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Abstract

HUSC is a high level declarative language designed to capture the relations and
properties of a complex system independently of implementation and platform. It is
intended for use in Coconut (COde CONstructing User Tool), a project at McMaster
University to create a new development environment for safety-critical, computation-
ally intensive domains such as medical imaging. The language is intended to provide
an interface that is comfortable for use by scientists and engineers, while providing the
benefits of strong, static type analysis found in functional programming languages.

HUSC supports type inferencing using constraint handling rules, including both
predefined, parameterized shapes and an arbitrary number of additional properties or
constraints called attributes. Each attribute class provides its own type inferencing
rules according to the HUSC attribute class definition structure. Multiple imple-
mentations of an operator or function can each specify a specialized type context,
including attributes, and be selected based on type inferencing. The HUSC system
creates a typed code hypergraph, with terms as nodes and edges being all of the
operator or functions implementations that are satisfied in the type context, which
can be used as the basis for an optimizing compiler back end.

We present here the HUSC language and type system, a prototype implementation
and an example demonstrating how the type inferencing may be used in conjunction
with the function joins to provide a good starting point for code graph optimization. It
also includes a number of observations and suggestions for making the transition from
prototype to useable system. The results of this work are sufficient to demonstrate
that this approach is promising, while highlighting some difficulties in producing a
robust, practical implementation.
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Chapter 1

Introduction

There have been many advances in type theory in the last decade. Many of these ad-

vances have been associated with functional programming languages due the simplic-

ity of their semantics and support for correctness proofs. For the computer scientist,

this environment is rich, powerful and precise. For the physical scientist or engineer

whose programming knowledge is largely based on third generation imperative lan-

guages, it is a daunting environment with a long learning curve. This impedes the

adoption of advanced typing techniques in areas such as image processing, dynamic

systems, and numerical simulation. The HUSC language is designed to bring the

benefits of more strictly typed environments to this domain of programming as part

of the Coconut project.

There are a number of serious challenges facing developers of complex scientific

and engineering related software. The physical systems they model are complex with

many relationships and constraints to consider. The models themselves are often

quite complicated and have many subtle properties. There are many techniques and

algorithms to implement the model, the choices depending heavily on the properties

of the system. Finally, the underlying computer systems are expanding in capability

and complexity, often incorporating multiple processors and nodes. Developing a

system to run safely and efficiently with all of these considerations requires an effective

structuring of the development environment.

The traditional methodology for development in these environments addresses

each of these levels but in a largely informal way:

1
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• define the physical relationships and produce a mathematical model, often in a

LATEXdocument;

• identify and prove properties of the system, recording these in a natural lan-

guage document;

• develop an algorithm based on the model using standard library functions, al-

gorithms from published sources, and developing new techniques, manually ver-

ifying that algorithms are appropriate;

• frame this algorithm in a program that transforms the available input data

into the desired output data, and can be implemented on a target hardware

platform.

At this final stage the program may contain a formal definition of some of the

structure of the model in the type or class system, but the non-structural properties

of the model will be described informally in natural language text at best.

What is missing is the ability to formally specify important model properties, and

use these properties throughout the transformation of the model into an executable

system. HUSC provides the first part of such a system by supplying an extensible

type system that can track these properties independently of the implementation

of the system, and use these properties to provide safe and optimized algorithm

transformations from a library of definitions.

1.1 Document Structure

This thesis includes the following chapters:

Introduction provides an overview of the Coconut project as the framework for

HUSC, a motivating example, a high level summary of the HUSC language and

type system highlighting novel features of the language, and briefly describes

the current state of the implementation.

Background Research presents observations on historical and existing develop-

ment environments for scientific computing, and some relevant new work in

type systems to explain some of motivations and the decisions made.
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Semantics and Abstract Syntax provides an abstract syntax for the language

and the term rewriting semantics for expression evaluation.

Concrete Syntax provides the formal lexicon and syntax grammar that forms the

current parser, and an informal description of the syntax illustrated with ex-

amples.

Type System defines types, attributes, the subtyping system, attribute class defi-

nition, type inferencing and checking and the proof obligation system.

Type System Implementation presents the design and source code for the current

type system implementation, with detailed explanations.

Example and Results presents a sample HUSC program with the type judgements,

and general observations and conclusions.

Integrating HUSC and Future Work provides an initial set of requirements for

the next level of the Coconut system, which will take the output of HUSC and

produce a concrete program.

Appendix - Formal Semantics provides the formal specifcation of the operational

semantics and type system.

Appendix - Parser Implementation the literate source code implementation of

the language parser, syntax checks and translation of modules for the type

system.

The type system is the most significant component of the project. This section

includes a description of the types, the subtyping system including the definition of a

subtype lattice, and the type inferencing semantics. This chapter can be read on its

own, with some reasonable assumptions being made about the meaning of definitions

and declarations in a declarative language.

The abstract syntax chapter and formal semantics appendix describe the language

as a term rewriting system. Of particular interest in this section is the semantic for

evaluating joined expressions for function and operator applications. The semantics

are presented before the type system, in order to provide the context, but reversing
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the order of reading might be preferable for readers comfortable with term rewriting

semantics for declarative languages. The chapter on concrete syntax is aimed at

future users of Coconut, and can be read or used as a reference for the examples

section.

1.2 Coconut Project

The Coconut project is an endeavor at McMaster University led by Dr. Christopher

Anand and involving a number of faculty and students. The requirements for the

HUSC language and type system were established by the Coconut project, so an

overview of Coconut is in required to explain this context.

The Coconut project aims to define a new development paradigm that

1. captures contributions from different specialists in a language suited to their

individual needs,

2. tracks and verifies assumptions made in all stages of development, and

3. delivers high performance parallel code.

Coconut generates code from high-level specifications by allowing application devel-

opers to provide definitions at each of several stages of abstraction, independently

controlling

1. mathematical relations (HUSC),

2. algorithm selection

3. code graph refactoring,

4. assembly instruction scheduling

5. process decomposition for multi-node networks

The four main stages of the Coconut system are:

1. the HUSC language,
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2. codegraph transformations,

3. assembler instruction scheduling and

4. the run-time operating system CocoNet.

The structure of the Coconut system is summarized in Figure 1.2.

HUSC

A Coconut program consists of a set of high level specifications organized into modules

(a), written in HUSC. The HUSC modules are parsed and typed to produce attributed

syntax hypergraphs (ASGs) as an intermediate output data type. Processing of the

HUSC source files identifies syntax errors, type errors, and unsatisfiable type con-

straints. The output is a hypergraph because HUSC allows choices, called joins, to

define alternative implementations of operations and functions. Unverifiable restric-

tions required for the safe execution of the program, called external proof obligations,

are documented as an addendum to the program file (d).

Codegraph Optimization

At the next stage, (h), the abstract syntax hypergraph must be rewritten to con-

tain only implementable nodes and edges. This means representable data types (e.g.

Int, IEEE float) and native system machine instructions. The graph transformations

are based on a set of rewriting rules, including restructuring of abstract subgraphs

and and transformations from abstract to concrete (system type/instruction) graphs.

The hypergraph is also reduced to a graph at this level by selecting only one imple-

mentation for each operation. This decision process can be based on a number of

different strategies, such as performance profiling or developer input, but any selec-

tion is acceptable because all of the implementations are acceptable in the context

of the program. This factorization is similar to the identification of basic blocks by

conventional optimizing compilers.
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Assembler Instruction Scheduling

The assembly language functions are scheduled (n) into pipelined assembly code (o)

in simple binary modules. The scheduler attempts to find the optimal assignment of

registers and processors starting with an exhaustive search, and then using heuristics

to prune paths that are unlikely to be successful. The modules are loaded onto the

target computer cluster (p) before program execution.

At this stage the dataflow graph contains the scheduled assembly functions, to-

gether with a limited set of combinators representing concurrent dataflow (m). These

graphs are serialized (r) into a stream of function calls, communication, synchroniza-

tion and sequencing primitives to be streamed through the run-time system, CocoNet

(p).

CocoNet

CocoNet is a run time operating system for dedicated multi-node networks, the generic

target for Coconut programs. The language and run-time are designed to facilitate

pre-run-time verification that the parallelization (which occurred in (h)), is correct,

safe and independent of timing. All memory allocation is done at compile time (again

in (h)), which allows pre-run-time verification of performance requirements and makes

the run-time simple to verify by hand.

1.3 Example: LA Pack in HUSC

HUSC provides a mechanism for separating the fundamental modelling decisions from

the implementation details through modules and function specialization. One prac-

tical use for this would be providing an interface into the LAPack library. LAPack,

short for Linear Algebra package, is a set of highly optimized library routines for

solving standard linear algebra problems, a cornerstone of scientific computing. The

example provided here shows a real, although very simple, example of HUSC code

and syntax that would support such a system. This is intended to explain the moti-

vatation for the features implemented in HUSC.
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One of the components of LA Pack are “driver” functions 1 for solving a system

of linear equations Ax = b. There are a number of different solutions depending on

the nature of the matrix A, the precision (IEEE single or double), and the accuracy

desired, and solutions are provided for both real and complex systems.

To illustrate the complexity of the system, the properties of potential interest

for the matrix are: bidiagonal, diagonal, general band, general tridiagonal, Herme-

tian, Hermetian band, Hessenberg, upper / lower triangular, orthogonal (packed, un-

packed), symmetric (packed and unpacked), positive definite, triangular band (packed,

unpacked), trapezoidal, complex unitary (packed, unpacked); and some combinations

of these. There are real and complex forms, and single and double precision forms

of each of these, leading to 20 choices of drivers. This is further divided into sim-

ple and expert drivers, with expert drivers computing additional information about

the system to refine the solution and provide error bounds, leading to 40 choices for

solving a system of linear equations. In addition to the above properties, in some

implementations there are special “hand-written” versions for small systems, where

the loops have been unrolled for further performance gains, or other system specific

advantages have been exploited. This is a complicated environment because each

of these properties has an important set of benefits associated with it, and ignoring

those properties has a significant impact on the performance of the system.

Programmers using LAPack would typically determine in advance what the best

implementation would be for their environment and fix that choice in the source code.

There is no formal verification that the correct version has been used. In addition, low

level changes, such as switching to use a packed model to store a tridiagonal matrix,

will result in every function call needing to be changed, with very unpredictable

results if one is missed. Given the complexity of the environment, and the fact that

the function names are five or six nearly identical characters, this could be a significant

source of error.

One good use for HUSC would be to define each of these functions as a special-

ization of a linear solver function, then let the type system use the properties of the

matrix and element types to determine which implementation to use. In HUSC, these

properties can be explicitly added to types and used when type checking the use of

1The LAPack term for functions that solve a complete problem
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a function. Then decisions such the choice of precisions, or whether to pack the data

(meaning to use a customized memory model based on an attribute) can be incorpo-

rated into higher, more context specific modules, without obscuring the fundamental

system in lower level modules.

Consider the following three modules: MySystem, TheSystem and LAPackLin-

Solve. LAPackLinSolve provides all of the specializations of the solve function for

linear systems of equations. This includes a subset of the real LA Pack drivers,

with the appropriate labels, plus a few hypothetical extensions for small matrices.

The solve function is used in TheSystem, the module that provides the fundamental

model. This is then used in MySystem, which adds context specific details for the

solution. The example does not include the type and attribute definitions to maintain

clarity.

1.3.1 Literate HUSC Example

This is a typical literate husc module, with source code embedded in a Latex document

(this thesis). The parser will ignore anything outside of the husc code environment

delimiters. Literate programming is an excellent feature for documenting complex

systems where a few lines of code might require pages of proofs or explanation.

The following specializations use the attributes Symmetric, Positive Definite,

Packed and Precision(n), where precision is defined to be just single (1) or dou-

ble (2) precision floating point. These attributes appear in braces beside the type

they refine.

module LAPackLinSolve

export (solve)

import (size::Integer)

Let solve be Function from (Matrix[n,n] of Real, Vector[n] of Real)

to Vector[n] of Real;

n=size; -- rename for convenience

-- general case

solve(A::Matrix[n,n] of Real{Precision(1)},

b::Vector[n] of Real{Precision(1)})
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= sgesv::Vector[n] of Real{Precision(1)};

-- symmetric

solve(A::Matrix[n,n]{Symmetric} of Real{Precision(1)},

b::Vector[n] of Real{Precision(1)})

= ssysv::Vector[n] of Real{Precision(1)};

solve(A::Matrix[n,n]{Symmetric} of Real{Precision(2)},

b::Vector[n] of Real{Precision(2)})

= dsysv::Vector[n] of Real{Precision(2)};

solve(A::Matrix[3,3]{Symmetric} of Real{Precision(1)},

b::Vector[3] of Real{Precision(1)})

= ssysv3x3::Vector[3] of Real{Precision(1)};

solve(A::Matrix[3,3]{Symmetric} of Real{Precision(2)},

b::Vector[3] of Real{Precision(2)})

= dsysv3x3::Vector[3] of Real{Precision(2)};

solve(A::Matrix[2,2]{Symmetric} of Real{Precision(1)},

b::Vector[2] of Real{Precision(1)})

= ssysv2x2::Vector[2] of Real{Precision(1)};

solve(A::Matrix[2,2]{Symmetric} of Real{Precision(2)},

b::Vector[2] of Real{Precision(2)})

= dsysv2x2::Vector[2] of Real{Precision(2)};

-- packed symmetric

solve(A::Matrix[n,n]{Symmetric,Packed} of Real{Precision(1)},

b::Vector[n] of Real{Precision(1)})

= sspsv::Vector[n] of Real{Precision(1)};

solve(A::Matrix[n,n]{Symmetric,Packed} of Real{Precision(2)},

b::Vector[n] of Real{Precision(2)})

= dspsv::Vector[n] of Real{Precision(2)};

solve(A::Matrix[3,3]{Symmetric,Packed} of Real{Precision(1)},

b::Vector[3] of Real{Precision(1)})

= sspsv3x3::Vector[3] of Real{Precision(1)};

solve(A::Matrix[3,3]{Symmetric,Packed} of Real{Precision(2)},

b::Vector[3] of Real{Precision(2)})

= dspsv3x3::Vector[3] of Real{Precision(2)};

solve(A::Matrix[2,2]{Symmetric,Packed} of Real{Precision(1)},
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b::Vector[2] of Real{Precision(1)})

= sspsv2x2::Vector[2] of Real{Precision(1)};

solve(A::Matrix[2,2]{Symmetric,Packed} of Real{Precision(2)},

b::Vector[2] of Real{Precision(2)})

= dspsv2x2::Vector[2] of Real{Precision(2)};

-- positive definite and symmetric

solve(A::Matrix[n,n]{Symmetric,PosDef} of Real,

b::Vector[n] of Real{Precision(1)})

= sposv::Vector[n] of Real{Precision(1)};

solve(A::Matrix[n,n]{Symmetric,PosDef} of Real{Precision(2)},

b::Vector[n] of Real{Precision(2)})

= dposv::Vector[n] of Real{Precision(2)};

-- and so on...

The system of equations defined in the model below turns out to be symmetric,

because it is the product of the transpose of a matrix by itself. The propagation rules

for symmetric identify this characteristic, and resolve that A is a symmetric matrix.

This attribute will allow the symmetric versions of solve to be used. At this point,

the compilation cannot complete because the precision has not been defined.

module TheSystem

export (x)

import (B::Matrix[n,n] of Real,

y::Vector[n] of Real)

{

A = (B^t)*B; -- for matrices ^t is the transpose operator

x = solve(A,y);

Use LAPackLinSolve for (solve) with {size = n};

}

The specific context for the final program specifies the matrix to be a rotation of

a real 3d position vector. Providing specific values for both precision and the size of

the matrix provides the final refinement necessary to pick specific implementations of

the solve function. In this case, the single precision, symmetric packed and unpacked
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will be selected, both the 3x3 cases and the nxn cases. The general single precision

case would also be available.

The back end of the system now gets to decide which implementations to use, using

heuristics or allowing the choice to be dictated by the programmer in some manner.

In particular, the decision to take advantage of the symmetric storage model (Packed)

or not is best handled at a detailed code graph level to examine the implications of

this decision.

Note that type declarations are not necessary, the type of the output will be

inferred from the context. In this case, it would have been a better documentation

practice to include the explicit type declaration.

module MySystem

export (answer)

{

Let rotate be Matrix[3,3] of Real{Precision(1)};

Let pos be Vector[3] of Real{Precision(1)};

answer = x;

Use TheSystem for (x) with {B = rotate, y = pos};

}

This example illustrates how HUSC modules can be used to isolate the complexity of

the implementation from the models. In a more sophisticated model, there would be

numerous operations and function calls, all of which could be specialized implicitly. In

our example above, A+C would select the specialization of matrix addition for packed

symmetric matrices if A was implemented that way, without the model developer

having thought of that. These implicit choice points for every operation and function

call allow the models to be presented without implementation details, but also without

excluding later specialization.

Another important feature of HUSC that would be useful in this example is the

tracking of assertions. For example, while the matrix A in TheSystem is provably

symmetric, it may also be positive definite for reasons that cannot be demonstrated

in the code. This can be asserted using the syntax
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A = B^t * B asserting {PosDef}

This attribute cannot be verified within the code, so (A,PosDef) is recorded as an

external proof obligation for the module, and the attribute is accepted. This will then

include all of the solve implementations requiring the matrix be positive definite, as

well as all of the other choices that were available without it. It is then up to the

model developer to provide an external proof that the matrix is positive definite, but

HUSC will not perform any additional verification. This provides flexibility while

explicitly identifying the assumptions made and tying them to the program output.

While these features don’t create new capabilities for developers, they do greatly

simplify and improve the safety of the code, and through this reduce the cost of

optimizing the system.

1.4 HUSC — High level User Specification of Con-

straints

The HUSC programming language has been designed to address problems encoun-

tered by the developers of complicated numerical systems.

1.4.1 Domain specific declarative programming model

HUSC stands for High-level User Specification of Constraints, so named because the

purpose of the language is to capture specifications in the form of relationships and

constraints (and because it is the outside layer of the Coconut project). It is a purely

declarative language, meaning identifiers are defined as they would in a mathematics

or science paper, without a procedure for evaluating their definitions. HUSC defines

an operational semantic and a type inferencing system, acting as the front end of a

compiler for which different back ends may be supplied.

Any back end must support the operational semantic of HUSC, and provide “pre-

lude” files that define the types, built in operations and an external function library

(run-time library) in a HUSC compatible format. Coconut will be one of those back

ends, when it has been completed, but in fact HUSC has no dependency on any of

the other layers of Coconut.



1. Introduction 14

This embedding of a front end in a back end system is necessary for logic and func-

tional programming languages. These “declarative” languages specify relationships

between identifiers without any specific processing or instructions. The language must

be embedded in a back end structure that defines an actual activity. For example, a

Haskell module may contain all of the necessary definitions to solve a problem, but

it must be embedded in a monad (generally an IO monad) in order to get an output

from the inputs. A Prolog module contains a static set of relationships and facts,

but these are embedded in the WAM engine to make them a program. HUSC, as

a declarative language, is similar in that it must be embedded in some environment

that supports an interface with the operating system, and drives the output from

the input using the definitions supplied in HUSC. As is the case with Haskell and

Prolog, HUSC defines the operational semantic that must be supported by the back

end without actually executing the semantic itself.

1.4.2 Join Expressions

A large part of developing efficient numerical programs is the use of specialized func-

tions and operations based on the properties of the underlying model. For example,

there may be hundreds of implementations to solve systems of linear equations, de-

pending on the size and properties of the matrix, the desired accuracy of the answer

and the type of the elements. Traditionally the programmer is forced to choose the

strategy in advance, possibly before all the information is known, and certainly mak-

ing rework necessary if the context changes.

In HUSC, specialized implementations may be defined for any function or oper-

ation. These specializations share the same operator symbol or function name, but

their parameter and result types are subtypes of the general implementation. Then

each operator and function application is implicitly considered the “join” of all of

the definitions that satisfies the type context. A join expression represents a choice

between “semantically equivalent” definitions, and the value of a join is the value of

any one of the choices that satisfies a type context. This makes every operator or

function application a prospective choice point, in which different implementations

may be inserted.

Functions and operators may be implemented in HUSC or strictly as an interface
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to be filled by an external call. The decision of which function or operator implemen-

tations from a joined expression are included in the final program is left to the back

end system. Because there are choice points at every edge in the code hypergraph, a

very sophisticated optimization scheme can be applied.

1.4.3 Shapes and Attributes

Types in HUSC are composed of a shape and an additional, optional set of properties

called attributes. The shape is one of: scalar, tuple, record, array or function; and

represents the underlying structure of the type. Attributes are properties or con-

straints that may apply to a specific type, have a property value and a set of rules

that dictate to the type system how these attributes are “propagated” through ex-

pressions. New attribute classes may be defined within HUSC modules by providing

a set of mandatory definitions for the class. This allows the developer to add new

attributes, which can be embedded into the type system.

Symmetric, diagonal, tridiagonal, positive definite, are all examples of properties

that can be exhibited by a square matrix (Matrix[n,n]). If two matrices are known to

be symmetric, their sum is determined to be a symmetric matrix, This is a fundamen-

tal property, independent of the implementation of sum. Symmetric is an attribute in

HUSC, and the sum rule is written explicitly as an attribute propagation rule. This

rule can used by the type system to derive the property of symmetry in expressions

whenever two matrices are added.

Another example of an attribute is the range of a scalar variable. The rules

for the propagation of ranges are obvious and are also implemented in the HUSC

type system. This is important because manipulating and storing a number depends

heavily on being able to bound it within the natural system limits. Defining and

tracking the range of numeric variables provides a guarantee against overflow errors,

or the option of selecting alternate representations of large numbers.

1.4.4 Type Inferencing

HUSC incorporates a Hindley / Milner style type inferencing to reduce the workload

of the programmer. This incorporates the variable type declarations, definitions and
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the usage of the variables in expressions. It also includes the selection of function

specializations and attribute propagation for any defined attribute classes.

The combination of join expressions with the type system provides a powerful

mechanism for type safety and optimization. Attributes work together with joins to

allow choices to be recorded without forcing design decisions to be made at inappro-

priate times.

One benefit of attributes is to enforce constraints in modules. Consider the fol-

lowing module that constructs an image from three layers of image:

module ImageGen

export (image::ImageType)

import (first, second, third::ImageType )

{

Define ImageType as Array[-127..128, -127..128] of PixelType;

Define PixelType as Integer{Range(0..255)};

image = floor ((first + second + third) / 3);

Use ImageDefs importing (ImageType::Type, PixelType::Type);

}

The element type of image is an integer between 0 and 255, but so are the element

types of first, second and third. The range of their sum will be 0 to 765, and the

type checking would fail at this point. Dividing the sum by 3 brings the range back,

but then the result will be a rational type, not an integer. Taking the ceiling or floor

of the expression allows the type checking to complete successfully. This is relatively

simple constraint checking, but prevents a common error from occurring.

Another benefit of the attributes, combined with the joins, is in providing reliable

choices of algorithms. For example, a discrete Fourier transformation (DFT) is a

linear functional that operates on an equispaced grid (array) of data 2. The property

of “equispaced” could be associated with arrays of tuples as an attribute, and this

would be a mandatory property for using the DFT function, rejecting any inputs that

did not have that property. An explicit join expression could be constructed for an

MRI system where

2in magnetic resonance image processing, this is often a two dimensional grid in frequency space
and the inverse DFT is being applied to get a two dimensional spatial image.
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EquispacedDataArray applies the DFT algorithm directly

DataArray applies a resampling function that converts an arbitrary sampling into

an estimated sampling over a regular grid

The type system would discard the straightforward solution if the equispaced attribute

was not declared for the grid, and both options would be available if it was equispaced,

presumably resulting in the straight forward DFT application. Note that all of the

specialized versions of the resampling function could also result in an implicit join

matching the types of the data, presenting another choice or set of choices to the

compiler.

Optimization is improved by establishing choices that can be made when more

information is available. For example, symmetry of matrices provides an optimization

opportunity, but for smaller matrices this might be outweighed by index testing. A

module can be defined that specifies matrices of an as yet undecided dimension as

symmetrical; operations on these matrices will include symmetric implementations in

their joins. If that module is imported into a context where the matrix size is known,

and compiled into a program, the decision to use the symmetric model or ignore that

property can be made.

1.4.5 Assertions, Tests and External Proof Obligations

The type system tries to determine whether the attributes defined for an expression

are valid properties or satisfied constraints given the context and the attribute class

rules. There are four means of judging the attribute valid:

input requirement when the data item is an input to the module, the attribute is

part of the type definition of the module interface;

propagation rules the definition of the attribute class provides rules that support

the inclusion of the attribute in the expression type

run time test the expression is inside a guard that specifies a run time test must

be included to prove the attribute is satisfied or an exception is generated 3;

3the failure of the guard currently results in “undefined”, a better strategy for exception handling
should be included in future work



1. Introduction 18

the attribute class may supply one or more such tests, or may supply none in

which case such a test cannot be requested.

assertion any attribute appropriate to the type context may be asserted for any

expression, meaning it is accepted as a valid attribute, but a proof obligation is

then generated for the module.

The “proof obligation” states that the user of the module must guarantee, exter-

nal to the program, that the asserted attribute holds on the specified data structure.

The interface for a module then includes both the input specification and the addi-

tional external proof obligations. This tracking of attributes provides the flexibility

to develop systems that cannot be formally verified within HUSC, while maintaining

a detailed list of proofs that must be provided to reliably use the system.

Wherever possible, they type system will eliminate external proof obligations and

run time tests. A run time test will be eliminated if the attribute rules dictate that

the attribute holds. An assertion may result in constraints being propagated back to

an input definition, causing those constraints to be added to the input specification

and the original assertion to be removed from the proof obligations. Finally, when a

module is imported into a new context, any additional attribute information is tested

to see if the inputs provides satisfy the constraints so more tests or obligations can

be eliminated.

In a general programming language such proof obligations might not be useful

because the semantic meaning of the identifiers and constraints might be unclear.

However with HUSC, we can rely on the context provided by the domain to ensure

that the context provides a semantic meaning for the attribute classes, function names

and operator symbols.

1.5 Implementation Overview

The main components of the implementation are a parser / syntax checker and the

type system. The parser is written in Haskell using Parsec parser combinators, and

generates a file of type definitions and encodes the program definitions as constraints

for the type system. The type system is implemented in Prolog and the Constraint
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Handling Rules (CHR) language, derives the “best” type description for each iden-

tifier, expression and subexpression in the modules, and also provides the list of

function and operator interfaces that satisfy each operation or function application

in the current context.

The output of the type system is written to three files:

1. final type judgements and accepted function / operator interfaces for each op-

erator / function application

2. external proof obligations on identifiers in the module

3. a trace file containing rejected join candidates (operator and function interfaces

that were determined to be unacceptable in the given context) to be used for

debugging purposes

There are no proven, robust Haskell implementations of CHR at this point in

time. The parsing was originally carried out in Haskell anticipating the use of a

Haskell based CHR implementation, but this proved to be faulty under more complex

situations. As a result, the SWI-Prolog implementation of CHR was selected, and

has been highly satisfactory, despite the significant annoyance of having to move the

data between the Haskell and Prolog environments.

The current implementation requires that the parser be executed first, followed

by the type system as a separate program. This is inconvenient, but at this early

stage in the development of HUSC seemed to be a acceptable.

The final stage of HUSC processing is to build the attributed syntax hypergraphs

from the parsed definitions and type judgements. This has not been completed at this

time, primarily due to time constraints, but also because there are no specific require-

ments from the Coconut project at this time to define the format of the hypergraphs.

Work to complete this stage is currently underway.

1.6 Summary

HUSC provides a very powerful type system to support complex mathematical mod-

els. The addition of independent attribute classes and the ability to identify those
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properties as requirements for function and operator specializations allows a substan-

tially increased level of type safety. Making the function and operator applications

implicitly select all specializations matching the type context increases the ability

to optimize programs, using a much higher level of information that is generally

available. The remainder of this thesis will provide more details about how this is

implemented.



Chapter 2

Background Research

The goal of HUSC is to bridge the gap between scientific / engineering programmers

and current advances in type theory and type systems. To support this goal, a

short examination of some of the more popular existing (and historical) mathematical

programming environments and some of the developments in type theory that were

seen as valuable is provided here.

2.1 Mathematics Programming Languages

HUSC is intended for the development of systems with substantial mathematical,

scientific or engineering content. While there have been a number of smaller scale

projects in this domain, few have surfaced as a significant force in this area. A

brief discussion of some of these, though certainly not a comprehensive overview, is

presented here to support some of the decisions made in the project.

2.1.1 APL, J

Coconut / HUSC draws inspiration from, and has some parallels with, APL, the lan-

guage proposed in the 1950’s and described in 1962 by Kenneth Iverson [Ber79]. APL

introduced matrix, vector and array based operations as primitives, and supported

functions defined against those types. APL also maintained parsed expression trees

for definitions which could then be resolved in later passes.

21
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There were a number of decisions made in APL that reduced it’s acceptability.

There was no precedence of operations, so 2 ∗ 3 + 5 evaluated to 16, something that

must have been very confusing. It also made use of numerous confusing symbols that

required both an encyclopedic memory and special terminals / keyboards to manage.

This made it difficult to learn and implement on a broad scale, and few people ever

became acknowledged experts.

An interesting example of APL is provided below:

Primes: $(~R?R\int.{\diamond}R)/R? 1??R$

This produces a list of prime numbers below the input value. While the syntax is

confusing, the deep semantic support that allows just over a dozen characters to

deliver such a function is impressive.

J [Ive91] is the successor to APL, and was created and supported by Eric Iverson

(son of Kenneth). It is essentially the same language, but with only ASCII characters

and newer tool sets. It too shares many of the goals of Coconut including recognizing

the notion of the precision of a floating point number, which in HUSC would be

defined as an attribute (however, in J, precision is defined a module level and is

constant for all expressions in the module.)

The software is available at www.jsoftware.com, and is more accessible now that

no special hardware is required. Unfortunately, J replaces the confusing symbols of

APL with utterly baffling ASCII sequences. For example, 1 o. i.7 evaluates to the

sequence of values sin(0), sin(1),...,sin(6).

The relative lack of acceptance of J may be due to it’s complexity:

J is a very rich language. You could study and use it for years, and still

consider yourself a beginner. This is in sharp contrast to simpler languages

like Basic or Java, where months of concerted study and use would make

you an expert. J Primer Eric Iverson Copyright c© 1991—2002 Jsoftware

Inc.

APL and J both suffer from producing difficult to understand code and requiring

constant revision to stay proficient. Of course, APL was designed when mainframe

computer provided 256Kb of working memory and very limited disk space, so reducing

the number of characters involved in the code was significant.
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Two guiding principles for the concrete syntax of HUSC were derived from this

experience:

• using recognizable symbols and function names is mandatory for wide accep-

tance, even at the expense of brevity

• it is necessary to standardize the fixity, associativity and precedence of operator

symbols to match standard usage and provide the intuitive order of operations

2.1.2 MatLab

The Coconut system most closely resembles the MatLab [Mat84] integrated system

in concept. MatLab provides a mathematical language, a growing set of modules

(toolboxes) containing callable functions, and can produce executable code for a large

variety of hardware and software platforms. There is strong support for matrix,

vector, and array data types and operations, and it recognizes both precision and

tolerance in variable values.

MatLab does not, however, provide strong type checking. For example, this is a

quote from a beginner MatLab manual:

A three-dimensional array might represent 3d physical data, say the tem-

perature in a room ..., or it might represent a sequence of matrices A(k) or

samples of a time-dependent matrix A(t).” Getting Started with Matlab

c©1984—1988 The Math Works Inc.

MatLab is procedural in nature, supporting loops and conditionals. This makes

it more flexible, perhaps easier to use, but also allows for coding errors and requires

that the mathematics be coded, instead of just recorded. It also forces the user, pre-

sumably a scientist or mathematician, to take responsibility for ensuring the correct

toolboxes are used, allowing for error in library selection. Consider the following call

to a LU Decomposition solver:

[X, Flag] = bicg(A, b, 1e-6, 20, L, U);

Given the number of arguments, it is easy to make an error in their order, and there

is no way for the system to ensure that A meets the required properties for the use of
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this decomposition algorithm, it must be tested at run time or assumed to be correct.

HUSC’s system of constraints type and matrix attributes would allow the system

to enforce all of the necessary attributes without runtime overhead. For example, a

matrix can be asserted to be positive definite, so may be decomposed with Cholesky

decomposition. The assertion then becomes part of the external proof obligations of

the module.

This more casual approach to types is probably popular with the users, but limits

the capability of MatLab to optimize the code. It also means that MatLab code

cannot be theoretically verified.

MatLab was first released in 1984, when personal computers were running at

approximately 4 MHz clock speed, 256 Kb memory, 5 Mb hard drive disks. The

system has been extended dramatically since that time, but the underlying structure

of the MatLab language has not changed. However, MatLab is probably currently

the single most significant language / package in the development of mathematical,

scientific and engineering applications.

2.1.3 Mercury

Mercury [3] is a general-purpose declarative language, loosely based on Prolog but

with substantial extensions. It is not a mathematics language, but was included

here because the module structure for HUSC was designed to follow Mercury’s quite

closely. Other than both being declarative languages, Mercury explicitly addresses the

notion of deterministic, semi-deterministic and non-deterministic definitions, which

was useful in the design of non-linear system solvers in HUSC.

2.2 Type Theory and Type Systems

The type system of HUSC is derived from two separate but related areas of active

research. These are:

1. a type has a shape that can be statically analyzed

2. a type system can be best described as a constraint handling system
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3. a type can contain a proof of some (simple) proposition

Some of the influences in these areas are examined below.

2.2.1 Constraint Based Type Systems

The idea that a type system is fundamentally a constraint handling system was in-

troduced and explored by Martin Sulzmann and colleagues, beginning with the in-

troduction of the HM(X) system, and continuing with many works expanding this

concept. A quick survey of some of that work is essential here, since many of the

ideas implemented in the system are derived from these works.

HM(X)

In [14], it is shown how standard Hindley / Milner systems may be defined purely

in constraint form. The basic HM inferencing may be naturally extended with the

introduction of additional constraints, where a sufficient condition for type soundness

is that each simplification rule have a single head.

Type System Design with CHRs

In [11], the language called Constraint Handling Rules (CHR) is used to implement

the constraint handling type system. Several examples of extensions are provided,

including a simple means of testing for (S.I.) unit consistency in arithmetic expres-

sions. This not only established constraint handling as a valid approach to designing

type systems, it also established that CHR is a natural selection for implementing

these systems.

HCHR and Chameleon

Two new languages were introduced to assist in the implementation of constraint

based type systems. HCHR [4] is a Haskell implementation of the CHR language in

which the constraint rules are typed using Haskell types, with the type checking and

inferencing being carried out by the Haskell compiler. Chameleon is a Haskell exten-

sion which replaces the type class system in the Glasgow Haskell Compiler (ghc) with
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an extensible, constraint based, implementation of the class system; additional work

has been done showing how to implement functional dependencies using constraints.

This project is based on the ideas in [12], and there are many more papers available

at www.comp.nus.edu.sg/~sulzmann/chameleon/index.html

The initial plan for the HUSC type system was to implement it using HCHR.

However, there was a significant theoretical limitation in that the Boolean guards

(predicates) for rules in HCHR were limited to testing variable equality; the CHR sys-

tem implemented in Prolog allowed arbitrary predicates to be used. HUSC required

the implementation of a subtype predicate, which was easily handled in Prolog, so

HCHR was rejected (after some efforts to work around this limitation). In addition

to the theoretical difficulty, the implementation of HCHR seemed to be quite error

prone for complex Haskell types (types other than numbers, characters or lists).

Chameleon has been used effectively in a number of situations, and may be capable

of supporting a HUSC implementation. However, it is intended to replace Haskell’s

type classes, and hides the underlying CHR semantics by providing a new syntactic

layer. Since the primary goal of this project was to explore and validate the use of

constraint handling as a type system in this domain, and it is possible that the focus

on the Haskell class system would impose limitations, this approach was rejected. It

would be interesting to examine the use of Chameleon again to see if it could be used

in place of the Prolog based type system.

2.2.2 Constraint Handling Rules

In [6], Thom Frühwirth introduces the Constraint Handling Rules (CHR) language.

This is not a type system in itself, but has been adopted for use in the HUSC type

system, so is described here.

CHR is a declarative language extension designed to write constraint solving sys-

tems, as a subsystem embedded in another language such as Prolog or Lisp. The

paper provides numerous examples of constraint solvers written in CHR, some of

which were incorporated into HUSC. Although the paper does not explicitly identify

the use of CHR for type systems, it does say ”A constraint solver can thus be seen

as (an) inference system.”

There are now several robust implementations of CHR in different variants of Pro-
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log. The web-site http://www.cs.kuleuven.ac.be/~dtai/projects/CHR/index.

html provides a central repository of CHR related information, including providing a

web-based interactive solver for experimenting with CHR solvers.

2.2.3 FISh — Static Shape Analysis

The notion of a type having a shape was explored by Barry Jay in the FISh language

[9]. FISh is an Algol-like imperative language that incorporates static analysis of

shapes, namely scalars, arrays and functions, with parameter, dimension and bounds

checking. It uses a Hindley/Milner style unification system for type inferencing,

including parametric polymorphism by quantification over array and ”phrase-type”

variables, where phrases are imperative code fragments, similar in spirit to quantifying

over functions.

The static shape analysis, including both checking and optimization, is carried

out during the compilation stage through term rewriting to a data and shape normal

form. This is specified as a language called Turbot, an imperative language that

supports functional concepts such as general recursion on commands and maps and

folds across arrays.

This approach to shape analysis was adopted in HUSC, but with the addition

of tuples and records as shapes, and with a different but similar set of array shape

manipulation functions. HUSC does not include the ”phrase type” variables, which

are imperative code fragments, as these are not applicable given the declarative se-

mantics. It is quite likely that the β-reduction strategies specified for FISh will be of

use in the Coconut codegraph transformer layer, where the translation from abstract

to machine representable operations will take place.

2.2.4 Types containing Proofs

A type system may additionally be considered to be a sort of proof system, based

on the Curry-Howard correspondence. In such a type system, the type becomes

a compound structure, containing a certificate of the satisfaction of propositions.

These propositions may be mandatory or absorbed by an operation as part of the

type checking. Attributes in HUSC are propositions of that nature, which can be



2. Background Research 28

supported, required, propagated or absorbed by the type system.

Concurrently to the Coconut project (and HUSC development), two other projects

are underway with similar goals.

Ωmega

Tim Sheard in [8] presents the Ωmega language, a Haskell like functional language

where invariants in the program are enforced through the use of types. Three new fea-

tures are added to the type system: Generalized Algebraic Data Types, an extensible

kind system, and the generation, propagation and discharging of static propositions.

The extensions allow backwards compatibility with the base functional programming

language, while enhancing the power of the language.

Epigram

The Epigram project ([2]) is working on a dependently typed system for representing

certificates of propositions within the type system in a rather novel programming

environment that interactively develops programs as if they were proofs. While the

style is quite different, they note the goals are similar to those of the Ωmega language,

namely to use the addition of dependent variable types to provide the information

required to supply certificates of program invariants in the types themselves.

2.2.5 Background Summary

There are many other areas of research that parallel some aspects of HUSC, such as

the formal theorem provers, that have influenced it’s development but haven’t been

discussed here.

While shapes, dependent types, types as constraints and encoding certificates of

propositions within types are all areas of active research, the combination of these in a

light weight environment is a unique project goal. The addition of the join expression

further enhances the uniqueness of the HUSC language and type system. Finally,

none of the other projects in this area are focussed on an application domain, and in

particular do not even cover the most basic requirements of scientific and engineering
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environments, Real and Complex numbers. By bringing these elements together,

HUSC (and Coconut) is a unique endeavor.



Chapter 3

HUSC Language Definition:

Syntax and Semantics

The definition of the language is given in three parts: a summary of the abstract

syntax, a detailed formal and informal semantics, and then the concrete syntax as

both an eBNF summary and a user-guide like description.

This is followed in the next chapter by the formal description of the type system,

which is not described here except as required to explain the syntax of the definition

statements.

3.1 Abstract Syntax

The abstract syntax is summarized here, using a standard eBNF format:

• terminals

• non-terminals

• [A | B] is a choice between A and B

• [ Optional ]?

• [ZeroOrMore]∗

• [OneOrMore]+

30
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with the following are terminal symbols: Identifier, OpSymbol, ModuleId, TypeId,

TypeVar.

3.1.1 Modules

Modules have a name (identifier), a list of definitions that must be supplied (imports),

a list of identifiers (or symbols) that are exported, and a body containing definitions.

The exports are currently just a list of identifiers or operator symbols, with the

types being inferred, and optionally declared, within the module.

Module → [Module] ModuleId ImportDecl ExportDecl ModuleBody

ImportDecl → [Declaration]∗

ExportDecl → [[Identifier | OpSymbol]]+

ModuleBody → [Statements]∗

Statements → DataDeclaration | DataDef | TypeDef
| OperationDef | ModuleImport | AttrClassDef

The export list does not provide an explicit type declaration because attribute

classes, operators and type definitions are also exported, and there is no way to

declare those. This is undesirable for the documentation of module interfaces, which

should include type declarations for the exports, with some syntax for exporting type,

operators and attribute classes.

3.1.2 Module Imports

Importing a module makes the ImportDefinitions list of identifiers available in the

current module context. The identifiers (or operator symbols) must be exported by

the imported module. If the imported module requires any definitions (it’s import

list), these must be satisfied in the SuppliedDefinitions list of data definitions.

ModuleImport → ModuleId SuppliedDefs ImportedDefs

SuppliedDefs → [Definitions]∗

ImportedDefs → [Identifiers]+
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3.1.3 Data Definitions and Declarations

Data definitions label a data expression with an identifier. There are three kinds of

definitions, with slightly different syntax:

total a single definition completely defines the identifier;

partial defines a record or array (dimensioned shape) over a subset of its domain,

with the subset defined by expressions over quantified variables; multiple partial

definitions must partition the domain;

function defines a map from a list of parameters of declared type to a result value

of declared type, with any number of function definitions providing alternative

implementations

Data definitions have an optional local body for locally used data definitions and

declarations.
Definition → Identifier [ FunctionDef | PartialDef ]?

JoinExpr Quantifier LocalBody

FuncDef → [ParmVar]∗

PartialDef → [ [PartialDimDef]+ | [PartialRecordDef]+ ]

PartialDimDef → IndexSpec

PartialRecordDef → FieldSpec

ParmVar → [[ Identifier | Declaration ]]∗

IndexSpec → [IdentifierExpr]+

IdentField → Identifier [ FunctionDef | PartialDef ]?

LocalBody → [[ Declaration | Definition] ]+

Quantifier → [[QuantItemAll | QuantItemSome]]+

QuantItemAll → Identifier

QuantItemSome → Definition

Declaration → [Identifier]+ FullType
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3.1.4 Operator Definitions

Operator definitions are semantically the same as function definitions, and the ab-

stract syntax is nearly identical except for the operator symbol instead of a function

identifier. There may (will) be many operator interface definitions for each symbol,

with each interface definition mapping declared type operands to a declared result

type; an implementation is optionally provided (with an optional label for documen-

tation). Operator interfaces also have attributes, similar to the attributes associated

with a Function shape, as seen in type definitions.

The fixity and precedence of an operator symbol is defined in an operator symbol

table. This is currently fixed for the language, but should be extended to allow new

symbols to be defined. All definitions for an operator symbol must use this fixity and

precedence. The table is presented in C.4.2.

OperatorDefinition → OperatorInterface OperatorImplement

OperatorInterface → OperatorSymbol [Attributes]∗ [FullType]+ FullType

OperatorImplementation → OpImplLabel LocalBody

3.1.5 Joined and Conditional Expressions

A join expression consists of one or more conditional expressions. The expressions in

a join may be annotated with additional information for the compiler to use in the

algorithm selection process (this has not been defined yet, is just a placeholder).

A conditional expression is a select statement consisting of expressions with boolean

guards. The conditional expression may also have type assertions, which define or

refine the type of the conditional expression, either by providing a type declaration or

specifying additional attributes for the expression. Attribute declarations are either

asserted, meaning they are accepted unconditionally but recorded as an external proof

obligation, or request a run time test be inserted to verify the attribute constraint is

satisfied (not all attribute classes support such tests).

Join and conditional expressions must be the main expression in a definition in

this implementation. This is not a semantic restriction, as a variable in an expression

may be defined as a join or conditional expression, but it makes the concrete syntax

easier to write and display. This restriction could be removed with only esthetic

implications.
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JoinExpr → [ [ CondExprJoinAnnotation]]+ | CondExpr
JoinAnnotation → Label [JoinAttributes?]∗ not yet implemented

CondExpr → [ [AnnotatedExprBoolGuard]+ | AnnotatedExpr ]

BoolGuard → [BoolExpr | Otherwise]

BoolExpr → Expr

AnnotatedExpr → [FullType | [[ Assertions ]? [ RunTimeTests ]?]]

Assertions → AttributeList

RunTimeTests → AttributeList

3.1.6 Expressions

Expressions consist of factors and operators that act on them. Operators may be

infix, prefix or postfix; each operator symbol has an associated associativity, fixity

and precedence that is fixed throughout the program.

Expr → Factor

| Expr InfixOp Expr

| PrefixOp Expr

| Expr PostfixOp

InfixOp → OpSymbol

PrefixOp → OpSymbol

PostfixOp → OpSymbol

3.1.7 Factors, SubExpressions

Nodes in the expression may be literals, variable expressions or expressions in paren-

theses (not conditionals or joins). The literals are the traditional IEEE integers and

floats; constructors (operators or functions) are part of the preludes or other modules.

Variable expressions are a variable identifier application, with optional expressions for

indices, parameters or field names.



3. HUSC Language Definition: Syntax and Semantics 35

Factor → Literal | Variable | Expr
Variable → Identifier [ IndexExpr | ParmsExpr | FieldLabel ]?

IndexExpr → [Expr]+

ParmsExpr → [Expr]∗

FieldLabel → Variable

Literal → LitStr | LitInt | LitReal | LitTuple | LitRecord

3.1.8 Types

There are two kinds of types in HUSC: generic and named. A generic type is a shape,

with expressions for it’s dependent parameters, and a set of attributes. A named type

is a labelled type expression, with its own dependent parameters, based on a generic

type or another named type.

Type definitions assign type expressions to type identifiers, with optional depen-

dent parameters. Type expressions (called FullType below) are types, with expres-

sions provided for any dependent parameters belonging to the base type; the expres-

sions can include the new type’s dependent parameters as variables and other data

terms or type variables defined elsewhere in the module. The new type may optionally

include additional or increasingly refined attributes.

Each new type must be more constrained than the type it is based on, and is

therefore at least a possible subtype of the original type. This means that the shape

must be a subshape of the original (generally meaning identical), and that all of the

original attributes must be present or further refined (constrained) in the new type.

One generic type is a subtype of another generic type if it satisfies these criteria,

generally meaning an identical shape where the dependent parameters are subtypes

and the attributes are subattributes.

It is possible to declare the new type is not a subtype of the original, using the

new type to break the subtyping hierarchy within the named types. If the new type

is not a subtype of the type it is based on, it will be considered a subtype of the

generic type at the root of the type hierarchy of it’s base type. A named type is

always a subtype of it’s generic shape and attributes. By default, a newly defined

type is considered a subtype of the type named in the type expression.
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TypeDef → [TypeId]+ [Declaration]∗ SubTypeFlag FullType

SubTypeFlag → Boolean

FullType → [GenericType | NamedType ]

NamedType → TypeId [Expr]∗ FullType AttributeList

GenType → TypeId Shape AttributeList

Shape → [ Scalar

| Record [Declaration]+

| Tuple [FullType]+

| DimType [IntExpr]+ FullType

| FunctionType [FullType]∗ FullType]

Attribute → AttrClassId [ AttributeProperty ]?

AttributeProperty → Expr

3.1.9 Attribute Classes

this has not been implemented in the parser, but is described because the hard-coded

attributes match this description.

The attribute class definition creates a new kind of attribute. The class has an

identifier, the type to which it is associated, a property of declared type, and a set of

associated functions and rules.

The following functions are required in the attribute class definition. For an

explanation of subattributes, joins and meets, see 5.2.

subAttrClass true if the first argument, as a property of this attribute class, repre-

sents a subattribute compared to the second argument.

joinAttrClass, meetAttrClass function providing the attribute property value of the

join or meet of the attributes represented by the two argument property values

respectively.

testAttrClass optional predicate that tests a data value at run time to determine if

it satisfies an attribute as described by the property value given.



3. HUSC Language Definition: Syntax and Semantics 37

The attribute rules define how the attribute properties of expressions may be

calculated from attribute values of the components of the expression. This is a pattern

matching syntax, where the rules are of the form AttrClassId( Expr(A,B,...) ) = Expr(

AttrClassId(A), AttrClassId(B), ...)

Finally, there may be local data definitions and declarations, as in the local bodies.

AttributeClass → [ Persistant ]? AttrClassId FullType FullType AttrClassBody

AttrClassBody → IsAttrTest SubAttrTest JoinAttr MeetAttr

[[Declaration | Definition]]∗

IsAttrTest → Definition

SubAttrTest → Definition

JoinAttr → Definition

MeetAttr → Definition

AttrPropagation → Definition

3.2 Semantics

The operational semantics of HUSC are a simple non-recursive term rewriting system.

These semantic rules explain how the back end compiler, in particular the rest of

Coconut, will interpret the code hypergraph representations of the HUSC programs.

