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Abstract

Software Pipelining is a method of instruction scheduling where loops
are scheduled more efficiently by executing operations from more than one
iteration of the loop in parallel. Finding an optimal software pipelined schedule
is NP-complete, but many heuristic algorithms exist.

In iteration i , a software pipelined loop will execute, in parallel, ”stage”
1 of iteration i , stage 2 of iteration i − 1 and so on until stage k of iteration
i − k + 1.

We present a new approach to software pipelining based on using a
heuristic algorithm to explicitly assign each operation to its stage before the
actual scheduling.

This explicit assignment allows us to implement control flow mecha-
nisms that are hard to implement with traditional methods of software pipelin-
ing, which do not give us direct control over what stages instructions are as-
signed to.
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Chapter 1

Introduction

With the advent of pipelined execution, instruction scheduling was born; two
instructions that do not depend on each other can be executed in parallel, while
dependences between instructions can force the processor to finish executing
one instruction before starting to execute another. Among the many possible
orderings of instructions that produce the same result, the goal is to find one
that minimises (or comes close to minimising) the number of machine cycles
required to execute the code.

Given a piece of straight-line code, that is code without any branches,
there are two obvious lower bounds to the number of cycles required for an
optimal schedule. One of them stems from the limited availability of CPU
resources — the CPU can only execute a limited number of instructions at the
same time.

The other lower bound is the sum of instruction latencies through the
longest path in the data dependency graph.

In a loop, we can sometimes do better than just to rearrange the in-
structions within the loop body with respect to each other. If we can reach the
resource-constrained lower bound, there is nothing we can do to improve the
schedule any more, except, of course, for improvements in instruction selection
or in the algorithm that is used, which falls outside the scope of this thesis.

If, however, our schedule is latency-constrained, there are some tricks
that can be used to improve matters. The best known of these is loop un-
rolling or replication, where the loop body is replicated n times, such that
one loop iteration in the final schedule does the work of n consecutive “logical
iterations” in the original code. In addition to making the cost of the branch
smaller in relation to the cost of the loop body, this frees up some opportunities
to overlap instructions from different logical iterations.

However, replication is not actually necessary to allow overlapping of in-
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structions from different logical iterations. Consider a loop with two operations
that depend on each other, such as (AB)n ; this is equivalent to A(BA)n−1B ,
with one important difference: in the transformed loop, the operations A and
B operate on data from two different logical iterations and therefore may no
longer depend on each other.

This work was developed as part of the Coconut project, which pre-
pares to produce a system that provides a coherent and consistent path from a
mathematical specification of signal processing problems to verified and highly
optimised machine code [ACK+04]. One of the hypotheses of this project is
that more efficient implementations would be possible if the interface between
the compiler front and back-ends were more flexible and extensible.

In this thesis, we present a new software pipelining scheduling method
related to decomposed software pipelining (section 1.1.3). It consists of a
heuristic algorithm to assign operations to different pipeline “stages” (chap-
ter 4) and an accurate description of how a non-pipelined loop can be trans-
formed to a pipelined loop once the staging is known (chapter 3).

In line with the idea of exposing flexible interfaces from the compiler
backend, the representation of the input for the scheduler (chapter 2) allows
us to specify inter-iteration dataflow in loops explicitly, even if that causes the
loop to become unschedulable without software pipelining — in a software-
pipelined loop, it is sometimes possible to use a value that is produced in a
future iteration (see sections 2.5 and 3.5 for an example of this).

Taking advantage of our scheduling algorithm’s properties, we intro-
duce a limited form of control flow that can be scheduled especially well using
our algorithm; a multiloop (chapter 6) is a loop that consists of a block of
common code followed by a “switch” or “case” construct with an arbitrary
number of different cases.

In chapter 5, we explore “Merge Scheduling”, a novel approach to
scheduling the output of our stage assignment heuristic, based on the idea
of scheduling the stages separately and then “merging” them into one using a
dynamic programming algorithm.

Finallly, we give experimental results for our algorithms for our target
architecture of choice, the Cell Synergistic Processor Unit (see section 1.2 and
[IBM06]).

The remainder of this chapter will give a very brief survey of other
approaches to software pipelining and to the relevant aspects of the Cell ar-
chitecture.

2
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1.1 Software Pipelining

Software Pipelining [AJLA95] is the problem of finding a schedule for a loop
while honoring both dependence and resource constraints, but without requir-
ing that one iteration of the loop is finished before the next iteration starts.

The loop contains a set of operations opi which are executed once in
each iteration; we refer to the instance of operation opi in iteration j as (opi , j ).

Resource constraints restrict which operations can be scheduled in the
same cycle. Dependence constraints restrict the relative ordering of the op-
erations and also may require a certain number of cycles (latency) to pass
between two instructions.

There are three kinds of dependence constraints:

data dependence (read after write) Operation A calculates a value; op-
eration B uses this value, so B has to be scheduled after A. Most instruc-
tions on most architectures take more than one machine cycle until the
data is actually available (latency).

antidependence (write after read) Operation A uses a value that will be
overwritten by operation B, so operation A has to be scheduled before
operation B.

output dependence (write after write) Both operations A and B store
their result in the same location, so the order of execution matters.

Dependences between two operations in the same iteration are called
loop independent ; dependences between different iterations of the loop are
called loop carried.

In the data dependency graph, each node represents an operation opi .
Different instances (opi , j ) and (opi , j ) of that operation are represented by
the same node. Edges in the dependency graph are labelled with the required
latency (for data dependences) and with the difference in iterations (0 for loop
independent dependences).

