ ) ) ˜= 2)

for j =1: sk ip : length ( t r a j )
i f (mod( j , 1000) == 0)

disp ( sprintf ( ’ F in i shed gr idd ing %d
po in t s ’ , j ) ) ;

i f (mod( j , 10000) == 0)
curt ime = toc ;
disp ( sprintf ( ’ Complete in %d seconds ’ ,

round ( ( length ( data ) − j ) / j ∗
( curt ime − i n i t i a l ) ) ) ) ;

end
end

% s k i p empty v a l u e s
i f ( data ( j ) == 0)

cont inue ;
end
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t r a j x = t r a j ( j , 1) ;
t r a j y = t r a j ( j , 2) ;
t r a j z = t r a j ( j , 3) ;

xbase = tomatr ix ( t ra jx , kmin , d e l t a ) ;
ybase = tomatr ix ( t ra jy , kmin , d e l t a ) ;
zbase = tomatr ix ( t r a j z , kmin , d e l t a ) ;

% Create window around b a s e p o i n t to g r i d
% k−space data
xst = max(−Wn/2 + xbase , 1) ;
xed = min(Wn/2 + xbase , N) ;

yst = max(−Wn/2 + ybase , 1) ;
yed = min(Wn/2 + ybase , N) ;

z s t = max(−Wn/2 + zbase , 1) ;
zed = min(Wn/2 + zbase , N) ;

% make d i s t a n c e matrix f i r s t
d i s t = zeros ( length ( xst : xed ) , length ( yst : yed ) ,

length ( z s t : zed ) ) ;
for u = xst : xed

for v = yst : yed
for w = z s t : zed

grx = kmin + (u − 1) ∗ de l t a ;
gry = kmin + ( v − 1) ∗ de l t a ;
grz = kmin + (w − 1) ∗ de l t a ;
d i s t (u−xst +1, v−yst +1, w−z s t +1) =

sqrt ( ( t r a j x − grx ) ˆ2 + ( t r a j y −
gry ) ˆ2 + ( t r a j z − grz ) ˆ2) ;

end
end

end

datamat = ( ( data ( j ) / DCF( j ) ) ∗
ones ( xed−xst +1, yed−yst +1, zed−z s t +1) ) .∗
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kern (round ( ( d i s t + kernwidth / 2 ∗ de l t a ) /
kernwidth ∗ kernstep ) + 1) ;

A( xst : xed , ys t : yed , z s t : zed ) = A( xst : xed ,
yst : yed , z s t : zed ) + datamat ;

%A( x s t : xed , y s t : yed , z s t : zed ) = A( x s t : xed ,
y s t : yed , z s t : zed ) + ( KernelValue ( d i s t ) ∗
data ( j ) / DCF( j ) ) ;

%d e n s i t y ( x s t : xed , y s t : yed , z s t : zed ) =
d e n s i t y ( x s t : xed , y s t : yed , z s t : zed ) +
KernelValue ( d i s t ) ;

%datamat = ( data ( j ) / DCF( j ) ) ∗
ones ( xed−x s t +1, yed−y s t +1, zed−z s t +1) ;

%curdata = A( x s t : xed , y s t : yed , z s t : zed ) ;
%k e r n e l = KernelValue ( beta , W, d i s t ) ;
%k e r n e l = KernelValue ( d i s t ) ;
%curdata = curdata + datamat .∗ k e r n e l ;
%A( x s t : xed , y s t : yed , z s t : zed ) = curdata ;

% f o r u = 1: xed−x s t+1
% f o r v = 1: yed−y s t+1
% f o r w = 1: zed−z s t +1
% i f (DCF( j ) == 0)
% cont inue ;
% end
%
% %curdata (u , v ,w) = curdata (u , v ,w)

+ ( k e r n e l (u , v , w) ∗ data ( j ) ) ;
% curdata (u , v ,w) = curdata (u , v ,w)

+ ( k e r n e l (u , v , w) ∗ data ( j ) / DCF( j ) ) ;
% %curdata (u , v ,w) = curdata (u , v ,w)

+ ( k e r n e l (u , v , w) ∗ 1 / DCF( j ) ) ;
% end
% end
% end

end
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save ( Asave , ’A ’ ) ;
disp ( ’ Saved regr idded k−space data ’ ) ;

else
load ( Asave , ’A ’ ) ;
disp ( ’ Loaded regr idded k−space data ’ ) ;

end

now = toc ;
disp ( sprintf ( ’ F in i shed gr idd ing data . Time : %d

seconds ’ , round(now − i n i t i a l ) ) ) ;

i n i t i a l = toc ;
disp ( ’ Create r o l l o f f c o r r e c t i o n matrix . . . ’ ) ;

i f ( ( exist ( r o l l o f f s a v e , ’ f i l e ’ ) ) ˜= 2)
x = zeros (N, N) ;

for u = 1 :N
for v = 1 :N

x (u , v ) = sqrt ( ( u−N/2) ˆ2 + (v−N/2) ˆ2) ;
end

end

arg = piˆ2 ∗ Wˆ2 .∗ x .ˆ2 − beta ˆ2 ;
ro = sin ( sqrt ( arg ) ) . / sqrt ( arg ) ;

now = toc ;
save ( r o l l o f f s a v e , ’ ro ’ ) ;

disp ( ’ Saved r o l l o f f matrix ’ ) ;
else

load ( r o l l o f f s a v e , ’ ro ’ ) ;
disp ( ’ Loaded r o l l o f f matrix ’ ) ;

end

disp ( sprintf ( ’ F in i shed . Time : %d seconds ’ , round(now
− i n i t i a l ) ) ) ;
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disp ( ’ c r e a t e FFT, image and phase matr i ce s ’ ) ;

f f tA = f f t s h i f t ( i f f t n ( i f f t s h i f t (A) ) ) ;
image = abs ( f f tA ) ;
phase = angle ( f f tA ) ;

endtime = toc ;
disp ( sprintf ( ’ Total time f o r r e c o n s t r u c t i o n : %d

seconds ’ , round( endtime − s t a r t t i me ) ) ) ;

disp ( ’Done ’ ) ;

B.2 rect.m

Listing B.2: rect.m code

function r = r e c t (x , range )
%%%
% The r e c t a n g u l a r f u n c t i o n i s d e f i n e d to be 1
% on [−range , range ] and 0 e l s e w h e r e
%%%
% i n i t i a l i z e output matrix to be a l l zeros , same s i z e

as input
r = zeros ( s ize ( x ) ) ;

myset = find (abs ( x ) <= range ) ;
r ( myset ) = ones ( s ize ( myset ) ) ;

B.3 tomatrix.m

Listing B.3: tomatrix.m code

function r e t = tomatr ix (x , min , d e l t a )
%%%
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% Returns i n t e g e r index from k−space
% index o f the r e g r i d d i n g matrix
%%%

r e t = 1 + round ( ( x − min) / de l t a ) ;
end

B.4 tok.m

Listing B.4: tok.m code

function r e t = tok (x , min , d e l t a )
%%%
% Returns the k−space index from i n t e g e r
% index o f the r e g r i d d i n g matrix
%%%

r e t = min + ( ( x − 1) ∗ de l t a ) ;
end
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