Data definitions describe the type of data terms and their relationship to other

data terms in the form of expressions, for example f = m * a. Variables and func-

tions are defined as regular (non-recursive, non-cyclic) mathematical expressions with

unary and binary operators. The definitions are static, and do not imply any partic-

ular activity on the part of the compiler. In particular, if a defined identifier is never

used in a program, its definition need never be evaluated. The decision of how to use

these relationships to accomplish the goals of the program is left to the back end.

Arrays may have multiple “partial” definitions for different subsets of their indices,

but these must not overlap. For example,

for all i A[i,i] = 1.0;

for all i, j = [2 .. i-1] A[i,j] = 1.0 - 0.1*j + 0.1*i;

provides a well defined lower triangular or symmetric matrix, but is an incomplete

general matrix (more partial definitions must be added). The use of quantified vari-
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ables (i,j), when combined with fold and map operations, eliminates the need for

loops when processing arrays.

Definitions must not be cyclic and recursion is not allowed directly. For example,

the definitions of f, c and a are all invalid in the code below:

f(i::Integer) = fibbad::Integer where {

fibbad = select {

(f(i-1) + f(i-2)) | i > 1

1 | 0 <= i <= 1

} }

a = b * c; c = b / a;

because they are all recursive or cyclic. An iterative algorithm may be described as

an array with elements based on other elements, A definition must be available to

resolve the recursion

A[i] = A[i-1] * A[i-2] for i = 2..n;

A[0]=1.0; A[1] = 0.99;

the array of iterants must be defined over a finite (but arbitrarily large) number of

iterations (n).

This simple structure is designed to make a guarantee of termination easier to

provide by both the type system and the back end compiler, and was felt to be

appropriate for the target domain. Extending HUSC to allow recursive definitions

would be a significant but important step to consider for the future.

The only unusual requirement is the recognition that multiple choices are available

for each function and operator evaluation. A function or operator implementation

may be written in HUSC, or just the interface may be provided. If an interface is

selected in a definition as part of a join expression, the back end would be required

to link to an external library to obtain the implementation or use one of the other

implementations from the join. While making optimal use of these choices is very

difficult, and an interesting area of research in itself, there is no significant problem

because the back end may select any of the choices available.

The remainder of this chapter is a detailed informal description of the semantics.

The formal algebraic description is in the appendix A.1.
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3.2.1 Programs

A HUSC program is a set of output data definitions, a set of input data definitions and

a set of relationships that describes how to evaluate the output with respect to the

inputs, literals and imported values. The program consists of a main module, whose

exports are considered outputs, and imports area considered inputs, which must be

translated to / from native system data types by the back end. The main module

may import definitions from other modules, using their exports and supplying any

import definitions they require.

The HUSC modules also supply type definitions to interpret the declared data

types as known shapes and attributes. The type system will check and infer the types

of every data identifier, expression and subexpression based on these definitions. It

will also select all of the specialized function / operator implementations and interfaces

that satisfy the type context for each function / operator application.

The output of the HUSC processing is a set of fully typed code hypergraphs with

data expressions at the nodes and function / operator interfaces as the edges. There

may be multiple edges between the nodes, representing choices available for a function

or operation application. The roots of the graph are the exported identifiers of the

main module, and the edges are imported identifiers or literals.

3.3 Modules

A module is a set of definitions, a subset of which are available for export, and a list of

imported identifier declarations that must be supplied by any importing module. The

module definitions are based on the imported definitions, literals, and other definitions

imported from other modules (as opposed to the importing module). All definitions

in a module must be complete meaning all of the symbols in the definition must have

a meaning in the module context, for the module to be compiled successfully.

3.3.1 Module Bodies

The body of the module is a collection of:

• declarations



3. HUSC Language Definition: Syntax and Semantics 40

• definitions

• type definitions

• operator definitions

• attribute class definitions

• module imports

These statements can be in any order within the module. Each updates the context

for the module or frame they are in.

3.3.2 Module Context

The context Γ includes the identifier definitions and type judgements for a module. It

also includes attribute class, function and operator definitions. An expression E has

a local context ΓE that extends the module context with local variable declarations

and definitions. All type, attribute, function and operator definitions must be at the

module level.

A module context is formed of the output context, input context and the private

context. The input context is formed of definitions supplied by the importing module

when the module is imported. The output context is a subset of the definitions

in the module context, with the remainder being private (only available within the

module) or local (available to a single definition). There is no distinction between

input, output and private contexts for evaluation and typing purposes.

Local contexts are distinguished from the global context through variable renam-

ing, where each locally defined variable is renamed to a distinguished 1 name in the

module context.

Complete Definitions

In Coconut terminology, a program is called concrete if it can be compiled into an

executable program on a specified system. HUSC programs do not have to be con-

crete, as they may be defined with abstract types and function / operator interfaces

1The implementation currently does not guarantee uniqueness at this point.
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without HUSC implementations. Instead, a HUSC program is called complete when

each output definition is complete and well-typed. The definition of complete is the

intuitive one for a declarative language, namely that all of the identifiers and symbols

used have a meaningful definition in the program context. Well-typed means that the

type system is able to produce a meaningful, unambiguous HUSC type judgement for

every identifier and expression in the program.

Explicitly, this means each each output definition satisfies the following criteria:

• all of the identifiers in all of the definitions must be complete

• each function applied in an expression must have a declaration; each operator

in an expression must be recognized operator symbol; either must be applied to

the appropriate number of parameters / operands

• each data definition must be well-typed (HUSC types)

• each function or operator application must have at least one defined, well-typed

interface that satisfies the type context

These conditions are necessary and sufficient for the construction of the output code

hypergraphs.

Definitions must be complete within a module’s context for the HUSC processing

to be successful, otherwise an error will be logged for the identifier.

The definition of complete is given by the following recursion:

1. a literal value

2. an imported definition of a complete type

3. a recognized operator symbol acting on the appropriate number of complete

operands

4. a function application of a declared function name with the appropriate number

of arguments, each of which is a complete expression

5. parameters / operands with complete type declarations are complete within the

context of the function / operator interface
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6. quantified variables are complete in the context of the partial definition state-

ment

7. locally defined variables are complete if they are complete in the local context

8. the definition of a function or operator interface, where each parameter /

operand and the result is declared with a complete type; if the implementa-

tion is provided, it is complete if the definition is complete within the local

context.

9. each defined type based on a standard HUSC shape, with all dependent expres-

sions being complete and all attributes complete

10. a named type based on a complete type, optionally with complete attributes and

dependent parameters, and each dependent parameter declared of a complete

type

11. attributes are complete if the attribute class definition is complete, and the

property value expression is complete.

12. an attribute class definition is complete if is defined for a ground target type,

has a ground property value and provides a subtype, join and meet functions

The formal rules for this are given in A.1.3.

3.4 Declarations

A declaration constrains the type of a data identifier to be a subtype of the de-

clared type. It does not explicitly fix the type as in other languages. The final type

judgement will be constrained by any type declarations, but will be derived from the

identifier’s definition. There can be multiple declarations for an identifier, in which

case the type judgement is a subtype of all of them, and undefined if they are incom-

patible. Declarations are not required for every data identifier, but are required for

function definitions, operator definitions and imported definitions.

Function declarations are a special case as they declare the identifier to be a class

of functions. This class declares the number of parameters and the base parameter
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and result types for this function name. All definitions of this function must have

the same number of parameters, and the defined parameter and result types must be

subtypes of the declared types. Note that it is not necessary to have any definition

for a function that satisfies the entire range of its declared types.

It is unusual that the parameter types must be subtypes of the declared parameters

types, because then the definition will not be applicable in all instances that the

function declaration will allow. This is fundamental to HUSC function and operator

definitions — the type system selects only the definitions that are applicable in the

type context of the application, allowing specialized versions of a function to be

provided for optimization.

3.5 Definitions

A definition statement defines the value of an identifier when it is evaluated as an

expression. All identifiers must have a complete definition, which can be one of the

following three forms:

• a function definition with well-typed parameters,

• a set of partial definitions based on the shape of the expression

• a single total definition.

3.5.1 Function Definitions

A function definition specifies a new function interface for a declared function name.

The interface consists of typed parameters and a result type, both of which must be

subtypes of those specified in the class. The definition may also include an imple-

mentation of the interface, as a complete expression, generally using the local body to

define the results. The implementation is optional; if no implementation is provided,

it is assumed that the implementation will be made available through lower levels of

the Coconut system (basically an external link). Parameter variables are considered

defined in the local scope; their definition will be that of the arguments of a function

application.
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The value of a function applied to a set of arguments is any of the defined function

interfaces that satisfies the type context. The decision as to which of the acceptable

interfaces is made by lower levels of the Coconut compiler. At the HUSC level, it is

only important to recognize that each interface must represent a semantically identical

implementation within the allowable type context.

3.5.2 Partial Definition

For some shapes, it is sensible to provide more than one definition statement to

simplify the definition. For example, each field of a record can be defined with a

separate statement. A list might be defined iteratively as

Let f be List[0..n];

f[0] = 1; f[1] = 1;

for i = (2..n) f[i] = f[i-1] + f[i-2];

The nature of these shapes allows a domain analysis to conclude that the collection

of provided definitions cover the entire domain of the identifier without overlapping

Within a module, the collection of all partial definitions for a variable must com-

pletely define the domain of that variable (although paradoxically, “undefined” is a

valid expression for a definition). In addition, the domain subsets for any two partial

definitions must not intersect. In other words, the partial definitions must partition

the domain of the complete definition. These conditions are checked as part of the

type checking, and failure to achieve them will result in a compilation error 2.

3.5.3 Total Definitions

A total definition provides a complete definition as a single expression for the iden-

tifier. All scalar definitions are total definitions (e.g. x = 3.5), but other shapes

(except functions) can also have a total definition. For example, an array can be

defined as the sum of two other arrays (A = B + C) without any specification of

2Testing that a domain is completely defined is fairly limited at this point. The above examples
would be solved, but more complicated partitions would require more advanced domain analysis.
This has been included as part of the future work.
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indices or quantified variables. There can only be one total definition statement for

an identifier, and if there is there can be no other definition statement.

3.6 Operator Definitions

An operator definition is similar to a function definition, but applies to a prefix,

postfix or binary infix operator symbol. It defines the types of the operands and

result, called the interface, and may include an implementation for the interface.

3.6.1 Operator Symbol Table

In order for the expression grammar to be decidable, any operator symbol must have

a constant precedence, fixity and associativity, regardless of the types of the operands.

Currently the symbol table is fixed, but a syntax for adding new symbols would be

straight forward.

3.7 Importing Modules

A module may import definitions from other modules. The importing module must

supply the definitions required by the imported module. If definition are imported,

the imported identifiers must not also be defined in other definition statements (dec-

larations are acceptable).

Any kind of definition may be imported. If a function name or operator symbol is

included in the import list, all of the function/operator interfaces and implementations

are imported.

Definitions from a module may be qualified, in which case all of its exported

symbols are renamed, prefixed with the module name. Operator symbols may not be

qualified.

3.8 Expressions

Expressions can be evaluated to produce a data value.
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3.8.1 Simple Expressions

Simple expressions are the standard mathematical expressions composed of factors

(literals, variables and expressions in parentheses) unary / binary operations and

function applications. Operators and functions are intrinsically overloaded by the

types of their operands / parameters, although each operator symbol must have a

constant fixity, precedence and associativity. Were this not the case, the types of

expressions could be ambiguous or undecidable where the types of the operands were

unknown.

Variables

A variable expression is an identifier and an optional extension:

• a list of function arguments in parentheses,

• a list of integer expressions that fall in the domain of a dimensioned data iden-

tifier

• a single field name from a record definition

An unextended variable may be replaced by its total definition, or its collection of

partial definitions (assuming they are Θ). The value of an indexed variable application

is the projection of the total definition at the value of the index. The value of a field

reference is determined based on the definition of the field.

The value of a function application is the value of the join expression formed by

applying all of the function definitions that satisfy the type context to the argument

expressions (see below).

Note that if an identifier is imported into the main module, it will have no def-

inition and therefore cannot be evaluated further. The expectation is that this def-

inition will be provided later, either by an importing module (reducing the current

main module to an imported module) or the definition will become a system input in

an executable program.
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Literals

Literals will include integers, floating point (scientific notation), Booleans and strings,

or tuples of the above. Other literal types will be built using constructor operators

(or functions), described within the preludes.

Literals have an indisputable type judgement, which for numbers includes a range

attribute specifying the value (3 : Integer{Range(3..3)} for example).

Conditional Expressions

A conditional expression is an ordered list of expressions with boolean guards, similar

to a Haskell case statement. A boolean guard is just an expression that evaluates to

a boolean value, in other words a condition or predicate. The value of the conditional

expression is that of the first expression with a satisfied boolean guard. The evaluation

of any the guards may take place at run time, but it may be possible with type

attributes to reject some branches statically, based on the attributes inferred for

variables in the boolean guards.

3.8.2 Joined Expressions

One or more expressions may be “joined” where each of the expressions has the “same

semantic meaning” within the module within a given type context. The semantic of

this relationship “same semantic meaning” is formally defined by the join semantics,

but informally it is an equivalence class of members whose values are equally valid

when the expression’s guard is satisfied by the type context.

In the explicit join construction, each “candidate” expression has a guard, a list of

attribute assertions and run time tests. Asserted attributes must be proven true for

the join candidate to be accepted, tested attributes will be either proven, statically

rejected, or tested for at run time. The expression candidate is “successful” when all

of the assertions and tests result in True.

Function and operator applications are implicit joins, with each function / op-

erator definition for that name / symbol being a candidate for the join. When a

function interface (consisting of parameter and result types) satisfies the type con-

text, it is called a “successful candidate” in the join. The type context consists of the
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c :: Q

f::(T1,T2) → R

R ≤ Q

a :: S1 b :: S2

S1 ≤ T1 S2 ≤ T2

f*::(T1*,T2*) → R*

R* ≤ R

S1≤T1*?
S2≤T2*?

Figure 3.1: Illustration of the relationships between a function, function interface,
arguments and result types.
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type constraints on the result and type judgements of the arguments. Note that the

implementation of the interface is not required, the promise of the implementation

is made by the interface, and the implementation can be provided later. The value

of the joined expression is the value of any one of the expressions. The lower levels

of Coconut will choose which of the successful join candidates to include in the final

executable program.

In order for a function application to be well typed, the result type of the function

must be compatible with the expected result type, and the arguments passed to

the function must be compatible with the parameters. Specifically, the result of the

function must be a subtype of the expected result, and the argument types must be

subtypes of the parameter types. This matches with the traditional definition of a

function in a type system. This relationship is illustrated in Figure 3.8.2, by the solid

lined boxes and arrows.

In HUSC, the declaration of a function represents its most general form, and

its most general type interface. An arbitrary number of different interfaces for the

function may be provided, where each interface represents a specialization of the

general function. Intuitively, a specialized implementation of a function handles some

special case of the general function and takes advantage of specific properties to

perform an optimization. Formally in the HUSC type system, this means that the

result type must be a subtype of the general result type, and the parameter types are

subtypes of the general parameter types. This subtyping restricts the context in which

the specialization is applicable, because knowing the arguments satisfy the general

function parameters does not imply that they will satisfy the specialized version’s

parameters. The HUSC type system performs this check, selecting the specialized

function interfaces that are satisfied by the argument types. The function interface

is represented in the diagram with dashed lines. Note that the result type of the

specialized function is guaranteed to be a subtype of the expected result, so this is

not an issue.

3.8.3 Local Body and Local Context

The local body of an expression provides locally scoped data declarations and data

definitions. Quantifier variables in partial definitions and function parameters are
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implicitly declared and defined in the local scope; they may not be redefined within

the local body.



Chapter 4

Concrete Syntax

This chapter provides a detailed informal description of the concrete syntax of the

HUSC language with examples. The eBNF diagram formally defining the syntax is

given in Appendix B.

4.1 Literate HUSC

One of the original requirements for HUSC was that it be a literate language, meaning

that HUSC code could be embedded within a LATEX source file and be compiled from

the LATEX file. This has been accomplished, and HUSC source is either prefixed line

by line by the symbol “coco>>” or embedded in a “cococode” environment. This is

currently identical to the “code” environment for other languages, and is treated as

a literal section by LATEX processors.

The new environment was intended to allow an extension to the HUSC lexicon by

including traditional LATEX math symbols. In particular, the Greek, Russian and mis-

cellaneous symbol alphabets should all be available as letters and symbols within any

programming language intent on supporting scientific and mathematical computing.

It would also be good to introduce a layout notation that could be used to replace

braces and separators, similar to that of Haskell.

51
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4.2 Informal Description and Examples

This section presents examples of the concrete syntax to illuminate the concepts, but

also to act as an user’s guide for the language.

4.2.1 Declarations

There are two basic syntax forms for declarations. The full line declaration is in the

form Let identifier list be type. The compact form, used in parameter lists, records

and anywhere where space is an issue, is in the more traditional identifiers :: type

format. The compact syntax can be used anywhere, the full (a.k.a. Baroque) form

only as a line in a body.

module MeasurementError

export (covar::Matrix[n,n] of Real)

import (data::(x::Array[n] of Real,

y::Array[n] of Real), scale :: Fraction)

{

Let a,b be Real;

invScale, otherFrac :: Fraction;

invScale = 1 / scale;

xdata = data.x; -- implicit array definition

a = sqrt( sum(xdata) );

b = ...

covar = invScale (x y^{t}); }

4.2.2 Module Import Interface

A module is imported to obtain access to its exported definitions. The importing

module supplies the inputs required by the imported module using the with list. The

imported definitions may be used by name, or may be renamed on import. The

definition names may optionally be qualified with the name of the imported module,

or a pseudonym for the imported module.
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The example below gets an error covariance matrix from a set of measurements,

using the module MeasurementError. Note that the array dimensions are only passed

implicitly.

module GammaSpectroscopy ... {

...

Use MeasurementError for (covar)

with {data.y = gammaReads,

data.x = timeIntervals };

...

result = ... covar ...

...

}

module MeasurementError

export (covar::Matrix[n,n] of Real)

import (data::(x::Array[n] of Real,

y::Array[n] of Real))

{

covar = ... data.x ... data.y ...

}

4.2.3 Definitions and Expressions

In the example below, D is a total definition which will result in an array type, A has

four partial definition statements and an explicit declaration again for an array type,

and sin has a function declaration and three implementations.

...

import(n::Natural,

B,C :: Array[1..n,1..n] of Real);

Let A be Array[1..n,1..n] of Real;

D = B + scale*C;
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for all i A[i,0] = 0.0 ;

for i=[1..n-1] A[i,i] = 1.0;

for all i /= j, j=[1..n-1]

A[i,j] = i * j ;

for i = n, j=n A[i,j] = 0.0;

% supertype for all sin function implementations

Let sin be Function from Real to Real{ Range(-1.0..1.0)};

sin(x:: Real Range([-pi()/4.0..pi()/4.0])

= sinlookup::Real{Range(-1.0..1.0)} where

{ sinlookup = ....x .... };

sin(x:: Real Range([-pi()..pi]) = basicsin::Real{Range(-1.0..1.0)};

sin(x::Real) = allsin::Real{Range(-1.0..1.0)}

where { allsin = .... };

Note that type, operator and attribute class definitions may not be made in a

local body, but only at the global level.

4.2.4 Joined Expressions

The join represents an explicit join of expressions, where no annotations nor guards

have been included. A semi-colon separated list of (possibly conditional) expressions

follows.

Let foo be Function from Real to Real;

foo = join [fooA, fooB, fooC] where

{ fooA(x::Integer) = (x + 1)::Integer;

fooB(x::Integer) =

(x + Lim[maxCnt])::Integer where {

for i = [1..maxCnt] Lim[i] = Lim[i-1]+ 2^(-i) }

fooC(x::Integer) = sillyx::Integer where {sillyx = x / 2 * 2 + 1;}

}
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4.2.5 Conditional Expressions

The select represents a conditional expression. The comma separated list that follows

consists of annotated expression, boolean guard pairs separated by a | symbol. The

boolean guard is just an expression but it will be constrained to return a Boolean in

the type inferencing. The conditional expressions are listed in the order they are to

be tested, and the first guard to return TRUE is selected.

The annotated expression is a standard expression with an optional type decla-

ration. The type declaration consists of either ”::” and a full type declaration, or

a list of asserted or tested attributes (”asserting {attribute list}“, ”testing {attribute
list}). All function definition statements require the result expression have a full type

annotation, like absx in the example below. The guarded expressions in the select

statement are examples of asserted attributes; these assertions should be proven by

the type inferencing, so not result in an external proof obligation.

The otherwise symbol is the equivalent of TRUE.

% Integer is a type annotation for k

abs(x::Real{Range(lb..ub)}) = absx::Real{Range(0..max(lb,ub))}

where {

k = select {

-x asserting Range(0..(-lb)) | x < 0.0;

x asserting Range(0..ub) | otherwise;

% x >= 0 a better alternative

}

}

4.2.6 Types

The type definition statements map a type to a type identifier, with optional depen-

dent type parameters. The type may be based on another defined type, optionally

with additional attributes defined, or a generic shape with optional attributes (a

generic type).

The generic types have syntax associated with them, and this syntax is also appli-

cable to types defined on those shapes. For example, any type based on a dimensioned
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shape can have an index expression in square brackets immediately after the variable

(A[i, j + 1]).

The dependent type parameters are similar to function parameters for a type

definition. The dependent parameters may be type variables a <: Scalar or may be

data variables of a defined type. In the current implementation, only integers, reals,

booleans and pairs of those types are supported as dependent variable types, because

the type system must be able to manipulate these values.

The attributes presented below (other than range and symmetric) cannot be de-

fined from HUSC source files with the current parser. However they are implementable

in the type system, and have been included to show an example of how the language

might be used.

Define UnitReal as Real{ Range(-1.0..1.0) };

Define NormalizedReal as UnitReal {Precision(0.5e-3)};

% further constrain range, will take intersection

Define PosNormReal as NormalizedReal {Range(0.0..1.0)}

% attribute strictly monotonic (increasing, f) means f(A[i-1]) < f(A[i]),

%and first takes the first element of a tuple

Define DataTable as

{StrictlyMonotonic(Increasing,first)} Array[1..n] of (x::Real, y::NormalizedReal);

% below, x must be compatible, y is of a dependent type variable a,

% a TimedDataTable is a variant of the Data table,

% so perforce is incompatible (this was optional)

Define TimedDataTable(a <: Top)

based on DataTable of (x::Real{ SIUnit(seconds) }, y::a);

Define TriSymUnitMatrix(n, \alpha<:Real{Range([-1.0..1.0])}) as

{ Symmetric, Tridiagonal} Matrix[n,n] of \alpha;

Define MRImage(dim) as Array[dim,dim] of (r,g,b::Integer{ Range(0..255)});

Define NormMRImage as MRImage(-127..128,-127..128);

% NormMRImage is a subtype of MRImage when dim = -127..128
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4.2.7 Attributes

Attributes are listed immediately after the base type in a comma separated list. Each

attribute is an attribute class and an instance of its property type, if any, which is in

parentheses like a function argument list. Examples of attributes and attribute lists

are seen above.

4.2.8 Attribute Class Definition

Attribute Class definitions have a similar format as modules. The attribute class are

defined for a type, and have a property associated with them (simple attributes have

a boolean property of being True or False). The attribute class is therefore a relation

between the type they are defined on and the property type.

The HUSC syntax for defining attribute classes has been eliminated from the

current implementation. Part of the future work for HUSC is to identify kinds of

attribute classes, and then allow new attribute classes to inherit that structure.

4.2.9 Operator Definition

Operator definitions include an interface and optionally an implementation for that

interface. The interface consists of the symbol the operator is associated with, an

optional list of comma-separated attributes, the types of one or more operands (po-

tentially including attribute lists) and finally the result type of the operand. The

operator interface is written as:

Operator op{attributes} (varA::typeA) op (varB::typeB) = (varResult::typeAopB)

where the position of the operands and operators is explicitly presented. Postfix,

prefix and infix binary operators can be defined this way, but the operator definition

must match the fixity of the operator symbol, as defined in the operator symbol table.

Note that the attributes associated with the operator are distinct from the at-

tributes associated with the operands and result of the operation. In the example

below, addition is noted to be commutative.

If provided, the operator implementation is given as a local body to the interface,

providing a set of declarations and definitions that satisfy the interface. The definition
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of the result variable defined in the interface must be provided in the implementation

body, using the operand variables as arguments as required.

Because any given interface may have multiple implementations defined, each

implementation is be given a label to distinguish between them. This label has no

uniqueness requirements, but ideally should be sufficient to uniquely identify the

implementation. If no implementation is provided, the operator is assumed to be

abstract for the purposes of the module, which allows type checking and inferencing

but does not on its own support execution (it is assumed another module will provide

the implementation).

% Sparse attribute is show here with a property of a function rtrv

% that takes a two dimensional index and returns the value; it’s a variable name.

Operator +{Commutative} (SymA::{Symmetric}Array[n,n] of a <: Top)

+ (SparseA::{Sparse(rtrv)}Array[n,n] of b <: Top)

= (SumA::Array[n,n] of (c <: Top))

where (‘‘GJUSymmetricSparseRTVRPlus’’) {

SumA[i,j] = select {

SymA[i,j] | rtrv(i,j) == undefined

SymA[i,j] + rtrv(i,j) | otherwise

}

}

% this is a pure interface definition, the implementation

% must be provided from an external source later

Operator (B::Array[n,n] Symmetric of Real) + (C::Array[n,n] Sparse of Real)

= (SumA::Array[n,n] of Real Range(MaxDoubleRange())) ;



Chapter 5

HUSC Type System

The type system is the core of the HUSC language. This chapter provides an infor-

mal description of types, subtyping relationships and type judgements. The formal

definition is provided in A.2.

5.1 Types

This section contains the informal definition of the HUSC type system. The formal

rules are provided in A.2.

Types have three components: a name, a ”generic” shape, and a list of additional

constraints called attributes. Shapes are parametric classes defining the structure of a

data definition, similar to types in traditional type systems. Attributes are additional

parametric constraints that apply to a data item. Attribute classes are defined for a

specific type and its subtypes, and represent a predicate of some sort.

A shape with an attribute list forms a ”generic” type. A type definition statement

defines a new ”named” type, which is an optionally parametric type (constructor)

based on another named or generic type.

5.1.1 Shapes

Shapes represent a fundamental structure of a data item. There are five classes of

shapes that are part of the language definition: Scalars, Tuples, Records, DimShapes

59



5. HUSC Type System 60

(dimensioned shapes) and Functions. These are the only shapes the type system can

”reason about”, so the list of shapes is not extensible within HUSC modules. Shapes

are equal when they are from the same shape class and all of their parameters are

equal. Note that dimensioned types are only equal when their bounds align exactly,

not just when the size of the domains are equal.

Lower stages of the Coconut system must be able to interpret and use the shapes

in the system. They can be used to selecting the storage (memory, file) model for the

data, and also during code generation and algorithm selection. Abstracting the shape

within the type allows semantic differences in the data to be differentiated by the type

checker, while allowing code and algorithm reuse once type checking is complete.

Scalars

A scalar is an atomic data item. Numbers (Integers, Reals) are the most important

scalar, but strings and Booleans are also scalars. Only numbers are given any real

attention in this thesis, because of the target domain,

Arrays / DimShapes

An array is a dimensioned shape, a special class of function that maps a domain ⊂ Zn

to a single result type, where the domain can be expressed as the cross product of

integer ranges (i.e. an n-dimensional rectangular prism). Precisely,

Array(dom, α) ⊂ Function :: dom → α where

∃l1..n, u1..n ∈ Z.dom = (l1..u1)× `× (ln..un) and

range : li..ui , ∀li ≤ k ≤ ui.k

The term DimShape was used instead of Array to avoid the connotations associated

with Arrays. Lists, iterative definitions, and arrays can all be types of this shape.

This shape is very important both because it is possible to statically analyze the

domain and because it forms such a large part of the structure of scientific programs.

Function

A function is a mapping from a list of typed parameters to a single result type.
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Tuple

A Tuple type is the standard ordered product type of unnamed, typed elements. The

order of the elements of a tuple is the only means of accessing the elements.

Record

A Record type is a set (with no order) of named, typed fields. The lack of order of

the fields dictates that the projection and injection of field values requires the field

names, so ”default” ordering may be provided. This restriction is in place because

the subtyping order for records, although not yet in place, will include any records

sharing the same field names, with new field names allowed in an extension, as in [7].

This kind of extensible record subtyping would be broken by any arbitrary sequencing

of the field names.

Partial definitions for records may be given, with a subset of the fields being

defined in an expression. This could be a single field at a time, an arbitrary number of

fields may be defined using other records as the basis, assuming a subtype relationship

can be inferred to exist with the result record.

image.contrast = 5.5;

image.dims = (256,256);

colourImage = image;

colourImage.rgb = (128,128,128);

The inferred type of colour image would have fields rgb, contrast and dims.

Note that syntactically field names are not types or typed data, but are parsed as

identifiers.

Missing Shapes

Some key shapes that have not been included are:

• algebraic data types,

• recursive types.
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There is no specific reason for their exclusion, other than to reduce the scope of

the project. Algebraic data types in particular might be a valuable addition for the

application domain.

Abstract Types

HUSC types are inherently abstract, with no associated guarantees that they are

representable on a real system. Generally, the goal of the HUSC programmer is to

refine the abstract types with enough concrete information that they can be converted

into system representable types for inclusion in the final program, but is not necessary

in all cases. For example, a module that is intended for import by other modules

might not have sufficient bounds on a scalar variable to guarantee it is finite in any

context, but imports sufficient information from an importing module to tighten these

constraints.

Top and Bottom Types

There are two specific abstract types that are outside of the regular type system.

Top(>T ) is the type of anything, the ultimate supertype. It represents an ambiguous

type judgement, insufficient information being available to even decide a shape1.

While a program cannot be considered complete with any >T judgements, it is

an acceptable outcome for a module intended to be imported into other modules

that will further refine the ambiguous types.

Bottom(⊥T ) is the type with no elements, the ultimate subtype. It represents an

unsatisfiable type judgement, due to contradictory constraints. Unlike top,

there are no circumstances in which bottom is a desirable outcome, nor new

context that will recover a meaningful type.

This approach to >T and ⊥T is drawn from [10], pg 191—193. They introduce a

number of complications to the theory of the type system, but these are mostly details

that do not adversely affect the implementation nor the practical interpretation of

the type judgements.

1It is interesting to consider what attributes might be applied in this case.
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Shape Abstract Types

Each shape also has an associated abstract type, the supertype of all types with that

shape. These cannot be defined from within the HUSC syntax, but are built into the

type system, such as Scalar, the supertype of all scalar types. These types are often

used as a supertype for dependent type variables, e.g. α � Scalar implies α can be

any scalar type.

General Abstract Types

Beyond the notational conveniences of the above abstract types, there may be uses

for types that are inherently abstract, that are intended to be factored out of any

expressions they appear in. The presence of such a type would serve as an indicator

to flag invalid use of a module or operation. For example, consider the type of

matrices that have a basis. We could subtype these matrices to those having a

specific concrete basis type, and then the basis would be just a dependent data term.

However, another approach is to deal with the basis as supporting unimplemented

equality and transformation relations only. Then operations on the matrices would

check the equality of the matrices to determine if they are identical, for example

Define Basis as TypeTop;

Define {Reflexive}== as (b1::Basis) == (b2::Basis) = t::Boolean;

Define {Reflexive}== as

(A::Matrix(b1::Basis)[m,n] of a) + (B::Matrix(b2::Basis)[m,n] of b) = t::Boolean

where { select

for all i, all j fold(.and., (A[i,j] == B[i,j])) | b1 == b2;

undefined }

Let b1, b2 be Basis;

Let A,B be Matrix(b1)[3,3] of Real; Let C be Matrix(b2)[3,3] of Real;

AB = A + B; AC = A+C;
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The equality between bases cannot be implemented, because a basis is a subtype

of type Top, which cannot be instantiated. However, the reflexive attribute of the

equality operator allows the condition b1 == b2 to be replaced with True uncon-

ditionally in the expression A + B, but not in A + C, the latter therefore being

unimplementable. The implementation of addition is therefore undefined unless the

bases are syntactically identical.

In a traditional system, the basis instance would have to be labelled with a unique

code, and the unique code tested at run-time. This use of attributes on operators

allows a significant increase in the expressiveness of the type system.

5.1.2 Attributes

Attributes are additional, independent, properties or constraints associated with a

type. There is no order with the set of attribute associated with a type.

When an attribute is declared as part of the type of an data identifier, it is a

constraint on the definition of that identifier. The type system will either:

• derive evidence that this constraint is satisfied,

• conclude that proof of this must be left as an obligation to the user

• conclude this is not possible in this context, resulting in type judgement of ⊥T

Attributes may also be derived for the type of an expression from attribute prop-

agation rules defined in the attribute class, based on the use of the identifier in the

module context. If a type judgement includes an attribute as part of a type, either:

• there will be a corresponding external proof obligation demanding support for

the attribute

• run-time test that supports the attribute,

• sufficient support has been found from other supported attributes based on the

propagation rules of the class.
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5.1.3 Named Types and the Subtype Hierarchy

Shapes and attributes may be used as ”generic” types, but new types may be created

from these and other named types. This may be for a number of different reasons:

• to label a complex generic type description so it doesn’t need to be repeated;

• to associate abstract semantic meaning from the ”real world” context with the

type;

• to create a labelled refined version of the type, called a subtype;

• to create a type variant that is considered completely new at the semantic level,

but has a common structure with another type that can be exploited by later

stages of compilation.

The new type is by default considered a subtype of the original, but the definition

can sever this relationship and create a new, incompatible variant. Variants share the

underlying structure of the base type, with the same shape and attributes, information

that can be exploited at lower levels of the Coconut system while allowing HUSC to

consider the types distinct.

The newly defined type will inherently be a subtype of the original type. The new

type may add new attributes from new classes, or may add additional constraints

from classes already in the base type; in the latter case, the type is actually assigned

the meet of the attributes of the same classes, thereby guaranteeing the new type is

a subtype of the base. This named subtype relationship is explicitly recorded in the

type system and any context in which the base type is accepted, the named subtype

will be accepted.

Variants

If a new variant is desired instead, the type definition explicitly erases the subtype

relationship (in the above rule, the subtype? flag is a Boolean value with True being

a subtype, False a variant). The new type will be entirely incompatible at the HUSC

level, and will required new definitions for all functions and operators (although there

could be short cuts to simplify this process).
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Variants allow the modeler to define types that are semantically different, but

have an underlying structure that is the same. For example, a two dimensional array

is conceptually a different thing than a matrix, which has a basis in some space. A

matrix is can be represented as a two dimensional array, but defined as a variant.

Although the type checker will distinguish between the two types, the compiler will

use the same storage models and will perform additions using the same algorithms..

Dependent Types and Cycle Detection

Dimensioned shapes are parameterized in their domain, and function, record and tuple

shapes are also parameterized in their component types. This shape parameterization

is tightly controlled, with the shapes effectively being type constructors. Named types

may be also be parameterized with data or type variables, which can be used as shape

parameters, but can also be used as attribute property values or even extracted to

the data level.

Because these dependent types are not constrained, it is clearly possible to define

a type that cannot be instantiated. Both the dependent parameters and attributes in-

cluded in type definitions include type references themselves, possibly building cycles

into the type definitions. Testing for cycles in type definitions has been incorporated

into the syntax checking, with a type definition not being Θ if there is a cycle in types

of the dependent variables or attributes. This checking occurs before the type system

is invoked, so the type system assumes no such problems will be encountered.

This checking prevents recursively defined types. This decision was made to sim-

plify the type system, which is already quite complicated, but without any particular

problem having been discovered. The semantics for this are included in the rules on

complete, 3.3.2.

5.2 Subtyping

One of the core ideas behind HUSC is the notion of subtyping. While subtyping

with dependent variables is generally undecidable, a number of restrictions have been

introduced to make the algorithm decidable. While this system has not been proven



5. HUSC Type System 67

sound and complete, this project demonstrates that it is worth exploring this approach

further and that there are practical applications of the current approach.

The main relationship is the partial order subtype, denoted �, with strict subtype

denoted ≺, over the set of types. The subtype relation is reflexive, transitive and

antisymmetric; strict subtype is asymmetric and transitive.

HUSC partitions subtype judgements into three domains:

1. the subshape relationship denoted �Sh

2. the subattribute relationship �A for attribute class A

3. explicitly defined named subtype hierarchy

All three of the partial orderings (subshape, subattribute and subtype) are reflexive,

transitive and anti-symmetric.

Consider two types S and T, and the evaluation of the subtype relation between

them S � T . For S � T to be true, the shape of S must be a subshape of the shape

of T, each attribute of T must have a matching subattribute in S (although S may

have additional attributes of classes not represented in T). If S is a generic type, the

above conditions are sufficient. If S is a named type, there must also be an explicit

subtype relationship between S and T.

Note that for named types, the subshape and subattribute assertions are validated

when the type definition is validated, at which point it is sufficient to maintain the

explicit hierarchy as a tree.

5.2.1 SubShape

The shape of S must be a ”subshape” of the shape of T. Shape relationships are fairly

simple: the shape class must be the same, any type parameters must be subtypes,

and any data parameters for the type must be equal.

• T is a Scalar iff S is a Scalar

• T is a DimType(dom, αT ) iff S is a DimType (dom, αS) and αS � αT ; note the

domains must be identical, not just the same size.
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• T is a Function iff S is a Function, and the results and each of the parameters of S

are subtypes of their match in T. Note that a subtype of a function specialization

is covariant in both the result and parameter types, as opposed to the standard

contravariant parameters, requiring the type system to verify the context before

selecting the subfunction.

• T is a Tuple / Record iff S is a Tuple/Record and the element / field types of

S are subtypes of their match in T 2

The flexibility to define subshapes is deliberately limited to what is necessary to

support function subtyping. This allows the shapes to be resolved relatively easily,

mostly with a few CHR predicates that deal with subtypes.

5.2.2 Attribute Subtyping

The subtype relationship over attributes (�A) is only defined over two attributes of

the same class. Informally, the relation A(µ) �A A(ρ) means that the constraint

described by A(µ) is more restrictive than that of A(ρ), or that any term satisfying

A(µ) also satisfies A(ρ). For example, the subattribute relation for the range of a

scalar variable is equivalent to ”is contained in”.

Each attribute must supply a definition of �A that, given two values of the class’

property type, results in a Boolean value, True if the first is a subattribute of the

second. This was discussed further in 5.4. The ability to define such a subtype

relationship is a key restriction on the definition of attribute classes.

5.3 Joins and Meets

The subtype relationship is a partial ordering on the set Types, so < Types,�>

forms a poset, a mathematical structure with many useful properties. This can be

used to define joins t and meets u on the set Types, creating a lattice, another

useful mathematical structure. A lattice has two binary operations, a join and a

meet, which represent the supremum and infimum of any pair of elements of the set.

2Extensible records should be introduced later to allow additional fields in S, but this has not
been implemented
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Both operations are commutative, idempotent, and associative. A useful synopsis

sufficient for understanding this document is available online at [1], with a deeper

analysis presented in [5]. The value of the lattice theory was not explored as part of

this work but the notation was useful and it simplified the semantics of the attribute

class definitions.

The join of two types is their least general generalization (LGG), here called

”minimal supertype”; it is a subtype of any other supertype of the two and has no

subtypes that are also supertypes of both operand types. In HUSC, the type of a join

expression is the join of the component expressions.

The meet is the most general unifier (MGU), here called the maximal subtype; it

is a subtype of both types, and there is no other subtype of both that is not also a

subtype of the meet.

Meets are used to handle multiple constraints on an identifier from multiple uses

in a module. Joins are used to determine the result type of a joined expression,

providing the most restrictive type judgement guaranteed to contain the result.

As in the subtyping, the join and meet operators are defined in terms of shape,

attribute, and named subtype decisions.

• the shape of the join /meet of two types is the join of its shapes

• the attributes join / meet are the join / meet of all attributes of the same class,

where unmatched attributes result in erasure / equality respectively

• for named types, the join is the minimal supertype of both, and undefined

(ambiguous) if there is none

• for named types, one of the two must be a subtype of the other, and this is the

value of the meet, and undefined

5.3.1 Joins and Meets on Shapes

The join of two shapes is only well defined if they are the same shape, any type

parameters are joinable, and any data parameters are equal. If this is not the case,

the join is ambiguous. Similarly, the meet of two shapes is only well defined if they

are the same shape, any type parameters have a valid (non-⊥T ) meet, and any data
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parameters are equal. If this is not the case, the meet is empty. This strict relationship

is very useful for inferring dependent type parameter values.

5.3.2 Joins and Meets on Attributes

Attribute classes are always operated on independently of each other. Every attribute

class must have a definition of a join and meet function, which takes two attribute

property values and returns another property value which represents the join or meet.

Note that this operation takes place independently of the value of the data term the

attribute is applied to, a serious restriction but one that allows for decidability.

5.3.3 Joins and Meets for Named Types

The named subtype hierarchy forms a tree, where the subtree of any node represents

its named subtypes. For every named type, there is an ancestor that is a ”generic”

type, an unnamed shape with a set of attributes; this can been seen by considering

how types are defined.

The join of a named type will be an ancestor in its subtype hierarchy tree. If the

other type is named, it will be a common ancestor that may be a named type or may

be a common generic shape, but either with fewer and less restrictive attributes.

For a meet of named types to be defined (i.e. not ⊥T ), one of the types must be a

pure subtype of the other, and that is the value of the meet. The meet is so limited

because the subtype hierarchy is a tree, so while joins can meet at a common root,

meets must share a branch.

Proof has not been offered for the axiom stating that the join and meet exist.

The restricted structure of the type system supports such a claim, but the proof of

soundness and completeness were beyond the scope of this thesis.

5.4 Attribute Classes

Attribute class definitions are dependent on the module context to resolve the meaning

of the types and function definitions, and the typing judgements of the context are

dependent on the attribute class definitions in the context.



5. HUSC Type System 71

The attribute class definition components are denoted:

A the name of the attribute class

ρ the type of the property value

β the target type of the class (the type the attributes are applied to)

�A an implementation of the subattribute relation for this class

tA an implementation of the join operation for this class

uA an implementation of the meet operation for this class

|=A an implementation of a test to support the attribute at run-time for this class

rules A set of pattern matching rules for deriving or inferring attribute properties

for terms in a simple expression, based on the functions / operations in the

expressions.

A an implicitly defined function is created to return the value of the attribute prop-

erty as a data term

Note that each attribute class then uses five elements of the function name space.

5.4.1 Attribute Context

The attribute context A is part of the module context, and contains the attribute

class definitions and rules. Attribute classes are associated with a type called the

target type, and only have meaning when applied to this type or a subtype Each

attribute class has an associated property type, a value of the property type defines

a specific constraint of this class.

5.4.2 Attribute Class Interpretation

Attribute classes may be defined in modules, assuming the structure presented for

attribute class definition can be satisfied. These extensions to the type system are

implemented by generating new CHR statements that define the subtype relationship
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for the attribute (subattribute) and inference rules for the attribute class. In effect

this is ”modifying the code” of the type system, but if the CHR code follows the

specifications provided here, the new attributes will be managed appropriately, and

this simulates the specification defined here.

The propagation rules are only practical because the HUSC language is intended

for use in a domain specific context. In particular, operations like + have an accepted

meaning, so an attribute rule that works over addition can be defined. While mis-

using standard mathematical symbols won’t break the type safety of HUSC, having

consistent definitions will make the language much more useful.

The function Attribute is overloaded in the two separate contexts. The expres-

sion Attribute(ρ) in an attribute context A specifically as an attribute declaration,

assertion or test, represents the satisfaction of the constraint by the expression. In

the standard expression context Γ Attribute(E):: β → ρ represents a function that

returns the property value of Attribute that expression E satisfies, or undefined if

this does not exist. If the value of this second function is undefined, an error will

be generated during compilation. The overloading of the names may seem confusing,

but the context of the two uses in the language is intuitive.

Note on Current Status of Attribute Classes

The implementation of this component of the system was not completed, meaning

generating these CHRs from HUSC syntax because of two unresolved issues:

1. how to best specify the logic that dictates the inference rules for an attribute

class and how to convert those rules to the CHR semantic;

2. it is clear that there are kinds of attribute classes, which correspond to (at least)

the kinds of CHR constraint solvers, that can be implemented as part of HUSC,

but classifying these is a substantial research project in itself.

It did not make sense to proceed with defining a HUSC declarative syntax that would

support the generation of attribute code, knowing that this effort would be entirely

subsumed by future work.
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5.5 Type Judgements

Type inferencing in HUSC is a two phase approach where constraints are applied, and

derivations are tested against the constraints, until the most general unifier (minimal

supertype) is found. Type constraints are imposed by the (optional) declaration

and usage of identifiers in constrained expressions. A type judgement is formed

by deriving the type of an identifier from its definition, using the constraints to

restrict the expression’s type. If insufficient information has been provided in the

form of explicit type declaration this will be ambiguous (>T ) and if the constraints

are incompatible, the type will be undefined (⊥T ). This eliminates the distinction

between type inferencing and type checking, as all type judgements are inferred, with

declarations being just one source of constraints.

Unlike many type systems, HUSC seeks the most constrained type (in particular

attributes) that still contains all possible solutions given the relationships defined

in the module, the least general generalization. This allows more specialized func-

tion and operator implementations, allows more efficient storage models and code

generation by the next levels of Coconut.

5.5.1 Overview

The type inferencing system generally works as follows:

1. identifying constraints on data definitions from declarations and assertions

2. constraints are propagated into expressions and subexpressions based on the

available function and operator interfaces

3. type judgements are rendered for imported variables and literals, then prop-

agated back up through the subexpressions as the operands / arguments are

judged

4. as type information becomes available, attribute propagation rules are fired

over operator symbols and function class names, without regard to operator /

function interfaces
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5. the result types of operator and function applications are made based on the

join of the individual interface types, where the interfaces must satisfy the

constraints from the declarations / assertions but also the propagated attributes

The type and attribute judgements are included in the context Γ or the local

context ΓE of an expression for variables defined in the body of an expression.

5.5.2 Declarations and Definitions

A type declaration in HUSC represents a supertype constraint on the actual type of

an identifier. The actual type judgment must also take into account the derived type

from the definition of the identifier, inferred constraints from its use in the module,

and attribute propagation rules.

Functions and operators have a special set of rules that supports the implicit joins

around their applications in an expression, and the ability to define multiple interfaces

and implementations around a single function name or operator symbol. The validity

of a function definition (or operator definition) is the same as for the definitions of

other shapes.

Declaring an attribute causes an external proof obligation to be added to the

context if, and only if, the attribute cannot be derived from the definition.

5.5.3 Function Declaration and Definitions

Function names in HUSC are actually abstract classes of functions, with support for

multiple interfaces and implementations. The class declaration establishes the most

general type declaration of the function. Function implementations may then be

developed to work for either the entire range of the type interface or only a subset of

it. The function definitions then act as an interface, with the parameter and result

types specifying the context the implementation may be used in.

Unlike other identifiers, functions must be declared. Declaring a function f :

(T1..n) → R defines a class of functions represented by the function name f. Each

member of the class maps subtypes of the parameter types T1..n, to a subtype of the

result type R. Note that both the class members are covariant in both parameter and

result type, an unusual situation which is resolved by the function selection process.
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Declaring a function establishes a function context that will resolve the overloading

of the symbol f based on its parameter and result types. Note that all function

declarations and definitions must occur at the module level, not in the local body of

an expression.

Defining a function establishes an interface for that function, and optionally a

new implementation of that function. The interface is a pair (T ′
1..n, R

′) representing

subtypes of the parameter and result types respectively. Where an expression contains

an evaluation of the function class, all of the interfaces that are satisfied by the current

type context will be considered. A function interface is satisfied by the context

when the type judgements for all of the arguments are subtypes of the matching

parameters, and the function interface return type satisfies any constraints on the

result expression. Any definition of a functions must be explicit, unlike other shapes

which can be inferred or derived from a situation.

Functions may have attributes, like other shapes, that are independent of the

attributes for the parameters and result. For example, Monotonic (Increasing) could

be an attribute of a function; this might be of use in proving some property or

performing a code optimization later.

5.5.4 Operator Declaration and Definition

Operator declarations specify an interface for an operator symbol, consisting of the

operand and result types, and optionally attributes of the operator itself. An operator

definition is (optionally) included in the local body of an operator declaration, and is

associated with the interface. There may be more than one implementation associated

with the same interface, but syntactically each implementation is associated with a

distinct copy of the interface.

5.6 Expression Types

Expressions in HUSC consist of factors (literals, variables or function applications)

and unary or binary operators applied to those factors. The type of an imported

variable is assumed to be its declared type, although additional constraints may be
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added to its type to support attribute assertions.

Literals have an automatic type judgement that includes a singleton range at-

tribute, namely the value of the literal. The type is fixed by the parser when it is

interpreted. More literal interpretations for multidimensional arrays should be added,

or a constructor to build these out of linear arrays, remembering the arrays must be

rectangular.

Variable types are derived from the definition of the variable, inferred from the use

of the variable, and may explicitly declared. Where the type is declared, the derived

(or inferred) type of the expression must be a subtype of the declared type.

5.6.1 Function Evaluation

The Coconut system accepts multiple possible implementations for each function

evaluation, where each implementation must provide a semantically equivalent result.

This is represented by a “joined” expression, where the value of the join is the value of

any one of the member expressions, and each member expression is an implementation

of an interface that is a supertype of the required interface. In other words, Coconut

selects from all of the available interfaces that satisfy the type constraints demanded

by the context of the function usage.

A function interface satisfies the constraints of a term if and only if:

• the arguments are subtypes of the parameters

• the result type, augmented by the propagation of attributes not specified in the

interface, but included in either the argument types or as constraints on the

term evaluation, satisfies all of the constraints on the term.