Let us consider the schedule for a completely unrolled loop; in conven-
tional scheduling, all operations of iteration j will have been issued before the
first operation of iteration j + 1 is issued. In a software-pipelined loop, this is
not the case; iteration j + 1 will be initiated before iteration j completes.

We require the unrolled schedule to reach a repeating pattern after a
short while (otherwise, the result would be code bloat proportional to the num-
ber of iterations). The number of cycles between the start of two consecutive
(but overlapping) iterations is termed the initiation interval, or λ.

3
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1.1.1 Kernel-based Methods

One approach to software pipelines is to completely unroll the loop, run a
conventional scheduling algorithm on it and wait for a repeating pattern to
emerge. The drawbacks to this approach are that a repeating pattern might
not emerge under all circumstances, and that the resulting kernel might be
longer than desired, i.e. contain multiple copies of each operation.

1.1.2 Modulo Scheduling

In modulo scheduling [RG81], the λ is chosen beforehand; then, instructions
are scheduled into this limited space, backtracking as required. The problem
has been shown to be NP-complete; various heuristics for cutting down the
search space to a feasible size exist (e.g. [Lam88], [RGSL96]).

1.1.3 Decomposed Software Pipelining

Decomposed Software Pipelining [WEJS94; GS94; CDR98] approaches the
software pipelining problem by decomposing it into two separate problems;
first, the the problem is transformed into an acyclic scheduling problem by
taking into account dependence constraints; second, resource constraints are
taken into account by a classical scheduling algorithm, e.g. list scheduling.

1.1.4 Register Issues

If two instances of the same operation, (opi , j ) and (opi , j + 1) write their
output to the same location, this introduces loop carried antidependences from
all consumers of (opi , j ) to (opi , j + 1); the value has to be used before it is
overwritten. This means that the longest lifetime the output of opi can have
is λ cycles.

Special hardware support for software pipelining has been proposed and
implemented in the past [RYYT89; RST92]; in a rotating register file, several
instances of a named register exists; a special register, the iteration control
register (ICR) is used to select the instance to be used.

Unfortunately, rotating register files have not become commonplace;
without rotating register files, we are faced with a choice: to accept the added
antidependences and their consequences on the achievable λ, or to ignore them
and simulate the effect of rotating register files in another way: Modulo variable
expansion [Lam88] first replicates the loop body a few times; instances of

4
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opi from consecutive iterations have now become separate instructions in the
schedule, and can be made to explicitly reference different registers.

1.2 The Cell Synergistic Processor Unit

Our current system targets IBM’s and Sony’s Cell Broadband Engine architec-
ture [IBM06], more specifically, the “Synergistic Processor Units” of the Cell
processor.

The Cell Broadband Engine Processor is a single-chip multiprocessor
with nine processing units. One of these is the PowerPC-compatible “Pow-
erPC Processor Unit” (PPU) which is intended to run the operating system
and handle the more control-intensive tasks. The other processing units are
eight identical “Synergistic Processing Units” (SPUs); these are processors
optimised for high-speed computation tasks.

Each SPU has its own 256KB of memory, or local store, for instructions
and data, and a large register file of 128 general purpose registers of 128 bits
each. Data is transferred between the local stores and main memory using
DMA transfers. The SPU instruction set is a SIMD (single instruction multiple
data) instruction set; all instructions operate on 128-bit vectors.

Up to two instructions are issued in-order each cycle from two separate
pipelines; every instruction can only execute in one of the pipelines, depending
on its type.

This allows us to model the processor as having just two execution units;
each instruction op requires a specific unit, unit(op). Two instructions op1 and
op2 (whose dependence constraints have been satisfied) can be scheduled in
the same cycle iff unit(op1) 6= unit(op2).

Another noteworthy feature of the SPU architecture is the absence of
condition registers; conditional branch instructions will simply compare a word
in a general purpose register to zero. Of particular interest is also the “hint for
branch” instruction hbr which can be used to explicitly inform the processor
of the target a certain branch will jump to. When scheduled early enough in a
loop, this eliminates all pipeline stalls due to branch misprediction, even when
the branch in question is an indirect branch (branch to a computed address),
as is required for a multiloop (see chapter 6).

5
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Chapter 2

Representation

2.1 Codegraphs

In our system, a loop body before scheduling is represented by a “codegraph”.
This section summarises and adapts definitions from [KAC06] for our purposes.

A codegraph is a hypergraph with a sequence of input nodes and a
sequence of output nodes. The hyperedges of the graph are labelled with
machine instructions and their immediate arguments, i.e. any constants that
are directly encoded in the opcode, but no source or target registers. Each
hyperedge has zero or more ordered input tentacles and one or more ordered
output tentacles, connected to nodes in the codegraph. Each node in the
codegraph is labelled with a type.

Definition 2.1 A code graph G = (N , E , In, Out, src, trg, nType, eLab) over
an edge label set ELab and a set of types NType consists of

• a set N of nodes and a set E of hyperedges (or edges),

• two node sequences In, Out : N ∗ containing the input nodes and output
nodes of the code graph,

• two functions src, trg : E → N ∗ assigning each hyperedge the sequence of
its source nodes and target nodes respectively,

• a function nType : N → NType assigning each node its type, and

• a function eLab : E → ELab assigning each hyperedge its edge label,
where the label has to be compatible with the numbers of source and target
nodes of the edge, and with the types of those nodes.

7
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Figure 2.1: Simple codegraphs. Left: a codegraph that squares a vector of
numbers using the SPU instruction fm (floating point multiply); right: a code-
graph with the state-affecting store instruction stqx

Definition 2.2 The function consumers : N → P E maps a node to the set of
all hyperedges in whose source list it appears (its consumers). Likewise, the
function producers : N → P E maps a node to the set of all hyperedges in whose
target list it appears (its producers).

Definition 2.3 A codegraph is called executable if

• It is acyclic.

• For every edge, an output node is reachable from at least one target node
of the edge.

• Every node is either an input node or the target node of exactly one
edge.

At the left of figure 2.1, you can see a very simple codegraph that squares one
vector of four floating point values using the SPU instruction fm, floating point
multiply. To make the figures easier to talk about, we will label each node
in the codegraph with a unique name; remember, however, that nodes in the
codegraph actually only have types, not names. The codegraph in the figure
has two nodes, which we name x and y , and one edge, labeled with the SPU
instruction. The sequence of input nodes contains only x , and y is the only

8
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output node. The input and output sequences are visualised by the numbered
triangles connected to the nodes in the figure. The triangles themselves are
not nodes or edges of the graph.

The set of possible types consists of one type for each type of register
available in the target architecture — in the case of the Cell SPU, there is just
one type of register —, and the type state.

The state type exists to account for the fact that some machine in-
structions cannot be modelled as functions from input values to output values;
examples include load, store, and branch hint instructions; we do not support
actual branch instructions in the code graph. A value of type state is a token
that represents all the state that can be affected by an instruction, includ-
ing, but not limited to, memory (in our case, the Cell SPU’s local store), and
the state of the branch processor (which is affected by the hint for branch
instruction).

A state-affecting instruction, like the store instruction stqx (store quad-
word indexed) shown on the right of figure 2.1, is then modelled as taking an
additional parameter of type state, and returning a modified state. The figures
use slanted text to distinguish nodes of type state, like state and state’, from
nodes of the register type, like addr.

Sometimes, we want to work with independent aspects of state, e.g.
with different, non-overlapping areas of memory, without imposing a sequential
ordering on the instructions that work with different state. In this case, we
will just use two separate state tokens in the codegraph. Use of two separate
state tokens is taken as an assertion that the operations on the two separate
tokens are independent from each other; this assertion is not checked by our
system.

To help describe transformations of codegraphs, we use a theory based
on category theory, more specifically on gs-monoidal categories; this is de-
scribed in detail in [KAC06]; for the purposes of this thesis, it is sufficient to
summarise the algebra defined by that theory without requiring any further
understanding of category theory.

Every codegraph G has a signature which consists of the sequence of
the types of its input nodes and the sequence of the types of its output nodes;
it is written as G : I → O . Type sequences can be concatenated using the
associative operator ×; the empty type sequence, denoted by 1l, is both a right
and left unit for ×.

For two codegraphs G : A → B and H : B → C , the codegraph
denoted A;B : A → C is their sequential composition; G ’s output nodes are
identified with H ’s input nodes.

9
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Two codegraphs G : A → B and H : C → D can also be composed in
parallel using the ⊗ operator, producing G ⊗ H : A× C → B × D .

For a type sequence T , we can construct several basic codegraphs that
do not contain any edges:

• IT : T → T is the identity codegraph over that type sequence; it contains
no edges, and each of its nodes is both an input node and an output node
in the corresponding position, with the types taken from T . The identity
codegraph is both a right and left unit for sequential composition.

• ∇T : T → T×T is a codegraph without operations that “duplicates” its
input; the list of output nodes equals the list of input nodes concatenated
with itself.

• As a generalisation of the above, ∇n
T : T → T × T n is a codegraph

without operations that replicates its input n times; the list of output
nodes equals the list of input nodes concatenated with itself n times.

• !T : T → 1l contains distinct input nodes, and nothing else. Informally
speaking, it ignores its input and produces no output.

2.2 Loop Specifications

To specify a loop, rather than just a loop body, we need to specify what values
are communicated between different iterations of the loop.

Definition 2.4 A loop specification is a tuple (G ,d) containing

• an executable codegraph G : F ×K → F × C

• a sequence of integers d, one for each element of F .

The input of the codegraph consists of two parts; for the left part,
with types F , there are corresponding outputs and an associated integer d .
These inputs and outputs represent the values that are communicated between
different iterations of the loop. In any iteration i , the value of each of these
inputs is equal to the value of the corresponding output in iteration i + d .

Hence, the usual case of using an output from the previous iteration is
represented by d = −1. A value of d of less than −1 means that the input for
the codegraph should be an output from further back in the past; this can,
for example, be achieved by storing the value in an array so that it won’t be
overwritten by the next iteration.

10
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A value of d = 0 means that the input should be equal to the output
from the same iteration; alternatively, we could just use a single interior node
in place of the input node and the output node.

An input/output pair with an associated d greater than 0 means that
the input for iteration i should be the output of some future iteration i + d .
This is, of course, impossible if the loop is scheduled in the conventional way,
without software pipelining. In the presence of software pipelining, scheduling
loop specifications with positive d values sometimes becomes possible, as we
will see in chapter 3. For an example of how d values other than −1 might be
used in a loop specification, refer to section 2.5.

In addition to the inputs with corresponding outputs (F ), the code-
graph G also has another group of inputs, of types K . These inputs are called
constant inputs and represent all values that are passed to the loop from the
outside but are not changed by the loop; these include unchanging parameters
for the loop and constants that cannot be part of the opcode of a machine
language instruction (and therefore included in the label of a hyperedge in
the codegraph). In other words, the constant inputs are those values that are
required to be available in a register when the loop starts and throughout the
execution of the loop.