In other words, a function interface that does not specifically include an attribute

class may still be used in a term where that attribute class is present, as long as

the rules for attribute propagation prove that the implementation of the interface

supports the propagation of the attribute class to the result.

No assumption is made that a single function interface satisfying the entire domain

exists, nor that there will be any interfaces that satisfy the specified interface, if it is

overly constrained. If no interface satisfies the constraints of the specification, a type

error is issued.
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5.6.2 Operator Evaluation

An operator consists of a syntactic symbol and a set of interface / implementation

pairs. A symbol must have a constant precedence, fixity and arity to be used in an

expression; infix, postfix, prefix are supported.

An operator interface consists of a type for each operand and the result. There may

be multiple implementations, or no implementation, for a given interface within the

context of a module; each implementation must be semantically equivalent. The value

of an operator is the join of all of the implementations with satisfactory interfaces

evaluated at it’s operands, where the value of the join is the value of any one of the

member expressions.

An interface is satisfactory if it satisfies all constraints on its result type and the

operands are subtypes of the interface operand types. An operator interface satisfies

the constraints on a term if and only if:

• the arguments are subtypes of the parameters

• the result type is a subtype of the meet of all of the constraints on the term

• the result type augmented by the propagation of attributes not specified in the

interface, but included in either the argument types or as constraints on the

term evaluation, satisfies all of the constraints on the term.

In other words, an operator interface that does not specifically include an attribute

class may still be used in a term where that attribute class is present, as long as the

rules for attribute propagation prove that the implementation of the interface supports

the propagation of the attribute class to the result.

5.6.3 Domain Testing on Dimensioned Types

Domain and bounds checking of dimensioned types is part of the type checking / infer-

encing within HUSC. The index expressions are explicitly constrained to be integers

within the range of the appropriate dimension of the domain. This works whether

or not the domain is explicitly defined; where it is not explicitly defined, variables

representing the dimension bounds are generated.
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The formal rules for the bounds checking are built in to the definition statements,

but testing that the partial domain do not overlap and do cover the full domain was

not fully implemented. It is possible in some circumstances to verify that the set of

partial definitions form a complete but unambiguous definition as a partition of the

domain. Some checking of domain consistency has been implemented in the current

system, but only where domains are adjacent ranges of integers, with the bound

between ranges being numeric or using at most one common variable. For example

in the following the partial definitions for A would be shown to be total, but for B

this could not currently be verified.

A[0] = 0; for j = 1..n-1 A[j] = j; A[n] = 0

B[0] = 0; for j = m..n B[j] = j; B[endval] = 0;

m = 1; endval = n;

In order to deal with this issue, a greater level of symbolic computation would be

required within HUSC. It should be possible to use (or adapt) existing constraint

solvers to test the partitioning of a domain by subdomains, even where the bounds

are defined symbolically.

When the domain cannot be verified as partitioned, there is an outstanding un-

resolved constraint indicating this failing. It is quite reasonable for a HUSC module

to have such an unresolved constraint, especially where the domain is based on input

definitions, but the compilation cannot be considered complete and well-typed until

the context supplies sufficient information to conclude the definition is total.

5.7 Proof Obligations and Run Time Tests

This section provides an informal definition of how attributes may be asserted or

tested for in the module context, attribute propagation rules, and how external proof

obligations are tested or eliminated. The formal definition is provided in A.3.

The module context contains the definitions and type judgements for a mod-

ule. The type judgements include subtype, shape and attribute judgements, where

attribute judgements represent constraints that are demonstrably satisfied by an ex-

pression or definition. Where this proof cannot be derived from the context, based on
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the typing rules or attribute propagation rules, the proof must be supplied in some

other way.

5.7.1 Run Time Testing of Constraints

The attribute class definition may include a run time test function, a Boolean valued

function that is True if the tested expression satisfies the constraint of the attribute.

Run time tests are an obligation on the Coconut system to incorporate run time checks

on the value of the expression to ensure that the constraint imposed by the attribute

is always met. Should the state fail to satisfy the constraint, an exception is raised

and the computation results in ⊥. If this test function is not supplied, satisfaction

of the attribute may not be tested at run time. The Coconut code generator is free

to implement run time tests in any way, but the obligation for correctness is on the

system.

When a module imports definitions from another module, it inherits all of the

run time test obligations associated with the imported identifiers. Some of these may

be resolved by the context of the importing module, in which case Coconut will not

incorporate the run time tests in the generated code.

5.7.2 External Proof Obligations

Proof obligations represent constraints on expressions that were not derived or tested

within the HUSC program. In order to consider the use of the program safe and

accurate, the user of the program must be satisfied that all of the proof obligations

are met. Obligations can be met by specification, testing, (non-Coconut) proofs or

any other strategy that satisfies the user. No checking will be performed to ensure this

is the case. Each module in Coconut will have a set of proof obligations, a detailed

specification for its safe use.

When a module imports definitions from another module, it inherits all of the

proof obligations associated with the imported identifiers. Some of these may be

resolved by the context of the importing module, others may become part of the

proof obligations of the new module. When a program is generated from the module

the remaining proof obligations are made available as an associated file,
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Attribute Consumption and Propagation

The interface to a function specifies the attributes that must be part of the parameter

and result types. These result attributes are considered introduced by the function

interface, while these parameter attributes, including the attributes of any dependent

type expressions, are considered to be consumed by the function interface. The type

system then attempts to prove the result attribute satisfaction based on the function

implementation and the types of the terms it is applied to. If this is unsuccessful, and

no run time testing was requested, a proof obligation is generated for the function

evaluation for those terms. Note that since the actual argument may be a subtype of

the parameter type, the specified attribute values may represent tighter constraints

than necessary for the interface, and therefore may have fewer proof obligations than

the interface in general.

When the argument type of the term contains attributes of a class not specified by

the interface, or when the type of the term is constrained with an attribute not part

of the result interface. these attributes may be propagated. Attribute propagation

is governed by rules included in the attribute definition, and is based on pattern

matching over typed expressions.



Chapter 6

Type System Implementation

There are four main modules to the type system. The main module is Constraint.pl

is a CHR module, which is written and compiled in Prolog, but uses an extensive

extension to Prolog’s semantics. The last three (subtype,attribute and context.pl)

are ordinary Prolog files, and are included by constraint.pl.

This chapter includes an overview of

• CHR semantics

• the internal representation of types

• the constraint handling rules implementation of the type semantics

• subtype implementation

• attributes

• managing the internal context, arithmetic and logical operations

This is followed by the detailed literate source code with documentation for each

module.

6.1 Constraint Handling Rules

CHR is a term rewriting system in which the terms are a constraint name and a list

of arguments, either variables or constants. The rules consist of a head, which is a

81
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pattern of one or more constraints, a Boolean valued guard, and a body of constraints

that will be added when the rule is fired. The system searches the current constraint

context for matches for each rule, unifying the variables in the rule with those of the

stored constraints, then executes the rule if the guard is satisfied. This continues

until no more rules can be executed, or the system generates a failure condition.

There are three kinds of rules:

propagation just creates new constraints, leaves the existing constraints in the head

simplification deletes all of the constraints in the head

simpagation a combination where a specified subset of the constraints of the head

are preserved, and the rest are removed; this is redundant but improves legibility

(and offers a small optimization)

Once a constraint has been tested for its applicability in a specific rule, a token

is generated to avoid having it tested again until there is a change. This allows

the system to terminate only after testing all rules against all remaining constraints.

However, if a constraint contains a free variable argument, and that variable becomes

ground through its participation in another constraint, then the tokens are erased

and the constraint again tested.

The rules are tested in a term first order, meaning the first constraint from the

goal is tested against all of the rules before the next constraint is considered. If new

constraints are generated, they are immediately tested in the order introduced against

the rules. The rules are tested in top to bottom sequence. While the CHR system on

its own is confluent, and it is hoped the HUSC type system is too, the performance

of the system can be dramatically improved by having the rules fire in an appropriate

order.

The full definition of the CHR system is available in [6].

6.1.1 Soundness and Termination Properties of CHR

The CHR subsystem is confluent, sound and complete, when the rule system im-

plemented in CHR is confluent, sound and complete. While necessary, there are no

proofs that the HUSC system exhibits any of these properties.
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In [13], Sulzmann describes an extensible Hindley/Milner type system called

HM(X), where X represents additional constraints. He implements it in CHR, but

more importantly proves soundness and completeness for the HM(X) type system,

given the restriction that each rule in X has a single constraint in the head.

The HUSC type system does not satisfy this rule, as many of the rule heads contain

more than one constraint. However, there are two specific types of multiheaded rules

that are used that might be more manageable for soundness proofs:

1. Rules where the head consists of only one dynamic constraint, and a set of

static constraints, meaning constraints that are never altered by the constraint

system. Since these are semantically identical to rules where the existence of

the constraint is transformed to a guard looking for a fact, it is likely they will

not pose a problem.

2. Strengthening rules take two like constraints and produce one that meets both

conditions, replacing the original two. This is what the join and meet rules do,

and this special type of rule will likely pose no problems to soundness.

This is just conjecture at this point, but it does lend confidence in the search for

soundness and completeness proofs.

Confluence is of particular concern. A type judgement for a variable cannot be

complete until all of its constraints are identified. CHR’s operation semantic when

faced with a multi-constraint goal is to fire all rules against the existing constraint

store, until these are exhausted, then pull in the next constraint from the goal. Rules

are tested in the order they are presented in the file, which does help somewhat.

While ideally HUSC would present the variable definitions in the top down order

of the graph, it is impossible to guarantee that all constraints are present until the

goal is completely loaded. To handle this, when a new constraint is encountered for

a variable that has a type judgement, and the type judgement does not satisfy the

constraint, it is erased, the new constraint is absorbed into the total constraints on

the definition, and the type judgement process begins again (because the updated

new constraint causes it to begin again). The very limited testing of this scenario has

shown it to be successful, but further testing would be advised, perhaps as part of

proving the confluence properties of the system.



6. Type System Implementation 84

6.1.2 Representing HUSC Type Semantics as CHR Rules

Note that definitions and expressions are implemented as CHR constraints instead

of Prolog predicates, but could have been implemented either way. Consider a CHR

simpagation rule acting on a static fact lit(a,Int). Then the first rule, with lit a

”static” constraint,

lit(a,Int) \ chr1(b,c) <=> chr2(b)

chr1(b,c) ==> lit(a,Int) | chr2(b)

can be replaced with the second where a is now a Prolog fact. Both are loaded with

the definitions module, both delete chr1(b,c) and add chr2(b), the only difference is

that the rule selection process within CHR. It was not clear which approach would be

better, but a performance hint from the CHR site suggested avoiding guards where

possible, so the former approach was selected.

6.1.3 Representing HUSC Types in Prolog

Types are represented as the predicate t/3 in the type system, with t/2 being the

name and shape of a type without its attributes. Types consist of a name, list of

dependent variables wrapped in the internal term predicates, and for t/3 the list

of attributes as internal attribute representations. Pure generic HUSC shapes are

encoded in the same fashion, with the name of the type being the name of the shape

(e.g. Function).

Dependent variables are either type terms or data terms, represented by tt and

dt predicates respectively. A type term is either a type (t) or a type variable with

a supertype (tv, t) =⇒ tv � t. Data terms are in the form dt(pt, val), where pt is

one of the internal types: int, float or boolean, or an interval (val1,val2) or list [val1,

val2, ...] of the above, and val is either a literal or a single variable instance.

Attributes are represented by attr(class, property), where the class name is an

atom and the property is encoded in a data term. Note that this restricts the prop-

erties of attribute classes to integer, float, boolean and intervals or lists of these.

Conventions define the makeup of the dependent variable lists for function and

dimensioned shape descriptions. These are important both as examples of the internal
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type description, and necessary to understand the underlying resolution mechanism

as it applies to shapes.

t(Function, [tt(return type), dt(num parms), tt(parm1type), tt(parm2type)...])

t(Array, [tt(element type), dt(rank), dt(interval(int), rng1), dt(interval(int), (l,u))...])

It is clear here that an array is a subtype of a function, but with a domain guaranteed

to consist of the cross product of integer intervals. This subtype relationship may

even be included in the array prelude file, if desired, although traditionally scientific

programmers view arrays as storage structures not functions. It might be interesting

to model linear operators as arrays and explore the subtype relationship between

matrices and functions.

The internal representations, along with some simple arithmetic and logic func-

tions, form the basis of a rudimentary symbolic computation system that allows

dependent type variables and attributes to be evaluated. This system would not suf-

ficient for production use, nor has it been well tested, but it is sufficient to verify the

approach taken. Ideally, a full symbolic expression evaluator would be incorporated

to manage the base arithmetic, and a HUSC interpreter would be used to generate the

base level code for dependent variables and attributes with properties that are more

complex HUSC types. A design and implementation for this would be a significant

challenge, and restrictions may have to be placed on the types of dependent variables

and attribute property types.

It is not necessary for named types to be stored in the same format as their

underlying shapes, and in fact it is not even necessary for any of the shapes to exist,

although HUSC without a function shape would be a mere shell.

6.1.4 Pseudo-literate Prolog

SWI-Prolog does not support literate source code. A quick and dirty solution to this

problem is to use the following approach:

/* \begin{verbatim}

... latex ...

*/ %\end{verbatim}
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(without the % in front of end), which is quite simple and effective, but does leave ”/*”

and ”*/” scattered throughout the documentation. There are a number of generic

packages for supporting general literate code writing, but this will suffice.

6.2 Implementation Overview

This section briefly describes each of the four modules that make up the type system.

This includes key implementation decisions, observations and issues. It also serves

as a guide to allow selective browsing of the detailed information in the modules

themselves.

6.2.1 Constraints

This is the main module for the type system. There are a number of subsections in

this module.

Main Clauses the goals to load the generated type and definitions files then run

the type system

Constraint Generation CHRs to generate shape and attribute constraints from

the module definitions

Constraint Resolution CHRs to resolve shapes and attributes from function in-

terface definitions and attribute propagation rules.

Attribute Rules CHRs that define joins, meets and propagation rules for attribute

classes. These are supposed to have been generated from the HUSC attribute

class definitions, but that has not been done yet. For now, the rules for Range

and Symmetric are hard coded.

Constraint Arithmetic CHR solvers for Boolean and some simple Integer arith-

metic. Used to support the attribute propagation, join and meet rules. These

are based on CHR solvers from K.U.Lueven CHR web site.
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These should really be multiple modules, but it appears that CHRs must all be

in the same module, or at least that a constraint invoked in an included module does

not become available in the constraint system in the including module. More work in

this area, including contacting the authors of the CHR tools, should be done as the

current module is too large and unnecessarily confusing.

6.2.2 Subtype, Join and Meet Predicates

This module handles the join, meet and subtype clauses for named types and shapes

with dependent variables. Shape rules are hard coded in HUSC, and generally force

shapes to be identical to be compatible. Named types explicitly define their supertype,

which is stored in the explicitly subtype hierarchy.

The join implementation has one small twist that might be confusing. The join

of two types with dependent variables is the join of the resulting type, namely the

first dependent variable in the representation, and the meet of all of the remaining

terms, with the meet of every data term being equality or failure (bottom). This is

effectively saying that the join of functions with typed parameters is contravariant in

its relationship with the joined function parameter types, and covariant in the result

type. This might seem at odds with the definition of a function interface, which is

covariant in both result and parameters, but the function interface is a parameterized

data definition, not a type definition, and represents a specialization of the function

class and must be explicitly supported by the type context it is used in.

The process of evaluating these relations is largely managing an internal context

for dependent variable expressions, resolving equality, bounds (less / greater than)

and sub / super type relationships. This is handled in the context module, described

here 6.2.4

6.2.3 Attribute Predicates

This module contains the generated predicates for the attribute class specific sub-

attribute relation. It is currently hard-coded with the predefined attributes, but is

intended to be generated from HUSC modules.
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It also contains mechanics to evaluate a list of subattribute relations in a common

context, which is required to support the subtype relation implementation.

6.2.4 Context Predicates

This module contains some very mechanical Prolog predicates to manage contexts

for dependent variables. These support equality, bounds (lt,gt) and sub/super type

relations between expressions (atoms).

A function / operator interface satisfies a type context if and only iff:

1. the interface result type is a subtype of the result expression type

2. each argument expression type is a subtype of the matching interface parameter

type

There is a significant implementation detail in this assessment; any shape or named

type judgement (et) that includes dependent type arguments must be true in a shared

data context with the other dependent arguments. For example, in this example

module example

export(C:: Array[-n..5] of Real)

import(n::Integer)

{

Let A be Array[-10..n] of Real;

Let B be Array[-10..5] of Real;

A = ... ;

B = ...;

C = A + B;

}

The addition operator for arrays demands that the dimensions of the operands and

result be identical. Testing the arguments A and B against the operand types will

require the result to be of dimension -10..5, accomplished by letting n=5. Testing the

result type will require the answer to have dimensions -n..5, accomplished by allowing

the result type to be -10..5, with n as 10. Since this is not possible, the type of C

should be reduced to type bottom to flag the error.
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This problem is resolved by testing the result and parameter types in the Prolog

predicate matchlist, from the context.pl file. This maintains a local dependent vari-

able context, for integer, boolean, float and type variables. Equality, less / greater

than and subtype relations are managed in the context, and if the context cannot

be unified, the predicate reports a failure. This failure stops the function / operator

interface candidate from being incorporated into the join, leaving the join candidate.

Note that the context management can also be used for the module data context

when that is implemented. The global context contains literal and imported data

items of type Integer, Real, Boolean, and type variables with their associated super-

type. As computations requiring dependent variables be updated, this global context

is passed into the local context, and then any modifications to the global values are

pulled from the output local context.

It is unclear whether the Prolog system or the local CHR subsystem should be

used to judge module level constraints on data items. The Prolog system is more

complicated, and will likely have more difficulties with very complex systems, but

provides immediate response to failed constraint unification that can prevent an in-

valid decision and clearly identify the context of the error. The CHR system will

maintain the data and type variable constraints for very complex systems easily, but

once a context error is identified, the system has already invoked the rule that gener-

ated the error. The system must then either just fail, or actively reverse the previous

decision. Additional work will be required to resolve this decision, and this has been

left to the future work category 1.

6.2.5 Summary

The fundamental structure of the type system worked well over the very limited

range of examples that were tried. The Constraint Handling Rule language was a

near perfect fit for the lattice structure of the type system. The main problem with

CHRs was the inability to use multiple modules, and there might be a work around

to that problem (or future releases might support this as a new feature). Otherwise

the implementation was straightforward.

1Implementing these approaches would not be very time consuming, but validating their correct-
ness will be.
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Although there are a substantial number of Prolog predicates in use, translating

the system to a functional programming language like Haskell would probably make

the development of a production strength system easier. Almost all of the Prolog

predicates are used as functions, with the ability to backtrack used only in resolving

a types base type using its dependent arguments. There are a significant number of

cuts to prevent the code from wasting time backtracking needlessly.

The biggest problem was in managing the variable context during dependent argu-

ment inferencing. This was managed for the limited internal types (int, float, boolean,

type variables) in the local contexts fairly well, ensuring that a list of subtype judge-

ments were internally consistent. Then ensuring that any values or constraints as-

signed to declared variables that appear in a dependent variable expression are used

consistently throughout the module evaluation would require maintaining a module

context for all data terms of integer, real or boolean type.

It might be worth re-examining implementations of CHRs in Haskell. CHR should

be straight forward to implement in Haskell, it fits the state monad model very well

and the semantics are quite clear. There is an implementation currently available

that might be sufficient to manage the type system, this could be explored further. If

it were in Haskell, the internal context could be managed by a full HUSC interpreter,

which could then support all HUSC types that had sufficient definitions to support

them as part of the type system (perhaps with a bit of bootstrapping). That approach

would simplify the code and make proving properties about (and maintaining) the

system far easier, while also eliminating the burden of translating the data structures

too and from Prolog.

/*

6.3 CHR Type Inferencing

This is the main module in the implementation of the HUSC type system as a Con-

straint Handling Rules (CHR) program. It uses the CHR library implemented in

SWI-Prolog (and compatible with SICtus Prolog) by K.U.Leuven, Belgium, http:

//www.cs.kuleuven.be/~toms/CHR/index.html.

All of the constraints are in the main module, because it appears that constraints
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can’t be used across module boundaries. This seriously reduces the clarity of the

algorithms, and may be a misunderstanding, so should be reexamined in the future.

It loads Prolog predicates from the following modules:

subtype predicate implementing predicate relation.

attribute predicates implementing subattribute relation for individual attribute classes,

and some generic subattribute relations (e.g. A(ρ) �A A(ρ)).

context a set of predicates that manage a list based local variable context used

when determining if a function arguments are a subtype of the function inter-

face, resulting in multiple subtype evaluations over a common local expression

context.

*/

:- use_module(library(chr)).

:- use_module(subtype).

:- use_module(context).

:- use_module(attribute).

/*

6.3.1 Unavailable Prolog options

The following options were extracted from the constraint solvers incorporated into the

type solver. They are not implemented in the SWI implementation, but have been

included in the documentation in the event a Sictus implementation is considered.

• :- handler husctype % from Sictus, necessary to run WebCHRs.

• :- chr option(already in heads,on). % useful optimization for replacing con-

straints

• :- option(check guard bindings, on). % for = /2 with deep guards.
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6.3.2 Operator Definitions

These operators are used in some of the CHR handlers for arithmetic and max / min

problems.

*/

:- op(700, xfx, lss). %% less than

:- op(700, xfx, grt). %% greater than

:- op(700, xfx, neq). %% not equal to

:- op(700, xfx, geq). %% greater or equal to

:- op(700, xfx, leq). %% less or equal to

:- op(700, xfx, ~=). %% not identical

/*

6.4 Main Constraints

This section includes the three main processing goals, and lists all of the predicates

that are to be treated as constraints by the CHR subsystem. The CHR system is

implemented using attributes associated with the predicates to maintain an extensive

information store with each predicate and predicate argument. This declaration is

mandatory, and any predicate name used as a CHR will not also be used as a standard

predicate.

The main goal is go, which loads the types (as clauses) from modname types.pl and

the clause run from the module definitions file modname defs.pl. These are the files

generated by the HUSC parser, with modname being the name of the main program

module. It then invokes the run goal, which consumes the constraints representing the

module definitions and declarations, and evaluates type judgements for variables and

join candidates for operator and function evaluations. It also tests type definitions to

ensure each defined type is a subtype of its base type (even if the subtype relationship

is explicitly cancelled), removing types that do not satisfy this from the store (and

recording the error).

The cleanup predicate extracts the constraints remaining in the constraint pool

after all rules have been tried. Significant information, namely
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vt type judgements for variables

joinex operator / function interfaces selected to be part of an implicit join

xpfbol external proof obligations as an expression and attribute to be proven

error any errors logged in the process

is written to the modname results.txt. A number of constraints will be left behind as

a result of normal processing, and these are written to a log file modname log.txt to

support debugging HUSC programs. These are:

joincan operator / function interfaces rejected from a particular implicit joined ex-

pression.

attrule attribute rules that were pulled in because they matched an operator ex-

pression by symbol (or function name) but were rejected based on the types of

the operands / parameters.

*/

:- chr_constraint

et/2,ec/2, joinex/4,

unop/3,lit/2,var/2, binop/4,fnapp/3,

arraydef/3,fnimp/3,qualuniv/2,

vdecl/2,vt/2,vdef/2,

genecs/2,genacs/2,genobls/2,genattrcons/2,

genattrules/2,attrule/3,

ac/2,allacs/2,xpfobl/2,rttest/2,attrcon/2,

attrjoin/4,attrmeet/4,

genjoincan/3,joincan/3,

cocon_and/3,cocon_or/3,cocon_xor/3,

cocon_not/2,cocon_imp/2,cocon_eq/2,

add/3,neg/2,

(~=)/2, (leq)/2, (lss)/2, (neq)/2, min/3, max/3,labeling/0,

error/2.
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go(F) :- atom_concat(F,’_types.pl’,TF),consult(TF),

atom_concat(F,’_defs.pl’,DF),readGoalFromFile(DF,G),

asserta(G),run(DF).

readGoalFromFile(F,G) :-

open(F,read,S,[eof_action(eof_code)]),

read_term(S,G,[singletons(warning)]),

close(S).

/* cleanup will eventually write the output files */

cleanup(F) :- write(F).

/*

6.5 CHR Constraint Generation

The first kinds of constraints are representations of the underlying definitions.

6.5.1 HUSC Constraint Predicates

HUSC generates constraints that restrict possible type judgements. Constraints for

shape and each individual attribute class are issued and resolved separately. All of

the individual attribute constraints applied to an expression are collected up in a list

in order to process a variable length attribute list, this list is initialized to empty here

for each expression. There may very well be a better strategy for this.

Note that there is an overloading to the word ”constraint”, which sometimes

means a predicate managed by CHR subsystem, and sometimes means a true HUSC

constraint

t(n,deps,attrs) is the internal representation of a HUSC type, with the type name

n, a list of dependent variables, and a list of attributes. If there are dependent

variables, the first MUST be the returned type as an expression of the dependent
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variables over the type. If there are no dependent variables, the name of the type

is the total type description and therefore the returned type. The remaining

dependent variables are either data or type terms, their order and make up is

shape dependent.

allacs(e,[ac1,..,acn )] expression e has ac1,..,acn attribute constraints

ec(e,t) expression e is constrained to be of shape t (no attributes); t is used in ec

constraints throughout the code instead of s for anachronistic reasons

genattrcons(E,t) creates an attribute constraint for each attribute in type t

6.5.2 HUSC Factor predicates

Factors include literals and variables, expressions in parentheses have alredy been

absorbed into the syntax graph. Note that HUSC variables are represented as Prolog

atoms, not Prolog variables. Only dependent variables in type definitions are repre-

sented as Prolog variables, which are used to instantiate specific instances of the base

/ supertype of a named type with dependent parameters.

These are static constraints that are never modified or erased during processing

of the CHR rules.

lit(e,t) expression e is a literal of HUSC type t (with attributes); a literal is con-

strained to be an very restricted type including attributes, e.g. the range of a

literal integer of value n is (n..n)

var(e,var1) expression e is an instance of var1 shape and attribute constraints on an

expression that is a variable instance are applied to the variable, and therefore

to it’s defining expression

vdecl(var1, t) var1 is declared to have HUSC type t, including attributes

vdef(var1,e) variable var1 is defined by expression e the constraints on the variable

declaration are applied to the expression defining the variable
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*/

lit(E,t(S,SAs,SAttrs)) ==>

allacs(E,[]),et(E,t(S,SAs)),genattrs(E,t(S,SAs,SAttrs)).

vdef(V,E),vdecl(V,t(T,TAs,TAttrs)) ==>

ec(E,t(T,TAs)),genattrcons(E,t(T,TAs,TAttrs)).

var(E,_) ==> allacs(E,[]).

var(E,V),ec(E,t(T,TAs)),vdef(V,E2) ==> ec(E2,t(T,TAs)).

var(E,V),vdef(V,E2),attrcon(E,A) ==> attrcon(E2,A).

/*

6.5.3 Operator and Function Applications

Operators and functions are the join of all possible interfaces that return a type

satisfying the constraints on the expression and is satisfied by the operand / argument

types. They are treated the same way, but have different CHR representations, and

the number of operands is fixed while the arguments are in a list. This could be

entirely replaced with the variable arguments list, but it is convenient to experiment

on the operators first, without the extra level of indirection caused by processing the

lists.

Again, these are static constraints that are never eliminated or modified during

the rules processing.

unop(e,op,e2) expression e = op e2

binop(e,op,e1,e2) expression e = e1 op e2

unop(e,op,e2) expression e = f(e1,`,en)

Operators and function applications are resolved by first getting the class defi-

nition of the op/func and applying those constraints to the result / operand types.

Operator definitions are the result of HUSC operator definition statements; function

class definitions from declarations of identifiers as function types. These are loaded

as Prolog facts from the type definitions file.
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The class definitions describe the most general usage of the operator symbol or

function name. For operators, this is often completely open, or in HUSC terminology,

mapping type top (>T ) to top. For functions the constraints are usually more useful,

for example sinusoids map a real to a real in the range (-1,1). These default constraints

are applied to reduce the number of choices for argument expression type judgements.

The shape and attribute constraints from the operator and function class defini-

tions are applied to the result and operand expressions. For functions, a new CHR

constraint is created to apply the constraints from the generic parameters.

op1def(Op, rt, pt) defines the generic operator symbol Op :: pt → rt

op2def(Op, rt, pt1,pt2) defines the generic operator symbol Op :: pt1, pt2 → rt

fndef(F,rt,[pt1,..,ptn )] defines function class F :: pt1 → ` → ptn → rt

findall(Attr, reg attrule(OpF, AttRule), AttRs) a Prolog predicate to retreive

all of the attribute propagation rules that apply to a particular operator or

function symbol.

genattrules(Attrs, [result expression, operand expressions )] propagates a list

of attribute constraints to a list of expressions.

genjoincan(E,F,FIs) propagates a list of join candidates for function / operator F,

function / operator interface FI.

Any attribute rules that match the expression are executed to infer new constraints

on arguments / operands, or derive support for attributes (i.e. satisfies the constraint)

of a result. This is the only way attribute constraints can be inferred for operands

/ function arguments; otherwise they must be explicitly declared in the function

interface or declared / asserted as part of a variable definition.

Finally the list of available interfaces for the operator / function are searched

looking for candidates for the join. This grabs all possible interfaces, their suitability

given the context is determined later.

funcifs(F,FIs) collect all function / operator interfaces for the symbol or function

name
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genjoincan(E,F,FIs) wrap a CHR constraint around the interfaces as prospective

join candidates for an expression.

Note that it is critical to evaluate the attribute rules first, meaning that genattrules

must be invoked before genjoincan, so join candidates can be selected based on the

new attributes derived / inferred by the rules.

*/

unop(E,F,E1) ==>

allacs(E,[]),op1def(F,R,P1),

minsupt([],R,RC),minsupt([],P1,P1C),

findall(AttR,reg_attrule(F,AttR),AttRs), funcifs(F,FIs) |

ec(E,RC),ec(E1,P1C), genattrules(AttRs,[E,E1]), genjoincan(E,F,FIs).

binop(E,F,E1,E2) ==>

allacs(E,[]),op2def(F,R,P1,P2),

minsupt([],R,RC),minsupt([],P1,P1C),minsupt([],P2,P2C),

findall(AttR,reg_attrule(F,AttR),AttRs),funcifs(F,FIs) |

ec(E,RC), ec(E1,P1C), ec(E2,P2C),

genattrules(AttRs,[E,E1,E2]), genjoincan(E,F,FIs).

fnapp(E,F,Args) ==>

allacs(E,[]),fndef(F,R,Parms),

minsupt([],R,RC),minsupt([],Parms,PCs),

findall(AttR,reg_attrule(F,AttR),AttRs), funcifs(F,FIs) |

ec(E,RC), genecs(Args,PCs), genattrules(AttRs,[RC|PCs]),genjoincan(E,F,FIs).

genattrules([],_) <=> true.

genattrules([(AC,R)|AttRs],Es) <=> attrule(AC,R,Es),genattrules(AttRs,Es).

genjoincan(_,_,[]) <=> true.

genjoincan(E,F,[FI | FIs]) <=> joincan(E,F,FI),genjoincan(E,F,FIs).

/*
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Operator and Function Definitions

The op1def / op2def predicates find operator class definitions based on the symbol,

and return their parameter types. If there is no specified class definition, the operator

is assumed to be Top-¿Top or (Top,Top)-¿Top. i.e. it provides no constraint on it’s

operands or results.

The fndef predicate finds the matching function definition as a funclass predi-

cate. The funclass predicates are function class type declarations; these are part of

the module types.pl along with the other type definitions generated by the HUSC

parser. The confusion between function class declarations, function type definitions

and function interfaces should be examined; there may be a cleaner way of handling

these concepts.

Function and operator interface definitions are written by CocoTypes module into

the type definitions file. All definitions for the operator / function name are returned

in a list. The parameters of the funcintf predicate, representing a function interface,

are:

funcintf(funcname, funcif name, return type, num parms (dt), list of parm types[tt(),...]

*/

% this is the default operator Top->Top, or Top->Top->Top.

funclass(t(cocoop1,[tt(t(’Top’,[],[])),dt(int,1),

tt(t(’Top’,[],[]))],[]),_,_,_).

funclass(t(cocoop2,[tt(t(’Top’,[],[])),dt(int,2),

tt(t(’Top’,[],[])),tt(t(’Top’,[],[]))],[]),_,_,_).

op1def(F,R,P1) :- funclass(t(F,[tt(R),dt(int,1),tt(P1)],[]),_,_,_).

op1def(_,R,P1) :- funclass(t(cocoop1,[tt(R),dt(int,1),tt(P1)],[]),_,_,_).

op2def(F,R,P1,P2) :- funclass(t(F,[tt(R),dt(int,2),

tt(P1),tt(P2)],[]),_,_,_).

op2def(_,R,P1,P2) :- funclass(t(cocoop2,[tt(R),dt(int,2),

tt(P1),tt(P2)],[]),_,_,_).

fndef(F,R,Ps) :- length(Ps,N), maplist(wrapparm,Ps,TPs),
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funclass(t(F,[tt(R),dt(integer,N), TPs]),_,_,_).

wrapparm(P,TP) :- TP = tt(P).

funcifs(F,FIs) :- findall(FI,funcintf(F,FI,_,_,_),FIs).

/*

6.5.4 Attributes Constraints

Type declarations from HUSC have both shape and attribute constraints embedded

in the same definition. This is decomposed into a shape constraint (ec) and then

attribute constraints (attrcon) that force an expression to satisfy an attribute con-

straint. The list processing constraint genattrcons generates a constraint for each

attribute in the type. Note that forcing an expression to support a constraint is not

a type judgement nor does it indicate that the expression does satisfy the constraint

the attribute represents.

When there are two attribute constraints of the same attribute class for the same

expression, replace the attribute constraint with the ”meet” of the attributes using

the meet CHR rule defined for that attribute class (in this file). Named type / shape

constraints are also merged with a meet, but this meet is a Prolog predicate from

the subtype.pl file, which handles dependent type arguments and the explicit named

subtype hierarchy.

Meets are idempotent, and many duplicate constraints get generated, so strip out

identical duplicates, regardless of attribute class.

A newly defined type has an optional set of attributes associated with it, but

the type it is based on may also attributes. These attributes are inherited from the

supertype, and are merged with the new attributes by meets when of the same class.

ec is a shape constraint on an expression.

genecs zips a list of expressions with a list of shape constraints.
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*/

/*

* Hierarchical attributes, disabled for now.

* should probably make this part of the type definition validation anyways.

* genattrcons(_,t(top,[],[])) <=> true.

* genattrcons(E,t(S,SAs,[])) <=>

* type(t(S,SPs),t(T,TAs,TAttrs),_,_),matchlist(SAs,SPs) |

* genattrcons(E,t(T,TAs,TAttrs)).

*/

genattrcons(_,t(_,_,[])) <=> true.

genattrcons(E,t(T,TAs,[A|As]))

<=> attrcon(E,A),genattrcons(E,t(T,TAs,As)).

attrcon(E,A) \ attrcon(E,A) <=> true. %% absorb duplicate

attrcon(E,attr(AC,V1)),attrcon(E,attr(AC,V2))

<=> attrmeet(AC,V1,V2,VM) | attrcon(E,attr(AC,VM)).

genecs([],[]) <=> true.

genecs([A|As],[P|Ps]) <=> ec(A,P),genecs([As|Ps]).

ec(E,T) \ ec(E,T) <=> true. %% absorb duplicate

ec(E,t(T,TAs,[])) <=> ec(E,t(T,TAs)).

ec(E,t(T,TAs,TAttrs))

<=> (not(TAttrs=[])) |

ec(E,t(T,TAs)),genattrcons(E,t(T,TAs,TAttrs)).

ec(E,T1),ec(E,T2) <=> meet(T1,T2,S) | ec(E,S).

/*

6.6 Constraint Resolution

This is the type judgement part of the system. At this point in the file, constraints

have been generated and merged with meets. Now we find types, shapes and at-
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tributes that we are sure of, and propagate them back up the expressions to make

sure constraints are satisfied. Named type / shape / dependent arguments for expres-

sions are encapsulated in an expression type judgement (et), with attribute support

being separate (ac). For variables in a variable type judgement (vt), with the at-

tributes bundled into the type description.

ac(E,attr) indicates expression E supports the attribute instance attr

et(E,t) indicates expression E is shape t or a supertype of t

vt(V,t) at the end of processing, this indicates variable V is of type t (with at-

tributes), multiple vts may be generated and joined during processing.

genacs(E,t) generates attribute supports (ac) for each attribute the type t.

allacs(E,attrs) is a list of all of the attributes supported by expression E.

Due to the operational semantics of the CHR subsystem, the genacs must come

before the et to allow attribute assertions to be satisfied and eliminated before testing

function interface suitability.

*/

lit(E,t(S,SAs,SAttrs)) ==> genacs(E,t(S,SAs,SAttrs)),et(E,t(S,SAs)).

var(E,V),vt(V,t(T,TAs,TAttrs)) ==> genacs(E,t(T,TAs,TAttrs)),et(E,t(T,TAs)).

/*

6.6.1 External Proof Obligations on Input Variables

Variables that are defined as inputs to module can absorb attribute assertions placed

on them by translating them to proof obligations for the use of the module. This is

equivalent to refining the type definition of the input definitions to the module, which

of course are also a type of proof obligation. Ideally these new obligations should be

added to the interface for the module, but this is not done automatically as there

may be a reason for leaving them out. The shape and attribute constraints that are

not supported by the type declaration of the input variable are generated as external

proof obligations. Then the attribute support is announced (ac) in either case.
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vdef(v, cocoinput(v)) the definition of v must be supplied by a module that im-

ports this one

xpfobl(v,attr(A)) attribute A is an external proof obligation for variable v for this

module.

genobls generates a list of proof obligations from a list of attributes

The external proof obligations are generated lower in the module, in 6.6.2, after

the satisfied attribute constraints are removed.

*/

vdef(V,cocoinput(V)),vdecl(V,t(T,TAs,TAttrs)) ==>

genacs(cocoinput(V),t(T,TAs,TAttrs)),

et(cocoinput(V),t(T,TAs)),

xpfobl(cocoinput(V),attr(shape,t(T,TAs))),

genobls(cocoinput(V),t(T,TAs,TAttrs)).

/*

* The following two lines do the hierarchical attributes,

* I’m skipping this for now.

* genacs(_,t(top,[],[])) <=> true.

* genacs(E,t(S,SAs,[])) <=>

type(t(S,SPs),t(T,TAs,TAttrs),_,_),matchlist(SAs,SPs) |

genacs(E,t(T,TAs,TAttrs)).

*/

genacs(_,t(_,_,[])) <=> true.

genacs(E,t(T,TAs,[A|As])) <=> ac(E,A),genacs(E,t(T,TAs,As)).

/*

* The following two lines do the hierarchical attributes,

* I’m skipping this for now.

* genobls(_,t(top,[],[])) <=> true.

* genobls(E,t(S,SAs,[])) <=>
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* type(t(S,SPs),t(T,TAs,TAttrs),_,_),matchlist(SAs,SPs) |

* genobls(E,t(T,TAs,TAttrs)).

*/

genobls(_,t(_,_,[])) <=> true.

genobls(E,t(T,TAs,[A|As])) <=> xpfobl(E,A),genobls(E,t(T,TAs,As)).

/*

6.6.2 Satisfying Attribute Constraints

Recall that the ac constraint indicates an expression satisfies an attribute, and the

attrcons constraint indicates the expression must satisfy the attribute. This next

group of rules eliminates satisfied constraints (attrcons) where possible.

An attribute (ac) removes an attribute constraint (attrcon) if it is at least as

constraining, meaning it is a subattribute. The subattribute relation is defined in

the attribute class definition, and encoded as a Prolog predicate in the subtype.pl

module.

If there are multiple attributes of the same class on the same expression, then the

expression is determined to satisfy the join of the attributes. This typically happens

over join expressions, where the each of the joined interfaces returns a result that

satisfies a slightly different constraint. The join (or least general generalization) is

then determined by the attribute class definition, given the two attribute property

values. For example, if the application of a real valued function results in two possible

interfaces for the function, returning result in the range (1.0 .. 2.0) and (1.3 .. 2.1)

respectively, then the range of the result is in range (1.0 .. 2.1), because either of the

joined interfaces could be used.

The attribute join constraints for all attribute classes are currently stored in this

module because all CHR rules must be in one module. This is not particular desirable,

because these are intended to be generated from HUSC modules, and no other code

in this module is generated. However, since all of the available attribute CHRs and

predicates are currently being hard coded this is not a problem at the moment.

Note that identical attribute supports (ac) are removed first.
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attrjoin(AC,x,y,z) get the join of the values (attr(AC,z)) for two attributes of the

same class from the class generated rules.

subattr(AC,x,y, , ) interprets the subattribute relation for attribute class AC, part

of the class generated code (the extra parameters are used for context in recur-

sive calls to subattr).

The generation of external proof obligations for new attribute constraints applied

to input variables, as described in 6.6.1, is handled here after the satsified constraints

are removed.

*/

ac(E,A) \ ac(E,A) <=> true.

attrcon(E,attr(AC,V1)) \ ac(E,attr(AC,V2)) <=>

not(subattr(AC,V2,V1,_,[])), attrmeet(AC,V1,V2,VM)

| ac(E,attr(AC,VM)).

ac(E,attr(AC,V1)), ac(E,attr(AC,V2))

<=> attrjoin(AC,V1,V2,VJ), ac(E,attr(AC,VJ)).

ac(E,attr(AC,V1)) \ attrcon(E,attr(AC,V2))

<=> subattr(AC,V1,V2,_,[]) | true.

ac(E,attr(AC,V1)) \ allacs(E,As)

<=> not(member(attr(AC,_),As)) | allacs(E,[attr(AC,V1)|As]).

ac(E,attr(AC,V1)) \ allacs(E,As) <=>

member(attr(AC,V2),As), not(subattr(AC,V1,V2,_,[])),

delete(As,attr(AC,_),OAs), attrjoin(AC,V1,V2,VJ)

| allacs(E,[attr(AC,VJ)|OAs]).

% actually, this join should be redundant, should already have joined the ac’s

allacs(cocoinput(E),As), attrcon(cocoinput(E),attr(AC,Val)) <=>

not(member(AC,As)) |

ac(cocoinput(E),attr(AC,Val)),xpfobl(cocoinput(E),attr(AC,Val)).

/*
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6.6.3 Resolving Test and Proof Obligations

An attribute (ac) will also remove the need for a run time test(rttest), and external

proof obligation (xpfobl) in the same way as it removes attribute constraints.

In the same way, the inclusion of a runtime tests satisfies an attribute constraint

or an external proof obligations.

rttest(E,A) expression E is tested at run time to assure it supports A

xpfobl(E,A) attribute A must be supported by E is an external proof obligation for

the module.

Note: one pf obligation may spawn many assertions through inference rules.

Note the first two rules don’t apply to input (imported) definitions, which were

handled in 6.6.1.

*/

ac(E,attr(AC,V1)) \ xpfobl(E,attr(AC,V2)) <=>

(not(E=cocoinput(_))),subattr(AC,V1,V2,_,[]) | true.

ac(E,attr(AC,V1)) \ rttest(E,attr(AC,V2)) <=>

(not(E=cocoinput(_))),subattr(AC,V1,V2,_,[]) | true.

rttest(E,attr(AC,V1)) \ attrcon(E,attr(AC,V2)) <=>

subattr(AC,V1,V2,_,[]) | true.

rttest(E,attr(AC,V1)) \ xpfobl(E,attr(AC,V2)) <=>

subattr(AC,V1,V2,_,[]) | true.

rttest(E,attr(AC,V1)), rttest(E,attr(AC,V2)) <=>

attrmeet(AC,V1,V2,VJ) | rttest(E,attr(AC,VJ)).

rttest(E,A) \ allacs(E,As) <=>

not(member(A,As)) | allacs(E,[A|As]).

xpfobl(E,attr(AC,V1)),xpfobl(E,attr(AC,V2)) <=>

attrmeet(AC,V1,V2,VJ) | xpfobl(E,attr(AC,VJ)).

/*
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6.6.4 Selecting Function / Operator Interfaces for Joins

Operator / function interfaces are selected based on satisfying the type constraints

applied to the result and operand expressions. This requires type judgements (et,

allacs) for each operand / argument to be available. Each join candidate is tested,

adding each one that satisfies all remaining attribute constraints to the join expres-

sion. Note that this occurs after the attribute rules have fired, and any attribute

constraints that are satisfied independently of the selected implementation of the op-

erator or function are removed. The attribute propagation rules are covered in 6.7

and the satisfaction of attribute constraints in 6.6.2.

The matchlist predicate, from context.pl, tests all of the parameter and result

subtype relations in a common dependent type variable context. If this predicate is

satisfied, all of the subtype relationships are true and the dependent type arguments

are consistent. In addition, data terms will be expressed in their most specific form;

that is if a data term is equal to n and 10, it will be presented as 10.

It is possible that constraints introduced later will cause and expression type to be

further constrained than it is when these rules are fired because of the introduction

of new constraints from later on in the HUSC module. None of the acceptable judge-

ments will be undone by this, as the new type can only be more constrained than the

previous one. In addition, updating the expression type judgement (et) will cause the

rules to fire again on the remaining unsuccessful join candidates still in the constraint

pool, and pick up any that are now satisfied by the new, tighter constraints.

Note that in this implementation, only functions of up to three parameters are

supported. This is a mechanical issue - there needs to be a constraint that represents

when all of the arguments have a type judgement. Otherwise the lists can be mechan-

ically expanded by cut and paste, noting that operators and function applications are

identical in resolution.

*/

unop(E,F,E1),et(E1,S1),allacs(E1,A1s),ec(E,T)

\ joincan(E,F,FI)

<=> funcintf(F,FIN,tt(IR),dt(int,1),[tt(IP1)]),
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setattr(S1,A1s,SA1s),

matchlist([tt(SA1s),tt(IR)],[tt(IP1),tt(T)],CTX,[]),

minsupt(CTX,IR,IRC)

| joinex(E,FIN,IRC,CTX).

binop(E,F,E1,E2),et(E1,S1),et(E2,S2),allacs(E1,A1s),allacs(E2,A2s),ec(E,T)

\ joincan(E,F,FI)

<=> funcintf(F,FIN,tt(IR),dt(int,2),[tt(IP1),tt(IP2)]),

setattr(S1,A1s,SA1s),

setattr(S2,A2s,SA2s),

matchlist([tt(SA1s),tt(SA2s),tt(IR)],[tt(IP1),tt(IP2),tt(T)],CTX,[]),

minsupt(CTX,IR,IRC)

| joinex(E,FIN,IRC,CTX).

fnapp(E,F,[E1]),et(E1,S1),allacs(E1,A1s),ec(E,T)

\ joincan(E,F,FI)

<=> funcintf(F,FIN,tt(IR),dt(int,1),[tt(IP1)]),

setattr(S1,A1s,SA1s),

matchlist([tt(SA1s),tt(IR)],[tt(IP1),tt(T)],CTX,[]),

minsupt(CTX,IR,IRC)

| joinex(E,FIN,IRC,CTX).

fnapp(E,F,[E1,E2]),ec(E,T)

,et(E1,S1),allacs(E1,A1s)

,et(E2,S2),allacs(E1,A2s)

\ joincan(E,F,FI)

<=> funcintf(F,FIN,tt(IR),dt(int,2),[tt(IP1),tt(IP2)]),

setattr(S1,A1s,SA1s),

setattr(S2,A2s,SA2s),

matchlist([tt(SA1s),tt(SA2s),tt(IR)],

[tt(IP1),tt(IP2),tt(T)],CTX,[]),

minsupt(CTX,IR,IRC)

| joinex(E,FIN,IRC,CTX).

fnapp(E,F,[E1,E2,E3]),ec(E,T)

,et(E1,S1),allacs(E1,A1s)
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,et(E2,S2),allacs(E2,A2s)

,et(E3,S3),allacs(E3,A3s)

\ joincan(E,F,FI)

<=> funcintf(F,FIN,tt(IR),dt(int,3),[tt(IP1),tt(IP2),tt(IP3)]),

setattr(S1,A1s,SA1s),

setattr(S2,A2s,SA2s),

setattr(S3,A3s,SA3s),

matchlist([tt(SA1s),tt(SA2s),tt(SA3s),tt(IR)],

[tt(IP1),tt(IP2),tt(IP3),tt(T)],CTX,[]),

minsupt(CTX,IR,IRC)

| joinex(E,FIN,IRC,CTX).

/*

6.6.5 Expression Type Judgements

At this point, type judgements for the expression are issued in the form of expres-

sion type judgements (et) for named types / shapes / dependent arguments, and

attribute supports (ac). For variable instances, the type of the variable is are also the

expression, including attributes.

For input variables, first any remaining attribute constraints are added to the

external proof obligations, then the attribute supports (ac) are issued for all of the

attributes in the input type declaration and those required by attribute constraints.

For function / operator applications, each successful join candidate (joinex) now

submits its result type as a type judgement for the result expression, including any

attributes. These are then joined to produce the final expression type judgement. The

attribute class rules are fired before these rules are tested, so any attribute constraints

that were satisfied by implementation independent rules no longer restrict the type

of the result.

When multiple type / shape judgements (et) for an expression are generated,

they are merged with the join predicate from the subtype.pl file. This join handles

dependent type arguments and the explicit subtype hierarchy.

Note that when propagating the attributes guaranteed by the successful join can-

didate, the attribute supports (ac) must come before the expression type judgement
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(et) to clear out any attribute constraints that would conflict.