Finally, G also has a group of outputs of types C , called the control
outputs. These control outputs are used to control when the loop should
terminate; their meaning is described in more detail in section 2.4.

2.3 Maximum Lifetime and Loopability

We impose one additional restriction on the scheduler’s output: Every opera-
tion in the codegraph must appear exactly once in the scheduled loop body,
and every instruction in the scheduled loop body must appear in the code-
graph. We do not want the scheduler to insert additional instructions, like
extra register-to-register moves.

As a consequence, a node in the codegraph will be assigned to at most
one register for its entire lifetime. The lifetime of one node in one iteration also
cannot overlap with the lifetime of the same node in another iteration (that is
being executed at the same time due to software pipelining); we make it the
duty of the scheduler to limit the lifetimmes to less than λ, so that modulo
variable expansion is never required.

Forbidding long lifetimes can have a negative impact on the achieved λ.
However, as the codegraph does not explicitly specify locations for temporary
values, modulo variable expansion becomes nothing but a fancy term for loop

11
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unrolling; we can therefore achieve the effects of longer lifetimes and modulo
variable expansion by replicating the loop body a few times before running the
software pipeliner.

This has the advantage that we can always avoid having to use modulo
variable expansion, which is crucial for scheduling multiloops (see chapter 6).

Not all loop specifications can be scheduled as loops without adding
extra instructions. First, we consider the situation without software pipelining,
i.e. when all operations scheduled in the loop body must operate on data
belonging to the same iteration.

If an input node in the codegraph is also an output node, then they
must be an input and an output in corresponding positions in F . The value
of the node then has to be the same for all iterations; the input-output pair
can therefore be converted to a constant input by removing the node from
the output sequence of the codegraph and moving its position in the input
sequence to the right to make it part of K rather than of F .

The case where a node is both an input and the corresponding output
is easy to avoid by making it a constant instead; in other cases it is easy
to explicitly specify an appropriate register-to-register move instruction. We
therefore require the input codegraph to have no input node that is also an
output.

If a value is calculated by an instruction in iteration i , the same in-
struction in iteration i + 1 will overwrite it with a new value. Therefore, to
achieve d < −1, an additional instruction has to be added to move the value
to some other location before it gets destroyed.

Positive values for d are impossible: Using results from iteration i +
d , d > 0 in iteration i requires iteration i + d to start before iteration i has
finished (software pipelining or reordering of iterations).

Definition 2.5 A loop specification is loopable if

• All d are −1 or 0.

• No input is also an output.

An input-output pair with d = 0 is equivalent to identifying the input node
with the output node (and removing them from the codegraph’s input and
output sequences). If this transformation succeeds without introducing cycles
into the codegraph, we get a strictly loopable loop specification:

Definition 2.6 A loop specification is strictly loopable if

12
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• All d are −1.

• No input is also an output.

2.4 Loop Termination

Informally speaking, the control outputs (C ) determine whether the loop
should continue after the current iteration. The control outputs are connected
directly to the branch instruction at the end of the loop; depending on what
kind branch instruction is used for the loop, they can have different meanings.

For the Cell SPU target architecture, we currently use the following
variants:

• The loop branch is a brnz (branch if not zero word) instruction; the loop
continues if the first component of the only control output (which is, as
are all values on the SPU, a vector) is non-zero.

• The loop branch is a bi (branch indirect) instruction; the first component
of the only control output should contain the address of either the first
instruction of the loop or of the first instruction after the loop.

• The loop branch is a bi instruction, as above; additionally, a second
control output is a state token that is generated by a hbr (hint for branch)
instruction.

2.5 Example

As a toy example, let us specify and schedule a loop that takes an array of
floating point numbers as input and writes the square of every element to
a separate output array. We can start with the codegraph from Figure 2.1,
but to get a loop, we need to add instructions to load values from the input
array, store values to the output array, update a loop counter, and calculate a
loop condition as an output of the codegraph. The actual branch instruction
will not be part of our codegraph (after all, we do not need an instruction
scheduling algorithm to tell us that the branch instruction should occur right
after the end of the loop body).

Figure 2.2 shows a loop specification for this loop; the d vector for the
loop specification is visualised by adding dashed, labelled arcs from the output
to the corresponding input in the codegraph. The instruction lqd 0 loads a
vector from the SPU’s local store; its inputs are a state token and the address

13



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

counter

counter'

inState

inState'

outState

outState'

ptrDiff

x

y

21

3 4

21

3

fm

stqx

lqd 0 ai 16-1 -1

-1 rotqbyi 4

continue

4

Figure 2.2: Loop that squares all elements in an array

of the vector to load, and its outputs are a state token and the vector that
was loaded. For storing a vector, we use the stqx instruction; its inputs are
a state token, the value to be stored, and two values which are added to yield
the target address in the SPU’s local store. We use separate state tokens for
loading and storing, which are both passed on from one iteration to the next
(d = −1).

The loop counter is incremented by 16 (the size in bytes of a vector
value) in every iteration using the ai 16 instruction and passed on to the
next iteration (d = −1). We play a little SPU-specific game here: we take
advantage of the fact that all values on the SPU are vectors, and the ai

instruction separately affects all four 32-bit components of the register. We
initialise the first component of the vector to the address of the input array
(the lqd and stqx instructions always use the first component of their address
arguments). The last component will contain −16n, where n is the number of
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times the loop should be executed; it will reach zero after the nth iteration.
The stqx instruction stores the vector y at the address that results from

adding the first components of the vectors ptrDiff and counter’. It consumes
the state token outState and produces a new state token, outState’.