*/

ac(E2,attr(S,Val)),var(E,V),vdef(V,E2) ==> ac(E,attr(S,Val)).

attrcon(cocoinput(E),attr(S,Val)) ==>

ac(cocoinput(E),attr(S,Val)),xpfobl(cocoinput(E),attr(S,Val)).

joinex(E,FI,R,CTX) \ joinex(E,FI,R,CTX) <=> true.

ec(E,T),attrcon(E,A) \ joinex(E,_,IR,CTX) <=>

setattr(T,[A],TAs),not(st(IR,TAs,_,CTX)) | true.

joinex(E,_,t(T,TAs,TAttrs),_) ==> genacs(E,t(T,TAs,TAttrs)),et(E,t(T,TAs)).

ec(E,T),attrcon(E,A) \ et(E,S) <=> setattr(T,[A],TAs),not(st(S,TAs)) | true.

et(E,S1),et(E,S2) <=> join(S1,S2,T) | et(E,T).

/*

6.6.6 Variable Type Judgements

Variable judgements are the result of an expression type judgement on the expression

defining a variable. If there are multiple variable type judgements, they are joined,

after first stripping out duplicates.

The second rule flags variable type definitions that have a constraint that is not

satisfied, which means a new constraint was generated from definitions later in the

module definition goal. The variable type judgement is erased; the expression type

judgement will also be erased (above), and the process will begin again. In theory this

is highly unsatisfactory from a performance perspective; it is hoped that these prob-

lems can be minimized by an effective ordering of variable declarations and definitions

in the module description file.

*/

vdef(V,E),et(E,t(T,TAs)) ==> vt(V,t(T,TAs,[])).

ec(E,T),attrcon(E,A),vdef(V,E) \ vt(V,S) <=>

setattr(T,[A],TAs),not(st(S,TAs)) | true.

vt(V,S) \ vt(V,S) <=> true.



6. Type System Implementation 111

vt(V,t(S1,S1A,_)),vt(V,t(S2,S2A,_)) <=>

join(t(S1,S1A),t(S2,S2A),t(T,TA)) | vt(V,t(T,TA,[])).

vt(V,t(T,TAs,TAttrs)),vdef(V,E),ac(E,A) <=>

(not(member(A,TAttrs))) | vt(V,t(T,TAs,[A|TAttrs])).

/*

6.7 Attribute Class Definitions Part I

Each attribute class must supply a definition of a join, meet and subtype relation. In

addition, the class may specify propagation rules that define derivation and inference

rules for the class. These rules are pattern matched over function names and operator

symbols, and then type checked to make sure they are appropriate.

The rules are given as CHRs, propagating attribute constraints and supports over

the arguments and results of operator / function applications. Any data terms are

provided in the HUSC internal data and type terms (dt , tt resp.), which forms part of

a small context management capability. This aspect is of the system is fairly weak, as

actually building in full symbolic computation was beyond the scope of this project.

More about this internal system is given in 6.2.4.

This is part I of the definitions because only the CHR definitions for the attribute

class are in this file. The remainder are in the attribute.pl file.

For this implementation, two attributes have been hard coded to represent some

of the different kinds of attributes that might be defined.

6.7.1 Symmetric

A dimensioned type is symmetric if it has rank two, it’s two dimensions are identical,

and it equals its transpose (the traditional symmetric matrix definition). This is a

good example of a Boolean valued attribute, with the unknown state being repre-

sented by the absence of the attribute.

The join relation is equivalent to Boolean and, because all elements of a join

expression must return symmetric arrays if the result is to be guaranteed symmetric.
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The meet is an or, as if there are two contexts for the data item, and either one

requires the shape to be symmetric, then the shape must be symmetric. The subtype

relation requires that the subtype be symmetric if the supertype is symmetric, but

only then.

Adding and negating symmetric arrays produces a symmetric array. Pointwise

scalar multiplication of a symmetric array is a symmetric array.

The meet,join and subattribute relations and many of the rules presented here are

clearly applicable in the case of many properties that might be of interest (tridiagonal,

banded, positive definite). Generallzing these properties has been left for future work.

*/

/* general property of all join / meet relations */

attrjoin(_,V,V,VJ) <=> VJ=V.

attrmeet(_,V,V,VM) <=> VM=V.

attrjoin(symmetric,V1,V2,VJ)

<=> atom(V1) | cocon_eq(V1,dt(bool,BV1)),cocon_and(dt(bool,BV1),V2,VJ).

attrjoin(symmetric,V1,V2,VJ)

<=> atom(V2) | cocon_eq(V2,dt(bool,BV2)),cocon_and(V1,dt(bool,BV2),VJ).

attrjoin(symmetric,dt(bool,V1),dt(bool,V2),DVJ)

<=> cocon_and(dt(bool,V1),dt(bool,V2),DVJ).

attrmeet(symmetric,V1,V2,VJ)

<=> cocon_or(V1,V2,VJ).

ac(E1,attr(symmetric,B1)), attrule(symmetric,negate,[E,E1]) ==>

gensym(coco_,Dim) |

ec(E,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],[])),

ac(E,attr(symmetric,B1)).

attrcon(E,attr(symmetric,B)),attrule(symmetric,negate,[E,E1]) ==>

gensym(coco_,Dim) |

ec(E1,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],[attr(symmetric,B)])),
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attrcon(E1,attr(symmetric,B)).

ac(E1,attr(symmetric,B1)),

ac(E2,attr(symmetric,B2)),

attrule(symmetric,plus,[E,E1,E2]) ==>

(B1==dt(bool,1)),(B2==dt(bool,1)), gensym(coco_,Dim) |

ec(E,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],[])),

ac(E,attr(symmetric,dt(bool,1))).

attrcon(E,attr(symmetric,dt(bool,1))),

attrule(symmetric,plus,[E,E1,E2]) ==>

gensym(coco_,Dim) |

ec(E1,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],

[attr(symmetric,dt(bool,1))])),

attrcon(E1,attr(symmetric,dt(bool,1))),

attrcon(E2,attr(symmetric,dt(bool,1))),

ec(E2,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],

[attr(symmetric,dt(bool,1))])).

ac(E2,attr(symmetric,B2)),

attrule(symmetric,scalarmult,[E,E1,E2]) ==>

gensym(coco_,Dim) |

ec(E,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],[])),

ac(E,attr(symmetric,B2)).

attrcon(E,attr(symmetric,B)),

attrule(symmetric,scalarmult,[E,E1,E2]) ==>

gensym(coco_,Dim) |

ec(E2,t(’Array’,[tt(t(’Top’,[],[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])],
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[attr(symmetric,B)])),

attrcon(E2,attr(symmetric,B)).

/*

6.7.2 Scalar Range

Scalar variables can be given a range, the value of the variable is contained in that

range.

The join is the union of two ranges, meet is the intersection, subattribute relation

is the contained relation on intervals. Addition, substraction, multiplication of scalar

variables has the anticipated range results. Division is tedious because the presence

of 0 in the possible values for a divisor creates problems; this could probably be

addressed successfully, but was not a significant concern at this time.

The range attribute is very significant in itself in that any concrete program re-

quires that all instantiated terms must be of a size representable by the underlying

system (this might include supporte for arbitrary size numbers, but generally a sin-

gle register implementation is desirable). By providing the range of scalar variables,

evidence of this can be provided, or problem areas highlighted.

There is an issue with the current implementation in that the type system is only

built to manage 4 byte floating point and integer number representations. This means

that the range is expressible in two 4 byte numbers, is symbolic and uncomputable

by the type system, or has not been provided at all so no estimate can be made. This

problem has been left for future work to address.

Note that it is possible that unexpressible terms will be eliminated by other layers

of the Coconut system.

*/

attrjoin(’Range’,dt(interval(T),V1),dt(interval(T),V2),DVJ) <=>

atom(V1) |

cocon_eq(dt(interval(T),V1),dt(interval(T),(V1L,V1U))),

attrjoin(’Range’,dt(interval(T),(V1L,V1U)),dt(interval(T),V2),DVJ).

attrjoin(’Range’,dt(interval(T),V1),dt(interval(T),V2),DVJ) <=>
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atom(V2) |

cocon_eq(dt(interval(T),V2),dt(interval(T),(V2L,V2U))),

attrjoin(’Range’,dt(interval(T),V1),dt(interval(T),(V2L,V2U)),DVJ).

attrjoin(’Range’,dt(interval(T),(V1L,V1U)),dt(interval(T),(V2L,V2U)),DVJ) <=>

min(V1L,V2L,VJL),max(V1U,V2U,VJU),DVJ=dt(interval(T),(VJL,VJU)).

attrmeet(’Range’,dt(interval(T),V1),dt(interval(T),V2),DVJ) <=>

atom(V1) |

cocon_eq(dt(interval(T),V1),dt(interval(T),(V1L,V1U))),

attrmeet(’Range’,dt(interval(T),(V1L,V1U)),dt(interval(T),V2),DVJ).

attrmeet(’Range’,dt(interval(T),V1),dt(interval(T),V2),DVJ) <=>

atom(V2) |

cocon_eq(dt(interval(T),V2),dt(interval(T),(V2L,V2U))),

attrmeet(’Range’,dt(interval(T),V1),dt(interval(T),(V2L,V2U)),DVJ).

attrmeet(’Range’,dt(interval(T),(V1L,V1U)),dt(interval(T),(V2L,V2U)),DVJ) <=>

max(V1L,V2L,VJL),min(V1U,V2U,VJU),DVJ=dt(interval(T),(VJL,VJU)).

attrcon(E,attr(’Range’,dt(interval(T),(L,U))))

<=> (U < L) | attrcon(E,attr(’Range’,dt(null,[]))),

error(E,attr(’Range’,dt(interval(T),(L,U)))).

/*

*/

attrcon(E,attr(’Range’,dt(interval(T),(L,U)))),

attrule(’Range’,negate,[E,E1])

==> (number(L)-> U1 is (- L)),(number(U)-> L1 is (-U)) |

ec(E1,t(’Scalar’,[])),

attrcon(E1,attr(’Range’,dt(interval(T),(L1,U1)))).

ac(E1,attr(’Range’,dt(interval(T),(L1,U1)))),

attrule(’Range’,negate,[E,E1])

==> (number(L1)-> U is (- L1)),(number(U1)-> L is (-U1)) |
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ec(E,t(’Scalar’,[])), ac(E,attr(’Range’,dt(interval(T),(L,U)))).

attrcon(E,attr(’Range’,dt(interval(T),(L,U)))),

ac(E1,attr(’Range’,dt(interval(T1),(L1,U1)))),

attrule(’Range’,plus,[E,E1,E2]) ==> intfloat(T,T1,T2) |

add(L1,L2,L),add(U1,U2,U),

attrcon(E2,attr(’Range’,dt(interval(T2),(L2,U2)))).

attrcon(E,attr(’Range’,dt(interval(T),(L,U)))),

ac(E2,attr(’Range’,dt(interval(T2),(L2,U2)))),

attrule(’Range’,plus,[E,E1,E2]) ==> intfloat(T,T2,T1) |

add(L1,L2,L),add(U1,U2,U),

attrcon(E1,attr(’Range’,dt(interval(T),(L1,U1)))).

ac(E1,attr(’Range’,dt(interval(T1),(L1,U1)))),

ac(E2,attr(’Range’,dt(interval(T2),(L2,U2)))),

attrule(’Range’,plus,[E,E1,E2]) ==> intfloat(T1,T2,T) |

add(L1,L2,L),add(U1,U2,U),

ac(E,attr(’Range’,dt(interval(T),(L,U)))).

intfloat(T1,T2,T) :- (T1==float ; T2==float)->(T=float);(T=int).

/*

6.8 CHR Arithmetic

CHRs can provide a rudimentary form of symbolic arithmetic. This has been used to

resolve data terms in attribute class rules, and subattribute, join and meet relations.

The positive side to the CHR approach is that symbolic constraints are left behind

when they cannot be resolved, and these are often quite useful in themselves. For

example, having the constraint ”coco le(pointSize, maxPtCap)” as part of the type

judgement makes an excellent addition to the proof obligations for the module.

The negative side to the CHR algebra is that when a constraint cannot be satisfied,

the error cannot be traced back (easily) to the rule that spawned the constraint
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originally. If the above constraint were to be shown false, the system can either

fail or record an error and proceed, but cannot roll back the rule that spawned the

constraint.

This restriction has forced a very conservative approach to generating the attribute

class rules. It also forced the inference of dependent type rules to be computed in

a Prolog based context manager, which could make these restraints predicates and

block inappropriate actions (more in 6.2.4).

6.8.1 Boolean Algebra

Constraint Boolean algebra, wrapped with HUSC data term type, adapted from

Boolean Constraints, Thom Fruehwirth ECRC 1991-1993, http://chr.informatik.

uni-ulm.de/~webchr

*/

cocon_and(dt(bool,0),_,Z) <=> Z=dt(bool,0).

cocon_and(_,dt(bool,0),Z) <=> Z=dt(bool,0).

cocon_and(dt(bool,1),dt(bool,1),Z) <=> Z=dt(bool,1).

cocon_and(X,Y,dt(bool,1)) <=> X=dt(bool,1),Y=dt(bool,1).

cocon_and(dt(bool,1),Y,dt(bool,0)) <=> Y=dt(bool,0).

cocon_and(X,dt(bool,1),dt(bool,0)) <=> X=dt(bool,0).

cocon_and(X,Y,Z1) \ cocon_and(X,Y,Z2) <=> Z2=Z1.

cocon_and(X,Y,Z1) \ cocon_and(Y,X,Z2) <=> Z2=Z1.

cocon_or(dt(bool,1),_,Z) <=> Z=dt(bool,1).

cocon_or(_,dt(bool,1),Z) <=> Z=dt(bool,1).

cocon_or(dt(bool,0),dt(bool,0),Z) <=> Z=dt(bool,0).

cocon_or(X,Y,dt(bool,0)) <=> X=dt(bool,0),Y=dt(bool,0).

cocon_or(dt(bool,0),Y,dt(bool,1)) <=> Y=dt(bool,1).

cocon_or(X,dt(bool,1),dt(bool,1)) <=> X=dt(bool,1).

cocon_or(X,Y,Z1) \ cocon_or(X,Y,Z2) <=> Z2=Z1.

cocon_or(X,Y,Z1) \ cocon_or(Y,X,Z2) <=> Z2=Z1.
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cocon_xor(dt(bool,0),X,Y) <=> X=Y.

cocon_xor(X,dt(bool,0),Y) <=> X=Y.

cocon_xor(X,Y,dt(bool,0)) <=> X=Y.

cocon_xor(dt(bool,1),X,Y) <=> neg(X,Y).

cocon_xor(X,dt(bool,1),Y) <=> neg(X,Y).

cocon_xor(X,Y,dt(bool,1)) <=> neg(X,Y).

cocon_xor(X,X,Y) <=> Y=dt(bool,0).

cocon_xor(X,Y,X) <=> Y=dt(bool,0).

cocon_xor(Y,X,X) <=> Y=dt(bool,0).

cocon_xor(X,Y,A) \ cocon_xor(X,Y,B) <=> A=B.

cocon_xor(X,Y,A) \ cocon_xor(Y,X,B) <=> A=B.

cocon_not(dt(bool,0),X) <=> X=dt(bool,1).

cocon_not(X,dt(bool,0)) <=> X=dt(bool,1).

cocon_not(dt(bool,1),X) <=> X=dt(bool,0).

cocon_not(X,dt(bool,1)) <=> X=dt(bool,0).

cocon_not(X,X) <=> fail.

cocon_not(X,Y) \ cocon_not(Y,Z) <=> X=Z.

cocon_not(X,Y) \ cocon_not(Z,Y) <=> X=Z.

cocon_not(Y,X) \ cocon_not(Y,Z) <=> X=Z.

%% Interaction with other boolean constraints

cocon_not(X,Y) \ cocon_and(X,Y,Z) <=> Z=dt(bool,0).

cocon_not(Y,X) \ cocon_and(X,Y,Z) <=> Z=dt(bool,0).

cocon_not(X,Z) , cocon_and(X,Y,Z) <=> X=dt(bool,1),Y=dt(bool,0),Z=dt(bool,0).

cocon_not(Z,X) , cocon_and(X,Y,Z) <=> X=dt(bool,1),Y=dt(bool,0),Z=dt(bool,0).

cocon_not(Y,Z) , cocon_and(X,Y,Z) <=> X=dt(bool,0),Y=dt(bool,1),Z=dt(bool,0).

cocon_not(Z,Y) , cocon_and(X,Y,Z) <=> X=dt(bool,0),Y=dt(bool,1),Z=dt(bool,0).

cocon_not(X,Y) \ cocon_or(X,Y,Z) <=> Z=dt(bool,1).

cocon_not(Y,X) \ cocon_or(X,Y,Z) <=> Z=dt(bool,1).

cocon_not(X,Z) , cocon_or(X,Y,Z) <=> X=dt(bool,0),Y=dt(bool,1),Z=dt(bool,1).

cocon_not(Z,X) , cocon_or(X,Y,Z) <=> X=dt(bool,0),Y=dt(bool,1),Z=dt(bool,1).

cocon_not(Y,Z) , cocon_or(X,Y,Z) <=> X=dt(bool,1),Y=dt(bool,0),Z=dt(bool,1).



6. Type System Implementation 119

cocon_not(Z,Y) , cocon_or(X,Y,Z) <=> X=dt(bool,1),Y=dt(bool,0),Z=dt(bool,1).

cocon_not(X,Y) \ cocon_xor(X,Y,Z) <=> Z=dt(bool,1).

cocon_not(Y,X) \ cocon_xor(X,Y,Z) <=> Z=dt(bool,1).

cocon_not(X,Z) \ cocon_xor(X,Y,Z) <=> Y=dt(bool,1).

cocon_not(Z,X) \ cocon_xor(X,Y,Z) <=> Y=dt(bool,1).

cocon_not(Y,Z) \ cocon_xor(X,Y,Z) <=> X=dt(bool,1).

cocon_not(Z,Y) \ cocon_xor(X,Y,Z) <=> X=dt(bool,1).

cocon_not(X,Y) , cocon_imp(X,Y) <=> X=dt(bool,0),Y=dt(bool,1).

cocon_not(Y,X) , cocon_imp(X,Y) <=> X=dt(bool,0),Y=dt(bool,1).

cocon_imp(dt(bool,0),_) <=> true.

cocon_imp(X,dt(bool,0)) <=> X=dt(bool,0).

cocon_imp(dt(bool,1),X) <=> X=dt(bool,1).

cocon_imp(_,dt(bool,1)) <=> true.

cocon_imp(X,X) <=> true.

cocon_imp(X,Y),cocon_imp(Y,X) <=> X=Y.

/*

*/

/*

* Float and Integer operations,

* add (can’t use plus, builtin to prolog), negate.

*/

add(X,Y,Z) <=> number(X),number(Y),number(Z) | Z =:= (X+Y).

add(X,Y,Z) <=> number(X),number(Y) | Z is (X+Y).

add(X,Y,Z) <=> number(X),number(Z) | Y is (Z-X).

add(X,Y,Z) <=> number(Y),number(Z) | X is (Z-Y).

add(X,0,Z) <=> Z=X.

add(0,Y,Z) <=> Z=Y.

add(X,Y,Z),neg(X,Y) <=> Z=0.

add(X,Y,Z),neg(Y,X) <=> Z=0.

add(X,Y,0) <=> neg(X,Y).
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add(X,Y,Z1) \ add(X,Y,Z2) <=> Z1=Z2.

add(X,Y,Z1) \ add(Y,X,Z2) <=> Z1=Z2.

neg(X,Y) <=> number(X),number(Y) | X == (-Y).

neg(X,Y) <=> number(X) | Y=(-X).

neg(X,Y) <=> number(Y) | X=(-Y).

neg(X,Y),neg(Y,X) <=> X=Y.

neg(X,X) <=> fail.

neg(X,Y) \ neg(Z,Y) <=> Z=X.

neg(X,Y) \ neg(X,Z) <=> Z=Y.

/*

Basic operators for unwrapped numbers, i.e. integers and floats. From CHR solver

”INEQUALITIES with MINIMIUM and MAXIMUM on Terms”, Thom Fruehwirth

ECRC 1991-1993, http://chr.informatik.uni-ulm.de/ webchr

*/

X ~= X <=> fail.

X ~= Y <=> ground(X),ground(Y) | X\==Y.

X geq Y :- Y leq X.

X grt Y :- Y lss X.

/* leq */

built_in @ X leq Y <=> ground(X),ground(Y) | X @=< Y.

reflexivity @ X leq X <=> true.

antisymmetry @ X leq Y, Y leq X <=> X = Y.

transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z.

subsumption @ X leq N \ X leq M <=> N@<M | true.

subsumption @ M leq X \ N leq X <=> N@<M | true.

/* lss */
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built_in @ X lss Y <=> ground(X),ground(Y) | X @< Y.

irreflexivity@ X lss X <=> fail.

transitivity @ X lss Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.

transitivity @ X leq Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.

transitivity @ X lss Y, Y leq Z ==> X \== Y, Y \== Z | X lss Z.

subsumption @ X lss Y \ X leq Y <=> true.

subsumption @ X lss N \ X lss M <=> N@<M | true.

subsumption @ M lss X \ N lss X <=> N@<M | true.

subsumption @ X leq N \ X lss M <=> N@<M | true.

subsumption @ M leq X \ N lss X <=> N@<M | true.

subsumption @ X lss N \ X leq M <=> N@<M | true.

subsumption @ M lss X \ N leq X <=> N@<M | true.

/* neq */

built_in @ X neq Y <=> X ~= Y | true.

irreflexivity@ X neq X <=> fail.

subsumption @ X neq Y \ Y neq X <=> true.

subsumption @ X lss Y \ X neq Y <=> true.

subsumption @ X lss Y \ Y neq X <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.

simplification @ Y neq X, X leq Y <=> X lss Y.

/* MIN */

labeling, min(X, Y, Z)#Pc <=>

( X leq Y, Z = X ; Y lss X, Z = Y),

labeling

pragma passive(Pc).

built_in @ min(X, Y, Z) <=> ground(X),ground(Y) | (X@=<Y -> Z=X ; Z=Y).

built_in @ min(X, Y, Z) <=> Z~=X | Z = Y, Y lss X.

built_in @ min(Y, X, Z) <=> Z~=X | Z = Y, Y lss X.

min_eq @ min(X, X, Y) <=> X = Y.
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min_leq @ Y leq X \ min(X, Y, Z) <=> Y=Z.

min_leq @ X leq Y \ min(X, Y, Z) <=> X=Z.

min_lss @ Z lss X \ min(X, Y, Z) <=> Y=Z.

min_lss @ Z lss Y \ min(X, Y, Z) <=> X=Z.

functional @ min(X, Y, Z) \ min(X, Y, Z1) <=> Z1=Z.

functional @ min(X, Y, Z) \ min(Y, X, Z1) <=> Z1=Z.

propagation @ min(X, Y, Z) ==> X\==Y | Z leq X, Z leq Y.

/* MAX */

labeling, max(X, Y, Z)#Pc <=>

( X leq Y, Z = Y ; Y lss X, Z = X),

labeling

pragma passive(Pc).

built_in @ max(X, Y, Z) <=> ground(X),ground(Y) | (Y@=<X -> Z=X ; Z=Y).

built_in @ max(X, Y, Z) <=> Z~=X | Z = Y, X lss Y.

built_in @ max(Y, X, Z) <=> Z~=X | Z = Y, X lss Y.

max_eq @ max(X, X, Y) <=> X = Y.

max_leq @ Y leq X \ max(X, Y, Z) <=> X=Z.

max_leq @ X leq Y \ max(X, Y, Z) <=> Y=Z.

max_lss @ X lss Z \ max(X, Y, Z) <=> Y=Z.

max_lss @ Y lss Z \ max(X, Y, Z) <=> X=Z.

functional @ max(X, Y, Z) \ max(X, Y, Z1) <=> Z1=Z.

functional @ max(X, Y, Z) \ max(Y, X, Z1) <=> Z1=Z.

propagation @ max(X, Y, Z) ==> X\==Y | X leq Z, Y leq Z.

/*

*/

/*
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6.9 Named and Generic Subtypes, Joins and Meets

The subtype, join and meet relations for HUSC generic shapes and named types

hierarchy (not including attributes) are in this module. They are implemented as

Prolog predicates, instead of CHRs.

The dependent variable context is carried throughout the clauses presented here,

with the input context and output context from each judgement being the two lists

at the end of the clause arguments, respectively.

*/

:- module( subtype, [join/3, join/5, meet/3, meet/5, st/2, st/4]).

:- use_module(context).

:- use_module(attribute).

/*

Subtype and Stated Subtype Relations

The subtype relation is represented by predicate st/2, st/4, where the 4 argument

case unifies an input and output local context. The 2 argument case is processed

as with an empty context as input, then throws the context information away when

done.

Also note that for consistency, the two element type description is translated into

a three element type description with an empty attribute list.

The following rules are implemented, in this order, answering S � T :

1. subtype is reflexive

2. bottom (⊥T ) is always a subtype

3. everything is a subtype of top (>T )

4. if the type names are the same, the dependent parameters of S are subterms

of T (data terms equal, type terms subtypes) and all attributes of T are also

represented in S
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5. if T is a type variable, and has no current restrictions, T is set to S in the

context and the subtype relation holds.

6. If T is a type variable, and is constrained to be the subtype of T*, then test

T = S tT∗ in the context; if this does not break any subtype constraints on T,

that is the new value of T, otherwise return the value S � T∗.

7. If S is a type variable, and is constrained to be the subtype of S*, then test

S = S ∗ tT in the context; if this does not break any supertype constraints on

S, that is the new value of S, otherwise return the value S∗ � T .

8. if the types do not share the same name, then take the stated supertype (sst)

of S, with the dependent arguments established for S, to get S*, then return

S∗ � T .

9. Top (>T ) is never a subtype so return False if this is the only choice (note that

reflexivity is taken care of already so >T � >T ).

The stated subtype relation is the explicit subtype relation defined in the type def-

initions. Note that the search up the subtype hierarchy is always terminated by

top.

*/

st(S,T) :- st(S,T,_,[]).

st(S,S,CTX,CTX).

st(t(S,SAs),T,CTXOut,CTXIn) :- st(t(S,SAs,[]),T,CTXOut,CTXIn).

st(S,t(T,TAs),CTXOut,CTXIn) :- st(S,t(T,TAs,[]),CTXOut,CTXIn).

st(t(’Bottom’,[],[]),_,CTX,CTX).

st(t(’Top’,[],[]),_,CTX,CTX) :- !, fail.

st(t(T,SArgs,SAttrs), t(T,TArgs,TAttrs), CTXOut, CTXIn) :-

matchlist(SArgs,TArgs,CTXA,CTXIn),

subattrs(SAttrs,TAttrs,CTXOut,CTXA).

st(t(T,TArgs,TAttrs), tv(V,VSup), CTXOut,CTXIn) :-

( ctxeval(CTXIn,tv(V,VSup),VC),

ctxeval(CTXIn,t(T,TArgs,TAttrs),T2),
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( (VC==tv(V,VSup)->ctxupd(supt,VC,T2,CTXOut,CTXIn))

; !,st(T2,VC,CTXOut,CTXIn) ) );

!,fail.

st(tv(V,VSup), t(T,TArgs,TAttrs), CTXOut,CTXIn) :-

( ctxeval(CTXIn,tv(V,VSup),VC),

ctxeval(CTXIn,t(T,TArgs,TAttrs),T2),

( (VC==tv(V,VSup)->ctxupd(subt,VC,T2,CTXOut,CTXIn))

; !,st(VC,T2,CTXOut,CTXIn) ) );

!,fail.

st(tv(SV,SVSup), tv(TV,TVSup), CTXOut,CTXIn) :-

( ctxeval(CTXIn,tv(SV,SVSup),SVC),

ctxeval(CTXIn,tv(TV,TVSup),TVC),

( ((SVC==tv(SV,SVSup),TVC==tv(TV,TVSup))

->ctxupd(subt,SVC,TVC,CTXOut,CTXIn))

; !,st(SVC,TVC,CTXOut,CTXIn) ) );

!,fail.

st(t(S,SAs,SAttrs), t(T,TAs,TAttrs), CTXOut, CTXIn) :-

sst(t(S,SAs),t(U,UAs),CTXA,CTXIn)

-> !,st(t(U,UAs,SAttrs),t(T,TAs,TAttrs),CTXOut,CTXA).

/*

Stated SubType Relation

The stated (defined) subtype relation returns the explicitly defined subtype from the

type definition. It uses matchlist from context.pl to unify the dependent variables in

the subtype term with those of the supertype term, with the type top relationship

hardcoded in the predicate rules.

The last argument of the predicate for the type definition (type) is st for a subtype

relationship, and bt for a variant (based on) relationship; obviously only subtype

relationships are explored.

Note that the third argument of type is not used, and is always an empty list.

This should be removed at some point.

*/
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sst(t(X,XAs,XAttrs),t(Y,YAs,XAttrs),CTXOut,CTXIn) :-

sst(t(X,XAs),t(Y,YAs),CTXOut,CTXIn).

sst(t(X,XAs),t(Y,YAs),CTXOut,CTXIn) :-

type(t(X,XPs,_), t(Y,YAs,_), _, st),

matchlist(XAs,XPs,CTXOut,CTXIn).

sst(t(X,XAs,_),t(’Top’,[],[]),CTXOut,CTXIn) :-

type(t(X,XPs,[]),_,_,_),

matchlist(XAs,XPs,CTXOut,CTXIn).

/*

6.9.1 Generic Join Relation

The join(type1,type2,type3) sets type3 to the minimal supertype, or least general

generalization, of types 1 and 2, with all types in the internal type representation (t).

The following rules apply to joins, with the list being applied top to bottom until

a result is obtained:

1. The join of two identical types is the type itself, for type terms and type vari-

ables.

2. The join of two types of the same name is the name with the first parameter

joined and the meet of the remaining parameters; the number of parameters

must be the same.

3. If one argument is the subtype of the other, then the supertype is the join value.

4. Failing this test, the supertype of one of the terms is computed, and the result

is that joined with the other term.

5. the join of any item and the top type is top, the ambiguous type judgement.

The meet of data terms is equality of those terms (i.e. they must be identical),

and the meet of type terms is the least subtype of the two, i.e. the regular definition

of meet. The number of parameters must be the same in both t representations for

the join to be successful.
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*/

join(S1,S2,T) :- join(S1,S2,T,_,[]).

join(t(T,TAs),t(T,TAs),t(T,TAs),CTX,CTX).

join(t(T,TAs,TAttrs),t(T,TAs,TAttrs),t(T,TAs,TAttrs),CTX,CTX).

join(tv(V,VSup),tv(V,VSup),tv(V,VSup),CTX,CTX).

join(t(T,[tt(RA) | As],TAAs), t(T,[tt(RB) | Bs],TBAs),

t(T, [tt(RJ) | Js],TJAs),CTXOut,CTXIn) :-

join(RA,RB,RJ,CTXA,CTXIn),

joinattrs(TAAs,TBAs,TJAs,CTXB,CTXA),

meetterm(As, Bs, Js, CTXOut,CTXB),!.

join(T1,T2,T3,CTXOut,CTXIn) :-

st(T1,T2,CTXOut,CTXIn),ctxeval(CTXOut,T2,T3).

join(T1,T2,T3,CTXOut,CTXIn) :-

st(T2,T1,CTXOut,CTXIn),ctxeval(CTXOut,T1,T3).

join(T1,T2,T3B,CTXOut,CTXIn) :-

sst(T1,U,CTXA,CTXIn) -> join(U,T2,T3,CTXOut,CTXA),ctxeval(CTXOut,T3,T3B).

join(_,_,t(’Top’,[],[]),CTX,CTX).

/*

6.9.2 Generic Meet Relation

This is similar to the join explained above, except that if neither type is a subtype of

the other, the meet is bottom.

Note that the dependent arguments of the meet are the join of the dependent

arguments of the operands. This means that if an expression is constrained to be

two similar shapes with type parameters, say a function for convenience, then the

function that satisfies both constraints must accept arguments from either parameter

type, i.e. is covariant in its parameters and contravariant in its result.

*/

meet(T1,T2,S) :- meet(T1,T2,S,_,[]).

meet(t(T,TAs),t(T,TAs),t(T,TAs),CTX,CTX).

meet(t(T,TAs,TAttrs),t(T,TAs,TAttrs),t(T,TAs,TAttrs),CTX,CTX).
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meet(t(T,[tt(RA) | As]), t(T,[tt(RB) | Bs]), t(T, [tt(RJ) | Js]), CTXOut,CTXIn) :-

meet(RA,RB,RJ,CTXA,CTXIn),jointerm(As, Bs, Js, CTXOut, CTXA),!.

meet(t(T,[tt(RA) | As],TAAs), t(T,[tt(RB) | Bs],TBAs),

t(T, [tt(RJ) | Js],TJAs), CTXOut,CTXIn) :-

meet(RA,RB,RJ,CTXA,CTXIn),

meetattrs(TAAs,TBAs,TJAs,CTXB,CTXA),

jointerm(As, Bs, Js, CTXOut, CTXB),!.

meet(T1,T2,T3, CTXOut,CTXIn) :-

st(T1,T2, CTXOut,CTXIn),ctxeval(CTXOut,T1,T3).

meet(T1,T2,T3, CTXOut,CTXIn) :-

st(T2,T1, CTXOut,CTXIn),ctxeval(CTXOut,T2,T3).

meet(_,_,t(’Bottom’,[]),CTX,CTX).

/*

6.9.3 Joins / Meets over Internal Terms

This performs the mechanics of performing a meet or a join over a list of dependent

variables. The internal representation of terms must be compared predicate by pred-

icate. In particular, the internal data structure cocontpl is used for checking that a

fixed size list of internal terms is of the correct form. This allowed a generic definition

of a function and array to be created and the representation checked.

The most important aspect of these mechanics is the management of the contexts.

The input and output context lists are unified through the ctxeval predicate from

context.pl. This makes sure each variable term (variables are stored as Prolog atoms,

not Prolog variables) is evaluated relative to other constraints generated during the

processing of the list of joins / meets.

*/

jointerm([],[],[],CTX,CTX).

jointerm(As,tt(cocontpl(N,T)),Js,CTXOut,CTXIn) :-

ttscheck(As,N,T,CTXOut,CTXIn),!,ctxeval(CTXOut,As,Js).

jointerm(As,dt(cocontpl(N,T)),Js,CTX,CTX) :-

dtscheck(As,N,T),!,ctxeval(CTX,As,Js).
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jointerm(tt(cocontpl(N,T)),Bs,Js,CTXOut,CTXIn) :-

ttscheck(Bs,N,T,CTXOut,CTXIn),!,ctxeval(CTXOut,Bs,Js).

jointerm(dt(cocontpl(N,T)),Bs,Js,CTX,CTX) :-

dtscheck(Bs,N,T),!,ctxeval(CTX,Bs,Js).

jointerm([tt(t(A,As)) | MAs],[tt(t(B,Bs)) | MBs],

[tt(t(J,Js)) | MJs],CTXOut,CTXIn) :-

join(t(A,As),t(B,Bs),t(J,Js),CTXA,CTXIn),!,

jointerm(MAs,MBs,MJs,CTXOut,CTXA).

jointerm([tt(t(A,As,AAttrs)) | MAs],[tt(t(B,Bs,BAttrs)) | MBs],

[tt(t(J,Js,JAttrs)) | MJs],CTXOut,CTXIn) :-

join(t(A,As,AAttrs),t(B,Bs,BAttrs),t(J,Js,JAttrs),CTXA,CTXIn),!,

jointerm(MAs,MBs,MJs,CTXOut,CTXA).

jointerm([dt(T,V1)|MAs],[dt(T,V2) | MBs],

[dt(T,V1) | MCs],CTXOut,CTXIn) :-

match(T,V1,V2,CTXA,CTXIn),!,

jointerm(MAs,MBs,MCs,CTXOut,CTXA).

meetterm([],[],[],CTX,CTX).

meetterm(As,tt(cocontpl(N,T)),Js,CTXOut,CTXIn) :-

ttscheck(As,N,T,CTXOut,CTXIn),!,ctxeval(CTXOut,As,Js).

meetterm(As,dt(cocontpl(N,T)),Js,CTX,CTX) :-

dtscheck(As,N,T),!,ctxeval(CTX,As,Js).

meetterm(tt(cocontpl(N,T)),Bs,Js,CTXOut,CTXIn) :-

ttscheck(Bs,N,T,CTXOut,CTXIn),!,ctxeval(CTXOut,Bs,Js).

meetterm(dt(cocontpl(N,T)),Bs,Js,CTX,CTX) :-

dtscheck(Bs,N,T),!,ctxeval(CTX,Bs,Js).

meetterm([tt(t(A,As)) | MAs],[tt(t(B,Bs)) | MBs],

[tt(t(J,Js)) | MJs],CTXOut,CTXIn) :-

meet(t(A,As),t(B,Bs),t(J,Js),CTXA,CTXIn),

meetterm(MAs,MBs,MJs,CTXOut,CTXA).

meetterm([tt(t(A,As,AAttrs)) | MAs],[tt(t(B,Bs,BAttrs)) | MBs],

[tt(t(J,Js,JAttrs)) | MJs],CTXOut,CTXIn) :-
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meet(t(A,As,AAttrs),t(B,Bs,BAttrs),t(J,Js,JAttrs),CTXA,CTXIn),

meetterm(MAs,MBs,MJs,CTXOut,CTXA).

meetterm([dt(T,V1)|MAs],[dt(T,V2) | MBs],

[dt(T,V1) | MCs],CTXOut,CTXIn) :-

match(T,V1,V2,CTXA,CTXIn),!,

meetterm(MAs,MBs,MCs,CTXOut,CTXA).

/*

6.9.4 Testing Types against their Definition

Each declared type term must be a valid instance of the type definition. This is tested

by validtype, using matchlist to ensure the dependent arguments are appropriate for

the dependent parameters in the internal representation terms.

It wasn’t clear what to do with the errors, so the flag variable Str is set to valid

or invalid.

*/

validtype( t(’Top’,_,[]), Str) :- Str=valid.

validtype( t(T,DTArgs), Str) :- validtype(t(T,DTArgs,[]),Str).

validtype( t(T,DTArgs,TAttrs), Str) :-

type( t(T,DTparms,TMAs), _, _, _ ),

matchlist(DTArgs, DTparms, CTX, []),

validattrs( TAttrs, t(T,DTArgs,TAttrs), CTXA, CTX, Str ),

subattrs( TAttrs,TMAs,_,CTXA ),

Str=valid.

validtype( _, Str) :- Str=invalid.

/*

*/

/*
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6.10 Attribute Class Part II

This file contains the Prolog subattribute predicate and the rule pattern matching

predicate for the attribute class definitions. It was originally specified to be generated

from the HUSC source for the attribute classes, but this file was hand coded. This

version contains the range attribute for scalars and symmetric attribute for arrays.

This file was intended to hold the attribute CHRs too, but as noted in con-

straint.pl, the CHRs must all be in the same module, which makes generating the file

more difficult.

The internal representation of attributs is the attr(class,value) predicate. The

class is the class name as an atom. The value is an internal data term (dt), of type

int, float or boolean.

*/

:- module(attribute,[reg_attrule/2,subattr/5,subattrs/4,subattrs/5,setattr/3]).

:- use_module(subtype).

:- use_module(context).

/*

6.10.1 Subattribute List

When testing S � T , all of the attributes of T must appear in S as subattributes.

The subattrs predicate applies the class specific subattribute relation to each of the

attributes in the two argument types, but within a consistent local term context

(6.2.4).

The main point of subattrs is to identify all of the attribute classes that play a

role in either type, then test each subattribute relation in turn. The mechanics are

handled by

maplist pulling out the attribute classes from the type descriptions (t)

merge set merging the two lists

valattr get the values from the matching attributes of each class
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subattr invoke the class specific subattribute predicate

There are two subattribute rules that are common for all classes.

1. no attribute is a subattribute of a null valued attribute, representing a ⊥ evalu-

ation of the property, resulting from a failure to unify the subattribute relations

in the context.

2. subattribute is reflexive

3. a null valued attribute is always a subattribute of a non-null valued attribute

*/

subattrs(t(_,_,SAttrs),t(_,_,TAttrs),CTXOut,CTXIn) :-

maplist(getac,SAttrs,SACs),maplist(getac,TAttrs,TACs),

merge_set(SACs,TACs,ACs),subattrs(ACs,SAttrs,TAttrs,CTXOut,CTXIn).

subattrs(Ss,Ts,CTXOut,CTXIn) :-

maplist(getac,Ss,SACs),maplist(getac,Ts,TACs),

merge_set(SACs,TACs,ACs),subattrs(ACs,Ss,Ts,CTXOut,CTXIn).

subattrs([],_,_,CTX,CTX).

subattrs([AC|ACs],S,T,CTXOut,CTXIn) :-

( valattr(AC,T,TV) ->

( valattr(AC,S,SV) ->

( subattr(AC,SV,TV,CTXA,CTXIn) )

; ( !,fail ) )

; (CTXA = CTXIn) ),

subattrs(ACs,S,T,CTXOut,CTXA).

getac(attr(AC,_),AC).

valattr(AC,t(_,_,As),V) :- member(attr(AC,V), As).

valattr(AC,As,V) :- member(attr(AC,V),As). %% fails if As is not a list.

%% this must precede V <= V to block this case.

subattr(_,_,dt(null,[]),CTX,CTX) :- !,fail.

subattr(_,V,V,CTX,CTX).

subattr(_,dt(null,[]),_,CTX,CTX).
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/*

Set Attribute in Type Description

Setattr sets the attributes of a type to includes those from the list. Setattr fails if all

of the attributes of the type are the same as in the list, which breaks an endless loop

in a CHR which was otherwise difficult to handle.

*/

setattr(t(T,TAs),Attrs,t(T,TAs,Attrs)).

setattr(t(T,TAs,TAttrs),Attrs,t(T,TAs,T2Attrs)) :-

subset(Attrs,TAttrs)->fail

; setattrint(t(T,TAs,TAttrs),Attrs,t(T,TAs,T2Attrs)).

setattrint(T,[],T).

setattrint(t(T,TAs,TAttrs),[attr(AC,Val)|Attrs],

t(T,TAs,[attr(AC,Val)|T3Attrs])) :-

delete(TAttrs,attr(AC,_),T2Attrs),

setattrint(t(T,TAs,T2Attrs),Attrs,t(T,TAs,T3Attrs)).

/*

6.10.2 Attribute Propagation Rule Map

These are generated relations that link an operator symbol with an (attribute,rulename)

pair. This provides the list of rules to test for each expression, turned into CHR con-

straints by genattrule in constraint.pl.

There may be many rules for each attribute class name and operator symbol

pair. The rules will only be executed if the type context matches the description and

the expression pattern matches the rule. For example, the - symbol represents both

unary negation and binary subtraction, but the rule will apply to the unary operator

or binary operator case. The rule name doesn’t have to be the same as the operator.

*/
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reg_attrule(’+’,(’Symmetric’,plus)).

reg_attrule(’+’,(’Range’,plus)).

reg_attrule(’-’,(’Symmetric’,minus)).

reg_attrule(’*’,(’Range’,multiply)).

reg_attrule(’-’,(’Symmetric’,negate)).

reg_attrule(’-’,(’Range’,negate)).

reg_attrule(’*’,(’Symmetric’,scalarmult)).

/*

6.10.3 Attribute Class : General Description

There are two predicates for each class:

isattrtype tests that the attribute is applied to a value that is a subtype of the class

target type.

subattr tests the subattribute relationship for the class

Attribute Class : Scalar Range

Range(T) is an interval (lb::T,ub::T) for a scalar T, where the value of a variable x

with this attribute is lb ≤ x ≤ ub.

*/

isattrtype(’Range’,T,CTXOut,CTXIn) :- st(T,t(scalar,[]),CTXOut,CTXIn).

subattr(’Range’,dt(interval(T),V1),dt(interval(T),V2),CTX,CTX) :-

ctxeval(CTX,V1,VC1),ctxeval(CTX,V2,VC2),

(VC1=(VC1L,VC1U)),(VC2=(VC2L,VC2U)),

( (number(VC1L),number(VC2L))->(VC2L =< VC1L); VC1L==VC2L ),

( (number(VC1U),number(VC2U))->(VC2U >= VC1U); VC1L==VC2L ).

/*

Symmetric is a boolean property, either 1(true) or 0(false). Using 1,0 to keep

constants separate from variables, which are implemented as atoms.
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*/

isattrtype(’Symmetric’,T,CTXOut,CTXIn) :-

gensym(coco_,Dim),

st(T,t(array,[tt(t(’Top’,[])),dt(int,2),

dt(cocontpl(2,interval(int)),[Dim,Dim])]),CTXOut,CTXIn).

subattr(’Symmetric’,B1,B2) :- coco_not(B2,B2_1),coco_or(B1,B2_1,dt(bool,1)).

/*

Internal Arithmetic and Logic Operations

These predicates supply the logical functions that work with the internal term repre-

sentations. There are more math functions in coco math.pl, but these were all that

was necessary for the time being.

*/

coco_not(dt(bool,0),dt(bool,1)).

coco_not(dt(bool,1),dt(bool,0)).

coco_and(dt(bool,1),dt(bool,1),dt(bool,1)).

coco_and(dt(bool,0),_,dt(bool,0)).

coco_and(_,dt(bool,0),dt(bool,0)).

coco_or(dt(bool,1),_,dt(bool,1)).

coco_or(_,dt(bool,1),dt(bool,1)).

coco_or(dt(bool,0),dt(bool,0),dt(bool,0)).

/*

*/ /*

6.11 Context Management

The main purpose of this module is to manage the local context for dependent vari-

ables and attribute properties.
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Match the elements in the first list to the second to make sure they are ok. Cur-

rently ignoring attributes in type terms, need to address. Either a standard data

term or an n-tuple, as a type and the number of values of that type expected, which

will be satisfied by a list of any values of that type, but only as the second operator,

and only as the last item of the list (last restriction is just a lazy shortcut, sorry).

*/

:- module(context, [minsupt/3,matchlist/2,matchlist/4,

ctxeval/3,match/5,ctxupd/5]).

:- use_module(subtype).

%% the two element request ignores the context

matchlist(A,B) :- matchlist(A,B,_,[]).

matchlist([],[],[],[]).

matchlist(S,S,CTX,CTX).

matchlist([tt(cocontpl(N1,T))],[tt(cocontpl(N2,T))],CTXOut,CTXIn) :-

( ctxeval(CTXIn,N1,N1b),ctxeval(CTXIn,N2,N2b),!,

( (atom(N1b),ctxupd(eq,N1b,dt(int,N2b),CTXOut,CTXIn))

; (atom(N2b),ctxupd(eq,N2b,dt(int,N1b),CTXOut,CTXIn))

; (N1b==N2b,CTXOut=CTXIn) )

; !,fail).

matchlist(Xs,[tt(cocontpl(N,T))],CTXOut,CTXIn) :-

( ctxeval(CTXIn,N,N2),!,

( (var(N),length(Xs,N))

; (atom(N),length(Xs,XL),ctxupd(eq,N,dt(int,XL),CTXA,CTXIn)) ),

ttscheck(Xs,N2,T,CTXOut,CTXA))

; !,fail.

matchlist([tt(cocontpl(N,T))],Xs,CTXOut,CTXIn) :-

( ctxeval(CTXIn,N,N2),!,

( (var(N)->length(Xs,N))

; ( atom(N)->length(Xs,XL),ctxupd(eq,N,dt(int,XL),CTXA,CTXIn)) ),

ttscheck(Xs,N2,T,CTXOut,CTXA))

; !,fail.
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matchlist([dt(cocontpl(N1,T),E1)],[dt(cocontpl(N2,T),E2)],CTXOut,CTXIn) :-

( ctxeval(CTXIn,N1,N1b),ctxeval(CTXIn,N2,N2b),!,

( (atom(N1b), ctxupd(eq,N1b,dt(int,N2b),CTXA,CTXIn))

; (atom(N2b), ctxupd(eq,N2b,dt(int,N1b),CTXA,CTXIn))

; (N1b==N2b,CTXA=CTXIn) ),

match(cocontpl(N1b,T),E1,E2,CTXOut,CTXA) )

; !,fail.

matchlist(Xs,[dt(cocontpl(N,T),E)],CTXOut,CTXIn) :-

( ctxeval(CTXIn,N,N2),ctxeval(CTXIn,Xs,XCs),!,

dtscheck(XCs,N2,T),unwrap(XCs,XLs),!,

match(cocontpl(N2,T),E,XLs,CTXOut,CTXIn))

; !,fail.

matchlist([dt(cocontpl(N,T),E)],Xs,CTXOut,CTXIn) :-

( ctxeval(CTXIn,N,N2),ctxeval(CTXIn,Xs,XCs),!,

dtscheck(XCs,N2,T),unwrap(XCs,XLs),!,

match(cocontpl(N2,T),E,XLs,CTXOut,CTXIn) )

; !,fail.

matchlist([tt(S) | Xs], [tt(T) | Ys],CTXOut,CTXIn) :-

st(S,T,CTXA,CTXIn),!,matchlist(Xs,Ys,CTXOut,CTXA).

matchlist([dt(S,V1) | Xs], [dt(T,V2) | Ys], CTXOut,CTXIn) :-

S==T, match(S,V1,V2,CTXA,CTXIn), !,

matchlist(Xs,Ys,CTXOut,CTXA).

matchlist(_,_,_,_) :- !,fail.

%% termination case, must be last.

/*

match fails if the structure doesn’t match and neither is an expression (i.e. atom).

*/

match(_,V,V,C,C). %% includes [],[]

match(list(T),[X | Xs],[Y | Ys],CO, CI) :-

(match(list(T),Xs,Ys,CA,CI),!,match(T,X,Y,CO,CA)); (!,fail).
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match(interval(T),(V1a,V1b),(V2a,V2b),CO,CI) :-

(match(T,V1a,V2a,CA,CI),!,match(T,V1b,V2b,CO,CA));(!,fail).

match(cocontpl(N,T),E1,E2,CTXOut,CTXIn) :-

( ctxeval(CTXIn,N,N2),ctxeval(CTXIn,E1,E1b),ctxeval(CTXIn,E2,E2b),!,

( atom(E1b)->

( atom(E2b)->ctxupd(eq,E2b,dt(cocontpl(N2,T),E1b),CTXOut,CTXIn)

; ( length(E2b,N2)-> ctxupd(eq,E1b,dt(cocontpl(N2,T),E2b),CTXOut,CTXIn)

; !,fail) )

; ( atom(E2b)->

( length(E1b,N2)-> ctxupd(eq,E2b,dt(cocontpl(N2,T),E1b),CTXOut,CTXIn)

; !,fail )

; match(list(T),E1b,E2b,CTXOut,CTXIn) ) ) )

; !,fail.

match(_,A,B,C,C) :- (var(A);var(B))->A=B.

match(T,V1,V2,CO,CI) :-

( (number(V1),number(V2))->V1==V2,CO=CI) ;

( ctxeval(CI,V1,V1b),

ctxeval(CI,V2,V2b),!,

( (V1b==V2b)->CO=CI

; ( atom(V1b)->ctxupd(eq,V1b,dt(T,V2b),CO,CI)

; ( atom(V2b)->ctxupd(eq,V2b,dt(T,V1b),CO,CI)

; ( ((V1==V1b,V2==V2b)-> !,fail)

; match(T,V1b,V2b,CO,CI)) ) ) ) ).

/*

Context update stores a context of dependent variables and constraints on proper

expressions.

• ctxupd( operation, depvar or exp, depvar / exp / val, new context, old context);

• the call order from matchlist ensures if any are dependent variables,

• they will be first, and values will be last.
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• dependent variables are tested when set to values, and fail if they can’t be

unified.

*/

ctxupd(OP,DE,dt(_,DE),CTX,CTX) :- member(OP,[eq,le,ge]).

ctxupd(OP,E,dt(cocontpl(N,T),DTL),[dcon(cocontpl(N,T),OP,E,L)],[]) :-

unwrap(DTL,L).

ctxupd(OP,E,dt(T,V),[dcon(T,OP,E,V)],[]).

ctxupd(eq,E,dt(cocontpl(N,T),DTL), [dcon(cocontpl(N,T),eq,E,L) | CO], CI) :-

delete(CI,dcon(_,eq,E,_),CA),

(atom(DTL)->L=DTL;unwrap(DTL,L)),

ctxrepl(E,L,CO,CA).

ctxupd(eq,E,dt(T,V), [dcon(T,eq,E,V) | CO], CI) :-

delete(CI,dcon(_,eq,E,_),CA),

ctxrepl(E,V,CO,CA).

%% le,lt,ge,gt operators

%% type updates, not enforcing relationships between type variables

ctxupd(subt,tv(V,VSup),t(T,TAs,TAttrs),

[dcon(type,subt,V,t(S,SAs,SAttrs)) | CO] ,CI) :-

( st(VSup,t(T,TAs,TAttrs),CA,CI) ->

( ( member(dcon(type,subt,V,t(T2,T2As,T2Attrs)),CA)->

( meet(t(T,TAs,TAttrs),t(T2,T2As,T2Attrs),t(S,SAs,SAttrs),CB,CA),

delete(CB,dcon(type,subt,V,t(T2,T2As,T2Attrs)),CC) )

; CC=CI,t(S,SAs,SAttrs)=t(T,TAs,TAttrs) ),

( member(dcon(type,supt,V,t(S2,S2As,S2Attrs)),CC)->

st(t(S2,S2As,S2Attrs),t(S,SAs,SAttrs),CO,CC)

; (S \== bottom)->CO=CC;!,fail ) ) )

; !,fail.

%% don’t record supt constraints bigger or equal to VSup

ctxupd(supt,tv(V,VSup),t(T,TAs,TAttrs),CO ,CI) :-

( st(VSup,t(T,TAs,TAttrs),CA,CI)->(CO=CI) )

;

((( member(dcon(type,supt,V,t(T2,T2As,T2Attrs)),CI)->
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( join(t(T,TAs,TAttrs),t(T2,T2As,T2Attrs),t(S,SAs,SAttrs),CA,CI),

delete(CA,dcon(type,supt,V,t(T2,T2As,T2Attrs)),CB) )

; CB=CI,t(S,SAs,SAttrs)=t(T,TAs,TAttrs) ),

( member(dcon(type,subt,V,t(S2,S2As,S2Attrs)),CB)->

st(t(S,SAs,SAttrs),t(S2,S2As,S2Attrs),CO,CB)

; (S \== bottom)->CO=[dcon(type,supt,V,t(S,SAs,SAttrs)) | CB];!,fail ))

; !,fail) .

/*

*/

ctxrepl(_,_,[],[]).

ctxrepl(E,V,[dcon(cocontpl(N,T),OP,E2,Y) | Ys],

[dcon(cocontpl(N2,T),OP,E2,X) | Xs]) :-

ctxrepl(E,V,N2,N),

ctxrepl(E,V,Y,X),

ctxrepl(E,V,Ys,Xs).

ctxrepl(E,V,[dcon(T,OP,E2,Y) | Ys],[dcon(T,OP,E2,X) | Xs]) :-

ctxrepl(E,V,Y,X),

ctxrepl(E,V,Ys,Xs).

ctxrepl(E,V,[Y | Ys],[X | Xs]) :-

ctxrepl(E,V,Y,X),ctxrepl(E,V,Ys,Xs).

ctxrepl(E,V,(Ya,Yb),(Xa,Xb)) :-

ctxrepl(E,V,Ya,Xa),ctxrepl(E,V,Yb,Xb).

ctxrepl(E,V,V,E). %% actually do the substitution

ctxrepl(_,_,X,X). %% no substitution required, no action.

/*

*/

ctxeval([],X,X). %% empty context, all things are themselves.

ctxeval(CTX,tt(T),tt(TC)) :- ctxeval(CTX,T,TC).

ctxeval(CTX,t(T,TArgs,TAttrs),t(T,T2Args,T2Attrs)) :-
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ctxeval(CTX,TArgs,T2Args),ctxeval(CTX,TAttrs,T2Attrs).

ctxeval(CTX,tv(V,VSup),MST) :-

( member(dcon(type,supt,V,MST),CTX)

; member(dcon(type,subt,V,MST),CTX)

; MST=tv(V,VSup) ).

ctxeval(CTX,dt(cocontpl(N,T),E),dt(cocontpl(N2,T),V)) :-

ctxeval(CTX,N,N2),ctxeval(CTX,E,V).

ctxeval(CTX,dt(T,V),dt(T,V2)) :- ctxeval(CTX,V,V2).

ctxeval(CTX,attr(AC,V),attr(AC,V2)) :- ctxeval(CTX,V,V2).

ctxeval(_,[],[]).

ctxeval(CTX, [X | Xs], [Y | Ys]) :-

ctxeval(CTX, X, Y),ctxeval(CTX,Xs,Ys).

ctxeval(CTX, (X1,X2), (Y1,Y2)) :-

ctxeval(CTX,X1,Y1),ctxeval(CTX,X2,Y2).

ctxeval(CTX, X, Y) :-

atom(X),member(dcon(_,eq,X,Z),CTX),ctxeval(CTX,Z,Y).

ctxeval(_, X, X). %% X a number or not present in context

/*

The minimum super type of a type is itself evaluated in the context, or the meet

of all super type restrictions on a type variable; if there are none in the context, then

just the one in it’s definition.

*/

minsupt(_,[],[]).

minsupt(CTX,[S|Ss],[T|Ts]) :- minsupt(CTX,S,T),minsupt(CTX,Ss,Ts).

minsupt(CTX,t(T,TAs,TAttrs),t(T2,T2As,T2Attrs)) :-

ctxeval(CTX, t(T,TAs,TAttrs), t(T2,T2As,T2Attrs)).

minsupt(CTX,tv(V,VSup),MSupT) :-

ctxeval(CTX, tv(V,VSup), TC),

( (TC=t(T,TAs,TAttrs), MSupT=t(T,TAs,TAttrs))

; (TC=tv(_,V2Sup),MSupT=V2Sup) ).
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/*

Data terms have the form dt(T, N, [Vals]) where T is the type and Vals values of

the supported type. Integers, booleans and reals (as floats), optionally as lists, are

supported. dtcheck makes sure each element of a list is a data term of the appropriate

type.

*/

dtscheck([],0,_).

dtscheck([dt(S,_) | Ds],N,T) :- S==T, M is (N-1), dtscheck(Ds,M,T).

dtscheck(_,_,_) :- !,fail. %% termination condition, must be last

%% tests that each element of the list is a type term,

% and right number of elements.

ttscheck([],0,_,CTX,CTX).

ttscheck([tt(t(S,Ss,SAttrs)) | Ts],N,T,CTXOut,CTXIn) :-

st(t(S,Ss,SAttrs),T,CTXOut,CTXA), M is (N-1),

ttscheck(Ts,M,T,CTXA,CTXIn).

ttscheck(_,_,_,_,_) :- !,fail. %% termination condition, must be last

unwrap([],[]).

unwrap([dt(_,V)|DTVs],[V|Vs]) :- unwrap(DTVs,Vs).

unwrap([tt(T) | TTVs],[T|Ts]) :- unwrap(TTVs,Ts).

unwrap([X|Xs],[X|Ys]) :- unwrap(Xs,Ys).

/*

*/



Chapter 7

Examples

The best way to understand how HUSC works, and the problems encountered, is to

study some sample problems. Each section presents an isolated example problem, the

HUSC code to solve it, and the resulting type judgements from HUSC.

In order to make it comprehensible, the output files have been altered and docu-

mented.

7.1 Long and Short Integer Arithmetic

Consider the situation where an embedded system is being developed for a new, and

steadily evolving, hardware platform. The current hardware environment is an 8 bit

CPU with machine instructions for both 8 and 16 bit arithmetic. The software must

run on this system, but it should be as hardware independent as possible to adapt

to new platforms. In this situation, the abstract model will first be developed in

one module, and then used as the basis for the concrete model where appropriate

restrictions are applied.

The abstract model defines the relations between the data items, in this case some

simple arithmetic. It uses generic Integer and Real types for the data and operators.

This system cannot be implemented as specified because there are no limits on the

size of the data values, so the numbers and operations won’t fit into the system, but

the relationships are generally well typed.

The concrete model imports the data definitions from the abstract model. It sup-
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plies concrete input definitions which introduce bounds, in the form of the Range

attribute, into the abstract model. It also supplies bounded, concrete arithmetic op-

erator definitions that describe both short and long integer arithmetic. The concrete

model does not import the unbounded Integer operators, so any operation that isn’t

well bounded will result in a typing failure. The concrete module interface could

become the program interface, or it could be imported by another module, as long as

the inputs are equally or more constrained than the import declarations.

The abstract model presented here would likely be the actual program used in

traditional environments, and that any bounds checking would be left to the discretion

of the programmer. In HUSC, the bounded operators must include the run-time test

that makes sure the operation is valid. The test is automatically eliminated if it can

be shown unnecessary, so in unambiguous situations there is no run time overhead.

7.1.1 Abstract Model HUSC code

Note that in a real program, the definition of Integer and + would be supplied through

other modules, making up the preludes for the language.

module Abs

export (out1,out2)

import (nin :: Integer)

{

Define Integer as Scalar;

Operator + as (i::Integer) + (j::Integer) = (k::Integer);

Let out1,out2 be Integer;

out1 = nin + 2;

out2 = nin + 128;

}
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7.1.2 Abs Module Type Judgements

The vt predicates provide final type definitions for their variables. The type is encoded

as t(name,dependent expressions,attributes).

There are three possible type errors that can occur:

1. Bottom means their are incompatible constraints on the identifier based on its

usage, declarations and definition.

2. Ambiguous contexts result in Top types, meaning there was not enough infor-

mation to judge the type.

3. No vt predicate means the type could not be determined; this usually means

no satisfactory function or operator definitions could be found for some part of

the expression.

The et predicates are the type judgements for individual expressions and subex-

pressions, but otherwise they are the same.

vt(out2, t(Integer, [], []))

vt(out1, t(Integer, [], []))

vt(nin, t(Integer, [], []))

et(out2@1, t(Integer, []))

et(out2@2, t(Integer, []))

et(out1@1, t(Integer, []))

et(out1@2, t(Integer, []))

et(cocoinput(nin), t(Integer, []))

et(out1@3, t(Integer, []))

et(out2@3, t(Integer, []))

The function / operator interfaces selected for use in an expression are recorded

as joinex (join expressions). In this case, there is only one interface available for each

operation. Where there are more than one, the type of the result is the join of their

result types.
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If there are no joinex for a function / operator expression, then no interface sat-

isfied the type context, and the module cannot be compiled. Note that there is no

requirement for the function implementation to be included in the module, these can

be supplied later.

joinex(out2@1, +1@1, t(Integer, [], []), [])

joinex(out1@1, +1@1, t(Integer, [], []), [])

The data definitions are expressed as ”static” constraints. These are part of the

input, and are never erased during processing. They can be used to reassemble the

definitions by tracing the expression label associations. For example binop(out1@1,

+, out1@2, out1@3) means out1@1 = out1@2 + out1@3.

lit(out1@3, t(Integer, [], [attr(Range, dt(interval(int), 2, 2))]))

lit(out2@3, t(Integer, [], [attr(Range, dt(interval(int), 128, 128))]))

var(out1@2, nin)

var(out2@2, nin)

binop(out1@1, +, out1@2, out1@3)

binop(out2@1, +, out2@2, out2@3)

vdecl(nin, t(Integer, [], []))

vdecl(out2, t(Integer, [], []))

vdecl(out1, t(Integer, [], []))

vdef(nin, cocoinput(nin))

vdef(out1, out1@1)

vdef(out2, out2@1)

The ec predicates represent shape constraints on expressions. Where there is more

than one ec for an expression, they are merged by taking their meet, so there will

only ever be one per expression in the output. They are a good source for information

about type failures, to trace back which expression first received a Bottom constraint,

the result of incompatible shape constraints.

ec(+1@2, t(Integer, []))

ec(+1@1, t(Function, [tt(t(Integer, [], [])), dt(int, 2), tt(t(Integer, [], [])), tt(t(Integer, [], []))]))

ec(cocoinput(nin), t(Integer, []))



7. Examples 147

ec(out2@1, t(Integer, []))

ec(out1@1, t(Integer, []))

ec(out1@3, t(Integer, []))

ec(out1@2, t(Top, []))

ec(out2@3, t(Integer, []))

ec(out2@2, t(Top, []))

This is trace material left over from the processing. The attrule predicates are

rules that were not satisfied, any satisfied rules would have been removed. The

ac’s are supported constraints, these are redundant to the type judgements for the

expressions; allacs just gathers up attributes for expressions. Looking at the trace

material can help sort out problems with the attributes.

attrule(Range, plus, [out1@1, out1@2, out1@3])

attrule(Symmetric, plus, [out1@1, out1@2, out1@3])

attrule(Range, plus, [out2@1, out2@2, out2@3])

attrule(Symmetric, plus, [out2@1, out2@2, out2@3])

ac(out1@3, attr(Range, dt(interval(int), 2, 2)))

ac(out2@3, attr(Range, dt(interval(int), 128, 128)))

allacs(out1@3, [attr(Range, dt(interval(int), 2, 2))])

allacs(out1@2, [])

allacs(out1@1, [])

allacs(out2@3, [attr(Range, dt(interval(int), 128, 128))])

allacs(out2@2, [])

allacs(out2@1, [])

The type system completed successfully when the Yes appears at the end. Suc-

cessful completion does not imply the module is well typed, just that no errors were

encountered in the inferencing system.

Yes

7.1.3 Concrete Model HUSC code

The concrete model uses the Range attribute to limit the arithmetic and data values.
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module Conc

export (cout1,cout2)

import (cin :: SInt{Range(-100 .. 100)})

{

Define LInt as Integer{Range(-32767 .. 32768)};

Define SInt as LInt{Range(-127 .. 128)};

Operator + as (i::LInt) + (j::LInt) = (k::LInt);

Operator + as (i::LInt) + (j::LInt) = (k::LInt);

Let cout1 be SInt;

Let cout2 be LInt;

cout1 = out1;

cout2 = out2;

Use Abs for (Integer,out1,out2) with {nin = cin};

}

Note that in a real program, the definition of Integer and + would be supplied

through other modules, making up the preludes for the language.

module Abs

export (Integer,out1,out2)

import (nin :: Integer)

{

Define Integer as Scalar;

-- Operator + as (i::Integer) + (j::Integer) = (k::Integer);

Let out1,out2 be Integer;

out1 = nin + 2;

out2 = nin + 128;

}

7.1.4 Conc Module Output

Here the output shows that the ranges are propagated through the type judgement.
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The main result here is that the range limit on cout2 being a short integer (SInt)

funnels down into the join selection for the out2 sum. Because cin is in range

(−100, 100), adding 128 to it will push it out of SInt range. Therefore out2 can only

be created using the LInt addition. If out2 = nin + 2, as in the definition for out1,

both versions of plus would be in the join, and out2 could have been implemented as

a SInt.

Note too the the proof obligations for the input cin are expressed separately for

output to the obligations file. Also note that the proof obligation for the Abs input

variable nin has been erased, as it’s definition guarantees it’s an integer.

This result was manually altered to display the correct results for the purposes of

providing an example. There are currently some problems in the encoding between

HUSC compiled code and the type system. The results are based on unit testing with

hard coded type system files.

vt(Abs@nin, t(Abs@Integer, [], []))

vt(cin, t(SInt, [], []))

joinex(out2@1, +1@1, t(LInt, [], []), [])

joinex(out1@1, +1@1, t(LInt, [], []), [])

joinex(out1@1, +1@1, t(SInt, [], []), [])

joincan(Abs@out2@1, +, +2@1)

xpfobl(cocoinput(cin), attr(shape, t(SInt, [])))

xpfobl(cocoinput(cin), attr(Range, dt(interval(int),(-100,100))))

et(Abs@out2@2, t(SInt, []))

et(Abs@out1@2, t(SInt, []))

et(Abs@nin@1, t(SInt, []))

et(Abs@out1@3, t(SInt, []))

et(Abs@out2@3, t(LInt, []))

et(cocoinput(cin), t(SInt, []))

et(Abs@nin, t(SInt, []))

ec(Abs@out2@1, t(LInt, []))
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ec(Abs@out1@1, t(SInt, []))

ec(Abs@out1@3, t(Abs@Integer, []))

ec(Abs@out1@2, t(Abs@Integer, []))

ec(Abs@out2@3, t(Abs@Integer, []))

ec(Abs@out2@2, t(Abs@Integer, []))

ec(cocoinput(cin), t(SInt, []))

ec(cout1@1, t(SInt, []))

ec(cout2@1, t(LInt, []))

lit(Abs@out1@3, t(Integer, [], [attr(Range, dt(interval(int), 2, 2))]))

lit(Abs@out2@3, t(Integer, [], [attr(Range, dt(interval(int), 128, 128))]))

var(Abs@nin@1, cocoinput(cin))

var(Abs@out1@2, (Abs@nin))

var(Abs@out2@2, (Abs@nin))

var(cout1@1, (Abs@out1))

var(cout2@1, (Abs@out2))

binop(Abs@out1@1, +, Abs@out1@2, Abs@out1@3)

binop(Abs@out2@1, +, Abs@out2@2, Abs@out2@3)

vdecl(Abs@nin, t(Abs@Integer, [], []))

vdecl(Abs@out2, t(Abs@Integer, [], []))

vdecl(Abs@out1, t(Abs@Integer, [], []))

vdecl(cin, t(SInt, [], []))

vdecl(cout1, t(SInt, [], []))

vdecl(cout2, t(LInt, [], []))

vdef(Abs@nin, Abs@nin@1)

vdef(Abs@out1, Abs@out1@1)

vdef(Abs@out2, Abs@out2@1)

vdef(+2, +2@1)

vdef(+1, +1@1)

vdef(cin, cocoinput(cin))

vdef(cout1, cout1@1)

vdef(cout2, cout2@1)

attrule(Range, plus, [Abs@out1@1, Abs@out1@2, Abs@out1@3])
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attrule(Symmetric, plus, [Abs@out1@1, Abs@out1@2, Abs@out1@3])

attrule(Range, plus, [Abs@out2@1, Abs@out2@2, Abs@out2@3])

attrule(Symmetric, plus, [Abs@out2@1, Abs@out2@2, Abs@out2@3])

ac(Abs@out1@3, attr(Range, dt(interval(int), 2, 2)))

ac(Abs@out2@3, attr(Range, dt(interval(int), 128, 128)))

ac(Abs@out2@2, attr(Range, dt(interval(int), (-100,100))))

ac(Abs@out2@1, attr(Range, dt(interval(int), (128,288))))

acs(cout1@1, attr(Range, dt(interval(int), (-127,128))))

acs(cout2@1, attr(Range, dt(interval(int), (-32767,32768))))

allacs(Abs@out1@2, [attr(Range, dt(interval(int), (-100,100)))])

allacs(Abs@out1@3, [attr(Range, dt(interval(int), 2, 2))])

allacs(Abs@out1@2, [attr(Range, dt(interval(int), (-100,100)))])

allacs(Abs@out1@1, [attr(Range, dt(interval(int), (-127,128)))])

allacs(Abs@out2@3, [attr(Range, dt(interval(int), (128, 128)))])

allacs(cout1@1, [attr(Range, dt(interval(int), (-127,128)))])

allacs(cout2@1, [attr(Range, dt(interval(int), (-32767,32768)))])

Yes
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Conclusions and Future Work

8.1 Summary

The results of the HUSC project are an early but promising start on satisfying the

initial goals of the Coconut project. HUSC establishes a modularized framework for

defining the fundamental relationships and types found in mathematical systems, then

refining those relationships with more detailed information. The ability to define new

attribute classes (even though it currently requires CHR programming) will allow the

language to be customized for very specific problem sets, a key objective of the system.

This is especially powerful when combined with the function specialization abilities,

which allows broad classes of systems to be defined without any future knowledge of

the specialized contexts they will be embedded in.

The type system is the main contribution of this project, in particular the support

for function specialization and attribute classes made possible by subtyping. The

decomposition of subtyping into shapes and attributes and the constraint based type

inferencing make this a unique and valuable approach to static type analysis.

The HUSC type system has not been proven sound nor complete, and the im-

plementation of the type system is rudimentary. There are a number of significant

upgrades that are required, in particular in records and domain checking multiple

definitions for arrays. It does, however, demonstrate that further effort is warranted

in this effort, and will serve as a useful starting point for solutions in these areas.

The biggest question that remains outstanding is whether a set of attributes can
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be defined that will solve practical problems in the real world. The linear algebra

example given in the introduction illustrates how this might be approached, but as

is always the case with the real world, the challenge is in the details. An immediate

goal for proceeding forwards will be to develop a set of attribute classes, function

definitions and problems that can be implemented in HUSC to test the expressiveness

of the language.

One problem in particular that was not addressed was the definition and imple-

mentation of a “precision” attribute class. This is a significant problem, not least of

which because the definition of precision is difficult to obtain. It is also likely that pre-

cision will require information from other attributes, such as range, which then makes

proving the type system is sound and complete even harder. The problem stems from

the difficulty in defining formal semantics for the floating point approximations of

real numbers, a problem which should be addressed by HUSC in the future. This is

a very significant factor in complex systems development, and HUSC may provide a

good environment in which to explore this area.

It is worth noting that the type system can be used independently of the HUSC

language and the Coconut project, although the definition given here mandates a

declarative language. To make the type system more generally useful, algebraic data

types would have to be incorporated as shapes or classes of shapes, an interesting

problem area on its own.

The concrete syntax was intended to be a bridge between programmers familiar

with Fortran and Matlab and strongly typed declarative programming languages. It

is a literate language, meaning the source code is embedded in LATEXsource files,

and is intended to be further integrated with LATEXto provide a better syntax for

representing mathematics. However, neither of these were high priority goals for this

project, and their suitability in this regard has not been addressed.

One general observation drawn from this work is that it is very difficult to express

the broader range of constraints HUSC makes available in the idiom of a type system.

The purpose of the HUSC type system is the specification of safe programs and

supporting the use of function specializations in certain contexts, to allow the lower

level compiler to optimize the system. It may be better to generalize the notion of

the type system to be instead a constraint solver that works as a partial evaluator,
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reducing expressions to their most constrained form (possibly a solution). Then new

kinds of constraint solvers can be introduced without attempting to limit their domain

to a particular identifier in a context. This is another possible area of future work,

but falls outside the scope of HUSC.

The future work on HUSC falls into four areas:

Applications a body of application programs should be developed, in particular

mathematical foundations like addition and multiplication, to test and develop

the expressivity of the language and type system.

Proving Soundness and Completeness of the type system and HUSC semantic,

likely establishing new restrictions on the system.

Resolving outstanding weaknesses of the current implementation, in particular

the interaction between data terms and dependent type variables in the type

judgment contexts, and of course pulling the type judgements back into the

code hypergraphs.

Develop the Codegraph Transformer which is the next layer in the Coconut

project, in order to confirm the usefulness of the model, and drive out new

requirements to improve the HUSC language.

These last two points have been developed in more detail here, providing some

direction for progress in those areas.

8.2 Compiling HUSC Programs

The types defined for HUSC are ”pure” types, in that there is no requirement that

they are representable on any real system or even representable at all. This is par-

ticularly important for modules capturing physical relationships from the real world

context that may not play any role in computation, but exists solely to be checked

by the type checker. It is also a handy abstraction when a system is being modelled

to be implemented over a range of hardware systems.
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Eventually, however, the modules must be imported into a system that provides

sufficient context to build a concrete system. This requires the following conditions

to be met:

1. the exported (output) definitions of the main module must be ground, meaning

well defined and well typed.

2. each term must be of a representable type, including all intermediate results

3. each function or operator application must have an associated interface that

satisfies the final type context (a successful join candidate) and there must be

an implementation available for this interface.

Finally, the user of the system must guarantee that the external proof obligations

are satisfied, but there is no attempt to verify this by the system.

This transformation is outside the scope of this work, and will be handled by the

lower layer of the Coconut system. However, some discussion has been provided here

to clarify what steps must occur and how this might work in practice, in order to

assist in the understanding and verification of HUSC. These are likely not a complete

set of requirements, but encapsulate the most important requirements for completion.

The output of the HUSC system is an attributed syntax hypergraph, with terms

as vertices and functions / operations as edges. It is a hypergraph because the joins

are represented as individual edges between nodes.

The codegraph transformer will look for patterns in the typed ASGs, and make

transformations to simplify or optimize the graphs. Some categories of transforma-

tions are suggested below.

Attribute Testing

When an expression has requested an attribute be tested as a guard to a join expres-

sion, the transformer must insert the predicate defined in the attribute class definition

to ensure the run time context does support the constraint. This is a requirement to

support the HUSC specification.
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Storage Model

HUSC types need to be transformed, at least within the theoretical model of the

system, into concrete native system types For example, an Integer {Range(-10,10)}
is representable as an int, a char, long int or whatever is convenient, but an Integer

is not generally representable as it is unbounded (although the system may include

libraries to deal with this if desired). An Array{Symmetric}[3,3] of Integer{Range(-

127,128)} may be represented by a buffer with 6 or 9 1 byte elements, depending on

whether keeping the symmetric attribute is considered desirable in the final result.

The importance of the semantic information is clear in this case: the benefit of a

symmetric model for a 3x3 array is questionable, but for a 10000 x 10000 array, it

is likely to be a good choice. How these decisions will be made is clearly a difficult

subject, but the fact remains that the decisions can be made now.

Ensuring that the representation of Real and Complex numbers is accurate and

safe will require further analysis, particularly the implementation of a precision at-

tribute class. This has not been done, but would be an excellent area to study.

Removing Abstract Type References

HUSC allows the introduction of abstract types which play no role in computation.

For example, a matrix may be defined as an array over a basis. The basis could be left

as an abstract value with only equality provided over the type, and no definition of

equality provided. Matrix addition would be undefined where the bases were unequal,

and simple array arithmetic when they are equal.

Since there is no definition of equality over bases, two bases can only be equal

when they are identical syntactically, i.e. one is defined to be equal to the other.

Since equality has the property of reflexivity, the code graph transformer could auto-

matically replace any Boolean guard testing α == α with True, discarding the guard

and the alternate branch (undefined). If this were not the case, the module could not

be compiled successfully as is appropriate.
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System Input / Output and Timing Issues

HUSC is quite abstract and static in its representation of a system, providing little

or no direct information about algorithms or processing times. The code block trans-

former will have to introduce any information about the system input and output,

particularly in real time systems.

8.3 Outstanding HUSC Implementation / Design

Issues

8.3.1 Context Management and Symbolic Computation

The single biggest difficult with the implementation was managing the context for

dependent data terms. There were many requirements for being able to switch con-

text between data identifiers (variables, constants) and dependent arguments in type

definitions. While no one requirement was impossible, the actual implementation be-

came quite messy as the sum of the requirements really dictates a symbolic calculator

be made available within the type system.

Initially this could handle just simple scalar data types. However, eventually the

type system should be able to take a data term of any HUSC type, and use the loaded

HUSC operations to manipulate that property, including doing tests and arithmetic.

In other words, the symbolic calculator should be a HUSC interpreter.

It is possible, perhaps even desirable, to build such a tool within the Prolog system.

However, it may be preferable to rewrite the type system in Haskell, should there be

a Haskell implementation of CHR that is acceptable, in which case the symbolic

computation would also be done in Haskell. It is unclear which environment would

be better; it is clear that this would be a difficult undertaking in either environment.

8.3.2 Building the Code Hypergraph

The type system produces type judgements for expressions, subexpressions and data

identifiers, and lists of function / operator interfaces that were included in joins for

operator / function application expressions. This information needs to be pulled back
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into the Haskell environment and associated with the internal module data structures,

then written out as the code graph.

This effort is well defined, as each expression is uniquely labelled, the relationships

between the expressions are recorded explicitly, and judgement and join candidate

is associated with the expression. However, merging this information represents a

significant workload.

8.3.3 Attribute Class Definitions

The original syntax for attribute class definitions had propagation rules defined using

the declarative syntax of HUSC. This was to be translated into the CHR system,

but here were a number of difficulties with this and in the end attributes were coded

directly as CHRs in the type system. At that point it was unclear what would be

gained by trying to generate the syntax, so the effort was postponed to future work.

The system is still fully extensible by adding the CHRs directly, so this no way

diminishes the effectiveness of the type system.

As sample attribute classes were defined during the initial implementation test-

ing, it became clear that there were kinds of attribute classes, that shared similar

logical properties and would be implemented as CHRs in the same way. For exam-

ple, the attributes Symmetric and Tridiagonal have identical join, meet, subattribute

and propagation over addition properties. A classification system for attribute kinds

would be very useful in producing a syntax to define attribute classes in a practical

way that avoids the creation of boiler plate code.

Type vs. Data Terms

The HUSC language is very flexible about allowing variables to be used as dependent

variables. This creates a significant difficulty when trying to encode those expressions

into internal terms, as the type of the variables isn’t known at the time of encoding.

The type system needs to have a translation mechanism to propagate type infor-

mation into the dependent expression contexts as variables receive type judgements.

This is quite tricky, but would work within the context of the CHR rules.

Again, it would be superior to have a built in HUSC interpreter that could manage
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the symbolic variables and infer their types.

Join and Conditional Expressions

There are currently two different structures over expressions, the join and the condi-

tional. The join was seen as a way of providing multiple different approaches to solve

the same problem, while the conditional statement partitioned the solution space us-

ing Boolean guards. However, the resulting type of both types of statements turns

out to be the same, namely a join over all of the conditions, i.e. any result that might

come back from the select statement. It seems that these two structures should be

merged, which would make the syntax more complex, but the selective join would be

much more expressive.

The select and join statements are not currently encoded properly when being

handed over to the type system. The variables in each component of the conditional

expression are in effect local copies of the original, with a separate type context

defined by the constraint of the Boolean guard. To encode the select statement, the

variables in the guards need to removed to a local context, possibly by renaming,

and then setting the result of the selection to the join of the individual types. Not

renaming the variables would result in inappropriate type judgements.

For example

Let x be Real{Range( -1 .. 1)}

y = select {

-x | x < 0.0

x | otherwise

}

The judgement for y should clearly be Range(0 .. 1), but just joining the results of x

and -x gives (-1 .. 1). Recognizing that the x in the first is an x+ of Range (0 .. 1)

isn’t too difficult. What to do about the ”otherwise” might be more troublesome.

Future Work on the Parser

There are a number of modifications to the parser that should be made.



8. Conclusions and Future Work 160

1. Allow new operator symbols to be defined in modules, updating the expression

parser in the Expr module.

2. make the parser token based, instead of character based, with the tokens incor-

porating the line numbers from the literate file.

3. Ideally a layout scheme, such as Haskell’s, would be implemented as part of the

deliterator.

4. extend the monad to include recording errors as they are generated (for non-

terminal errors).

Parsec allows both custom tokens and state elements as part of the combinator

strategy, so it should be relatively easy to incorporate these additional features.

Module System

A rudimentary module system was provided in the implementation, which uses iden-

tifier renaming to lift private definitions from imported modules into the program

context while maintaining privacy syntactically. All of the definitions of the imported

module are included, regardless of the actual import statement. This generates many

unnecessary definitions, and will frequently result in the same definition appearing

twice, with differently qualified identifiers, as two modules both import the same

source module.

When a module is imported, only the definitions that are required should be

imported. This requires some dependency checking algorithms, which become quite

tricky because the dependent variables and attribute properties embedded in types

must be considered. In addition, it is important to make sure all of the type and

attribute class definitions required are imported with the data. Haskell solves this

problem by always importing constructors and class definitions when you import a

module, but this often creates unnecessary conflicts. It may be necessary to maintain

two contexts, one for types and one for data, but there should still be scoping within

the type context.

A solution for this problem will be complicated, but is a necessity for a usable

Coconut system.
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Miscellaneous Issues

1. add checking for cycle detection in definitions

2. The export list could be modified to include export declarations, making them

mandatory for data identifiers, with some decisions being made about how to

export type definitions, operators and attribute classes for which there are no

declarations currently.

3. can’t define new function types and then use them in declaration, e.g. Define

Sinusoidal as Function `; Let sin be Sinusoidal. This is a mechanical deficiency

and can be resolved by chasing the base type up the type hierarchy.

4. Currently only supporting function applications for up to three parameters.

This is a mechanical issue only, a little CHR coding could support arbitrary

size parameter lists.

8.4 NonDeterminism, Inequality Constraints and

Systems of Constraints

Traditionally programs dealing with systems of equations, often including inequality

statements as well, require that these systems be transformed into strictly linear or

deterministic, paths before being coded. In imperative languages, the program is

transformed to include a solution suitable for the nonlinearity where the value to

be solved for is moved to the LHS of the system and the remainder of the values

to the RHS of the system. The transformation is assumed to be correct, and no

further checking or optimization is possible because the semantic information behind

the system is lost. This is nonintuitive from a mathematical point of view and opens

a significant window for error.

In HUSC, the “normal” data definitions statements are also deterministic and

linear. It is not possible to describe a truly nonlinear system of equations, nor the

associated inequality relationships, with just these definitions. However, it should be

possible to define nondeterministic, nonlinear systems of equations with expressions

on both the left and right hand side of an equality or inequality symbol.
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This “system of constraints” would be a data type, storing systems of equations

and inequalities as a structure. A system of constraints is not evaluated by the

Coconut compiler, but instead forms a complex, compound data type that is an

argument to a module called a “solver”. A solver accepts a system of constraints as

an input definition, typically returning deterministic definitions. At the HUSC level,

this becomes another form of function interface, with a different syntax, providing a

definition for an identifier that is never isolated on the LHS of an equation.

Internally the system will become a compound type, with the syntax graph of

the expression being the compound shape. This allows for structural type checking,

but also takes advantage of the subtyping over attributes, which can be part of the

interface. For example, the Crout method solves a system of linear equations that

has been reduced to a tridiagonal format. The interface to that module would specify

a system

input: sys as {$A*x = b$}; $A$ is Matrix[n,n] of $\alpha$; $b$ is Vector[n] of $\alpha$

export: x is Vector[n] of $\alpha$

-- and would then be invoked by

Solve splineCoeff as ${H*x = c}$ for $x$ using CroutReduction with ${splineCoeff}$

(the concrete syntax needs further development but establishes the basic idea). In

this example, the module is named, but it should be possible to allow selection from

a list of loaded solvers, just as the function interfaces are loaded, but this is just a

conjecture at this point.

For nonlinear solvers, additional matching might be done on a cost function as an

inequality and only allowing positive semidefinite matrices. This much tighter type

checking, a very useful trait for type systems in this very detailed domain.

This sort of type checking is possible because of the notion of the type joins and

meets. The “type” of both sides of an equality sign is the meet of the derived types

of the left and right sides. In other words, the constraints on the LHS would also

be applied to the RHS and vice versa. This is a simple generalization of the data

definition, where constraints inferred by the usage of an identifier are applied to the

expression in its definition. Since this is just one more usage of these identifiers, there

is no fundamental difference to the results.
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In the case of inequalities, the ability to is less clear. The meaning of the constraint

imposed might be difficult to translate into attributes. There would still be type

information that could be inferenced on either side in isolation, and there would have

to be a definition of the inequality symbol over the types derived for the two sides,

further refining the notion of their types.

Adding this capability to the HUSC language and type system should be a high

priority because it promises to be both powerful and not too difficult, leveraging the

strength of the constraint based type system.



Appendix A

Formal Operational Semantics

These are the formal rules defining the operational semantic that is represented by

HUSC relationships, and the formal rules for the type system.

The type system is implemented using a CHR program, as described in 6, which

is a direct translation of the rules into a constraint handling program.

HUSC does not provide an implementation of the operational semantics for ex-

pression evaluation. This semantics is a specification for how a back end compiler for

HUSC should interpret the output code hypergraphs. An informal description of the

rules is given in 3.2 The rules for completedefinitions are intended to be implemented

within HUSC, as part of the syntax checking, but this implementation is not yet

complete.

A.1 Operational Semantics

In the rules below, the following conventions are used:

terms, expressions ti are data terms, E, Ei are expressions

variables xi, yi, etc.

types S, T, Si, Ti, Q, R, U

type variables α, β

164
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attributes A, AT , AT
i , Ai(ρi) where ρ are property values and T’s are the type the

attribute applies to

context Γ, ΓE

sequences x1..n is a short form for the sequence x1, x2..., xn

The operators �,�Sh,�A represent subtype, subshape and subattribute relation-

ships respectively. Intuitively, a subtype represents a subset of the possible values

that can be represented by a type, so is a more restrictive version of the type but can

be used anywhere the type can be used. A subshape is the same but for the shape

component of the type and a subattribute represents a more restrictive description of

an attribute. The formal definitions of these operators are given in 5.2.

The symbols t,u are the join and meet operators, also formally defined in 5.2.

St T is the least general (most restrictive) type for which S and T are subtypes, and

is used to describe the type of a join expression, where the result is one of a number

of candidate expressions. Similarly S u T is the most general (least restrictive) type

that is a subtype of both S and T, and represents the most general unifier between

two constraints on a type.

The semantic statements are given as logical axioms and predicates. An axiom is

a single statement on its own. A rule consists of pre-conditions above the line, and

when those conditions are satisfied, the predicate below the line is true.

The operational semantic rules describe the composition of the module context

Γ, or the additional locally scoped definitions in the expression E ΓE . Contexts

are sets of relations, which include data definitions, type judgements and subtype

relationships. The axioms describe what makes up a context, and the rules form an

iterative definition of the contexts. In a given rules, a context may also be extended

with a specific relation for the purposes of clarity (Γ, x : T ` . . . ). The `symbol

means “implied by context”. The main module context is the abstraction of the final

code hypergraph.

Expression evaluations (those labelled E—rulename) are given as a set of con-

ditions that lead to a new equivalent expression for an identifier. These are to be

interpreted as instructions for evaluating expressions, given their type in terms of a

shape and attributes, by the next layer of the compiler system.
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Definition statements (D—rulename) describe the rules for accepting new defini-

tions of functions, operators, types, attribute classes and data identifiers. They use

the notation def ∈ Γ to indicate that a definition is present, and the notation Γ ` def

to indicate the definition is accepted in the context. The remaining elements of the

definition rule are the conditions for accepting such a definition.

Declaration statements (C—rulename) are similar, but they provide a type con-

straint on a definition. These are represented by x :: T , x is declared to have type T.

The double colon (::) is used to indicate a declaration in the language, which is the

same as is used in the HUSC concrete syntax, the single colon (:) is a type judgement

from the type system. This is a somewhat confusing convention, but the declaration

:: only appears in the form x :: T ∈ Γ, and the meaning is very similar in any case.

There are several supplemental contexts that are separated from the main context.

These are:

A is the attribute class context containing definitions associated with the attribute

classes.

F is the function class context, containing the declarations of function classes and

the valid function interfaces.

O is the operator interface context, containing valid operator interfaces for each sym-

bol.

X is the external proof obligation context, representing all of the proof obligations

that are created during the type evaluation of the system.

It was not necessary to separate these contexts, but the information in these is only

accessible to the HUSC system, while the module context contains the information

that is passed on as output. Splitting them out helps to identify what information

will be dropped once HUSC has completed processing.

Finally, there is a set of rules for describing a “complete” definition, one which is

complete with respect to the HUSC interpretation. These rules use the notation Θ

to be the set of completedefinitions, which is built recursively over the context Γ.
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A.1.1 Definition, Declaration and Context Rules

Γ = ΓOutput ∪ ΓIn ∪ ΓPrivate (C—ModuleContext)

Γ = ∅ | Γ, x : T | Γ, x = E | Γ, S = T.{Ai(ρi)1..n}
| Γ, φ = (λ(xi : Ti)1..n.E) : T | Γ, A(β)

(C—ContextDef)

ΓE = Γ | ΓE , x : T | ΓE , x = Ex (C—Local)

x : T ∈ ΓOut T ∈ T

ΓOut ` x : S � T
(C—OutputDecls)

ΓOut ` x : T x = E ∈ Γ

ΓOut ` x = E
(C—OutputDefs)

x : T ∈ ΓIn T ∈ T

ΓIn ` x : T
(C—InputDecls)

ΓIn ` x : T x = E ∈ Γ

False
(C—InputNoLocalDef)

x : T ∈ Γ

Γ ` x : S � T
(C—Decls)

x : T ∈ ΓE

ΓE ` x : S � T
(C—LocalDecl)

x = E ∈ Γ x = E ′ /∈ Γ \ {x = E}

Γ ` x = E
(D—Total)

x.l1..n = E1..n ∈ Γ li = lj ⇐⇒ i = j

Γ ` x = (li = Ei)1..n

(D—RecPartial)
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x[i1..n] = λi1..n.E ∈ Γ ΓE ` ij ∈ domj ⊂ Z, 1 ≤ j ≤ n

{∀(k1..n) ∈ domE}.x[k1..n] = E ′ /∈ Γ \ {x[k1..n] = λi1..n.E} where domE = dom1 × ...× domn

Γ ` {∀(k1, ..., kn) ∈ domE}.x[k1..n] = λk1..n.E

(D—DimPartial)

context ` {∀(k1, ..., kn) ∈ domj}.x[i1, ..., in] = λi1, ..., in.Ej, 1 ≤ j ≤ m

context ` x : T Sh(T ) = DimShape(dom, α)

dom =
⋃

dom1..m ∃l1..n, u1..n ∈ Z 3 dom = ×[li..ui]1..n

(D—DimTotal)

f(xi : Si)1..n = E : Q ∈ Γ F ` Sh(f) = Function(T1..n, R)

(Si � Ti)1..n Q � R

F ` fS1..n,Q = E : Q

(D—FuncInterface)

F ` fS1..n,Q = E : Q Θ(E)

Γ ` fS1..n,Q = E : Q
(D—FuncImplement)

φ(xi : Ti)1..n = E : R ∈ Γ Symbol(φ)

F ` φT1..n,R = E : R
(D—OpInterface)

F ` φT1..n,R = E : R Θ(E)

Γ ` φT1..n,R = E : R
(D—OpImplement)

use(ModA, with(xi = Ei)1..n, import(y1..m)) ∈ Γ yj = F ′
j /∈ Γ ΓModA,Out ` yj : Qj, yj = Fj

Γ ` E1..n : S1..n ΓModA,In = {xi : Ti}1..n Si � Ti

Γ ` yj = Fj Γ ` yj : Rj Rj � Qj

(C—ImportDefs)

A.1.2 Simple Expression Evaluation

Γ ` x = E1 Γ ` y = λx.E2

Γ ` y = [x 7→ E1]E2

(E—VarEval)
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Γ ` x = (li = Ei)1..n Γ ` y = λx.E

Γ ` y = [x 7→ (li = Ei)1..n]E
(E—Record)

Γ ` x = (li = Ei)1..n Γ ` y = λ(x.lj).E

Γ ` y = [x.lj 7→ Ej]E
(E—RecField)

Γ ` (x1..n) = (E1..n) Γ ` y = λx.E

Γ ` y = [x 7→ (E1..n)]E
(E—Tuple)

Γ ` (x1..n) = (E1..n) Γ ` y = λ(xj).E

Γ ` y = [xj 7→ Ej]E
(E—TupleField)

Γ ` x : T Sh(T ) = DimShape(dom, α) dom =
⋃

domj

y = λx[ind1..n].E (ind1..n) ∈ domj Γ ` (∀k1..n ∈ domj).x[k1..n] = λk1..n.Ej

y = [x[ind1..n] 7→ Ej(ind1..n)].E

(E—ArrayIndex)

y = f(t1..n) ∈ ΓE Γ ` Sh(f) = Function(T1..n, R) ΓE ` (ti : Si)1..n (Si � Ti)1..n

Γ, y : U ` U � Q1..m ⊥T ≺ Q = uQ1..m

Γ ` y =
∧
{∀S ′

1..n, R
′ 3 fS′

1..n,R′ ∈ F ∧ (Si � S ′
i)1..n ∧ ⊥T ≺ (R′ uQ)}.fS′

1..n,R′(t1..n)

(E—FuncJoin)

Ff ` fS1..n,R = λ(pi : Si)1..n.ES1..n,R ΓE ` x = fS,R(t1..n) ΓE ` (ti : S ′
i)1..n (S ′

i � Si)1..n

ΓE ` x = [(ti 7→ pi)1..n]ES1..n,R

(E—FuncApplication)

y = φ(t1..n) ∈ ΓE ΓE ` (ti : Si)1..n

ΓE , y : R ` R � Q1..m ⊥T ≺ Q = uQ1..m

Γ ` y =
∧
{∀φ(T1..n),R′ ∈ Oφ 3 (Si � Ti)1..n ∧ ⊥T ≺ (R′meetQ)}.φ(T1..n),R′(t1..n)

(E—OpJoin)

Oφ ` φ(T1..n),R = λ(pi : Ti)1..n.ET1..n,R ΓE ` x = φT,R(t1..n) ΓE ` (ti : Si)1..n (Si � Ti)1..n

Γ ` x = [(ti 7→ pi)1..n].ET1..n,R

(E—OpImplement)
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A.1.3 Completeness Rules

The expression FV (c) refers to the free variables of an expression c, and the symbols

Θ as the set of complete definitions, with Θ(x) indicating x is complete.

Θ ⊆ Γ Θ(x) =⇒ x ∈ Θ (Θ— Definition)

Γc ` c : T Γ ` FV (c) = ∅

Γ ` Θ(c)
(Θ— Constant)

ΓIn ` v : T

Γ ` Θ(v)
(Θ— Input)

Γ ` x = v Γ ` FV (v) = {v} Γ ` Θ(v)

Γ ` Θ(x)
(Θ— Var)

Γ ` x = (li = Ei)1..n : T Γ ` Θ(Ei)

Γ ` Θ(x)
(Θ— RecordDef)

ΓE ` x = (li = Ei)1..n : T Γ ` Θ(x)

Γ ` Θ(x.l1..n)
(Θ— RecordField)

Γ ` {∀(k1..n) ∈ domEj
}.x[k1..n] = λk1..n.Ej1 ≤ j ≤ m Γ ` x : T

Sh(T ) = DimShape(dom, α), dom =
⋃

Ej ΓEj ` Θ(Ej) 1 ≤ j ≤ m

Γ ` Θ(x)

(Θ— DimDef)

Γ ` x : T Sh(T ) = DimShape(dom, α), dom ⊂ Zn Γ ` i ∈ dom

Γ ` Θ(x[i])

(Θ— DimElem)

Ff ` fS,R(t1..n) = λt1..n : E ΓE , Θ(t1..n) ` Θ(E)

Γ ` Θ(fS,R)
(Θ— FuncDef)

ΓE ` x = fS,R(t1..n) Γ ` Θ(fS,R) ΓE ` Θ(t1..n)

Γ ` Θ(x)
(Θ— FuncAppl)
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Oφ ` φT1..n,R(ti : Ti)1..n = λt1..n : E ΓE , Θ(t1), ..., Θ(tn) ` Θ(E)

Γ ` Θ(φT1..n,R)
(Θ— OpDef)

Γ ` Θ(φT1..n,R) ΓE ` E = φT1..n,R(t1..n) : R

ΓE ` Θ(t1..n)

Γ ` Θ(E)
(Θ— OpEval)

Γ ` E = Conditional.{(Gi, Ei)1..n} Γ ` Θ(G1..n), Θ(E1..n)

Γ ` Θ(E)
(Θ— CondExpr)

Γ ` E =
∧

.{E1..n} Γ ` Θ(E1..n)

Γ ` Θ(E)
(Θ— JoinExpr)

Note that the commutivity of the join and meet operations eliminates the need for

T � S rules. These mirror image rules were necessary in the implementation because

of the difficulties CHR has with commutative substitutions.