Finally, the instruction rotqbyi 4 rotates the vector so that the last
component is moved to the first component, where it is needed for the condi-
tional branch.

The values counter and counter’ will occupy the same register (other-
wise, we would need to insert a register-to-register move instruction), so there
is a data antidependence between the stqx and the ai 16. The stqx has to
be scheduled before the ai because an input it needs (counter’) is destroyed
by ai.

We can now estimate a lower bound for the number of cycles this loop
will take without software pipelining; we need to add up latencies, plus one
cycle for the antidependence between stqd and ai:

6 (lqx) + 6 (fm) + 1 (antidependence) + 2 (ai) + 4 (rotqbyi) = 19

Nineteen cycles is nothing to be proud of for a loop with just five
instructions. The throughput can be increased by unrolling the loop or by
applying software pipelining.

To make software pipelining this loop easier, we can also consider de-
riving the loop condition and the store address from the counter values for a
different iteration, as shown in Figure 2.3. The value counter’ is now mentioned
twice in the output list of the codegraph; one occurence still corresponds to the
counter input with d = −1, that is, counter in iteration i is the value computed
by the ai instruction in iteration i−1. The other counter’ output corresponds
to a new input counter”, which, in iteration i , is the value computed by the
ai instruction in iteration i + x .

This loop specification is not semantically equivalent to the earlier one;
we need to adjust the ptrDiff and the initial value of counter according to the
value of x .
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Figure 2.3: Improved Loop for Software Pipelining — use x > 0 to facilitate
software pipelining
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Chapter 3

Theory of Staging

Software pipelining can be viewed as a transformation of the loop specification.
Informally speaking, we split up the codegraph into sequential parts, which we
call stages, and compose them again in parallel to get a new loop body such
that adding appropriate prologue and epilogue code to the loop yields a loop
that is equivalent to the original loop.

For the purposes of this chapter, we assume a legal assignment to stages
to be given; a stage assignment is legal when the transformation outlined in
the next section can transform the loop specification (G ,d) to a loopable loop
specification (G ′,d′). Chapter 4 describes an algorithm for calculating a legal
stage assignment for a loop specification.

Consider a loop that we can split into three stages, G1, G2 and G3.
In figure 3.1, Gi ,j denotes stage Gi operating on data for logical iteration
j . If we schedule the loop without software pipelining (figure 3.1, left), the
loop independent data dependences between the stages will prevent us from
exploiting much parallelism. With software pipelining (figure 3.1, right), these
dependences are between different iterations of the pipelined loop and therefore
do not restrict parallelism between the stages.

Figure 3.2 shows how different values of d can be realised in a pipelined
loop. When we assign operations to stages (chapter 4), we will need to assign
stages in such a way that the resulting assignment is legal :

Definition 3.1 A stage assignment with k stages for a given loop specification
is considerd legal iff the following conditions are fulfilled:

• Every operation in the code graph is assigned to exactly one stage in the
range 1 . . . k.
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Prologue
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j' = 0
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j' = n-3

Figure 3.1: Software pipelining with three stages; left: loop independent data
dependences in a non-pipelined loop restrict parallelism; right: the same de-
pendences are now dependences between different iterations of the pipelined
loop.

• A value produced by an operation in stage i can be consumed by opera-
tions in stage i and/or in stage i + 1.
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G1,j-1 G2,j-2 G3,j-3

G1,j G2,j-1 G3,j-2

-1 -3

2

Figure 3.2: Inter-iteration dependences in a pipelined loop

• For an input/output pair where the output value is produced by an oper-
ation in stage i, the input value can be consumed by operations in stages
i + d and/or in stage i + d + 1.

It is tempting to simply split up the codegraph G into k sequentially
composed subgraphs, the stages Gi :

G = G1;G2; . . . ;Gk

and then to recompose them in parallel:

G ′ = P ;(G1 ⊗G2 ⊗ . . .⊗Gk),

where P is a permutation to make the argument order of the codegraph match
up. We would then pick an appropriate d′ to make a new loop specification.

This approach, however, gets us no closer to actually scheduling a
software-pipelined loop, as we are potentially violating both conditions for
being loopable. For one, we have no way of guaranteeing that −1 ≤ d ′ ≤ 0.
Also, output values that are computed in one stage have to be passed through
the later stages in the sequential composition, and inputs have to be passed
through the stages before the one where they are consumed.

3.1 Pipelining Transformation

We want to do the sequential decomposition in a way that connects inputs
consumed and outputs produced in a stage Gi directly to the inputs and
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outputs of G as a whole, without routing them “through” the other stages.

The individual stages will be

Gi : Mi−1 × Ii ×Ki → Oi × Ci ×Mi

The Ii inputs of each stage are inputs from F , the Ki are constants
from K , and Mi−1 are outputs from the previous stage. Likewise, the Oi and
Ck are connected to the output of G , while the Mi are fed into the next stage.

Due to the obvious lack of a stage before the first stage or a stage after
the last stage, M0 = Mk = 1l. Furthermore, we want all control outputs to
be generated in the same stage c, so we define Ci = 1l for all i 6= c, and
Cc = C . The “control stage number” c becomes an additional parameter for
the software pipelining and influences the meaning of the control outputs; see
section 3.3 for details.

Because every output node has exactly one producer in G , every ele-
ment of F will appear in the output list Oi of exactly one stage Gi ; inputs,
however, can appear in the Ii lists more than once.

We will also have to add a codegraph without any operations at the
top to rearrange the Ii and Ki to match the order of F × K , and to do the
same at the bottom to make the order of the Oi match up with F × C :

G = P ;(G1 ⊗ II2×...×Ik );(IO1 ⊗G2 ⊗ II3×...×Ik ); . . . ;(IO1×...×Ok−1
⊗Gk);Q ,

The codegraph P : F × K → (I1 × K1) × . . . × (Ik × Kk) has no hyperedges;
it will route each input to the place or places (if any) where it appears in
the input lists of the individual stages; constant inputs can appear on P ’s
output list any number to times, other inputs up to twice. The codegraph
Q : O1 × . . . × Ok → F × C is a permutation, i.e. a codegraph without
operations whose nodes each appear exactly once on its input sequence and
exactly once on its output sequence. Figure 3.3 illustrates how three stages
would fit together.

If the stages Gi have been chosen appropriately, we can construct a
new, loopable, software pipelined loop specification (G ′,d′) where the stages
are executed in parallel, but for different “logical iterations”, i.e. for different
iterations of the original loop specification.

We have stated before that an input value from F can be used in more
than one stage.

In every iteration of a software pipelined loop, the value of an input in
F for two different iterations; if at the top of the pipelined loop, the value is
available for some logical iteration j , then at some later point in the schedule,
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Figure 3.3: Splitting a codegraph into three stages

there will be an instruction that produces the value for iteration j +1, replacing
the value for iteration j .

In the pipelined loop, stage i will operate on logical iteration j +1 while
stage i + 1 is still working on logical iteration j . Stage i can access the value
of the input for logical iteration j +1 if the consuming instruction is scheduled
below the producer; in the same iteration of the pipelined loop, stage i +1 can
access the value for logical iteration j if the consuming instruction is scheduled
above the producer. No other stages have access to a value of the input for
the logical iteration they are working on.

Therefore, every input value from F can be used by at most two con-
secutive stages; the corresponding output value appears exactly once in the
Oi list of exactly one stage, but it must appear twice in the output list of
G ′. One appearance will be associated with a d ′ = −1 entry in d′, the other
appearance with d ′ = 0.

Unused inputs are permissible in codegraphs, so we can simply do this
for all outputs, even if they are used only once. We define
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Figure 3.4: Putting the stages together in parallel

G ′
i = Gi ;(∇Oi ⊗ ICi ⊗ IMi )

The kernel G ′ : F ′ × K → F ′ × C of the software-pipelined loop will
then be

G ′ = R;(G ′
1 ⊗ . . .⊗G ′

k);S ,

where F ′ = O1×O1×M1×. . .×Ok×Ok , and S : O1×O1×C1×M1×. . .×Ok×
Ok ×Ck → F ′×C and R : F ′ → I1×K1×M1× I2×K2× ...×Mk−1× Ik ×Kk

is a codegraph without operations.
S is constructed such that it moves the C outputs to the end of the

output list; if the control stage is the last stage (c = k), then S = IF ′×C .
Figure 3.4) shows how these parts fit together for k = c = 3.

The entries in d′ will be 0 for each first instance of Oi outputs, and −1
for the second instance of Oi outputs and for the Mi . We will choose R such
that:

• Every Mi input is mapped to the corresponding Mi output; the corre-
sponding d ′ value is −1.

• If P maps an input from K to an element of Ki , then R will map that
same input from K to the same element of Ki (which will, in general,
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not be in the same position in the output of R as it is in the output of
P).

• The first occurence of each Oi input is mapped to the corresponding
output in Ii+d , if such a corresponding output exists, where d is the
value associated with Oi in the original loop specification.

• The second occurence of each Oi input is mapped to the corresponding
output in Ii+d+1, if such a corresponding output exists.

3.2 Prologue and Epilogue

The software-pipelined loop specification is not a drop-in replacement for the
original loop; after all, it requires intermediate results (Mi) as its input, which
have to be supplied to the first iteration of the modified loop body. We do this
by prefixing the modified loop with a prologue, a block of non-looped code
that initialises the pipeline, as we see in the pipelined loop shown on the right
of figure 3.1.

The first time the modified loop body executes, it will execute Gk for
logical iteration 0, Gk − 1 for logical iteration 1, and G1 for logical iteration
k−1. The prefix code, therefore, has to execute G1 . . .Gk−1 for logical iteration
0, G1 . . .Gk−2 for logical iteration 1, and so on.

Likewise, after the last iteration of the software pipelined loop body,
some logical iterations have been started but not finished. If the software
pipelined loop body has been executed n − k + 2 times, the latest logical
iteration that has been completed will be n− k −3; logical iterations n− k +2
through n will have been initiated but not completed. The epilogue code needs
to execute Gk for iteration n− k +2, Gk−1 and Gk for iteration n− k +3, and
so on, and finally G2 through Gk for iteration n.

Every iteration of the loop uses output values from earlier iterations as
inputs, so when the loop starts at logical iteration 0, values have to be supplied
from the outside, as there are no iterations with negative indices. If an input
is associated with a d value of less than −1, multiple “initial” values for the
input have to be supplied, corresponding to the outputs of the non-existant
iterations d through −1. Inputs with nonnegative values for d , on the other
hand, do not need any initial values at all.