A.2 Type System Semantics

These rules define the type system, including shapes and attributes, subtypes, joins

and meets and attribute class definitions. The approach and notation was taken from

[10]. It is assumed that the reader is familiar with formal type theory descriptions, and

with the general meaning of types, subtypes, dependent types. If not, [10] provides

an excellent introduction to the theory of type systems in programming languages.

The following conventions are used:

• T is the set of valid types

• S, T, U are types;

• Shapes is the set of valid shape expressions

• Sh(T ) is the shape of type T ;

• A is the context of defined attribute classes, part of the overall module context
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• AT
i (ρ) is an attribute of class A that is applicable to type T with a property

value ρ of an appropriate type.

• AT
i is an attribute of class A that is applicable to type T , where the property

value has not been represented for convenience, but does exist.

• as before, A1..n represents the sequence A1, ..., An, and this notation is sometimes

used ”flexibly” to represent the obvious expansion of a sequence with more than

one related elements (e.g x1..n :: T1..n is x1 : T1, etc.)

• the subtype relation is not strict, so ”a subtype” is equivalent to ”a type and

its subtypes”

• The operators tTi and uSi consolidate multiple joins and meets, respectively.

A.2.1 Fundamental Types, Top and Bottom

>T ∈ T ⊥T ∈ T (T–TopBottom)

T ∈ T ⇐⇒ T � >T (T—Top)

T ∈ T ⇐⇒ ⊥T � T (T—Bottom)

T ∈ T T /∈ {>T ,⊥T}

Sh(T ) ∈ Shapes Attr(T ) = ∅ | {AT
i (ρi)}1..n

ρ1..n � AT
1..n.property T � AT

1..n.target

(T—GenericComp)

A.2.2 Shapes

Shapes = Scalars ∪Records ∪ Arrays ∪ Iteratives ∪ Functions (T—Shapes)

Tuples = {∀Ti ∈ T ,∀ n ≥ 2).(T1..n)} (T—Tuples)

Records = {(∀Ti ∈ T ).(l1..n :: T1..n), li = lj ⇐⇒ i = j} (T—Records)

Functions = {(∀Ti ∈ T ,∀R ∈ T ,∀n ≥ 1).(f, T1..n, R)} (T—Functions)

DimType = {(∀dom ∈ D, α ∈ T ).(dom, α)} (T—DimType)
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dom ∈ D

∃l1..n, u1..n ∈ Z.dom = [l1..u1]× ...× [ln..un]) [li..ui] , {li, li + 1, `ui}
(T—DimDomain)

S ∈ Shapes

S = S
(T—EqShapeReflex)

∀S1, S2 ∈ Shapes S1 = S2

S2 = S1
(T—EqShapeSym)

∀S1, S2, S3 ∈ Shapes (S1 = S2 ∧ S2 = S3)

S1 = S3
(T—EqShapeTrans)

∀S1, S2 ∈ Shapes.S1 = S2

S1, S2 ∈ same shape category
(T—EqShapeComp)

∀S1, S2 ∈ Scalar

S1 = S2
(T—EqScalar)

∀S1, S2 ∈ Tuple.S1 = S2 S1 = (T1..n) S2 = (U1..n)

T1..n = U1..n

(T—EqTuple)

∀S1, S2 ∈ Record.S1 = S2 S1 = (l11..n :: T1..n) S2 = (l21..n :: U1..n)

l11..n = l21..n T1..n = U1..n

(T—EqRecord)

∀S1, S2 ∈ Function.S1 = S2 S1 = (F, (T1..n), R) S2 = (F, U1..n, Q)

T1..n = U1..n, R = Q

(T—EqFunc)

∀S1, S2 ∈ DimShape.S1 = S2 S1 = (dom1, T ) S2 = (dom2, U)

dom1 = dom2, T = U

(T—EqDim)
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A.2.3 Attributes

Sh(T ).{AT
1..n} = Sh(T ).{AT

i1..n
}for all permutations{i1..n} (T—AttrPermutation)

A ::= ∅ | A, A(ρ, β,�A,uA,tA, |=A, rules(A)) (A—New)

A(ρ, β, |=A,�A,uA,tA, rules(A)) ∈ Γ A /∈ A Γ =⇒ ρ, β ∈ T
|=A:: β → ρ → boolean ∈ ΓA �A:: ρ → ρ → B ∈ ΓA

uA :: ρ → ρ → ρ ∈ ΓA tA :: ρ → ρ → ρ ∈ ΓA

A :: β → ρ ∈ ΓA rules(A) ∈ ΓA

A ` A(ρ, β, |=A,�A,uA,tA, rules(A))
(A—Def)

A.2.4 Defining New Types

Γ ` T ∈ T Attributes(T ) = {AT
1..k(ρ1..k)} ∪ {AT

k+1..n(ρk+1..n)}
U(ρ1..p) = Π(ρ1..p)(T.((subtype?), {AT

1..k(µ1..k)} ∪ {AU
n+1..m(µn+1..m)})) ∈ Γ U 6∈ Γ

ρ1..p

Γ ` U(ρ1..p) = Π(ρ1..p)(Sh(T ).{AT
i (ρi) u {AT

i (µi)}1..k ∪ {AT
k+1..n(ρk+1..n)} ∪ {AU

n+1..m(µn+1..m)})
BaseType U = T Γ, (subtype?) ` U � T

(DefineType)

A.2.5 Subtypes, SubShape and SubAttribute Relations

T � T (ST—Refl)

Γ ` S � T Γ ` T � U

Γ ` S � U
(ST—Trans)

S � T T � S

S = T
(ST—AntiSym)

S ≺ T

T 6≺ S
(SST—ASym)

Γ ` S ≺ T Γ ` T ≺ U

Γ ` S ≺ U
(SST—Trans)
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Γ ` S � T T = Sh(T ).{AT
1..n(ρ1..n)}

Γ ` S = Sh(S).{AT
1..n(µ1..n)} ∪ {AS

n+1..m(µn+1..m)}
Sh(S) �Sh Sh(T ) AT

1..n(µ1..n) �AT
AT

1..n(ρ1..n)

(ST—Generic)

T ∈ Scalar S � T

S ∈ Scalar
(SS—Scalar)

T = Record(l1 : T1, ..., ln : Tn) li = lj ⇐⇒ i = j Γ ` S � T

S = Record(l1..n : S1..n, ..., lm : Sm), m ≥ n (Si � Ti)1..n

(SS—Record)

T = Tuple(T1, ..., Tn) Γ ` S � T

S = Tuple(S1..n, ..., Sm), m ≥ n (Si � Ti)1..n

(SS—Tuple)

T = Dim(dom, α) S �Sh T

S = Dim(dom, β)whereβ � α
(SS—Dim)

F = Function(T1..n, R) G �Sh F

G = Function(S1..n, Q)whereS1..n � T1..n ∧Q � R
(SS—Function)

A.2.6 Joins and Meets

S t T = T t S (ST—JoinCom)

S u T = T u S (ST—MeetCom)

S t (T u S) = S (ST—JoinAbsorb)

S u (T t S) = T (ST—MeetAbsort)

T t T = T (ST—JoinIdem)

T u T = T (ST—MeetIdem)

T t >T = >T (ST—JoinTop)

T u >T = T (ST—MeetTop)
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T t ⊥T = T (ST—JoinBot)

T u ⊥T = ⊥T (ST—MeetBot)

U = S t T

S � U, T � U ∀U ′.(S � U ′ ∧ T � U ′) =⇒ U � U ′
(ST—JoinLGG)

U = S u T

U � S, U � T ∀U ′.(U ′ � T ∧ U ′ � S) =⇒ U ′ � U
(ST—MeetMGU)

U = S t T

Sh(U) = Sh(S) t Sh(T ) Attr(U) = Attr(S) t Attr(T )
(ST—Join)

R = S u T

Sh(U) = Sh(S) u Sh(T ) Attr(U) = Attr(S) u Attr(T )
(ST—Meet)

tTi = T1 t T2 t ... t Tn (ST—BigJoin)

uTi = T1 u T2 u ... u Tn (ST—BigMeet)

∀S, T ∈ T .∃U.S � U, T � U (ST—JoinExists)

Γ ` U = S t T S = >T

Γ ` U = >T

(ST—JoinNamedTop)

Γ ` U = S t T S � T

Γ ` U = T
(ST—JoinNamedST)

Γ ` U = S t T S 6� T, T 6� S S 6= >T

Γ ` U = (BaseType(S)) t T
(ST—JoinNamedBT)

∀S, T ∈ Types.∃U.U � S, U � T (ST—MeetExists)

Γ ` U = S u T S = ⊥T

Γ ` U = ⊥T

(ST—meetNamedTop)
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Γ ` U = S u T S � T

Γ ` U = S
(ST—meetNamedST)

Γ ` U = S u T S 6� T, T 6� S

Γ ` U = ⊥T

(ST—meetNamedBT)

Joins / Meets over Shapes

Γ ` U = S t T Γ ` Sh(S) = Scalar = Sh(T )

Γ ` Sh(U) = Scalar
(ST—JoinScalar)

Γ ` U = S u T Γ ` Sh(S) = Scalar = Sh(T )

Γ ` Sh(U) = Scalar
(ST—MeetScalar)

Γ ` U = S t T Γ ` Sh(S) = Tuple(S1..n), Sh(T ) = Tuple(T1..n)

Γ ` Sh(U) = Tuple(S1..n t T1..n)

(ST—JoinTuple)

Γ ` U = S u T Γ ` Sh(S) = Tuple(S1..n), Sh(T ) = Tuple(T1..n)

Γ ` Sh(U) = Tuple(S1..n u T1..n)

(ST—MeetTuple)

Γ ` U = S t T Γ ` Sh(S) = Record(l1..n :: S1..n), Sh(T ) = Record(l1..n :: T1..n)

Γ ` Sh(U) = Record(li :: (Si t Ti))1..n
1

(ST—JoinRecord)

Γ ` U = S u T Γ ` Sh(S) = Record(l1..n :: S1..n), Sh(T ) = Record(l1..n :: T1..n)

Γ ` Sh(U) = Record(li :: (Si u Ti))1..n

(ST—MeetRecord)

Γ ` U = S t T Γ ` Sh(S) = Function(F, S1..n, Q), Sh(T ) = Function(F, T1..n, R)

Γ ` Sh(U) = Function(F, (Si t Ti)1..n, Q uR)

(ST—JoinFunc)

Γ ` U = S u T Γ ` Sh(S) = Function(F, S1..n, Q), Sh(T ) = Function(F, T1..n, R)

Γ ` Sh(U) = Function(F, (Si u Ti)1..n, Q uR)

(ST—MeetFunc)
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Γ ` U = S t T Γ ` Sh(S) = Dim(domS, αS), Sh(T ) = Dim(domT , αT ) domS = domT

Γ ` Sh(U) = Dim(domS, αS t αT )

(ST—JoinDim)

Γ ` U = S u T Γ ` Sh(S) = Dim(domS, αS), Sh(T ) = Dim(domT , αT ) domS = domT

Γ ` Sh(U) = Dim(domS, αS u αT )

(ST—MeetDim)

Γ ` U = S t T Γ ` Sh(S) t Sh(T ) = >T

Γ ` U = >T

(ST—JoinShapeTop)

Γ ` U = S u T Γ ` Sh(S) 6= Sh(T )

Γ ` U = ⊥T

(ST—MeetShapeBot)

Joins / Meets over Attributes

Attr(U) = Attr(S) t Attr(T )

Attr(S) = {A1..n(ρS,1..n)} ∪ {AS
n+1..ms} Attr(T ) = {A1..n(ρT,1..n)} ∪ {AT

n+1..mt}

Attr(U) = {Ai(ρS,i) t Ai(ρT, i)}1..n

(ST—JoinAttributes)

Attr(U) = Attr(S) t Attr(T )

Attr(S) = {A1..n(ρS,1..n)} ∪ {AS
n+1..ms} Attr(T ) = {A1..n(ρT,1..n)} ∪ {AT

n+1..mt}

Attr(U) = {Ai(ρS,i) u Ai(ρT, i)}1..n ∪ {AS
n+1..ms} ∪ {AT

n+1..mt}
(ST—MeetAttributes)

A.2.7 Type Judgements

Declarations (except Functions)

x :: T ∈ Γ T ∈ Γ T = Sh(T ).{AT
1..n(ρ1..n)}

A ` T � AT
1..n.target ρ1..n � AT

1..n.property

Γ ` ∃S ∈ T .S � T ∧ x :: S
(T—VarDecl)

x :: T ∈ Γ Sh(T ) = Record(l1..n : T1..n) Γ ` x.l1..n = E1..n

Γ ` ∃Si ∈ T .Si � Ti.Ei :: Sifor1 ≤ i ≤ n

(T—RecDeclFields)
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x :: T ∈ Γ Sh(T ) = Tuple(T1..n) Γ ` (x1..n) = (E1..n)

Γ ` ∃Si ∈ T .Si � Ti.Ei :: Sifor1 ≤ i ≤ n
(T—TupDeclElems)

x :: T ∈ Γ Sh(T ) = Dim(dom, αT ) Γ ` x = E

Γ ` ∃S ∈ T .S � T.E :: S
(T—DimDeclTotal)

x :: T ∈ Γ Sh(T ) = Dim(dom, αT ) dom = ×(doml1..n..domu1..n)

Γ ` ∀(ind1..m) ∈ (l1..m..u1..m), m ≤ n.x(k1..n) = λ(k1..n).EA Γ ` kj = λ(ind1..m).Kj

Γ ` ∃αS ∈ T .αS � αT .EA :: αS

Γ ` ind1..m :: Integer{Range(l1..m..u1..m)} Γ ` k1..n :: Integer{Range(doml1..n..domu1..n)}
(T—DimDeclPartial)

A.2.8 Definitions (except Functions)

Γ ` x = E ΓE ` E : S

Γ ` ∃T ∈ Types.S � T.x :: T
(T—DefComplete)

Γ ` x = E Γ ` E = (Ei)1..n ΓE ` (Ei :: Si)1..n

Γ ` ∃T1..n ∈ Types.(Si � Ti).x :: Tuple(T1..n)
(T—DefTupTotal)

Γ ` x = E Γ ` E = (li = Ei)1..n ΓE ` (Ei :: Si)1..n

Γ ` ∃T1..n ∈ Types.(Si � Ti).x :: Record(l1..n : T1..n)
(T—DefRecTotal)

Γ ` x.l1 = E1 ΓE1 ` E1 : S1

Γ ` ∃T1, T ∈ Types.S1 � T1.Shapeof(T ) = Record(l1 :: T1, l2..n :: T2..n)

(T—DefRecPartialDecl)

Γ ` {∀(k1, ..., kn) ∈ domEj
}.x[i1, ..., in] = λi1, ..., in.Ej

ΓEj ` Ej : Sj ⊥T ≺ S = tSj

Γ ` ∃α ∈ T .S � α.x :: Dim(dom, α)wheredom =
⋃

domEj

(T—DefDimPartial)

Function and Operator Declarations and Definitions

f : Function(T1..n, R).{A1..m} ∈ Γ Γ ` T1..n, R ≺ T
A ` Function(T1..n, R).{A1..m} � A1..m.target

Γ ` f :: Function(T1..n, R).{A1..m} ∃Ff

(T—FuncDecl)
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f(t1..n : S1..n) = λ(t1..n : S1..n).E ∈ Γ Γ ` f : Function(T1..n, R)

ΓE ` E : R′ � R (S1..n � T1..n)

Ff ` fS1..n,R′(t1..n :: S1..n) = λ(t1..n : S1..n).E

ΓE ` ti :: Si

(T—FuncDef)

φ : Operator(T1..n, R).{A1..m} ∈ Γ Γ ` T1..n, R ∈ T
A ` Operator(T1..n, R).{A1..m} � A1..m.target

Γ ` φ : Operator(T1..n, R).{A1..m} ∃Oφ
(T—OpDecl)

Γ ` φ : Operator(T1..n, R) φ(t1..n : S1..n) = λ(t1..n : S1..n).E ∈ Γφ

Γφ ` E : R′ � R S1..n � T1..n

Oφ ` φ(S1..n,R′(t1..n : S1..n) = λ(t1..n : S1..n).E
(T—OpDef)

A.2.9 Expressions

Literals

c ∈ {LiteralInteger}

Γ ` c : IntegerRange([c..c])
(T—LitInt)

c ∈ {LiteralReal}

Γ ` c : IntegerRange([c..c])
(T—LitReal)

c = Tuple(t1..n) ∈ ΓE ΓE ` t1..n : T1..n

Γ ` c : Tuple(T1..n)
(T—LitTuple)

c = Record(l1..n = t1..n) ∈ ΓE ΓE ` t1..n : T1..n

Γ ` c : Record(l1..n : T1..n)
(T—LitRecord)

c = [t1..n] Γ ` t1..n : T1..n

Γ ` c : Array([1..n], T ) Γ ` T = tT1..n

(T—LitArray)

Variables

Γ ` x :: T Γ ` y = λx.E2 : R

Γ ` {∀E1 : S � T}y = [x 7→ E1]E2 : R
(T—VarEval)
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Γ ` x = E Γ ` x : T ΓE ` E : S

Γ ` S � T
(T—DefInfer)

Γ ` x :: T Sh(T ) = Record(l1..n : T1..n)

Γ ` ∃S1..n ∈ T .S1..n � T1..n.x.l1..n :: S1..n

(T—RecField)

Γ ` x : T Sh(T ) = Tuple(T1..n) Γ ` x = (x1..n)

Γ ` ∃S1..n ∈ T .S1..n � T1..n.x1..n :: S1..n

(T—TupleField)

ΓE ` x1..n : T1..n

Γ ` (x1..n) : Tuple(T1..n)
(T—DefTupleConst)

Γ ` x : T Sh(T ) = Array(dom, α) x[i1, ..., in] ∈ ΓE

∃l1..n, u1..n ∈ Z 3 dom = bigcross([l1..n..u1..n])

ΓE ` indj : Si � IntegerRange[lj..uj] ΓE ` ∃β ∈ T .β � α.{∀(ind1..n) ∈ dom}.x[i1, ..., in] :: β

(T—ArrayIndex)

Function Implementations and Function Applications (Joins)

Γ ` x = fT1..n,R(t1..n) Ff ` fT1..n,R = λp1..n : T1..n.ET1..n,R

Γx ` t1..n : S1..n S1..n � T1..n

Γ, x : R′ ` R′ � R

(T—FuncImplement)

ΓE ` y = f(t1..n) ΓE ` t1..n : S1..n Γ ` f : Function(T1..n, R) S1..n � T1..n

Γ ` f(t1..n) � Q1..m ⊥T ≺ uQ1..m

Γ ` y : R ∗ R∗ � t{∀R′ 3 fS′
1..n,R′ ∈ Ff ∧ S1..n � S ′

1..n ∧R′ � uQ1..m}.R′

(T—FuncJoin)

x = φ(t1..n) ∈ ΓE ΓE ` t1..n : S1..n Γ ` φ ∈ Operators

Γ ` x � Q1..m ⊥T ≺ uQ1..m

Γ ` x : R ∗ R∗ � t{∀R′ 3 op(T1..n),R′ ∈ Oφ ∧ S1..n � T1..n ∧R′ � uQ1..m}.R′

(T—OpJoin)



A. Formal Operational Semantics 182

A.3 Proof Obligations

This section covers the formal semantics for proof obligations, run time tests, asser-

tions and attribute propagation rules. An informal description is provided in 5.7.

In the rules below, the following notations are used:

P the set of outstanding proof obligations for the module

RT the set of run time test obligations for attributes whose class defines such a test

P = ∅ | P , (E, A(ρ)) (C—ProofObligations)

ΓE ` E :: T E ′ = |= (E, AT (ρ)) ∈ Γ T 6= T.AT (ρ)

A ` T � AT .target A ` A(ρ) ≺A A(E) |=:: A.target → B ∈ A

(E, A(ρ)) ∈ RT Γ ` E ′ : T.A(ρ)
(A—Test)

ΓE ` E :: T E ′ =|= (E, AT (ρ)) ∈ Γ A ` T � A.target

(T = T.A(ρ)) ∨ A ` AT (E) �A AT (ρ)

Γ ` E ′ : T.A(ρ)

(A—RedundantTest)

ΓE ` E : T E ′ = Assert(E, AT (ρ)) ∈ Γ T 6= T.AT (ρ)

A ` T � AT .target A ` AT (ρ) ≺A AT (E)

(E, A(ρ)) ∈ P Γ ` E ′ : T.AT (ρ)
(A—Assert)

ΓE ` E : T E ′ = Assert(E, AT (ρ)) ∈ Γ A ` T � AT .target

(T = T.AT (ρ)) ∨ A ` AT (E) �A AT (ρ)

Γ ` E ′ : T.A(ρ)

(A—RedundantAssert)

x :: T ∈ Γ Attr(T ) = {AT
1..n(ρ1..n)}

A ` T � AT
1..n.target ρ1..n � AT

1..n.property

x ∈ ΓIn

P ` {AT
1..n(ρ1..n)}

(A—VarDeclInput)



A. Formal Operational Semantics 183

x :: T ∈ Γ Attr(T ) = {AT
1..n(ρ1..n)}

A ` T � AT
1..n.target ρ1..n � AT

1..n.property

Γ ` x = E Γ ` E :: S, Attr(S) = {AT
1..k(µ1..k), A

S
k+1..m}

P ` ∀(AT
i (µi) 6�A AT

i (ρi))1..k.{AT
i (ρi)}

(A—VarDeclDef)

Γ ` y = t{∀S ′
1..n, R

′ 3 fS′
1..n,R′ ∈ Ff ∧ S � S ′ ∧R′ � uQ1..m}.fS′

1..n,R′(t1..n)

Ff ` fS,R′(t1..n) = λ(t1..n).E ΓE ` E : S

AR′
j (ρj) ∈ Attr(R′) AR′

j (S) 6�A ρj

(fS1..n,R′ , AR′
j (ρj)) ∈ P

(A—FuncJoin)

Γ ` x = fT,R(t1..n) Ff ` fT,R = λp1..n : T1..n.ET1..n,R Γx ` t1..n : S1..n, S1..n � T1..n

context, x : R′ ` R′ � Q1..m ⊥T ≺ Q = uQ1..m

(AQ1..m ∈ Attr(Q) ∧ AQ1..m /∈ Attr(R)) A ` AQ1..m((ET,R)(t1..n) = ρ

Γ, x : R′ ` R′ � R.{AS1..n(ρ)}
(A—FuncInferRes)

Γ ` x = fT,R(t1..n) Ff ` fT,R = λp1..n : T1..n.ET1..n,R

Γx ` ti : Si Si � Ti, 1 ≤ i ≤ n

ASj ∈ Attr(Sj) ∧ ASj /∈ Attr(Tj) A ` ASj((ET,R)(t1..n)) = ρ

Γ, x : R′ ` R′ � R.{ASj(ρ)}
(A—FuncPropArg)

Γ ` y = t{∀(φ, R′) ∈ Oφ 3 Si � Ti ∧R′ � uQ1..m}.φTi,R′(t1..n)

Oφ ` φT1..n,R′ = λp1..n.ET,R′ ΓE ′
T ,R

` ET,R′ :: S

AR′
j (ρj) ∈ Attr(R′) AR′

j (S) 6�A ρj

(φ(T1,...,Tn),R′ , AR′
j (ρj)) ∈ P

(A—OpJoin)

Γ ` x = φ(T1,...,Tn),R(t1, ..., tn) Oφ ` φ(T1,...,Tn),R = λp1 : Ti, ..., pn : Tn.ET,R

Γx ` ti : Si Si � Ti, 1 ≤ i ≤ n

context, x : R′ ` R′ � Qi, 1 ≤ i ≤ n ⊥T ≺ Q = uQi

(AQj ∈ Attr(Q) ∧ AQj /∈ Attr(R)) A ` AQj((ET,R)(t1, ..., tn)) = ρ

Γ, x : R′ ` R′ � R.{ASj(ρ)}
(A—OpInferRes)
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Γ ` x = φ(T1..n),R(t1, ..., tn) Of ` φ(T1..n),R = λp1..n : T1..n.ET,R

Γx ` ti : Si Si � Ti, 1 ≤ i ≤ n

ASj ∈ Attr(Sj) ∧ ASj /∈ Attr(Tj) A ` ASj((ET,R)(t1, ..., tn)) = ρ

Γ, x : R′ ` R′ � R.{ASj(ρ)}
(A—OpPropArg)
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Concrete Syntax eBNF

This is a faithful description of the language as parsed by the HUSC system in eBNF.

A few of the features have not been implemented, and these are clearly labelled here.

B.0.1 Lexical Structure

The HUSC lexicon is based on Haskell, but with some effort made to make the

source code compatible with Tex / Latex processing for future work. For example,

backslashes have been excluded to support future Tex labelling of non-ASCII chacters.

A large number of reserved words are used in this concrete syntax, with the intent

of making the code more like written mathematics. This has the downside of making

the language quite verbose, but the modules should generally be quite small and

context heavy. It remains to be seen whether this strategy will be successful, or just

annoying.

module Lex where

import Text.ParserCombinators.Parsec

import qualified Text.ParserCombinators.Parsec.Token as P

-- import Text.ParserCombinators.Parsec.Expr as ParsecExpr

import Text.ParserCombinators.Parsec.Language

tokparse = P.makeTokenParser twoCoconutDef

185
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lexeme = P.lexeme tokparse

whiteSpace = P.whiteSpace tokparse

symbol = P.symbol tokparse

operator = P.operator tokparse

reserved = P.reserved tokparse

reservedOp = P.reservedOp tokparse

semiSep = P.semiSep tokparse

semiSep1 = P.semiSep1 tokparse

commaSep = P.commaSep tokparse

commaSep1 = P.commaSep1 tokparse

semi = P.semi tokparse

colon = P.colon tokparse

dot = P.dot tokparse

braces = P.braces tokparse

parens = P.parens tokparse

squares = P.squares tokparse

angles = P.angles tokparse

natural = P.natural tokparse

decimal = P.decimal tokparse

hexadecimal = P.hexadecimal tokparse

octal = P.octal tokparse

integer = P.integer tokparse

float = P.float tokparse

naturalOrFloat = P.naturalOrFloat tokparse

charLiteral = P.charLiteral tokparse

stringLiteral = P.stringLiteral tokparse

-- identifier = P.identifier tokparse can’t use, need to differentiate no trailing white space

identifier = do {s <- letter; ss <- many (alphaNum <|> oneOf "_’"); return $ s:ss}

name = do{ n<-identifier; whiteSpace; return n}
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twoCoconutDef = haskellStyle {

opStart = oneOf "‘~!#%^&*:/?-+[]<>.=", -- no backslash, no @ allowed

opLetter = oneOf "‘~!#%^&*:/?-+[]=.",

identStart = letter,

identLetter = alphaNum <|> oneOf "_’",

reservedOpNames = ["=", "::", ",", "|" ],

reservedNames =

["Let", "let", "be", "Define", "define", "as", "of",

"from", "to", "in", "where", "if", "is", "are", "on",

"Frame", "Module", "export","input", "Use", "use", "import", "with", "qualified",

"join", "Join", "select", "Select", "Otherwise", "otherwise", "For", "for", "all",

"Asserting","asserting", "Testing","testing",

"Type", "based", "True", "False",

"And", "and", "or", "Or"

],

caseSensitive = True

}

-- end module Lex

B.0.2 BNF Terminals / Tokens

In the current implementation, there is no lexical distinction between different types

of identifiers. The recommended strategy is to give module type identifiers uppercase

names, and data identifiers with lower case names, but this is not enforced.

The prefix “coco” is reserved for all identifiers, and the symbol is also reserved

for internal use.
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Identifier any letter, then letter, number or

OpSymbol any sequence of operator characters

ModuleId an identifier, recommended to begin with upper case letter

TypeId an identifier, recommended to begin with uppercase letter

TypeVar type identifier.

Label string applied to body of a function/operator definition for documentation

Annotation place holder for passing information to lower levels of Coconut, like a pragma

Unless otherwise specified (nospace), tokens are assumed to be separated by

whitespace.

The lexer assumes that the source code has already been extracted from a literal

source file.

B.0.3 Module Headers

Module → “Module” ModuleId [ InputDecl ]? ExportDecl ModuleBody

InputDecl → “import” DeclList

ExportDecl → “export” [[bnftrmIdentifier | TypeId | OpSymbol]]∗

ModuleBody → ’{’ [ModuleImport | Declaration | TypeDef | Definition]∗ ’}’

B.0.4 Declarations

DeclList → DeclCompact [′,′ DeclCompact]∗

Declaration → [DeclCompact | DeclBaroque]
DeclCompact → IdList [“is” | “::”] FullType

DeclBaroque → “Let” IdList “be” FullType

IdList → Identifier [“,′′ Identifier]∗

B.0.5 Module Imports

ModuleImport → [ “Use” | “use” ] ModuleId [ “qualified′′ ]? [ “as′′ModuleId ]?

[ “with′′DefinitionList ]?

[ “import′′ ]? DefinitionList

DefinitionList → ’{’ Definition [′,′ Definition]∗’}’
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B.0.6 Data Definitions

Definition → [ QuantExpr ]? Identifier nospace [ FunctionDef|PartialDef ]?

’=’ JoinExpr [ LocalBody ]?

FuncDef → ’(’ [ ParmVar[′,′ ParmVar]∗ ]? ’)’

PartialDef → [PartialArrayDef | PartialRecordDef ]

PartialArrayDef → ’[’ IndexSpec [′,′ IndexSpec]∗ ’]’

PartialRecordDef → ’.’ FieldSpec

ParmVar → [Identifier | DeclCompact]
IndexSpec → [Identifier | Expr]
IdentField → Identifiernospace[ FunctionDef|PartialDef ]?

QuantExpr → [“For” | “for”] QuantExprItem [′,′ QuantExprItem]∗

QuantExprItem → [“all” Identifier | Definition]
LocalBody → “where” [ Label ]? ’{’ [[ Declaration | Definition] ]+ ’}’

B.0.7 Operator Definitions

OperatorDefinition → OperatorInterface [ OperatorImplement ]?

OperatorInterface → [ ′(′DeclList′)′ ]?OperatorSymbol [ ′(′DeclList′)′ ]?

“ = ” Declaration

OperatorImplementation → LocalBody
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B.0.8 Joins and Conditional Expressions

JoinExpr → “Join” ’[’JoinAnnotExpr [′;′ JoinAnnotExpr]∗’]’ | CondExpr
JoinAnnotExpr → CondExpr JoinAnnotation

JoinAnnotation → Annotation

CondExpr → [ AnnotatedExpr | “Select” ’{’ CondExprItem [′;′ CondExprItem]∗ ’}’ ]

CondExprItem → AnnotatedExpr | BoolGuard
BoolGuard → [BoolExpr | otherwise]

BoolExpr → Expr

AnnotatedExpr → [[”::” FullType] | [[ Assertions ]? [ RunTimeTests ]?]]

AddAttributes → [[Assertions | RuntimeTests]]∗

Assertions → “asserting” AttributeList

RuntimeTests → “testing” AttributeList

B.0.9 Operators in Expressions

Expr → Factor

| Expr InfixOp Expr

| PrefixOp Expr

| Expr PostfixOp

InfixOp → OpSymbol

PrefixOp → OpSymbol

PostfixOp → OpSymbol

B.0.10 Factors

Factor → Literal | Variable | ’(’ Expr ’)’

Variable → Identifier [ nospaceIndexExpr | ParmsExpr | FieldLabel ]?

IndexExpr → ’[’ Expr [ ′,′ bnfntExpr ]? ’]’

ParmsExpr → ’(’ Expr [ ′,′ bnfntExpr ]? ’)’

FieldLabel → ’.’ Variable

Literal → LitStr | LitInt | LitReal
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B.0.11 Types and Type Definitions

TypeDef → “Define” TypeId [′,′ TypeId]∗ [ TypeParms ]?

[ [“as′′ | “based′′“on′′] ]? FullType

FullType → GenericType | NamedType
NamedType → TypeId [ DepArgs ]? FullType AttributeList

GenericType → TypeId AttributeList Shape

Shape → Scalar

Record ’(’ Declaration [′,′ Declaration]∗’)’

Tuple ’(’ FullType [′,′ FullType]∗’)’

DimType nospace ’[’ IntExpr [′,′ IntExpr]∗’]’ ”of” FullType

FuncType “from” ’(’ FullType [′,′ FullType]∗’)’ ”to” FullType

AttributeList → ’’ Attribute [′,′ Attribute]∗ ’’

Attribute → AttrClassId nospace ’(’ AttrProperty’)’

DepArgs → ’(’ Expr [′,′ Expr]∗ ’)’

B.0.12 Attribute Classes

This syntax has not been implemented in the current implementation, and likely will

not be as it did not seem to be sufficient to define the propagation rules. It has been

provided to illustrate what makes up an attribute class.

The special function and predicate definitions for an attribute class are identified

by having a special name incorporating a prefix and the attribute class name (e.g

isSymmetric, subRange). Otherwise they are syntactically just definitions.

AttributeClass → “Attribute Class” AttrClassId ’(’ AttrProperty ’)’

“of” FullType “where” ’{’
[[SpecialAttr | Declaration | Definition]∗ ’}’

AttrProperty → FullType

SpecialAttr → IsAttr | SubAttr | AttrRule
IsAttr → Definition

SubAttr → Definition

AttrRule → Definition
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Implementation

There are two fundamental components to the system, the HUSC parser and the

type system. The HUSC parser is written in (literate) Haskell, using the Parsec

combinators, and records a HUSC source file as a HUSC program, a main module with

a set (map) of modules that are imported (right now all modules must be in the same

source file, until a decision is made on how the module directory will be maintained).

The type system is written in CHR and SWI Prolog, with the module definitions

being encoded as Prolog relations and / or CHR constraints or rules to carry out

the type inferencing. The output of the type system can then be imported back into

Haskell, and matched with the definitions to produce the program hypergraph. This

has not been implemented, but the rules for graph generation have been included

The following steps process a literate HUSC file into the output of the type system.

Following the list of steps is a detailed description, including the literate Haskell source

and the (sadly illiterate) CHR/Prolog code for each of the modules.

1. Run ”coco2“ from the command line, enter the name of the literate HUSC file

(name.nut) to be processed, where name can be any label but by convention

should be the main module name. Currently, the first module is assumed to be

the main module, and all of the modules to be imported must be in the same

file (this is obviously inappropriate long term).

2. The main module uses CocoUnlit to create a pure (deliterated) HUSC file, which

is written out as name.nutty, including line numbers. Parser errors will refer

192
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to these line numbers, not the line numbers from the literate file. The parser

should be rewritten to provide the line numbers from the .nut files, but in the

mean time the .nutty file is useful for solving parser errors.

3. The CocoParser module is invoke to translate the HUSC source into internal

data structures, with each statement becoming a definition. The definitions are

split out by class (e.g. data definition, type definition) and stored in individual

lists (maps) within the module.

4. The main program then invokes the CocoSyntax module to test for structural

errors in the modules. For example, local bodies of expressions (functions,

operators, etc.) may only contain variable declarations and definitions, not

type, operator or attribute class definitions. Errors are recorded as part of the

module data structure by identifier (mapped). If there are any syntax errors,

the program will not be encoded for the type system.

5. The main module invokes CocoTypes to translate the main module, including

it’s imported definitions, from Haskell into two CHR/Prolog source files called

name defs and name types.

6. Invoking the SWI Prolog compiler for constraint.pl, with the goal ”go(modname)“,

in the same directory as these two files, will execute the type system. This can

be from the interactive window

swipl

[constraint]

go({\it modname})

{\it results follow...}

or from the command line, optionally piping the output into a file:

swipl -s constraint.pl -g ’’go({\it modname})‘‘ -t halt >> tsout.txt
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The results are currently dumped to stdout, but should really be written to (at

least) two files, one for important type information and errors, the other storing

extra information for trace / debugging.

At this point in time, there are no specific requirements for the output of the

HUSC compiler front end. It is reasonably straight forward to extract the results of

the type system and merge it with the Haskell structures to form a code hypergraph.

It is a hypergraph because each operation, function application and explicit join

represents alternate, equivalent edges between two data term nodes. The type system

produces some number of valid interface choices for each such junction, possibly zero,

which then forms the “join expression” or hypergraph edge. No valid choices for the

expression is considered an error.

C.1 HUSC Programs and Modules

The main Coconut module handles parsing and type checking and inferencing. The

input is a set of literate HUSC source module (in a .nut file), which is then processed

to extract pure HUSC source into a .nutty file. This pure source file is parsed, checked

for completeness and run through the type system. The output is a hypergraph with

type annotations, which is written to a file with extension .milk.

The following steps occur:

deliterate the CocoUnlit module extracts the HUSC code from a literate source file.

Coconut code is either in a Latex ”cococode” environment or a single line is

prefixed by ”coco¿”. The HUSC code is written to an intermediate file with

a .nutty extension, which can then be used when checking the line number of

parser errors.

parsing the source modules in the file are parsed into CocoModule structures.

completeness checks takes the first module in the file as the main program, then

resolves all module imports into that module, in a depth first approach. When

a module is imported, it’s identifiers are renamed to simulate scoping. Finally,
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type and data definitions are checked to make sure all definitions are formed of

well defined variables, input definitions or literals.

type evaluation the internal definitions of the main module, including it’s imports,

are translated into two files for import by the type system. The module types.pl

file contains type definition Prolog predicates, the module defs.pl file contains

data declarations and definitions as CHR constraints (in a CHR/Prolog format).

Running SWI prolog with main file constraint.pl, goal ”run”, will complete the

type system evaluation.

C.1.1 Data Structures

This is a quick overview of the data structures that make up the modules.

CocoModule data and type definitions, operator symbols, of a module.

TypeMap / TypeDef a type definition defines a new type, as a subtype of or based

on another type. The TypeMap is just a collection (map) of types, keyed on

the type name.

AttrClass provides the definitions of an attribute class (this has not been imple-

mented, see earlier discussion for details, only Scalar and Range attributes are

available).

Data DataDef or DataDecl, a data identifier definition or type declaration. Data def-

initions contain an identifer, Def structure, local body and quantified variables

where appropriate.

OperDef associates a function definition with an operator symbol; operators can be

binary, unary preop or postop.

Def defines a complete, partial or a function definition as part of a data or operator

definition. This includes a join expression, the domain of a partial definition

as a set of integer ranges, or the parameters and result type of a function or

operator definition.
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FullType describes an instance of a type (as opposed to a type definition) and makes

up part of a definition.

Attribute records a specific attribute instance (as opposed to an attribute class

definition) consisting of an attribute class and an attribute property value.

JoinExpr is a list of conditional expressions that are joined, with their guards.

CondExpr is a list of expressions and the guards in the form of attribute assertions

or tests.

Expr an expression of BinOps, UnOps, Vars (including function applications and

array elements), Lits and joined expressions in parentheses.

Quantifier describes the integer domain of a universally quantified variable in a

partial definition, either “for all x” or “for x = integer sequence”.

LocalBody contains local Data definitions, scoped to a particular definition.

.

Issues and Future Work

All modules must be in the same source file, this is a temporary step until a system

for locating modules is determined.

The results from the type system are not merged with the data structures and

definitions in the module. The plan is to create a hypergraph merging the two sets of

information, but without a specific set of requirements there is no point in completing

this at this time.

C.1.2 Main HUSC Program

--import Data.Map hiding (map)

import IO

import qualified Data.Map as Map

-- coconut modules
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import CocoUnlit

import HUSCModule

import EncTypes (encMod)

main :: IO ()

main = do { putStr "HUSC source file (.nut): "

; hFlush stdout

; infile <- getLine;

; putStrLn ""

; coco infile

}

coco :: String -> IO ()

coco infile

= do { codefile <- unLitFile infile

; let code = cocoParse codefile

; case (code) of

Left literr -> putStrLn ("parse error at " ++ (show literr))

Right parsedProg ->

do { let synProg = chkProgSyntax parsedProg

-- ; dspCocoProg synProg "Checked"

-- ; print synProg

; let liftProg = mergeMods synProg

; dspCocoProg liftProg "Merged"

; cocoTypeOut liftProg

}

}

cocoTypeOut :: CocoProgram->IO ()

cocoTypeOut (CocoProgram mainmod impmods) =

do { let prgname = modName mainmod

; let deff = (defPathFromMod prgname)

; let typef = (typePathFromMod prgname)

; let outpath = (outPathFromMod prgname)
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; writeFile deff ("%% HUSC program "++prgname++",v0.1\n\n")

; appendFile deff ("run(M) :- ")

; let rels = (encMod mainmod)++(concat (map encMod (Map.elems impmods)))

; mapM_ (\s-> appendFile deff ("\n "++(s++","))) (filter forGoal (makeLine rels))

; appendFile deff ("\n cleanup(’"++outpath++"’).\n")

; writeFile typef (":- module(’"++prgname++"_types’,[type/4,funcintf/5,funclass/4]).\n")

; mapM_ (\s-> appendFile typef (’\n’:(s++"."))) (filter forTypes (makeLine rels))

; appendFile typef "\n"

}

-- concatenates relations to fill a line

lmax = 100

makeLine :: [String]->[String]

makeLine [] = []

makeLine (s:[]) = [s]

makeLine (s:ss)

| ((length s) > lmax) = (s) : (makeLine ss)

| (forTypes s) = (s) : (makeLine ss)

makeLine (s:(s2:ss))

| (length (s++s2) < lmax) = makeLine ((s++","++s2):ss)

| otherwise = (s) : (makeLine (s2:ss))

forGoal,forTypes:: String->Bool

forTypes = (\s -> let pred = takeWhile (’(’ /=) s in elem pred typePreds)

forGoal = not.forTypes

typePreds = ["type","funcintf","funclass"]

defPathFromMod mod = "CHRs/"++mod++"_defs.pl"

typePathFromMod mod = "CHRs/"++mod++"_types.pl"

outPathFromMod mod = "CHRs/"++mod
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C.2 HUSC Modules

A module is a named collection of data and type definitions, plus an operator symbol

table. The module exports a subset of it’s definitions, specified by a list of data and

type identifiers (and operator symbols, all of the operator interfaces and implemen-

tations associated with the specified symbol will be exported).

Modules may also require definitions from the importing module, specifying the

identifier and a type declaration. Imported definitions must satisfy the stated type

constraints. In this way importing a HUSC module involves a bidirectional exchange

of definitions, the importing module must satisfy the requirements of the imported

module.

The opTable is a table of recognized operator symbols, along with the associativity

and precedence rules for those symbols. The operator symbol table is currently hard

coded into the CocoParser module, and is based on the default table for Parsec. The

architecture of the language calls for it to be possible to define new symbols, with

a precedence and associativity, to be added to the opTable, but this has not been

implemented yet.

module HUSCModule where

import qualified Data.Map as Map

import qualified List(partition)

import Text.ParserCombinators.Parsec

import qualified Text.ParserCombinators.Parsec.Token as P

import Text.ParserCombinators.Parsec.Expr

import Text.ParserCombinators.Parsec.Perm

import MiscST

import Lex

import VarSub as Sub

import Expr

import Types

import JoinExpr
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import DataDefs

import OperDef

import TypeDef

import AttrClass

data ModuleStatus = Raw | Parsed | Checked | Merged | Typed

deriving (Show, Eq)

-- other map synonyms given in the specialized modules.

type ModuleMap = IdMap CocoModule

type ErrorMap = IdMap String

data CocoProgram = CocoProgram {mainMod::CocoModule, impMods:: ModuleMap}

deriving Show

data CocoModule = CocoModule

{ modName :: Identifier

, modExports :: [IdSym]

, modStatus :: ModuleStatus

, modOpTable :: OpSymbolTable

, modOpDefs :: [OperDef]

, modDefs :: [Data]

, modTypes :: TypeMap

, modACs :: [AttrClass]

, modImps :: [ImportDef]

, modErrors :: ErrorMap

}

instance Show CocoModule where

showsPrec p (CocoModule n exps sts ops opdefs defs tts acs imps errs) =

("CocoModule("++).(n++).(", status:"++).(showsPrec p sts).

(", exports :"++).(showsPrec p exps).

("\ntype defs:\n"++).(showsPrec p (Map.elems tts)).

("\ndefinitions:\n"++).(showsPrec p defs).
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("\noperator defs:\n"++).(showsPrec p opdefs).

("\nusing \n"++).(showsPrec p imps).

("\n errors"++).(showsPrec p errs)

-- build new substitution for module by

-- rename data and type definitions

instance AllowSubs CocoModule where

substitute sub scope (CocoModule id exps st ops opdefs defs tts acs imps errs) =

CocoModule (Sub.apply sub id) (substitute sub scope exps) Merged ops

( substitute sub scope opdefs)

(substitute sub scope defs)

(treeSub substitute sub scope tts)

( substitute sub scope acs)

( substitute sub scope imps)

errs

rename sub scope (CocoModule id exps st ops opdefs defs tts acs imps errs) =

let (lsub1, newtts) = liftTypeTree sub scope tts in

let (lsub2, newdefs) = liftVars (lsub1 ‘Map.union‘ sub) scope defs in

let newsub = lsub1 ‘Map.union‘ lsub2 ‘Map.union‘ sub in

let newmod =

CocoModule id (substitute newsub scope exps) st ops

(snd (rename newsub scope opdefs))

newdefs

newtts

acs

(substitute newsub scope imps) errs in

(newsub, newmod)

C.2.1 Parsing Modules

Parsing a module generates a CocoModule structure. The same module data structure

is used over a number of stages, so the status of the module is represented in the

modStatus field.
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The parser developed here is the character based, stateless parser written using

Parsec combinators as shipped with GHC 6.4.1. This module parses pure HUSC

source files, meaning the literate components have already been removed. This proves

to be problematic because it is difficult to match the parse errors produced from the

pure source with the literate source file, the line and column numbers being offset. In

addition, the operator table in this version is static, instead of being updated within

the modules.

The function cocoParse treats the unparsed file as a string, and returns either a

CocoModule structure, consisting of definition blocks (DefBlocks), or a parse error.

The input file is assumed to be deliterated (unliterated? illiterate?); the CocoUnlit

module takes care of this. More than one module may exist in the same input file.

A module begins with the module name preceded by the label m̈odulë. This

is followed first by a list of output identifiers (or operator symbols), with at least

one export definition. An optional list of input variable definitions, identifies those

definitions that must be provided by any module that imports this module. Any other

definitions within the module are private; there is currently no ”export all” option.

Note: the terms import / input and export / output have been used somewhat

interchangeably in the parser. This is because there was some debate about which

was most applicable; in the end the module was determined to input definitions from

it’s importer, output definitions to the module importing it, and import definitions

from other modules used internally. This needs to be resolved in the code.

cocoParse :: String -> Either ParseError CocoProgram

cocoParse codefile = parse (cocoProgram) "" codefile

cocoProgram :: Parser CocoProgram

cocoProgram =

do { mm <- cocoModule

; ms <- many cocoModule

; return $ CocoProgram mm (Map.fromList [((modName m),m) | m<-ms])

}

cocoModule :: Parser CocoModule
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cocoModule

= do { whiteSpace;

reserved "module";

n <- name;

el <- export_ids;

il <- option [] import_decl_vars;

sts <- codeblock;

return $ mkModule n el il sts

}

export_ids :: Parser [IdSym]

export_ids = do{ whiteSpace;

reserved "export";

ex <- parens (commaSep1 nameOrSymbol );

return ex

}

<?> "output declarations"

import_decl_vars :: Parser [Data]

import_decl_vars = do{ reserved "import";

il <- parens (declCompactList Import);

return il

}

<?> "input declarations"

mkModule :: Identifier->[IdSym]->[Data]->[Statement]->CocoModule

mkModule n exs imps stmts = foldl sortStmt (newModule n exs imps) stmts

newModule n exs imps =

CocoModule

{ modName=n

, modExports=exs

, modStatus=Parsed

, modOpTable=opTable -- default operation symbol table in Expr module
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, modOpDefs=[], modDefs= imps,modTypes=Map.empty

, modACs=[], modImps=[], modErrors=Map.empty

}

sortStmt :: CocoModule -> Statement -> CocoModule

sortStmt m (StmtDecl ds) = let defs = modDefs m in m {modDefs = ds++defs}

sortStmt m (StmtDef d) = let defs = modDefs m in m {modDefs = d:defs}

sortStmt m (StmtOp d) = let defs = modOpDefs m in m {modOpDefs = d:defs}

sortStmt m (StmtTDef d@(TypeDef id _ _ _) )=

let defs = modTypes m in

m {modTypes = (Map.insert id d defs)}

sortStmt m (StmtAC d) = let defs = modACs m in m {modACs = d:defs}

sortStmt m (StmtImp d) = let defs = modImps m in m {modImps = d:defs}

C.2.2 Statements

Statements are included in the expressions module because all of the higher level

modules require the definitions.

Statements in a module are contained within braces, and are terminated by a

semi-colon. There are a number of statement types:

typedef A type definition creates a new type.

attributeClass Defines a new attribute class.

operatorDef Defines an interface for a unary or binary operator.

importDef Specifies a list of definitions to import from another module, and defines

the mapping between the input and output variables of the module.

declaration The formal declaration of a type constraint for an identifier; there can

be multiple type declarations, with the type being the ”meet” of all of the

constraints.

definition Defines a complete, partial or functional definition of a data identifier.
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There must be at least one statement per module, providing the mandatory output

definition.