Figure 3.5 shows how the loop gets initial values that are conceptually
the outputs of negative iterations; only the values originating from stage 3 of
iteration −3 and from stage 2 of iteration −1 are shown in the figure. Not
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G1,0 G2,-1 G3,-2

G1,1 G2,0 G3,-1

G1,2 G2,1 G3,0

G1,-1 G2,-2 G3,-3

Figure 3.5: Prologue of loop with three stages. Initial values from G3,−3 and
G2,−1 are shown as arrows.

all the outputs from those stages are required for loop initialisation; some are
only required by other negative iterations (dashed arrows).

To construct a codegraph for the loop prologue we first define init(x )
to be the primitive codegraph consisting of one hyperedge labeled with initx ,
with no inputs and exactly one output. Using that, we define

Gi ,j = Gi if j ≥ 0
Gi ,j = !Mi−1×Ii×Ki

;(init(i , j , 1)× . . .× init(i , j , |Ii ×Mi × Ci |)) if j < 0

Here, i is the stage number and j is the logical iteration. For negative j , we do
not want to generate any code; instead of the codegraph Gi for the stage, we
construct a codegraph with the same input and output types that ignores all
its inputs, and whose outputs are the results of hyperedges specially marked
with the stage, iteration and position of the output.

We then continue with

G ′
i ,j = Gi ,j ;(∇Oi × ICi × IMi ),

so that we can define one slice of the prologue

Prj = R;(G ′
1,j ⊗ . . .⊗G ′

k ,j−k+1);S .
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We resolve all d ′ = −1 by identifying the corresponding input and output
nodes, and removing them from the input and output lists. Let the results of
this transformation be Pr ′j : F ′′×K → F ′′×C . We ignore the control outputs
from the prologue:

Pr ′′j = Pr ′j ;(IF ′′⊗!C )

Next, we compose Pr ′′−1 . . .Pr ′′k−2 sequentiallly, supplying a copy of the constant
inputs to each:

Pr ′ = (IF ′′ ⊗∇k
K );(Pr ′′−1 ⊗ IK (k−1));(Pr ′′0 ⊗ IK (k−2)); . . . ;Pr ′′k−2

Then, we remove all unused nodes and edges from which no output is
reachable from Pr ′, except for the constant inputs; this makes the codegraph
executable again. Finally, we remove all init-labelled hyperedges and make
their target nodes inputs of the prologue (the labels of the init hyperedges now
define the meaning of those inputs).

Construction of the epilogue is symmetric to construction of the pro-
logue.

3.3 Loop Termination Revisited

In a software pipelined loop, we have little choice but to interpret the control
outputs based on the pipelined loop body; therefore, their meaning changes
depending on the value of c, i.e. depending one which stage they are produced
in.

If the control outputs evaluate to a value meaning “do not continue”
in stage c of iteration n, then, the last iteration of the pipelined loop executes
G1,n+c−1, . . . ,Gc,n , . . . ,Gk ,n+c−k . Including the loop epilogue, the last iteration
to be executed will be iteration n + c − 1.

If we are trying to save on code size, we can do without an epilogue
altogether in many cases; we might need to provide some extra space for
partial results in any memory areas that the loop stores its results in. Without
a prologue, if iteration n causes loop termination, the last iteration to be
completed is iteration n + c − k ; additionally, iterations n + c − 1 through
n + c − k + 1 have been initiated, but not finished. It will depend on the
particular stage assignment chosen for this loop whether any results for those
partial iterations will be stored to memory or not.
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3.4 Correctness

This thesis does not concern itself with a formal proof that the pipelining
transformation and the prologue/epilogue construction yield a transformed
loop that is equivalent to the original.

However, we can observe that every stage appears is executed the same
number of times in the original loop and in the pipelined loop with prologue
and epilogue. Also, the codegraph R (which governs how the inputs of the
pipelined loop body are arranged) is constructed at the end of section 3.1 to
always match up the corresponding inputs and outputs, and taking the ap-
propriate d values into account. The transformation makes some assumptions
about the assignment of operations to stages, which are all covered by the
definition of a legal stage assignment given in the introduction to this chapter.

3.5 Example

Let us now return to our earlier example and have a look at how we can
stage the loop specification from figure 2.3 on page 16; this is the variant
where we can choose a parameter x that will tell the store instruction and the
loop condition to use the loop counter from a different iteration. We will use
this loop specification instead of the more straightforward one from figure 2.2
because it is much more amenable to software pipelining.

If we schedule the stqx two stages or more after the lqd, then the
counter value will already have been updated in the meantime; the value for
the current iteration will not be available any more. In its place, however,
there is the counter value of a later iteration ready for use in the same register.
Setting x to a value greater than −1 will therefore allow the load and store
instructions to be farther apart.

With x = 1, the stqx and rotqbyi instructions that use counter” can
be two or three stages after the ai instruction that produces them. If we
decide on a total of three stages, this means that the ai instruction will be
in the first stage, and the stqx and rotqbyi instructions will be in the last
stage.

Figure 3.6 shows how the codegraph can be split up into three sequen-
tially composed stages. In the example at hand, P ends up being an identity
codegraph because the inputs used by stage 1 happen to be listed before the
inputs used by stage 3 in the input sequence of the original codegraph.

The loop can then be pipelined by recomposing the stages in parallel,
as shown in figure 3.7. The vertical positions of the operations indicate where

26



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

counter

counter'

inState

inState'

outState

outState'

ptrDiff

x

21 3

fm

stqx

lqd 0 ai 16

rotqbyi 4

continue

5

counter''

4

y

1 2 3 4 5

Stage 1

Stage 2

Stage 3

Q

P

Figure 3.6: Splitting up the loop into three stages. d = (−1,−1,−1, 1)

they occur in the final schedule. None of the inputs with d ′ = 0 (shown
slightly above and to the left of the inputs with d ′ = −1) are actually used
in this example; the nodes a, b, c and d are not used by any operations.
Transforming the loop specification to a strictly loopable loop specification
will therefore simply remove them and their corresponding outputs.