The data type Statement provides an umbrella type for any possible return type

from parsing a statement. The definitions are then split out when the module is

created, so the Statement type is not used outside of this module. Because data

declaration statements can define multiple identifiers, the results are encapsulated in

a list.

Statements within the local body of a definition, in particular function and oper-

ator implementations, are limited to variable definitions and declarations.

data Statement =

StmtDecl [Data]

| StmtDef Data

| StmtOp OperDef

| StmtTDef TypeDef

| StmtImp ImportDef

| StmtAC AttrClass

deriving Show

-- data definition must be last in statement list because it has no distinct label

codeblock = braces (statement ‘sepEndBy1‘ semi)

statement :: Parser Statement

statement = do{ ds<-declaration Private; return $ StmtDecl ds }

<|> do{d<-typeDef; return $ StmtTDef d}

<|> do{d<-operatorDef; return $ StmtOp d}

<|> do{d<-importDef; return $ StmtImp d}

<|> do{d<-attributeClass; return $ StmtAC d}

<|> do{d<-definition; return $ StmtDef d}

<?> "statement"

stmtLocal s = do{d<-declaration (ExprScope s); return $ StmtDecl d}

<|> do{d<-definition; return $ StmtDef d}
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<?> ("declaration or definition in local body of " ++ s)

C.2.3 Module Syntax Checking

Beyond the parsing rules, the main syntax requirements of modules is that all data

and type definitions are given as ground expressions. Here grounds means one of:

1. a well defined literal value of a recognized type

2. an imported definition with a recognized type

3. expressions of ground expressions based on recognized operator symbols or de-

clared function classes (note that declared is sufficient for functions at this

point).

4. a type based on a proper shape, optionally with ground attributes

5. a named type based on a ground type, optionally with ground attributes and

dependent parameters, each parameter being of a recognized type

6. a shape is proper if it is one of the predefined HUSC shapes, and any arguments

specified for it (e.g. the domain of an array) are of an appropriate type.

Note that the description ground does not imply well-typed, it merely implies a

recognition of the identifiers used in the system, and that these definitions are not

cyclic (that is part of the checking).

Also note that the shape checking is ”hard-coded”, i.e. is based on fixed type

definitions, which allows the syntax checking to terminate.

The checking is done in the following order:

1. check that data definitions (not declarations) are ground - no types required

except for literals

2. check that operator definitions (not symbols) refer to recognized symbols and

have ground operands
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3. check that type definitions are ground - dependent expressions in type descrip-

tions must be ground or parameters from the type defintion.

4. check that attribute class definitions are ground not implemented

5. go back and check data declarations are of ground types and ground identifiers

6. check that the type declarations in the operator definitions are ground

This has not been implemented yet and has been added to future work. It is a

largely mechanical exercise in traversing the data structures.

Labelling Operator Interfaces

Because the same operator can have multiple interfaces and each has the same name, a

unique number is applied to the definitions. This is used when labelling the identifiers.

This is true of functions as well, but these are updated when they are inserted into

their data tree.

This could probably have been done when the statements were first inserted into

the map.

chkProgSyntax :: CocoProgram -> CocoProgram

chkProgSyntax prog =

let mm = mainMod prog in

CocoProgram (chkSyntax prog mm) (Map.map (chkSyntax prog) (impMods prog))

chkSyntax :: CocoProgram -> CocoModule -> CocoModule

chkSyntax p m = chkTest m

chkTest :: CocoModule -> CocoModule

chkTest m =

let m1 = labelDefs m in

substitute Sub.empty "" m1

labelDefs :: CocoModule -> CocoModule

labelDefs mod =
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let ndbs = startLabellerST (lblDefs (modDefs mod)) in

let nops = startLabellerST (lblOps (modOpDefs mod)) in

mod{modOpDefs = nops,modDefs=ndbs}

lblDefs :: [Data] -> LabellerST [Data]

lblDefs [] = return []

lblDefs ((DataDef id def qs lbody _):bs) =

do { lbl <- getn id

; lbs <- lblDefs bs

; return $ (DataDef id def qs lbody lbl) : lbs

}

lblDefs (b@(DataDecl _ _ _):bs) =

do { lbs <- lblDefs bs

; return $ b : lbs

}

lblOps [] = return []

lblOps ((OperDef opsym fix def lbody _):bs) =

do { lbl <- getn opsym

; lbs <- lblOps bs

; let nlbody = case lbody of

(LocalBody dbs) -> (LabelledBody (opsym++"@"++(show lbl)) dbs)

(LabelledBody id dbs) -> (LabelledBody id dbs)

; return $ (OperDef opsym fix def lbody lbl) : lbs

}

C.2.4 Import Defintions (ImportDef)

A module may load some or all of the exported definitions of another module by

importing it. These specify the module to import (by name), a list of definitions that

will be imported from the module, and a list of definitions required as inputs by the

imported module.

Definitions are imported by their identifier, or if an operator by the symbol. If

an operator symbol or function name is specified in the import, then all exported

interfaces / implementations associated with that symbol or function name in the
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imported module will be imported.

The import defintion may also be qualified by module name, adding the prefix

modname@ to each identifier. The Boolean and Identifier at the end of the definition

are the flag for qualified and module alias respectively.

There is no strategy currently for finding modules within the file system, for now

it is assumed that all of the modules needed are supplied in the same file as the main

module. That is not intended to be a workable solution, but it is satisfactory for

testing purposes.

data ImportDef = ImportDef Identifier [IdSym] [Data] Bool Identifier

instance Show ImportDef where

showsPrec p (ImportDef m exs ims qflag qname) =

("\n"++).(("Import module " ++ m ++ " with {") ++).

(showsList p exs).("} importing {"++).(showsList p ims).(’}’:).

(if qflag then (("qualifed as "++qname)++) else id)

instance AllowSubs ImportDef where

substitute sub scope (ImportDef modname ids defs qflag qname) =

ImportDef modname (map (substitute sub scope) ids)

(substitute sub scope defs)

qflag (Sub.apply sub qname)

Parsing Module Import Statements

The module import statement is parsed as the name of the module, and export /

import definitions.

The concrete syntax for importing modules is :

Use module for (x1, x2, ` xn) with

{ y1 = expr1

; y2 = expr2

`

; yn = exprn
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}

where xi is an identifier or operator symbol exported by module and yi is the identifier

of a definition required by module.

importDef :: Parser ImportDef

importDef =

do { reserved "Use" <|> reserved "use"

; n <- name

; reserved "for"

; ims <- parens ( commaSep1 nameOrSymbol )

; (q,usen) <- option (False, "") (qualModName n)

; exs <-option [] (do{ reserved "with"; es <- braces (semiSep definition); return es})

; return $ ImportDef n ims exs q usen

}

qualModName :: Identifier->Parser (Bool, Identifier)

qualModName mod =

do { mq <- option False

(do {(reserved "qualified") <|> (reserved "Qualified"); return True})

; qname <- option mod

(do {reserved "as"; n<-name; return n} )

; return (mq, qname)

}

Validating / Managing Imports

Importing a module with a using statement requires that the importer requests only

definitions in the export list of the imported module, and provides the definitions

required by the imported module. These definitions are selected by identifier, i.e.

name or operator symbol. If a function or operator is imported, all interfaces and

implementations for that function / operator will be imported (this probably should

be controllable with syntax by allowing a list of labels to be given, the labels are

already in the concrete syntax for functions/operators).
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The import definition is validated during the syntax checking by ensuring the

imported definitions are part of the exports, and that the required definitions are

supplied to the imported module. These checks are only syntactic, testing for exis-

tence. The type system will later ensure the types are compatible.

chkImports :: CocoProgram->CocoModule->CocoModule

chkImports (CocoProgram _ modMap) mod =

let impdefs = (modImps mod) in

let newErrs = foldl (getImpErr modMap) (modErrors mod) impdefs in

mod {modErrors = newErrs}

getImpErr :: (ModuleMap)->(ErrorMap)->ImportDef->(ErrorMap)

getImpErr mods errs impd@(ImportDef id _ _ _ _) =

let impmodM = Map.lookup id mods in

case impmodM of

Nothing ->

let errStr = "Imported module "++id++" not found in file." in

Map.insert id errStr errs

Just impmod ->

let errM = chkImport impmod impd in

case errM of

Nothing -> errs

Just errStr -> Map.insert id errStr errs

-- not implemented, straight forward permutation matching

chkImport :: CocoModule -> ImportDef -> Maybe String

chkImport mod impd@(ImportDef m ims exs _ _) =

let imperr = "missing from export list: " ++ (show missImps) in

let experr = "import defintions not supplied: " ++ (show missExps) in

if (((not.null) missImps) || ((not.null) missExps)) then

Just $ "module import " ++ imperr ++ "\n" ++ experr

else Nothing

where

-- find each identifier in ims in the mod module’s export list,

ims’ = foldl (\l x -> case x of {Id n->n:l; Sym _ -> l}) [] ims
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missImps = filter ((flip notElem) modexs) ims’

-- first strip out symbols and unbox the silly IdSym into Identifiers & Symbols

modexs = foldl (\l x -> case x of {Id n->n:l; Sym _ -> l}) [] (modExports mod)

-- pull out each input definition from the import module, make sure there is a def in exs

modinpdecls = map idFromData (inputDecls (modDefs mod))

missExps = filter ((flip notElem) (map idFromData exs)) modinpdecls

C.2.5 Module Importing and Identifier Lifting

Imported modules supply exported definitions to the importing module, and receive

and definitions in their import list. The exported definitions are based on the im-

ported definitions, private definitions and other imported modules.

The current strategy for resolving these imports is to rename all of the identifiers in

the module that are not exported with a prefix modname@. This raises the definitions

to the program context while syntactically hiding them from the other definitions.

The exported definitions are not renamed unless the import definition is qualified,

and then they are prefixed by the module name and @ figure. These updates are

returned in program structure, with the lifted versions of the modules. Note that

these are not guaranteed to be unique, and really should be.

This function does not check that the imports and export lists match up, that is

done in chkSyntax.

mergeMods :: CocoProgram -> CocoProgram

mergeMods (CocoProgram mainmod impmods) =

let mn = (modName mainmod) in

CocoProgram (((resImpDef.liftLocal) mainmod){modStatus = Merged})

(Map.map (resImpDef.liftMod) impmods)

liftLocal:: CocoModule->CocoModule

liftLocal = snd.(rename Sub.empty "")

resImpDef :: CocoModule->CocoModule

resImpDef mod =
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let imps = modImps mod in

let sub = foldl Map.union Sub.empty (map impSub imps) in

let ndefs = concat (map impDefs imps) in

substitute sub "" (mod {modDefs = (modDefs mod)++ndefs})

impSub :: ImportDef -> Substitution

impSub (ImportDef modname ids defs qflag qname) =

let idonly = [ n | m@(Id n) <- ids] in

scopeListSub (liftPrefix modname) idonly

impDefs :: ImportDef -> [Data]

impDefs (ImportDef modname ids defs qflag qname) =

let sub = scopeListSub (liftPrefix modname) (map idFromData defs) in

substitute sub modname defs

liftPrefix s = s++"@"

liftMod :: CocoModule->CocoModule

liftMod mod =

let scope = liftPrefix (modName mod) in

(snd (rename Sub.empty scope mod)){modStatus = Merged}

C.2.6 Displaying Modules

A list of modules can be displayed with dspCocoMods. This will display even if those

definitions not in use. At the moment this list is usually the contents of a file, but

later might include all of the imported modules.

The display functions will be embedded in a state monad which will contain the

module and the current margin setting. The margin setting will move left or right.

The monad is defined in miscST.lhs

dspCocoProg:: CocoProgram->String->IO ()

dspCocoProg (CocoProgram main others) stage =

do{ putStrLn stage
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; putStrLn "Main module"

; dspCocoMod main

; mapM dspCocoMod (Map.elems others)

; return ()

}

-- used to pull import declarations (from module header) from map

importFilter (DataDecl _ Import _) = True

importFilter _ = False

dspCocoMod:: CocoModule -> IO ()

dspCocoMod m =

do { putStrLn $ "module " ++ (modName m) ++ " " ++ (show (modStatus m))

; putStrLn $ "exports: " ++ (dspIdSymList (modExports m))

; putStrLn $ "type definitions:"

; let tds = startDspST (mapM dspTDef (Map.elems (modTypes m)))

; mapM putStrLn (concat (map lines tds))

; putStrLn $ "data definitions:"

; let (idefs,defs) = List.partition importFilter (modDefs m)

; let idbs = startDspST (mapM dspData idefs)

; mapM putStrLn (concat (map lines idbs))

; let dbs = startDspST (mapM dspData defs)

; mapM putStrLn (concat (map lines dbs))

; putStrLn $ "operator definitions:"

; let ops = startDspST (mapM dspOpDef (modOpDefs m))

; mapM putStrLn (concat (map lines ops))

; putStrLn $ "importing modules:"

; let imps = startDspST (mapM dspImp (modImps m))

; mapM putStrLn (concat (map lines imps))

; let errcnt = if (Map.size (modErrors m)) > 0

then "\nErrors: " ++ (show (Map.size (modErrors m)))

else "\nCompilation successful."

; putStrLn $ "\nend module " ++ (modName m) ++ " "

++ (show (modStatus m)) ++ errcnt ++ "\n"
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; return ()

}

dspImp :: DspFunc ImportDef

dspImp (ImportDef m exs ims qflag qname) =

do { let mstr = "Use module " ++ m

; let qstr = if qflag then "qualifed as "++qname++" " else ""

; let exstr = " for " ++ dspIdSymList exs

; tab <- tabST

; mrgInST

; imstrs <- mapM dspData ims

; let with = if (length ims) > 0

then "\n" ++ tab ++ " with " ++ (concat imstrs)

else ""

; tab<-mrgOutST

; return $ tab++mstr++qstr++ exstr ++ with

}

C.3 Data Definitions and Declarations

Data is described by data definitions and data type declarations. A data definition

associates an identifier, possibly with an associated domain or list of parameters, with

an expression. A data type declaration defines a type constraint on an identifier.

Data definitions may be complete, partial or functional, but data declarations always

constrain the entire identifier (although perhaps this can be relaxed, need to consider

this later).

module DataDefs where

import Text.ParserCombinators.Parsec

import qualified Data.Map as Map hiding (map)

import MiscST
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import VarSub as Sub

import Lex

import Expr

import Types

import JoinExpr

type DefId = Integer

data Scope = Import | Export | Private | ExprScope String

deriving Show

data Data = DataDef Identifier Def Quantifiers LocalBody DefId

| DataDecl Identifier Scope FullType

idFromData (DataDef id _ _ _ _) = id

idFromData (DataDecl id _ _) = id

typeFromDecl (DataDef _ _ _ _ _) = UnknownType

typeFromDecl (DataDecl _ _ ft) = ft

-- used for the types mapping only at this point, may be redundant???

treeSub :: (Substitution->String->a->a) -> Substitution->String-> IdMap a -> IdMap a

treeSub f sub scope =

let splitSub sub scope = (\x@(k,a)->(Sub.apply sub k, f sub scope a)) in

((Map.fromList).(map (splitSub sub scope))).(Map.toList)

inputDecls :: [Data] -> [Data]

inputDecls = filter isInputDecl

isInputDecl (DataDecl _ Import _) = True

isInputDecl _ = False

instance AllowSubs Data where

substitute sub scope (DataDef id def qs lbody lbl) =

let nid = (Sub.apply sub id) in

DataDef nid (substitute sub scope def)



C. Implementation 217

(substitute sub scope qs)

(substitute sub scope lbody) lbl

substitute sub scope (DataDecl id declscope ft) =

DataDecl (Sub.apply sub id) declscope (substitute sub scope ft)

rename sub scope db =

let id = idFromData db in

let nid = (Sub.apply sub id) in

let subout = (Map.insert id nid sub) in

case db of

(DataDef id def qs lbody lbl) ->

let newscope = (scope++id++(if (lbl>1) then show lbl else "")++"~") in

let (lsub1,def2) = rename sub newscope def in

let (lsub2,newqs) = rename sub newscope qs in

let lsub3 = lsub1 ‘Map.union‘ lsub2 in

let (lsub4,l2body) = rename lsub3 newscope lbody in

(subout, DataDef nid (substitute lsub4 newscope def2) qs l2body lbl)

(DataDecl id declscope ft) ->

(subout, DataDecl nid declscope (substitute sub scope ft))

instance Show Data where

showsPrec p (DataDef v def quants lbody lbl) =

let lblf = if (lbl > 1) then (showsPrec p lbl) else id in

(v ++).(showsPrec p def).(showList quants).(showsLocalBody p lbody).(lblf)

showsPrec p (DataDecl v s t) = (showScope s).(v++).(":"++).(showsPrec p t) where

showScope Export = ("Export "++)

showScope Import = ("Import "++)

showScope _ = id

C.3.1 Data Declarations (DataDecl)

Associates an identifier with a type. The scope identifies when the variable definition

is to be exported, provided by the importing module, is private to the module or is
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scoped to a local variable.

Variables that are defined as exports must have a definition for the compilation

to be successful. Variables that are defined as imports (from the importing module,

as opposed to being imported from another module) must not have definitions within

the module. These checks are performed by the CheckSyntax module.

Parsing Declarations

A data declaration statement is of the form:

Let variable be type

Alternately the declaration can be given as a compact declaration variable :: type.

This compact form is used in declaration lists, such as the module header, function

interfaces, etc., but can also be given as a general statement.

declaration :: Scope -> Parser [Data]

declaration scope =

do{ reserved "Let"

; dList <- declVarList

; reserved "be"

; t <- fullType

; return $ [(DataDecl d scope t) | d <- dList]

}

declCompactList :: Scope -> Parser [Data]

declCompactList scope

= do { ds <- commaSep (declCompact scope);

return $ concat ds

}

declCompact :: Scope -> Parser [Data]

declCompact scope

= do{ dList <- declVarList

; let unknowns = [DataDecl d scope UnknownType | d <- dList ]

; option unknowns ((declTypeVar dList scope) <|> (declTypeExpr dList scope))
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}

declVarList :: Parser [Identifier]

declVarList = commaSep1 name

declTypeExpr ns scope =

do { choice[reservedOp "::", reserved "is", reserved "are"]

; t <- fullType

; return [DataDecl n scope t | n <- ns]

}

declTypeVar ns scope =

do { symbol "<:"

; t <- fullType

; return [DataDecl n scope (VarType n t) | n <- ns]

}

C.3.2 Data Definitions

Data definitions assign an expression to an identifier. There are three kinds of defi-

nitions:

Complete completely defines the identifier; there must only be one definition state-

ment for the identifier.

Partial defines the value of the identifier over some subset of it’s domain based on

quantified variables; there may be multiple partial definitions for an identifier.

Function defines a function interface, and optionally an implementation for that

interface.

Definitions are captured in a Def structure, along with the parameter names and

types for the function definition, and expressions for the scope of partial definitions.
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Complete Definitions

These simply contain the (join) expression represented by the identifier.

Function Definitions

Function definitions consist of an ordered list of parameter declarations (DataDecls)

and an expression with an explicit type declaration. The return type will be the same

as the type of the expression. The parameters and return type make up a function

interface.

A function definition is one interface of a declared function class. The result type

and parameter types of the interface must be subtypes of the declared result and

parameter types in the class declaration.

The join expression of the definition must have a declared type, and must be de-

fined entirely of variables local to the definition, i.e. parameters and variables defined

in the local body of the interface. If no definition is provided for the result expression,

for example an undefined variable, then the interface accepted without an implemen-

tation. Obviously the program cannot be instantiated without an implementation,

but it can be passed through the syntax and type checkers with unsatisfied interfaces.

Partial Definitions

A partial definition can consist of:

Index an index expression applied to a dimensioned type;

Field the name (identifier) of a field in a record.

An indexed partial definition may apply to a single index (Integer) value, or to a

range of integer values, defined with quantified variables.

Note that because field labels are isomorphic to a finite natural number domain,

we can use the same structure for both concepts. Syntactically, however, a partial

definition is currently limited to defining a single field in a record.

The PartialDef structure contains one level of indexing / field dereferencing, then

another Def structure which may be the final definition or may be another layer of

partial definition.
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Only indexing is currently supported, and only to one level (i.e. no arrays of

arrays), although this last restriction is easily removed.

There may be multiple partial definitions for any given identifier. The domains

must not overlap, and they must also provide a complete definition when combined,

i.e. the partial definitions must partition the domain of the identifier. For arrays and

iterative definitions, each dimension must be a range of integers with a definition for

each value in that range. For records, there must be a definition for each field.

The level of testing for overlapping domains is currently in flux. It is possible with

CHRs to do some simple tests, but you really need a full computer algebra system to

be complete this way, there may be better strategies.

data Def =

CompleteDef JoinExpr

| PartialDef IdExtension Def

| FuncDef [Data] JoinExpr FullType

| NullDef

instance AllowSubs Def where

substitute sub scope (CompleteDef je) =

CompleteDef (substitute sub scope je)

substitute sub scope (PartialDef ext def) =

PartialDef (substitute sub scope ext) (substitute sub scope def)

substitute sub scope (FuncDef parms je ft) =

FuncDef (substitute sub scope parms)

(substitute sub scope je) (substitute sub scope ft)

substitute _ _ NullDef = NullDef

rename sub scope (FuncDef parms je ft) =

let (lsub1,p2s) = liftVars sub scope parms in

let lsub2 = lsub1 ‘Map.union‘ sub in

let (lsub3, je2) = rename lsub2 scope je in

(lsub3,FuncDef p2s je2 (substitute (lsub3 ‘Map.union‘ lsub2) scope ft))

rename sub scope def = (sub,substitute sub scope def) -- other defs no parms

instance Show Def where
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showsPrec p (CompleteDef e) =

(" = "++).(showsPrec p e)

showsPrec p (PartialDef idx d) =

(showsPrec p idx).(showsPrec p d)

showsPrec p (FuncDef ps e rt) =

(showList ps).(" = "++).(showsPrec p e).("::"++).(showsPrec p rt)

showsPrec p (NullDef) = ("null"++)

C.3.3 Parsing Definitions

A data definition has a single variable instance on the LHS of an equal sign. Variables

are identifiers with an optional set of extensions, either integer indices in square

brackets, field labels following a period, or function parameters in parentheses. Indices

are parsed as simple integer expressions (a simplified form of expression), field labels as

variables, and function parameters as compact declaration lists (i.e. the v::t format).

The defFromVar function interprets the LHS variable expression into a definition

(Def).

Note that quantifiers can be provided at the beginning of a statement or just

before the local body (the ”where” statement).

definition:: Parser Data

definition = (try funcdef) <|> vardef

vardef =

do { q1 <- option [] quantifiers

; v <- variable;

; reservedOp "="

; je <- joinExpr

; q2 <- option [] quantifiers

; whiteSpace

; lbody <- option nullLocalBody (localBody ("coco_" ++ (show (idFromVar v))))

; return $ DataDef (idFromVar v) (defFromVar v je) (q1++q2) lbody 0

}

<?> "definition"

funcdef =
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do { f<-identifier

; ps <- parens (declCompactList (ExprScope (f++"@")))

; reservedOp "="

; je <- joinExpr

; let rt = getExplicitType je

; whiteSpace

; lbody <- option nullLocalBody (localBody (f++"@"))

; return $ DataDef f (FuncDef ps je rt) [] lbody 0

}

defIntSimple =

do { v <- variable;

; reservedOp "="

; ie <- intExpr

; let intft = FullTypeAnnote (GenType "Integer" ScalarShape [])

; return $ DataDef (idFromVar v)

(defFromVar v (NoJoin (Unconditional (ie, intft)))) [] nullLocalBody 0

}

<?> "definition of variable as an integer expression"

-- only for partial and complete definitions, function Defs should not appear

defFromVar :: Factor -> JoinExpr -> Def

defFromVar (Var id xs) je = pfdef xs je rt

where

rt = getExplicitType je

pfdef [] je _ = CompleteDef je

pfdef (x@(IdFunc es):xs) je rt = NullDef

pfdef (x:xs) je rt =

let p = pfdef xs je rt in

case p of

NullDef -> p

_ -> PartialDef x p

defFromVar _ _ = error "def expects Vars only"

parmFromList::ExprList -> Scope -> Either [Data] String
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parmFromList [] _ = Left []

parmFromList ((Factor (Var n [])):es) scope =

let eps = parmFromList es scope in

case eps of

Left ps -> Left ((DataDecl n scope UnknownType):ps)

Right s-> Right s

parmFromList (e:es) _ =

let eps = parmFromList es (ExprScope "") in

case eps of

Left ps -> Right $ "Invalid parameter " ++ (show e) ++ ";"

Right s-> Right $ "Invalid parameter " ++ (show e) ++ "; " ++ s

Local Bodies

An expression may have a local body, which is a collection of variable definitions and

declarations. These are stored as a list of DefBlocks of class DataDef and DataDecl

respectively.

Any variable may have a local body, but for operators and functions this represents

and implementation of the interface. The CheckSyntax module ensures that local

bodies only contain these two kinds of definitions; new type, attribute class and

operator defintions will be ignored.

To rename the variables in a local body, the local identifiers are prefixed with a

scope label. The scope is defined by the DefBlock that owns the LocalBody.

dataLocal s = declaration (ExprScope s)

<|> do{d<-definition; return $ [d]}

<?> ("declaration or definition in local body of " ++ s)

data LocalBody = LabelledBody {bodyID::Identifier, bodyDefs::[Data]}

| LocalBody {bodyDefs::[Data]}

nullLocalBody :: LocalBody

nullLocalBody = LocalBody []



C. Implementation 225

showsLocalBody = showsPrec

instance Show LocalBody where

showsPrec p (LocalBody []) = id

showsPrec p (LocalBody lbody) =

(" where {"++).(showsList p lbody).(’}’:)

showsPrec p (LabelledBody _ []) = id

showsPrec p (LabelledBody bid lbody) =

(" where " ++).(bid ++).(" {"++).(showsList p lbody).(’}’:)

localBody :: String -> Parser LocalBody

localBody s =

do { reserved "where"

; label <- option "" name

; sts <- braces ((dataLocal s) ‘sepEndBy1‘ semi)

; return $ if (label=="") then (LocalBody (concat sts))

else (LabelledBody label (concat sts))

}

<?> "definition of a local body"

Variable Renaming in Data Definitions and Declarations

This is where the most complicated aspects of variable renaming are handled. When

a set of DefBlocks, such as a local body or a new module, is to be renamed, the first

step is to lift the variables (liftVar) defined in the definition block list by prefixing

their identifiers with a scope prefix. These new names are added to the substitution,

and the new substitution is applied to the definitions in the block list.

Using the Map.union function, which is left biased, allows definitions in the local

block to locally eclipse other definitions for the same identifier, i.e. local definitions

are of higher priority than higher scope definitions. The new substitution is returned

from liftVars, along with the adjusted definition blocks.
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C.3.4 Variable Renaming for Scoping

Variables introduced in function definitions, array index definitions or local expression

bodies are scoped to that definition. They are lifted to the module level by renaming

them, with the scope provided by the renaming. The new name is guaranteed to be

unique by prefixing a meaningful label and a ’’ to the name. The label is either the

name of the identifier for the definition, or the label provided with the body in the

source.

This approach to scoping is not a particularly good one for production use, but

is useful for making the trace and intermediate files readable. An alternate strategy

should probably be introduced in later phases to deal with identifier lifting.

Local Bodies

A local expression body is of the form

defined = expression where optional id { local body }
Any definitions in the local body are restricted in scope to the local body and the

main expression. They are renamed with a scope prefix and then treated as if they

were in the module’s scope. If the optional body identifier is provided, the prefix is

”coco id“, otherwise a generated prefix of ”coco vid@nnn“, where vid is the identifier

being defined, and nnn is a uniqe identifier to distinguish possible multiple partial

definition statements.

functions

In addition to the renaming of local body definitions, the parameters are renamed

in the definition and implementation body. The renamed parameters are defined as

local variables in the function body. This renaming forces a function value to be

dependent only on its formal parameters.

arrays

Arrays are defined through either complete or partial definition statements. In a

complete definition, there will be no indexing and no qualifiers, so there are no new
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variables. In a partial definition (which may cover the entire domain of the array),

there will be between 0 and r new variables introduced, with r being the rank of

the array. Each of these variables will be renamed in the LHS and RHS of the

definition, but will be scoped to just this definition statement (note: the scope label

must therefore take into account that there may be multiple partial definitions for

the same identifier label).

substitutions

For each level of scope, there will be a new set of definitions, each of which may have

a local body with a new scope. The procedure for renaming is as follows:

• Input is a list of substitutions from the parent definition, and the list of Def-

Blocks for the local body. At the module level, the substitution is the identity.

• A new substitution list is prepared from the list of new identifiers defined at

this scope level by applying the new prefix to the identifiers (buildSub).

• For each variable declaration, any local body is processed as above, in a depth

first substitution, returning the substitutions from that local body. Note that

this is only those defined at the next level of scope, the lower levels of substitu-

tion are discarded.

• The local body substitution is applied to the variable declaration’s expression.

This substitution is then discarded (virtually, anyways).

• The current scope substitution is now applied, both to the expression and to

the identifier being defined (liftVars). Note that the order of the substitution

applications allows local bodies to override higher level scope definitions of the

same name; whether this is a good or a bad thing is a matter of taste.

liftVarTree :: Substitution->String->IdMap Data-> (Substitution, IdMap Data)

liftVarTree sub scope vmap =

let vs = Map.elems vmap in

let (sub2,nvs) = liftVars sub scope vs in

(sub2, (Map.fromList (map (\d->(idFromData d, d)) nvs)))
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liftVars :: Substitution->String-> [Data] ->(Substitution,[Data])

liftVars topsub scope dbs =

let cursub = buildSub scope dbs in

(cursub, snd (rename (cursub ‘Map.union‘ topsub) scope dbs) )

buildSub :: String -> [Data] -> Substitution

buildSub scope = (scopeListSub scope).(map idFromData)

scopeListSub :: String -> [Identifier] -> Substitution

scopeListSub scope = (Map.fromList).(map (\s->(s,scope++s)))

instance AllowSubs LocalBody where

substitute sub scope (LabelledBody id dbs) =

LabelledBody (Sub.apply sub id) (substitute sub scope dbs)

substitute sub scope (LocalBody dbs) = LocalBody (substitute sub scope dbs)

rename sub scope (LabelledBody id dbs) =

let (localsub, newdbs) = (liftVars sub scope dbs) in

(localsub, LabelledBody (Sub.apply sub id) newdbs)

rename sub scope (LocalBody dbs) =

let (localsub, newdbs) = (liftVars sub scope dbs) in

(localsub, LocalBody newdbs)

Quantifiers

Quantifiers are used in partial definitions to describe the subset of the domain of a

dimensioned identifier defined by the current statement. They provide the definition

of a variable that is used in the LHS of the partial definition. Currently, the quantified

variable must be an integer or an integer range.

There are two kinds of quantifiers:

QuantAll represents a ”for all” universal quantifier, where the variable implicitly

represents every value possible for the domain of the definition, as defined by

its usage in the LHS of the definition.
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QuantSome represents a ”for x = expr and has a DataDef that explicitly specifies an

integer range (sequence) of values the new identifier may take in the definition.

In quantifiers of form ”fori = expr”, i should not be a variable in expr. This

”occurs” check is not currently done, but should be tested in the CheckSyntax

module.

When quantifiers are renamed, the identifier is prefixed to scope it to the local

definition. This is added to the substitution in a renaming.

type Quantifiers = [Quantifier]

data Quantifier = QuantAll Identifier | QuantSome Identifier Data

deriving Show

instance AllowSubs Quantifier where

substitute sub scope (QuantAll id) = QuantAll (scope ++ id)

substitute sub scope (QuantSome id db) =

QuantSome (scope ++ id) (substitute sub scope db)

rename sub scope (QuantAll id) =

let newid = scope ++ id in

((Map.singleton id newid), (QuantAll newid) )

rename sub scope (QuantSome id db) =

let newid = scope ++ id in

((Map.singleton id newid), (QuantSome newid (substitute sub scope db)))

quantifiers :: Parser [Quantifier]

quantifiers =

do { reserved "For" <|> reserved "for"

; qs <- commaSep quantifier

; return qs

}

<?> "quantifier statement"

quantifier :: Parser Quantifier

quantifier = qualall <|> qualsome
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qualall = do{ reserved "All" <|> reserved "all"

; id <- identifier

; return $ QuantAll id

}

qualsome = do{ vd <- defIntSimple

; return $ QuantSome (idFromData vd) vd

}

C.3.5 Checking Defintions for Completeness

All variables, operators and function applications appearing in the expressions, guards,

or local bodies of a definition must be defined or declared in the module. This state

of completeness, where all of the elements of a definition are available, will be called

ground. This is checked before passing the definitions to the type system and does

not guarantee that the definitions are well typed.

An expression is ground if:

1. it is a recognized literal value

2. it is a function application, where the function has been declared and all of

the types are ground.

3. it is a unary or binary operator acting on a ground expression, and the operator

symbol is a known symbol

4. it is a defined variable (see below)

A variable is defined to an expression if it is:

defined in the module,

locally defined in the local body of the definition,

imported from another module, either as an input from the importing module /

program, or from another module through an import definition, or

quantified in a partial definition statement.
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To avoid cycles and duplicate tests, the definition map is encapsulated in a vali-

dation map. Checking each identifier’s status then proceeds in a depth first manner,

marking each identifier being tested with the CurEval flag. Once an identifier is known

to be ground, the validation map is updated to reflect this status. If a CurEval flag

is encountered, the definitions have a cycle and are flagged as an error.

-- ??? syntax checking

C.3.6 Displaying Definitions

A definition block describes a HUSC statement. Each type of definition block (DB)

has it’s own display code.

The module is passed as a parameter so the display can be modified with relevant

information. For example, the display of a module that has been parsed but not

typed will not include types for the expressions in the graph. Also, any errors will be

noted before the description

-- display declarations in a comma separated list, usually for parameter lists

dspDataList :: DspFunc [Data]

dspDataList [] = return ""

dspDataList decls =

do { dbstrs <- mapM dspData decls

; let dbstr = foldr1 (\s1 s2 -> s1 ++ ", "++s2) (map (dropWhile ((==) ’ ’)) dbstrs)

; return $ "(" ++ dbstr ++ ")"

}

dspData :: DspFunc Data

dspData (DataDecl v s t) =

do{ let scope = case s of {Import->"import -> "; otherwise -> ""}

; tstr <- dspFT t

; tab <- tabST

; return $ tab++scope ++ (dspId v) ++ "::" ++ tstr

}

dspData (DataDef v def quants lbody lbl) =

do { let lblstr = case def of
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(FuncDef _ _ _) -> ("<< "++(show lbl) ++ " >> ")

(PartialDef _ _) -> ("<< "++(show lbl) ++ " >> ")

(CompleteDef _) -> ""

; tab <- tabST

; let optnl = if (length quants) > 0 then "\n"++tab else tab

; qstr <- (dspQuants quants)

; tab2 <- do {case quants of {[]->tabST;(q:qs)-> mrgInST}}

; let optnl2 = if (length quants) > 0 then "\n"++tab2 else ""

; dstr <- dspDef def

; lbstr <- dspLBody lbody

; do {case quants of {[]->tabST;(q:qs)-> mrgOutST}}

; return $ optnl++lblstr ++ qstr ++ optnl2 ++ (dspId v) ++ dstr ++ lbstr

}

dspLBody :: DspFunc LocalBody

dspLBody (LocalBody []) = return ""

dspLBody (LabelledBody _ []) = return ""

dspLBody lb =

do { mrgInST

; let (lbl,dbs) = case lb of

(LocalBody defs) -> ("",defs )

(LabelledBody id defs) -> (id,defs)

; ss <- mapM dspData dbs

; tab <- mrgOutST

; return $ " where "++lbl++"{\n" ++ (concat ss) ++ "\n" ++ tab ++ "}\n\n"

}

dspDef :: DspFunc Def

dspDef (CompleteDef je) =

do { jes <- dspJExpr je

; return $ " = " ++ jes

}

dspDef (PartialDef idx def) =

do { ds <- dspDef def
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; idxstr <- (dspIdExt idx)

; return $ idxstr ++ ds

}

dspDef (FuncDef parmdbs je ft) =

do { pstr <- dspDataList parmdbs

; jes <- dspJExpr je

; return $ pstr ++ " = " ++ jes -- don’t need rt, it’s in the je annotation

}

dspDef _ = return "=X= (rule or invalid def)" -- no rules yet

dspQuants :: DspFunc [Quantifier]

dspQuants [] = return ""

dspQuants qs =

do { qstrs <- mapM dspQuant qs

; let qstr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) qstrs

; return $ "For " ++ qstr

}

dspQuant (QuantAll id) = return $ "all " ++ (dspId id)

dspQuant (QuantSome id db) = dspData db

C.4 Operator Definitions

Operators are functions that can be embedded in expressions. The operator definition

statement associates a function interface, including parameter and result types, with

an operator symbol. There can be many function interfaces for each symbol, but

each symbol may have only one fixity, precedence and associativity setting, so every

interface that uses the symbol must share these settings. These fixed settings reflect

additional semantic information associated with the operator symbols derived from

the HUSC context, namely standard mathematical and scientific notations.

Each operator symbol will, generally, be heavily overloaded. This will range from

very different interfaces (e.g. matrix and scalar addition) to identical interfaces with

different implementations (adding integer arrays on single, vector and parallel pro-



C. Implementation 234

cessing systems). The evaluation of every expression containing an operator is as the

join of all operator interfaces that satisfy the constraints of the expression, meaning

that the expression is evaluated to the value of any one interface.

Currently only unary and binary operators are supported, but this could be ex-

tended with an appropriate syntax. However, the expression parser in Parsec only

allows for unary and binary operators, so the new expression parser (in module Expr)

would have to be built from scratch.

Currently, the list of operator symbols is fixed. It should be possible to add new

operator symbols, defining the fixity, associativity and precedence. This shouldn’t be

difficult to add, but it did require that the Parser monad be updated.

module OperDef where

import Text.ParserCombinators.Parsec

import qualified Data.Map as Map hiding (map)

import MiscST

import Lex

import VarSub as Sub

import Expr

import Types

import JoinExpr

import DataDefs

data OperDef = OperDef OpSymbol Fixity Def LocalBody DefId

instance AllowSubs OperDef where

rename sub scope op@(OperDef sym fix def lbody lbl) =

let newscope =

case lbody of

{ (LabelledBody id dbs) -> (scope++id++(show lbl)++"~")

; (LocalBody dbs) -> (scope++(symname sym)++(show lbl)++"~")

} in

let (lsub1,def2) = rename sub newscope def in
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let (lsub2,l2body) = rename (lsub1 ‘Map.union‘ sub) newscope lbody in

(sub, OperDef sym fix (substitute lsub2 scope def2) l2body lbl)

substitute sub scope op@(OperDef sym fix def lbody lbl) =

OperDef sym fix (substitute sub scope def) (substitute sub scope lbody) lbl

instance Show OperDef where

showsPrec p (OperDef s f fndef lbody lbl) =

(s++).(showsPrec p lbl).(’(’:).(showsPrec p f).(’)’:).

(showsPrec p fndef).(showsLocalBody p lbody)

symname sym = Map.findWithDefault sym sym opNames

where

opNames = Map.fromList

[ ("+","plus")

, ("-","neg")

, ("..","rng")

, ("*","mult")

, ("/", "div")

, ("%", "mod")

, ("^","exp")

, ("<", "lt")

, ("<=", "le")

, (">=", "ge")

, (">", "gt")

, ("==", "eq")

, ("/=", "ne")

]

C.4.1 Parsing Operator Definitions

The consist of a symbol and fixity declaration, and a function interface. The parser

starts with the operator symbol, then takes parameters to the left and right of the

symbol, as required, followed by an equal sign and the result variable. The result
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variable is primarily used to specify the return type, and the identifier is locally

scoped to the definition. However, if this definition also provides an implementation

of the operator, the result variable definition is the value of the result of the operator.

The fixity of the symbol: infix, prefix, postfix; is given by InOp,PreOp and PostOp

symbols (named to avoid conflicts with the Haskell infix, prefix and postfix labels).

This fixity, along with the precedence and associativity of the operator, must be iden-

tical for all interfaces applied to an operator symbol, as defined in the OpSymbolTable

for the module.

opdef translates the operator definition into a function definition (provided by

Def).

-----------------------------------------------------------

-- Operators

-----------------------------------------------------------

operatorDef :: Parser OperDef

operatorDef =

do { reserved "Operator"

; sym <- operator

; reserved "as"

; loprs <- option [] (parens (declCompactList (ExprScope sym)))

; symbol sym

; roprs <- option [] (parens (declCompactList (ExprScope sym)))

; reservedOp "="

; je <- (parens joinExpr) <|> joinExpr

; whiteSpace

; lbody <- option nullLocalBody (localBody "coco_")

; let fix = case (loprs,roprs) of

([],[]) -> NoOp

([],x:xs) -> PreOp

(x:xs,[]) -> PostOp

(x:xs, y:ys) -> InOp

; let opdef = opfdef sym je (loprs++roprs)

; return $ OperDef sym fix opdef lbody 0
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}

<?> "Invalid operator definition."

opfdef:: Identifier -> JoinExpr -> [Data] -> Def

opfdef _ je ps =

let rt = getExplicitType je in FuncDef ps je rt

dspOpDef :: DspFunc OperDef

dspOpDef (OperDef s f fndef lbody lbl) =

do { let opstr = "<< "++(show lbl)++" >> " ++(show f) ++ " " ++ s

; argstr <- dspDef fndef

; lbodstr <- dspLBody lbody

; tab <- tabST

; return $ tab++ opstr ++ argstr ++ lbodstr

}

-- check to make sure the operator symbols and declared types are all valid

-- ??? not implemented

C.4.2 Expressions

Expressions may be ntuples, comma separated expressions inside of parentheses.

Nested tuples are identified on the basis of parentheses; single expressions on their

own or inside of parentheses are not tuples, just simple expressions.

Simple expressions are encoded as an operator with operand(s) or a factor. Opera-

tors are either binary with two operand expressions or unary with an associated fixity

(PreOp or PostOp). Factors are literals, or variable instances including function ap-

plications, array references, and field references (field references not yet implemented,

as records were not implemented, but this is easy to do). Factors may also be an

expression in parentheses.

module Expr where

import Text.ParserCombinators.Parsec

import qualified Text.ParserCombinators.Parsec.Token as P
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import Text.ParserCombinators.Parsec.Expr as ParsecExpr

import Text.ParserCombinators.Parsec.Language

import Monad

import qualified Data.Map as Map

import MiscST -- HUSC monads, DspState CounterST and LabellerST

import VarSub as Sub -- HUSC variable renaming class

import Lex

type Identifier = String

type IdMap a = Map.Map Identifier a

type Name = Identifier

data IdSym = Id Identifier | Sym OpSymbol

deriving Eq

instance Show IdSym where

showsPrec p (Id x) = (x++)

showsPrec p (Sym x) = (x++)

instance AllowSubs IdSym where

substitute sub scope (Id n) = Id $ Sub.apply sub n

substitute sub scope (Sym s) = Sym s

type OpSymbol = String

data Fixity = PreOp | PostOp | InOp | NoOp

deriving (Eq, Show)

type OpSymbolTable = ParsecExpr.OperatorTable Char () Expr -- ParsecExpr type

type ExprList = [Expr]

data Expr = Factor Factor | BinOp OpSymbol Expr Expr | UnOp OpSymbol Expr Fixity

| Tuple [Expr]

deriving (Show,Eq)

instance AllowSubs Expr where

substitute sub scope (Factor f) = Factor (substitute sub scope f)

substitute sub scope (BinOp sym e1 e2) =
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BinOp sym (substitute sub scope e1) (substitute sub scope e2)

substitute sub scope (UnOp sym e1 fix) = UnOp sym (substitute sub scope e1) fix

substitute sub scope (Tuple es) = Tuple (map (substitute sub scope) es)

data Factor = Lit Literal | Var Name [IdExtension] | Parens Expr

deriving (Show,Eq)

instance AllowSubs Factor where

substitute sub scope (Lit l) = (Lit l)

substitute sub scope (Var v exts) =

Var (Sub.apply sub v) (substitute sub scope exts)

substitute sub scope (Parens e) = Parens (substitute sub scope e)

idFromVar :: Factor -> Identifier

idFromVar (Var n _) = n

idFromVar _ = error "idFromVar expects Vars only"

variable :: Parser Factor

variable =

do{ id <- identifier

; exts <- many id_extension

; whiteSpace

; return $ Var id exts

}

<?> "Invalid variable definition in factor"

data IdExtension = IdIndex [Expr] | IdFunc [Expr] | IdField Identifier

deriving Eq

instance AllowSubs IdExtension where

substitute sub scope (IdIndex es) = IdIndex (substitute sub scope es)

substitute sub scope (IdFunc es) = IdFunc (substitute sub scope es)

substitute sub scope (IdField id) = IdField (Sub.apply sub id)

instance Show IdExtension where

showsPrec p (IdIndex x) = (’[’:).(showsList p x).(’]’:)

showsPrec p (IdFunc x) = (’(’:).(showsList p x).(’)’:)
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showsPrec p (IdField x) = (’.’:).(x++)

id_extension :: Parser IdExtension

id_extension =

do{ indExs <- squares intExprList; return $ IdIndex indExs }

<|> do{ parmExs <- parens exprList; return $ IdFunc parmExs }

<|> do{ reservedOp "."; fieldEx <- identifier; return $ IdField fieldEx }

data Specials = Infinity | NegInf

deriving (Show,Eq)

data Literal = LitInt Integer | LitReal Double | LitBool Bool

| LitString String | LitSpecial Specials

deriving Eq

instance Show Literal where

showsPrec p (LitInt i) = shows i

showsPrec p (LitReal f) = shows f

showsPrec p (LitBool True) = (++) "True"

showsPrec p (LitBool False) = (++) "False"

showsPrec p (LitString s) = (++) s

showsPrec p (LitSpecial Infinity) = (++) "infinity"

showsPrec p (LitSpecial NegInf) = (++) "-infinity"

C.4.3 Parsing Expressions

The operator symbol table is currently hardcoded. In the future, operator symbol

definition statements will be added to the operator table dynamically. This will not

allows updates to symbols already present.

Integer expressions are a separate class of expressions that are for use in array

and iterant variables. Only the integer operators (+,−, ∗, %) and the range building

operator (..) are included, just what is necessary for integer index expressions or to

construct an integer range.

The simple and integer expressions are tested for unary negation operation, and
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evaluates it to a negative integer or real value. This is helpful in translating numbers

into internal data term representations for the type system.

exprList :: Parser [Expr]

exprList = commaSep expr

expr :: Parser Expr

expr = tuplex <|> simpexpr

tuplex :: Parser Expr

tuplex =

do { es <- parens (commaSep1 expr)

; let re = case es of

[e] -> e

otherwise -> Tuple es

; return re

}

simpexpr :: Parser Expr

simpexpr = buildExpressionParser opTable factor

opTable :: OpSymbolTable

opTable =

[ [ prefix "-"]

, [ binop "^" AssocRight ]

, [ binop "*" AssocLeft, binop "/" AssocLeft, binop "%" AssocLeft ]

, [ binop "+" AssocLeft, binop "-" AssocLeft ]

, [ binop ".." AssocNone]

, [ binop "==" AssocLeft, binop "/=" AssocLeft, binop "<=" AssocLeft

, binop "<" AssocLeft, binop ">=" AssocLeft, binop ">" AssocLeft

]

, [prefix ".not." ]

, [ binop ".and." AssocLeft]

, [ binop ".or." AssocLeft ]

]
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where

binop name assoc

= Infix (do{opVar<-try (symbol name); return (\x y -> BinOp opVar x y) }) assoc

prefix name

= Prefix (do{opVar<-try (symbol name); return (preopeval opVar)})

postfix name

= Postfix (do{opVar<-try (symbol name); return (\x -> UnOp opVar x PostOp)})

preopeval "-" =

\x-> case x of

(Factor (Lit (LitInt i))) -> (Factor (Lit (LitInt (-i))))

(Factor (Lit (LitReal i))) -> (Factor (Lit (LitReal (-i))))

_ -> (UnOp "-" x PreOp)

intExprList = commaSep1 intExpr

intExpr :: Parser Expr

intExpr = buildExpressionParser intOpTbl intFactor

intOpTbl =

[ [ prefix "-"]

, [ binop "^" AssocRight ]

, [ binop "*" AssocLeft, binop "/" AssocLeft, binop "%" AssocLeft ]

, [ binop "+" AssocLeft, binop "-" AssocLeft ]

, [ binop ".." AssocNone]

]

where

binop name assoc

= Infix (do{opVar<-try (symbol name); return (\x y -> BinOp opVar x y) }) assoc

prefix name

= Prefix (do{opVar<-try (symbol name); return (preopeval opVar)})

-----------------------------------------------------------

-- Factor

-----------------------------------------------------------
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factor :: Parser Expr

factor =

do {l <- literal; return $ Factor l}

<|> do {e <- parens expr; return $ Factor (Parens e)}

<|> do {v <- variable; return $ Factor v}

intFactor :: Parser Expr

intFactor =

do {l <- integer; return $ Factor (Lit (LitInt l))}

<|> do {e <- parens intExpr; return $ Factor (Parens e)}

<|> do {v <- variable; return $ Factor v}

<?> "Unknown or invalid factor in integer expression"

-----------------------------------------------------------

-- Literals

-----------------------------------------------------------

literal :: Parser Factor

literal =

do { n <- naturalOrFloat

; case n of

Right f -> return $ Lit (LitReal f)

Left i -> return $ Lit (LitInt i)

}

<|> do { reserved "True"; return $ Lit (LitBool True) }

<|> do { reserved "False"; return $ Lit (LitBool False) }

<|> do { reserved "coco_infinity"; return $ Lit (LitSpecial Infinity)}

<|> do { reserved "coco_neginf"; return $ Lit (LitSpecial NegInf)}

<|> do { s <- stringLiteral; return $ Lit (LitString s) }

<?> "unknown literal format"

nameOrSymbol =

do{ op<-operator; return $ Sym op}

<|> do{ n<-name; return $ Id n}
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Expressions are printed as a single line.

dspExpr (Factor f) = dspFactor f

dspExpr (UnOp op e PreOp) = do { estr <- dspExpr e; return $ (dspSym op) ++ estr}

dspExpr (UnOp op e PostOp) = do { estr <- dspExpr e; return $ estr ++ (dspSym op)}

dspExpr (BinOp op e1 e2) =

do { estr1 <- dspExpr e1

; estr2 <- dspExpr e2

; return $ estr1 ++ (dspSym op) ++ estr2

}

dspExpr (Tuple es) =

do { estrs <- mapM dspExpr es

; return $ "(" ++ (foldr1 (\s t-> s++","++t) estrs) ++ ")"

}

dspFactor (Lit l) = return (show l)

dspFactor (Var v exts) = do{exstrs <- (mapM dspIdExt exts); return $ (dspId v)++(concat exstrs)}

dspFactor (Parens e) = dspExpr e

dspIdExt (IdIndex xs) =

do { estrs <- mapM dspExpr xs

; let estr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) estrs

; return $ "["++estr++"]"

}

dspIdExt (IdFunc xs) =

do { estrs <- mapM dspExpr xs

; let estr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) estrs

; return $ "("++estr++")"

}

dspIdExt (IdField x) = return $ ’.’:(dspId x)

-- used for exports lists to merge identifiers and operator symbols

dspIdSymList :: [IdSym]->String

dspIdSymList [] = ""
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dspIdSymList (x:[]) = case x of {Sym s -> s; Id n -> n}

dspIdSymList (x:xs) = (case x of {Sym s -> s; Id n -> n}) ++ (’,’: (dspIdSymList xs))

--include a display function for identifiers and operator symbols for posterity, just the identity.

dspId = id

dspSym = id

C.4.4 Show Instances

Additional instances of Show and some support functions for show instances.

showsList p [] = id

showsList p [e] = (showsPrec p e)

showsList p (e:es) = (showsPrec p e).(’,’:).(showsList p es)

A

C.5 Types

Types have three properties in HUSC: a name, shape and optional attributes. The

name is primarily a label for a combination of shape and attributes. The shape is

mandatory, and one of a fundamental subclass of types defined within HUSC. Shapes

may include dependent data or type terms. The attributes are optional values associ-

ated with an attribute class defined for the base type. Attribute classes are intended

to be extensible, and are treated that way by the parser, so the list of attributes for

a type is completely generic, although this has not yet been implemented.

The combination of name, shape and attributes is referred to as a ”full type”

structure. The FullType structure represents an instance of a type, generally the

type of an expression or identifier.

C.5.1 FullType structure

Each class of FullType represents one of:

Generic an identifier, a shape and a list of attributes
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Named an identifier, list of dependent arguments and attributes

VarType a type variable with a supertype; no attributes

Type variables have no associated attributes, but instead take on the value of

another type during type inferencing, which may contain attributes.

module Types where

import Text.ParserCombinators.Parsec

import qualified Data.Map as Map

import MiscST -- display and labelling monads

import VarSub as Sub -- HUSC variable renaming

import Lex

import Expr

data FullType =

UnknownType

| GenType {typeName::Identifier, typeShape::Shape, attrs::AttrList}

| NameType {typeName::Identifier, typeDeps::[Expr], attrs::AttrList}

| VarType {typeName::Identifier, typeSuper::FullType}

instance AllowSubs FullType where

substitute sub scope ft =

case ft of

UnknownType -> UnknownType

GenType n s as -> GenType (Sub.apply sub n) (subs s) (subs as)

NameType n ds as -> NameType (Sub.apply sub n) (subs ds) (subs as)

VarType n rt -> VarType (Sub.apply sub n) (subs rt)

where

subs x = substitute sub scope x

rename sub scope UnknownType = (Sub.empty, UnknownType)

rename sub scope (GenType n s as) =

let (lsub1, s2) = rename sub scope s in
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let (lsub2, as2) = rename (lsub1 ‘Map.union‘ sub) scope as in

((lsub1 ‘Map.union‘ lsub2), GenType (Sub.apply sub n) s2 as2)

rename sub scope (NameType n ds as) =

let (lsub1, ds2) = rename sub scope ds in

let (lsub2, as2) = rename sub scope as in

((lsub1 ‘Map.union‘ lsub2), NameType (Sub.apply sub n) ds2 as2)

rename sub scope (VarType n rt) =

let (lsub, rt2) = rename sub scope rt in

(lsub, VarType (Sub.apply sub n) rt2)

instance Show FullType where

showsPrec p (GenType n s attrs) =

(showsPrec p n).(showsPrec p s).(showAttrList attrs)

showsPrec p (NameType n dvs attrs) =

(showsPrec p n).(showsList p dvs).(showAttrList attrs)

showsPrec p (VarType n rt) =

("[typevar]"++).(showsPrec p n).(" <: "++).(showsPrec p rt)

showsPrec p UnknownType = ("?" ++)

C.5.2 Shapes

Shapes are type constructors over the space of scalars. There are five shapes:

Scalar Shape Scalars are individual data items, with subtypes such as numbers,

characters and Booleans. It is represented as a unit type, as a scalar type is

completely defined by it’s name and attributes.

Tuples A tuple is a branching to n full type descriptions ordered by position in

the tuple, where n is a fixed value for the tuple. It is represented as a list of

full types. The tuple itself may have attributes assigned to it, and each of it’s

element types may include attributes.

Records are unordered branches represented by set of labelled types. A record type

includes a set of field names and their data types. ??? Record types have not

yet been implemented ???



C. Implementation 248

DimType Dimensioned types represent a function from a tuple of integers within a

domain D subset of Zn. This is internally defined as a subtype of the generic

function shape, and includes subtypes of Arrays, Lists, Sets, and Iterative def-

initions. The rank and dimensions, stored as a list of integer intervals, are

dependent data terms for the array, as is the type of the elements (of course, it

is a supertype of the elements).

Function maps a tuple of parameters (full types) to a single return type. The

function itself may have attributes, as may each of the types.

data Shape =

ScalarShape

| RecordShape [(Identifier,FullType)]

| TupleShape [FullType]

| DimShape {shDom::[Expr], shapeElem::FullType}

| FunctionShape {shParms::[FullType], shapeElem::FullType}

instance AllowSubs Shape where

-- RecordShape flds as -> RecordShape (subs flds) (subs as)

substitute sub scope sh =

case sh of

ScalarShape -> ScalarShape

TupleShape fts -> TupleShape (subs fts)

DimShape des rt ->

DimShape (subs des) (subs rt)

FunctionShape pts rt ->

FunctionShape (subs pts) (subs rt)

where

subs x = substitute sub scope x

rename sub scope ScalarShape = (Sub.empty, ScalarShape)

rename sub scope (TupleShape fts) =

let (lsub,fts2) = rename sub scope fts in

(lsub, TupleShape fts2)
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rename sub scope (DimShape des rt) =

let (lsub1,des2) = rename sub scope des in

let (lsub2,rt2) = rename (lsub1 ‘Map.union‘ sub) scope rt in

(lsub1 ‘Map.union‘ lsub2, DimShape des2 rt2)

rename sub scope (FunctionShape pts rt) =

let (lsub1,pts2) = rename sub scope pts in

let (lsub2,rt2) = rename (lsub1 ‘Map.union‘ sub) scope rt in

(lsub1 ‘Map.union‘ lsub2, FunctionShape pts2 rt2)

instance Show Shape where

{- showsPrec p (RecordShape dbs attrs) =

("Record"++).(showAttrList attrs).(showList dbs) -}

showsPrec p (TupleShape ts) =

("[tuple]"++).(showList ts)

showsPrec p (ScalarShape) = id

showsPrec p (DimShape des et) =

("[dim]"++).(showsList p des).(" of "++).(showsPrec p et)

showsPrec p (FunctionShape ps rt) =

(showList ps).("->"++).(showsPrec p rt)

Attributes

An attribute is an instance of an attribute class (the Identifier), with the attribute

value stored as an expression of the property type of that class.

Variable renaming just requires a substitution be applied to the attribute class

and expression.

type AttrList = [Attribute]

data Attribute = Attribute Identifier Expr

deriving Show

instance AllowSubs Attribute where

substitute sub scope (Attribute ac val) =

Attribute (Sub.apply sub ac) (substitute sub scope val)

rename sub scope (Attribute ac val) =
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let (lsub, val2) = rename sub scope val in

(lsub, Attribute ac val2)

-- customizing show for attribute lists to get braces instead of squares

showAttrList [] = id

showAttrList attrs = (’{’:).(showsList 0 attrs).(’}’:)

C.5.3 Parsing Type Expressions

Parsing of types and shapes are interwoven in the syntax.

fullType :: Parser FullType

fullType =

multiType

<|> singleType

multiType = (try recordType) <|> tupleType

recordType =

do { flds <- parens( commaSep fldDef )

; as <- option [] attributeList

; return $ GenType "" (RecordShape flds) as

}

fldDef =

do { n <- name

; reservedOp "::"

; ft <- fullType

; return (n,ft)

}

tupleType =

do { flds <- parens( commaSep fullType )

; as <- option [] attributeList

; return $ GenType "" (TupleShape flds) as
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}

singleType =

do { n <- identifier

; dps <- option [] exprList

; as <- option [] attributeList

; case dps of

[] -> ( try (typeVar n)

<|> do{s<-shape; return $ GenType n s as} )

(x:xs) -> return $ NameType n dps as

}

typeVar n =

do { whiteSpace

; reservedOp "<:"

; t <- fullType

; return $ VarType n t

}

shape = dimType <|> (try funcType) <|> return ScalarShape

dimType :: Parser Shape

dimType =

do { ds <- squares intExprList

; reserved "of"

; rt <- fullType

; return $ DimShape ds rt

}

funcType :: Parser Shape

funcType =

do { whiteSpace

; reserved "from"

; ts <- parens (commaSep fullType)

; reserved "to"

; rt <- fullType

; return $ FunctionShape ts rt
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}

attributeList:: Parser [Attribute]

attributeList = option [] (braces (commaSep attribute))

attribute:: Parser Attribute

attribute =

do{ ac <- name

; val <- option (Factor (Lit (LitBool True))) (parens expr)

; return $ Attribute ac val

}

C.5.4 Printing Types

Printing of named types and type variables is straightforward. For generic types,

the name of the type is printed first, then any shape specific information, then the

attribute list. This works conveniently for tuples / records because they have name.

dspFT :: FullType -> DspST String

dspFT (GenType n s as) =

do { shstr <- dspSh s

; astr <- dspAttrs as

; return $ (dspId n)++astr++shstr

}

dspFT (NameType n dps as) =

do { dpstrs <- mapM dspExpr dps

; let dstr = "("++(foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) dpstrs)++")"

; astr <- dspAttrs as

; return $ (dspId n)++(if (length dps) > 0 then dstr else "")++astr

}

dspFT (VarType n spt) =

do { sptstr <- dspFT spt

; return $ (dspId n)++"<:"++sptstr

}
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dspFT UnknownType = return "?"

dspSh :: Shape -> DspST String

dspSh (RecordShape flds) =

do { return $ "Records not implemented"}

dspSh (TupleShape ts) =

do { fldstrs <- mapM dspFT ts

; let fldstr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) fldstrs

; return $ "("++fldstr++")"

}

dspSh ScalarShape = return $ ""

dspSh (DimShape ds et) =

do { dstrs <- mapM dspExpr ds

; let dstr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) dstrs

; etstr <- dspFT et

; return $ "["++ dstr ++ "]" ++ " of "++ etstr

}

dspSh (FunctionShape ps rt) =

do { pstrs <- mapM dspFT ps

; let pstr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) pstrs

; retstr <- dspFT rt

; return $ "("++ pstr ++ ") ->" ++ retstr

}

dspAttrs :: [Attribute]-> DspST String

dspAttrs [] = return ""

dspAttrs as =

do { astrs <- mapM dspAttr as

; let astr = foldr1 (\s1 s2 -> s1 ++ (’,’:s2)) astrs

; return $ "{" ++ astr ++ "}"

}

dspAttr (Attribute ac e) =
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do { estr <- dspExpr e

; return $ ac ++ "(" ++ estr ++ ")"

}

C.6 Type Definition

A new type is assigned an identifier, optionally with a list of dependent type expres-

sions (as DataDefs), the type (FullType) it is based on, and a Boolean flag indicating

if the new type is a subtype (True). If it is not a subtype, it is an incompatible type

with the same basic structure (False).

The new type may be identical to an existing or generic type, or it may refine the

base type in some way. Type identifiers are by convention capitalized, but this is not

necessary. Types must be exported from a module explicitly if they are to be made

available to importing modules.

module TypeDef where

import Text.ParserCombinators.Parsec

import qualified Data.Map as Map hiding (map)

import MiscST

import Lex

import VarSub as Sub

import ValidMap

import Expr

import Types

import DataDefs

data TypeDef = TypeDef Identifier [Data] Bool FullType

instance AllowSubs TypeDef where

rename sub scope td@(TypeDef id dbs st ft) =

let nid = Sub.apply sub id in

let sub1 = Map.insert id nid sub in
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let (depsub,ndbs) = rename sub1 scope dbs in

(sub1,TypeDef nid ndbs st (substitute (depsub ‘Map.union‘ sub1) scope ft))

substitute sub scope td@(TypeDef id dbs st ft) =

let nid = Sub.apply sub id in

let sub1 = Map.insert id nid sub in

let (depsub,ndbs) = rename sub1 scope dbs in

TypeDef nid ndbs st (substitute (depsub ‘Map.union‘ sub1) scope ft)

idFromType = (\d@(TypeDef id _ _ _) -> id)

liftTypeTree :: Substitution->String->IdMap TypeDef-> (Substitution, IdMap TypeDef)

liftTypeTree sub scope tmap =

let ts = Map.elems tmap in

let (sub2,nts) = liftTypes sub scope ts in

(sub2, (Map.fromList (map (\d->(idFromType d, d)) nts)))

liftTypes :: Substitution->String-> [TypeDef] ->(Substitution,[TypeDef])

liftTypes topsub scope tds =

let cursub = buildTSub scope tds in

(cursub, substitute (cursub ‘Map.union‘ topsub) scope tds )

buildTSub :: String -> [TypeDef] -> Substitution

buildTSub scope = (scopeListSub scope).(map idFromType)

--scopeListSub from datadefs, creates substitution by adding scope to ids

instance Show TypeDef where

showsPrec p (TypeDef t ps st bt) =

let stf = if (not st) then ("based on "++) else id in

("Type "++).(showsPrec p t).(showsList p ps).(" as "++).(stf).(showsPrec p bt)

Type definitions are of the form
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Define typename [args ]∗ as [basedon]? basetype

The new name is the label for the type. If there are arguments provided, these are

dependent type variables used in the basetype definition, for instance

Define Matrix(m,n,a) as Array[1..m,1..n] of a

These variables are only in scope within the type definition.

A new type by default is assumed to be a subtype of the original type. Alternately,

including the key words ”based on” before the base type will make the new type

entirely distinct and incompatible with the base type.

typeDef :: Parser TypeDef

typeDef =

do { reserved "Define"

; t <- name

; ps <- option [] (parens (declCompactList (ExprScope ("TypeDef " ++ t))))

; reserved "as"

; st <- option True (do {reserved "based" <|> reserved "Based"; reserved "on"; return False})

; bt <- fullType

; return $ TypeDef t ps st bt

}

dspTDef (TypeDef t ps st bt) =

do { pl <- dspDataList ps

; let s1 = "Type " ++ (dspId t) ++pl

; let sep = if (length s1) > 30 then "\n " else " "

; let s2 = if (not st) then ("variant of ") else "<: "

; tab <- tabST

; btstr <- dspFT bt

; return $ tab++s1 ++ sep ++ s2 ++ btstr

}
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C.6.1 Valid Type Definitions

A type definition is valid if it can be resolved, with the appropriate application of

well defined dependent expression values, into a generic type. A generic type is one

of the predefined shapes (Scalar, DimType, Function, Tuple, Record) optionally with

attributes of defined classes. A type is resolved to a genric type if tracing the subtype

/ based on hierarchy of the type definitions results in a generic type. The dependent

arguments for a type are well defined if each of them is a well defined type. Note that

a type with dependent arguments cannot have an argument of it’s own type, nor can

the types form a cycle.

If an error is found in the type definition checks, it is recorded in the error map

of the CocoModule structure.

Validation is carried out across an adapted tree called a validation tree. The

validation tree is the type map with a three value condition flag. The conditions are:

Unknown the type has not been considered for validity.

Valid the type has been shown valid.

Invalid the type definition has been shown to be flawed, the error is attached.

CurEval the type is currently being evaluated for validity; if this turns up it means

a cycle has been established in the validity test.

The tests are folded over the validity map, collecting results and errors. These

errors are finally removed from the validity map and returned. It is assumed that

the calling program will interpret the error map and either exclude invalid types from

further processing or interrupt the process.

type TypeMap = IdMap TypeDef

emptyTypeMap = Map.empty

chkTypes:: TypeMap -> ErrorMap Identifier

chkTypes tm =

let tvalm = mkValMap tm chkType in

let ts = Map.keys tm in
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let tfinalm = foldl valUpdate tvalm ts in

errsFromValMap tfinalm

chkType :: ValMapDTest Identifier TypeDef

chkType vmap@(VMap vm tm dtest) t =

let mtd = Map.lookup t tm in

case mtd of

Nothing -> NotFound t

Just td@(TypeDef tn dds st ft) -> chkFT vmap ft

chkFT:: (ValMap Identifier TypeDef)-> FullType -> (ValMapStatus Identifier)

chkFT vmap@(VMap vm tm dtest) ft =

case ft of

(GenType id _ as) -> chkAttrs vmap as

(VarType id sft) -> chkFT vmap sft

(NameType id deps as) ->

let sts = valTest vmap id in

case sts of

Valid ->

let mtd = Map.lookup id tm in

case mtd of

Nothing -> NotFound id

Just td@(TypeDef _ dps _ _) ->

if ((length dps)==(length deps)) then Valid

else Invalid ("type "++id++" declares " ++

(show (length dps)) ++ " dependent arguments "++

" but is defined with "++(show (length deps)))

Unknown -> Invalid ("unable to resolve defintion for type "++id)

NotFound n -> Invalid ("type "++n++" has no definition.")

CurEval -> Invalid ("type "++id++" is cyclically defined.")

Invalid err -> Invalid err

-- have not implemented this as attribute classes are hard coded right now

chkAttrs _ [] = Valid
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chkAttrs vmap ((Attribute ac prop) : as) = Valid

C.7 Attribute Classes

Attribute classes represent semantic information associated with terms that supple-

ments the basic shape information of the term. The attribute class definition provides

the following information:

Class is an identifier providing the class name.

persistant is a Boolean value indicating whether an attribute class, once introduced

in a module, must be explicitly addressed by a rule in every instance it appears

for compilation to be successful (default is False).

Target is the type to which the attribute may be applied; the attribute also applies

to all subtypes.

Property is the type of the value associated with the attribute.

Body is a collection of rules, predicates and local variable definitions / declarations

that provide semantics for the attribute class.

Note that these attribute classes are not currently being used, the translation to the

type system is done manually for the supported attributes. As a result, the structure

provided here has not been validated. The entire definition of attribute classes has

been promoted to a future research item.

module AttrClass where

import Text.ParserCombinators.Parsec

import qualified Data.Map as Map hiding (map)

import MiscST

import Lex

import VarSub as Sub

import Expr
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import Types

import DataDefs

data AttrClass=

AttrClass {attrClass::Identifier, persistant::Bool,

target::FullType, property::FullType, body::AttrClassBody}

instance AllowSubs AttrClass where

substitute sub scope ac =

ac { attrClass = (Sub.apply sub (attrClass ac)),

target = (substitute sub scope (target ac)),

property = (substitute sub scope (property ac))

-- must also do body, but I need to think about this ???

}

instance Show AttrClass where

showsPrec p (AttrClass n pers trg prop body) =

("\n"++).("AttrClass "++).(n++).(’(’:).(showsPrec p prop).(’)’:).

(" of "++).(showsPrec p trg).(’:’:).(showsPrec p body)

attributeClass :: Parser AttrClass

attributeClass =

do { reserved "Attribute"

; (reserved "Class" <|> reserved "class")

; pers <- option False

(do {(reserved "Persistant" <|> reserved "persistant"); return True})

; n <- identifier

; propType <- option (GenType "Boolean" ScalarShape []) (parens fullType)

; whiteSpace

; reserved "of"

; targType <- fullType

; sts <- braces (dataLocal ("AttrClass " ++ n))

; return $ AttrClass n pers targType propType (attrBody n sts)
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}

C.7.1 Attribute Class Body (AttrClassBody)

The body of the attribute class contains the semantic information about the attribute

in terms of rules and function definitions. Some of these are mandatory, some are

optional, and some allow more than one contribution.

subClass is a predicate (Boolean function) over two property values of the attribute,

evaluating to True if the first property value represents a subattribute of the

second value.

isClass Optional (zero or more) predicate functions over the object the attribute is

attached to (target) and the attribute property value that evaluate to true if the

attribute holds at that value. These predicates are made available for run-time

confirmation that an attribute holds. If no such functions are provided, there

can be no run time testing for an attribute. If more than one is provided, they

will be used in a join relationship, i.e. the value of the function will be the value

of any one of the provided predicates.

Class Propagation (derivation and inference) rules that define when an attribute or

attribute constraint is generated based on operators or functions, independently

of the interface or implementation. The rule begins with function called Class-

Name using pattern matching from one expression to another expression.

data AttrClassBody = AttrClassBody {subAttrTest::Def, isAttrTest::Def,

attrRules::[Def], locals::[Data]}

instance Show AttrClassBody where

showsPrec p (AttrClassBody sub is rules locals) =

("\n{"++).("subAttr: "++).(showsPrec p sub).

(";\n isAttr: " ++).(showsPrec p is).

(";\n rules :"++).(showList rules).

(";\n locals :"++).(showList locals).("}\n"++)

attrBody :: Identifier -> [Data] -> AttrClassBody
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attrBody attrcl ds = foldl (afs attrcl) nullAttrBody ds where

nullAttrBody = AttrClassBody NullDef NullDef [] []

afs ac body (DataDef n d qs l _)

| n == ("is"++ac) = body {isAttrTest = d}

| n == ("sub"++ac) =

case (subAttrTest body) of

NullDef -> body {subAttrTest = d}

_ -> body -- ignore extra subAttr tests when supplied, should really issue an error!

| n == ac = body {attrRules = d : (attrRules body)}

afs _ body d = body {locals = d:(locals body)}

C.7.2 Displaying Attribute Classes

dspAC :: DspFunc AttrClass

dspAC (AttrClass n pers trg prop body) = return ("AttrClass "++n)

C.8 Type System Encoding

The type system is implemented in SWI Prolog and Constraint Handling Rules

(CHRs). This module handles the transition from the Haskell based structures to

Prolog relations and CHR constraints.

There are four fundamental data objects in the type system: types, variables (or

identifiers), expressions and attributes. Type definitions are provided as individual

clauses. The variable definitions and type declarations are provided as a goal, consist-

ing of constraints (a special kind of predicate). The objective of the type system is to

provide a minimal supertype for each of the variables and expressions, this being the

least general type description that allows for all possible values the variable might

take. The type description includes both a shape, possibly with dependent terms

associated, and a set of attributes.

The goal of the system should always result in success, meaning types are assigned

to expressions and identifiers, but the types themselves may express errors. In par-

ticular, the type TypeBot (bottom) indicates that this expression or definition is

only valid over a null solution space, i.e. is untypable. Alternately, abstract types
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such as TypeTop or underspecified types such as the generic function with arbitrary

parameters, indicate the definition is underspecified and the result could be anything.

Interpretation of these results occurs in the type system decoding module.

It is assumed that before the encoding stage, all identifiers have been renamed to

allow them to be lifted to the module level without name conflicts. This is carried

out in the CocoSyntax module.

Expressions and Labels

Every data term, literal, factor, expression, etc. is encoded in a separate predicate.

These are labelled with a unique arbitrary expression label, and each expression will

be assigned it’s own type constraints and type values. The type system will resolve

the best choice of type for each expression, generally by first propagating the type

constraints and then deriving the types of compound expressions from the operand

expressions, although the rule system should actually be confluent (this has not been

proven or tested).

Expression labels are generated using the CounterST monad, which provides a

uniquely numbered label, given a prefix. The prefix may be changed, resetting the

count to 0. Generally, expression labels include the name of the identifier they are

associated with and are numbered in depth first pass. There is no dependency on the

label, other than it is unique.

module EncTypes where

import qualified Data.Map as Map hiding (map)

import Monad

import MiscST

import Lex

import VarSub as Sub

import Expr

import Types

import JoinExpr

import DataDefs
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import OperDef

import TypeDef

import AttrClass

import HUSCModule

-- encapsulate identifiers in single quotes to allow uppercase, special symbols

atomid s = "’"++s++"’"

-- semi-encapsulate a prefix for atoms

atompre s = (’\’’):(s++"@")

-- encapsulate identifier as Prolog variable for inclusion in type/4 relations.

provarid id = ’_’:id

atomCombine s1 s2 = ns1 ++ ns2 where

ns1 = reverse $ dropWhile (’\’’==) $ reverse s1

ns2 = dropWhile (’\’’==) s2

C.8.1 Encoding Modules

Modules are encoded as a list of strings, each containing an individual Prolog /

CHR predicate. This includes a predefined set of types that are core to the system,

namely the generic shapes 1. These are hardcoded in the list below (HUSCpreloads)

A description of the preloaded types is available as comments in the appropriate

prelude files.

huscPreloads =

[ "type(t(’Top’,[],[]),t(’Top’,[],[]),[],bt)"

, "type(t(’Tuple’,[dt(int,N), tt(cocontpl(N,t(’Top’,[],[])))],[]),t(’Top’,[],[]),[],st)"

, "type(t(’Function’,[tt(_),dt(int,Ps),tt(cocontpl(Ps,t(’Top’,[],[])))],[]),t(’Top’,[],[]),[],st)"

, "type(t(’DimType’,[tt(_), dt(int,R), dt(cocontpl(R,interval(int)),_)],[]), t(’Top’,[],[]), [], st)"

, "type(t(’Scalar’,[],[]),t(’Top’,[],[]),[],st)"

]

encMod :: CocoModule -> [String]

encMod mod =

1The only type that is actually necessary is Scalar, and only if DimTypes are to be used, but the
language is intended to use all of them
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huscPreloads

++ concat (map encTypeDef (Map.elems (modTypes mod)))

++ concat (map encData (modDefs mod))

++ concat (map encOpDef (modOpDefs mod))

C.8.2 Definition Encoding Overview

Definition blocks are generic data structures that store the information from the lines

of the code modules. The following block types are found:

TypeDef defines a new type by name, including dependent variables and new at-

tributes, relative to an existing type.

DataDecl declares the type of a data identifier, which could be any type including

a function.

DataDef provides a definition for an identifier; it could be a partial definition or

the definition of a function implementation, and there may be multiple variable

definitions for identifiers where appropriate.

OperDef defines an interface for an operator symbol, giving the operand and result

types; there will be many definitions for each given symbol.

ImportDef imports definitions from another (not the importing) module; nothing

has to be done to encode them because the module merging and renaming has

renamed all of the variables to match at the program scope.

AttrClass describes the properties and rules for a new attribute class; this has not

yet been implemented, the attributes are hard coded.

C.8.3 New Type Definitions

Types are stored in a predicate

t(name, [depvars]∗) or t(name, [depvars]∗, [attrs]∗)
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where [depvars] is a comma separated list of dependent terms for the type and

attrs is a comma separated list of attributes. This predicate must either be in a type

declaration predicate (below) or refer by name to a defined type, with an appropriate

dependent variable representation.

The relationship between types are predicates

type( type, basetype, [attributes]∗, [st | bt] )

where

• type is a t(name,depvar) fact naming the new type and it’s dependent terms

• basetype is the t(name,depvar,attrs) relation of the base type

• attributes is a list of additional attributes that apply only to the new type, in

addition to those already defined for the base type.

• st / bt flag, which indicates whether this type is a subtype or a new type based

on the old type, but not to be treated as a subtype of it

C.8.4 Dependent Variable Encoding

The dependent variables are either type variables or data terms. Type variables are

identifiers followed by ¡̈:̈then a type, indicating they are subtypes of that type. Data

variables are regular variable declarations of the form var :: type. Data variables

are either expressible in the internal data term types, those that can be manipulated

within the type system, or not expressible internally, so are recorded as pure HUSC

types. Dependent type and data terms are encoded in tt (type term), dt (data term)

and gt (general term) predicates.

The internal data terms can be of the following types and values:

bool, 0 or 1

int, acceptable prolog integer

float, acceptable prolog float
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interval(A), (v1,v2) where v1 and v2 are of internal type A

ntuple(n,A), [v1,...,vn] where v1,...,vn are of (identical) internal type A.

list(A),[v1,...] where v1,... are of internal type A, for an arbitrary length list.

Data terms are manipulated within the type system, including evaluating terms

through equality and less / greater than relations. In addition, HUSC variables and

literals in a representable type are also mapped to the internal data term system.

Where possible these are translated into the internal data term language for the type

system. Where this is not possible, they are encoded as expressions and dumped in

the list, but these can’t currently be used for anything.

This approach should be modified by replacing the internal data term system with

a full HUSC interpreter and CHR subsystems to accomplish a number of additional

tasks within that. That will require a certain level of bootstrapping, and will have to

wait for future versions.

Dependent Variables in Type Definitions

Dependent variables encoded in type expressions are recorded as Prolog variables,

allowing them to be matched to their base types by Prolog. Accordingly, all of the

identifiers are preceded by an underscore ( ) to guarantee that they are syntactically

understood to be Prolog variables.

Dependent variables and expressions in other locations are recorded as atoms, and

are manipulated by the internal data term system exclusively.

depVarsFromData :: [Data] -> CounterST (String,[String])

-- depVarsFromData _ = return ("",[])

depVarsFromData [] = return ("",[])

depVarsFromData (db:dbs) =

do { (s,l) <- depVarFromData db

; (ss,ls) <- depVarsFromData dbs

; return (s++ss, l++ls)

}
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depVarFromData (DataDecl id scope ft) =

case ft of

(GenType st _ _) -> return ("dt("++(st2it st)++","++(provarid id)++")",[])

(NameType st _ _) -> return ("dt("++(st2it st)++","++(provarid id)++")",[])

(VarType n rt) ->

do { (rts,trels) <- encFT rt

; return ("tt(tv("++n++","++rts++"))",trels)

}

depVarFromData db =

return ("error(Unexpected definition in dependent variable list for "

++ (idFromData db)++")",[])

Dependent Expressions in Types

A dependent expression is an instance of a

depExprList :: [Expr] -> [String]

depExprList = map depExpr

depExpr :: Expr->String

depExpr (Factor (Lit l)) =

case l of

(LitInt i) -> "dt(int,"++(show i)++")"

(LitReal f) -> "dt(float,"++(show f)++")"

(LitBool True) -> "dt(bool,1)"

(LitBool False) -> "dt(bool,1)"

(LitString s) -> "dt(string,"++s++")"

(LitSpecial Infinity) -> "dt(int,coco_inf)"

(LitSpecial NegInf) -> "dt(int,coco_ninf)"

depExpr (Factor (Var x [])) = "dt(int,"++x++")" -- ??? temporary, all vars are integers

depExpr (BinOp ".." (Factor (Lit (LitInt i1)))

(Factor (Lit (LitInt i2))) ) = "dt(interval(int),("++(show i1)++","++(show i2)++"))"

depExpr (BinOp ".." (Factor (Lit (LitReal f1)))
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(Factor (Lit (LitReal f2))) ) = "dt(interval(int),("++(show f1)++","++(show f2)++"))"

depExpr _ = "dt(null,[])" -- ??? temporary, everything else is null

st2it st =

case st of

"Integer" -> "int"

"Real" -> "float"

"Boolean" -> "bool"

"String" -> "string"

"Interval(Integer)" -> "interval(int)"

"Interval(Real)" -> "interval(float)"

otherwise -> "error"

Variable Declarations

An identifier is declared explicitly to be of a type using vdecl(id,type). This declared

type will be a constraint on the definition of the identifier, guaranteeing that it will be

a subtype of the declared type. It does not specify that the identifier is exactly that

type, as there may be additional information generated by the use of the identifier.

An extra list appears as the third parameter in the type relation. This was orig-

inally intended for attributes, but they are in the base type instead. This extra list

should be removed at some point.

encTypeDef :: TypeDef -> [String]

encTypeDef (TypeDef id dbs st ft) =

startCounterST id

( do { (dtlbl,dtrels) <- depVarsFromData dbs

; (btlbl,btrels) <- encFT ft

; let td = "t("++(atomid id)++",["++dtlbl++"],[])"

; let sbts = if st then "st" else "bt"

; return $ ("type("++td++","++btlbl++",[],"++sbts++")"): (dtrels ++ btrels)

} )

encData :: Data -> [String]
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encData (DataDecl id scope ft@(GenType _ (FunctionShape pts rt) _)) =

let lbl = id ++ "_dcl" in

startCounterST lbl

( do { elbl <- getnext

; (rtlbl,rtrels) <- encFT rt

; (ptlbls,ptrels) <- encFTList pts

; let ptslbl = wrap ptlbls

; let fc = "funclass(t(’"++id++"’,["++rtlbl++",dt(int,"++(show (length pts))++"),["++ptslbl++"])"

; let fsh = "t(’Function’,["++rtlbl++",dt(int,"++(show (length pts))++"),["++ptslbl++"]),[],st)"

; return $ (fc++","++fsh) : rtrels++ptrels

} ) where

wrap = foldr (\e s-> ",tt(" ++ e ++ ")" ++ s) ""

encData (DataDecl id scope ft) =

let lbl = id ++ "_dcl" in

startCounterST lbl

( do { elbl <- getnext

; (tlbl,trels) <- encFT ft

; let vd = "vdecl(’"++id++"’,"++tlbl++")"

; case scope of

Import ->

let vid = "vdef(’" ++id++"’,cocoinput(’"++id++"’))" in

return $ vd : (vid : trels)

otherwise -> return $ vd : trels

} )

Variable, Function and Operator Definitions

Variable definitions are recorded through the predicate vdef(id,exprl), where exprl

is the generated unique label for the expression. This is followed by the encoded

expression for the definition, the encoded quantifier variables if any, and the encoded

local body. Local bodies are blocks of identifier definitions and type declarations (no

type, operator nor attribute class definitions allowed), which have been renamed to
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raise them to the module scope, so this can be handled through simple recursion.

Quantifiers are used in partial definition statements to describe the subset of the

domain of the identifier covered by a definition. Partial definitions may be used for

arrays, lists and iterative types. The identifier given (e.g. i in for all i) is treated as

a local variable for the definition, part of the local body of the expression.

Operator definitions are just a syntactic variant of a function definition. The

operator symbol is encapsulated in single quotes so it can be a valid Prolog atom.

encData (DataDef id def qs lbody cntr) =

let lbl = atomCombine id (if (cntr > 1) then ((’@’):(show cntr)) else "") in

startCounterST lbl

( do { elbl <- getnext

; (drt,drels) <- encDef id elbl def

; qrels <- encQuants qs

; let lbrels = encLBody lbody

; return $ ("vdef(’"++id++"’,"++elbl++")"): (drels ++ qrels ++ lbrels)

} )

encLBody :: LocalBody -> [String]

encLBody (LocalBody dbs) = concat (map encData dbs)

encLBody (LabelledBody _ dbs) = concat (map encData dbs)

Quantified Variables

Quantified variables can take on a range of values, but only represent one at a time.

They are used to build domain expressions in partial definitions for dimensioned

shapes, although in theory they could be used in other ways. The quantifier expression

gives the range of the quantified variable, and it is constrained to be of type integer.

The defblock in the quantifier is for a simple integer expression only, so it is

a DataDecl, a complete definition, with no quantifiers, no local body nor multiple

definition counter value.

encQuants :: Quantifiers -> CounterST [String]

encQuants [] = return []

encQuants (q:qs) = -- must be able to fold this ???
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do{ qss <- encQuant q; qsss <- encQuants qs; return $ qss++qsss }

encQuant :: Quantifier -> CounterST [String]

encQuant (QuantAll id) =

do { elbl <- getnext

; return $ [ ("vdef(’"++id++"’,"++elbl++")")

, ("vdecl(’"++id++"’,t(’Integer’,[],[]))")

, ("qualuniv("++elbl++",all)") ]

}

encQuant (QuantSome _ (DataDef id def _ _ _ )) =

do { elbl <- getnext

; rngrels <- encDef id elbl def

; rnglbl <- getnext

; return $ [ ("vdef(’"++id++"’,"++elbl++")")

, ("vdecl(’"++id++"’,t(’Integer’,[],[]))")

, ("quantifier("++elbl++",all)") ]

}

encQuant (QuantSome id _) = return [("error(’"++id++"’, invalid quantifier definition.)")]

Operator Definitions

These are much like function definitions, but the function name is a symbol (wrapped

in single quotes to make it a Prolog atom).

encOpDef (OperDef opsym fix def lbody lbl) =

let lblsuf = if lbl > 0 then (show lbl) else "" in

let opfname = case lbody of

{ (LabelledBody id _) -> atomCombine id lblsuf

; otherwise -> atomCombine opsym lblsuf

} in

startCounterST opfname

( do { elbl <- getnext

; (rtlbl,drels) <- encDef opsym elbl def -- need to pull tts out of function type...

-- ; let lbrels = encLBody lbody
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-- ; return $ (("vdef("++(atomid opfname)++","++elbl++")"):(drels++lbrels))

; return $ drels

} )

Complete and Partial Definitions

Encodes the defining expression of the identifier, returning the expression label, and

the coded expression as a list. For partial definitions, it also constrains index expres-

sions to be integers.

encDef :: Identifier->String-> Def -> CounterST (String,[String])

encDef _ elbl (CompleteDef je) =

do { jerels <- encJoinExpr elbl je

; return $ (elbl, jerels)

}

encDef _ elbl (PartialDef (IdIndex []) _) = return ("error("++elbl++", no index expressions)", [])

encDef id elbl (PartialDef (IdIndex dim@(e:es)) def) =

do { let rank = length(dim)

; (dimslbl,dimsrels) <-

do { d1lbl <-getnext

; d1rels <- encExpr d1lbl e

; results <-

foldM ( \ (is,rels) e ->

do { ilbl <- getnext

; erels <- encExpr ilbl e

; let const = "ec("++ilbl++",t(’Integer’,[]))"

; return (is++ilbl, rels++(const:erels))

} )

(d1lbl,("ec("++d1lbl++",t(’Integer’,[]))"):d1rels) es

; return results

}

; deflbl<-getnext

; (rtlbl,erels)<- encDef id deflbl def

; let arrd = "arraydef("++elbl++","++deflbl++",["++dimslbl++"])"

; let dtints = "dt(cocontpl("++(show rank)++",dt(interval(int))))"
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; let vpc = "ec("++elbl++",t(’Array’,[tt(t(’Top’,[],[])),dt("++(show rank)++"),"++dtints++"]))"

; return $ (rtlbl, arrd : (vpc : (dimsrels++erels)))

}

Function Definitions

For function definitions, generate a function interface definition, a validity check to

see if the function interface matches the function class declaration and then the func-

tion implementation record, to be returned to encData function if the local body is

provided.

The actual function implementation will be associated with a data identifier com-

posed of the function name and the counter to make it unique; it will be constrained to

have a Function type with the specified return and parameter types. This constraint

is redundant to the validity check of the interface, but helps moves the mechanics of

the CHR system along. The result expression will be constrained to it’s return type;

this is mandatory in a function definition, so it will be there.

The parameter expressions are all variable declarations, namely those of the formal

parameters. Since at execution time their definitions must all be supplied by the func-

tion call, they are defined as input variables vdef(parameter,cocoinput(parameter)).

This is identical to the method of managing definitions imported into a module from

the importer, including possibly forcing a refinement of the input parameter types

(but never outside of the subtype relationship).

encDef id elbl (FuncDef dbs je ft) =

do { let n = length dbs

; relbl <- getnext

; (tlbl,trels) <- encFT ft

; let prels = concat (map encData dbs)

-- ; jerels <- encJoinExpr relbl je

; let pns = map idFromData dbs

; let pts = map typeFromDecl dbs

-- ; (pnlbl,pnrels) <- encParms pns

; ptlbls <- mapM (\t-> do{rs<- encFT t; return $ fst rs}) pts

; let ptlbl = foldl1 (\s lbl -> s++","++lbl) (wrap ptlbls)
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-- ; let ecrel = "ec("++elbl++",t(’Function’,[tt("++tlbl++"),dt(int,"++(show n)++"),"++ptlbl++"]))"

-- ; let rcrel = "ec("++relbl++","++tlbl++")"

; let funif = "funcintf(’"++id++"’,"++elbl++",tt("++tlbl++"),dt(int,"++(show n)++

"),["++ptlbl++"])"

-- ; let fund = "fnimp("++elbl++","++relbl++",["++pnlbl++"])"

; return $ (tlbl, (funif:trels))

} where

wrap = map (\s-> "tt("++s++")")

encParms :: [Identifier] -> CounterST (String,[String])

encParms [] = return ("",[])

encParms (i:[]) =

do { elbl<-getnext;

; return (elbl,["var("++elbl++",’"++i++"’)","vdef(’"++i++"’,cocoinput(’"++i++"’))"])

}

encParms (i:is) =

do { elbl<-getnext;

; let rels = ["var("++elbl++",’"++i++"’)","vdef(’"++i++"’,cocoinput(’"++i++"’))"]

; (mlbls,mrels) <- encParms is

; return (elbl++","++mlbls,rels++mrels)

}

C.8.5 Attributes

Attributes are stored in a relation attr of the form attr(class, val) where class is

the attribute class (e.g. range) and val is an expression defining the value of the

attribute. In the current implemenation, the value is expected to be in the internal

data and type term structures, like the dependent terms, because that is the only way

to reason about them. When a Coconut interpreter is available, it will be possible to

have the attribute values be any Coconut expression that can be resolved. If symbolic

computation capabilities are added, then this could be stretched further. However, for

now all attributes values must be expressable as booleans, integers, floats, or intervals

or tuples of valid values.
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encATs :: AttrList -> CounterST (String,[String])

encATs [] = return $ ("",[])

encATs (a:as) =

do { (ats,arels) <- encAT a

; (asts,asrels) <- encATs as

; return (ats++asts, arels++asrels)

}

encAT :: Attribute -> CounterST (String,[String])

encAT (Attribute ac val) =

do { let edep = depExpr val -- encode value as an internal term

; return ("attr(’"++ac++"’,"++edep++")", [])

}

-- for lists of full types, collect the string representation of each type

-- but concatenate the lists of extra relations generated.

encFTList :: [FullType] -> CounterST ([String],[String])

encFTList [] = return $ ([],[])

encFTList (t:ts) =

do{ (tlbl,trels)<-encFT t

; (tlbls, tsrels)<-encFTList ts

; return (tlbl : tlbls, trels ++ tsrels)

}

encFT :: FullType -> CounterST (String,[String])

encFT (UnknownType) = return ("t(’Top’,[])",[])

encFT (VarType id supt) =

do { (st,xsts) <- encFT supt

; return ("tv(’"++id++"’,"++st++")",xsts)

}

encFT (GenType id sh as) =

do { (shs,xshs) <- encSH sh

; (ats,xats) <- encATs as

; return ("t(’"++id++"’,["++shs++"],["++ats++"])", xshs++xats)

}
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encFT (NameType id deps as) =

do { let dps = depExprList deps

; let ddps = dspList dps

; (ats,xats) <- encATs as

; return ("t(’"++id++"’,["++ddps++"],["++ats++"])", xats)

}

Encoding Shapes

The shapes are encoded as lists of dependent arguments wrapped in the internal term

representation. The name of the shape is already included in the type name.

encSH ScalarShape = return ("",[])

encSH (TupleShape fts) =

do { (ets,xets)<- encFTList fts

; return ((wrap ets), xets)

} where

wrap = foldr (\e s-> ",tt(" ++ e ++ ")" ++ s) ""

encSH (DimShape des et) =

do { let rank = show (length des)

; (dels,derels) <- encExprList des

; (det,erels) <- encFT et

; return $ ("tt("++det++"),dt(int,"++rank++")" ++ (wrap dels), erels++derels)

} where

wrap = foldr (\e s-> ",dt(interval(int)," ++ e ++ ")" ++ s) ""

encSH (FunctionShape ps rt) =

do { let nps = show (length ps)

; (pts,prels) <- encFTList ps

; (rts,rrels) <- encFT rt

; return $ (("tt("++rts++"),dt(int,"++nps++")" ++ (wrap pts)), prels++rrels)

} where

wrap = foldr (\e s-> ",tt(" ++ e ++ ")" ++ s) ""

encSH (RecordShape flds) = return ("tt(t(’Top’,[]))",[]) -- records not done yet



C. Implementation 278

C.8.6 Encoding Expressions

Each definition is a label for an expression. The expression may consist of:

• literal

• variable instance, possibly a field, array element or iterant, specifying a variable.

• unary operation on an expression

• binary operation on two expressions

• function application to a tuple of n expressions

• an expression in parentheses

Note that the variable instance is really an identifier instance. It is a variable

if there are no extensions (e.g. x), but it could be a field (x.bound), an array ref-

erence (x[i]), or a function application (x(a,b)). Fields and records aren’t currently

supported.

Each expression is encoded as an individual constraint in type module. The

expression is labelled with a generated symbol of the form v ennn, where v is the

identifier for the definition the expression is part of, and nnn is a variable length

integer beginning with 0 for the main expression of the definition. Expressions will

be numbered depth first in the syntax tree. There is no dependency built on this

format, it is merely to assist tracing and debugging.

encExpr builds a list of constraints, as strings, while generating the unique ex-

pression labels. The numbering is handled using a state monad.

-- utility function to make a list of the form "[item1,item2,...,itemn]"

dspList :: [String]->String

dspList [] = ""

dspList ws = ’[’ : (foldr1 (\w s -> w ++ ’,’:s) ws) ++ "]"

-- ??? not handling joins and select statements yet ???

encJoinExpr :: String->JoinExpr->CounterST [String]

encJoinExpr elbl (NoJoin ce) = encCondExpr elbl ce
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encJoinExpr elbl (Join _) = return ["error(’"++elbl++"’, conditionals not implemented)"]

encCondExpr :: String->CondExpr->CounterST [String]

encCondExpr elbl (Unconditional (e,et)) = encExpr elbl e

encCondExpr elbl (Conditional _) = return ["error(’"++elbl++"’, conditionals not implemented)"]

-- ??? encoding expression type annotations ???

-- getting new labels for each expression, return in same order

encExprList [] = return $ ([],[])

encExprList (e:es) =

do{ lbl <- getnext -- get next expression label

; ers<-encExpr lbl e

; (lbls,esrs)<-encExprList es

; return $ (lbl:lbls, ers++esrs)

}

numformat ft it val = "t(" ++ ft ++ ",[],[attr(’Range’,dt(interval(" ++ it ++ "),("

++ val ++ "," ++ val ++ ")))])"

encExpr :: String->Expr -> CounterST [String]

encExpr id (Factor (Lit l)) =

return $ ["lit("++id++","++ ft ++ ")"]

where

(it,ft) =

case l of

LitInt i -> ("int", numformat "’Integer’" "int" (show i))

LitReal r -> ("float", numformat "’Real’" "float" (show r))

LitBool b -> ("bool", "t(’Boolean’,[],[])")

LitString s -> ("string","t(’String’,[],[attr(length,dt(int,"

++ (show (length s)) ++ "))])")

LitSpecial Infinity -> ("cocoinf", "t(’Top’,[],[])")

LitSpecial NegInf -> ("coconeginf", "t(’Top’,[],[])")

-- currently only expands id extensions one level, e.g. can’t have arrays of arrays

-- easy enough to fix
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encExpr s (Factor (Var v [])) = return $ ["var(" ++s++ "," ++v++ ")"]

encExpr s (Factor (Var v (ext:exts))) =

case ext of

IdField _ -> return $ ["error(’"++s++"’," ++ (show (Var v (ext:exts))) ++

",Used field syntax, not yet supported)"]

IdFunc ps ->

do

pls <- mapM (\_ -> do {n <- getnext; return $ n}) (replicate (length ps) v)

let spls = dspList pls

prs <- zipWithM encExpr pls ps

return $ ("fnapp(" ++ s ++ "," ++ v ++ "," ++ spls ++ ")"):(concat prs)

IdIndex ps ->

do

pls <- mapM (\_ -> do {n <- getnext; return $ n}) (replicate (length ps) v)

let spls = dspList pls

prs <- zipWithM encExpr pls ps

return $ ("arrayref(" ++ s ++ "," ++ v ++ "," ++ spls ++ ")"):(concat prs)

encExpr s (UnOp f e _) =

do l1 <- getnext

s2 <- encExpr l1 e

return $ ("unop("++s++",’" ++ f ++ "’," ++ l1 ++")") : s2

encExpr s (BinOp f e1 e2) =

do l1 <- getnext

l2 <- getnext

s2 <- encExpr l1 e1

s3 <- encExpr l2 e2

return $ ("binop("++s++",’" ++ f ++ "’," ++ l1 ++","++l2++")") : (s2++s3)
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