The scheduled loop body takes just 7 cycles to execute; this is just one
cycle longer than the latency of the multiply and load instructions, and is an
optimal schedule for this code.
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Figure 3.7: Pipelined loop, with three stages.
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Chapter 4

Heuristic Staging

We will now present a heuristic algorithm for splitting up a given loop speci-
fication into k stages. This means assigning a stage number in the range 1..k
to each hyperedge in the given codegraph.

In addition to having to find a legal stage assignment, we want to avoid
partitioning the codegraph in such a way that:

1. The latency along the longest path through one of the stages is greater
than the initiation interval we expect to achieve.

2. Too many registers are alive accross stages.

All registers that are alive accross stages will be live at the top of the
final scheduled loop and will therefore conflict with each other. On the
other hand, higher register requirements inside a stage can be mitigated
by good decisions in the later steps.

3. Too many forward dependences between stages arise between stages.

An inter-stage forward dependence corresponds to an input/output pair
in the pipelined loop specification for which the associated d ′ = 0. This
is generally undesirable, because it reduces parallelism between the in-
volved stages; it is especially undesirable when we use the merge schedul-
ing algorithm (chapter 5) which cannot handle forward dependences well.

The heuristic method we are going to use is based on using two functions,
depth and height, that map every operation in the code graph to a nonnegative
“depth” and “height” value.

We will use the depth and height values to decide approximately where
to cut the codegraph into stages. More restrictions are placed on where to split
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based on the dependences between the operations; finally, from the cuts that
have not been eliminated earlier, we pick the one that minimises the number
of values communicated from one stage to the next, i.e. we minimise register
requirements at the top of the loop.

The algorithm proceeds as follows:

1. Initialise a constraints graph S (see section 4.2) that contains our current
knowledge about the stage assignment.

2. For i := k down to 2

(a) Calculate height, depth, htot , and dtot based on the codegraph with
all operations known to be in stage i + 1 or greater removed (see
section 4.1)

(b) Try to mark all operations with height > htot/i as being in stage
i − 1 or less

(c) Try to mark all operations with depth > (i − 1)dtot/i as being in
stage i

(d) Let A be the set of all opoerations known (according to S ) to be in
stage i − 1 or less, and let B be the set of all operations known to
be in stage i or greater

(e) Construct Gcut (see section 4.3)

(f) Run a minimum cut algorithm on Gcut

(g) Mark all operations in Gcut that are above the minimum cut as
being in stage i − 1 or less

(h) Mark all operations in Gcut that are below the minimum cut as
being in stage i or greater

3. Extract final stage assignment from S .

4.1 Height and Depth

There are several choices for the depth and height functions. The simplest is
to calculate depth and height based on the latencies of instructions:

Definition 4.1 Given a codegraph G,
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• For all n ∈ N , depthL(n) is the depth of the producer of n plus the
producer’s latency, or 0.

• heightL(n) is the maximum of the heights of all consumers of n plus their
respective latencies, or 0.

• For all e ∈ E, depthL(e) is the maximum of the depths of all sources of
e.

• heightL(e) is the maximum of the heights of all targets of e.

For an operation (a hyperedge) e in the codegraph, the function depthL(e)
gives a lower bound on the number of cycles that pass between the initiation of
an iteration and when the instruction is issued for that iteration in a software
pipelined schedule. Likewise, heightL(e) gives a lower bound for the number of
cycles that pass between the completion of the instruction and the completion
of the last instruction in the iteration.

Definition 4.2 Given a codegraph G,

• For all e ∈ E, heightU (e) is the number of hyperedges e ′ that are reachable
in G from e and for which unit(e ′) = u when u is chosen such that
heightU (e) becomes maximal.

• depthU (e) is the number of hyperedges e ′ that are reachable in reverse
direction from e and for which unit(e ′) = u when u is chosen such that
depthU (e) becomes maximal.

The lower bounds provided by heightU (e) and depthU (e) stem from the
fact that only one instruction per unit can be executed in one machine cycle;
all edges reachable from e have to be executed after it, and all nodes reachable
in reverse direction have to be executed before it.

To get the “best of both worlds”, we therefore define

Definition 4.3 For all e ∈ E, heightLU (e) = max (heightL(e), heightU (e)) and
depthLU (e) = max (depthL(e), depthU (e)).

Definition 4.4 Furthermore, we define a total height htot and a total depth
dtot :

• htot = maxn∈N height(n)

• dtot = maxn∈N depth(n)
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4.2 Stage Constraints

Let s be the function that maps each operation to its stage number. During
the execution of the algorithm, a directed graph S will represent our current
knowledge about this function. Its nodes are the operations in G , plus an
additional node z . We define s(z ) = 0. An edge (x , y , d) (an edge from x to
y , labeled with the integer d) is taken to denote the constraint

s(x ) + d ≥ s(y).

Due to the transitivity of ≥, the shortest path SP(x , y) between two nodes
can be used to derive new constraints.

∀ x , y : s(x ) + SP(x , y) ≥ s(y)

Specifically, we get:

∀ x : −SP(x , z ) ≤ s(x ) ≤ SP(z , x )

Initially, we populate the graph with edges representing the constraints we
already know:

• Edges to and from z to enforce ∀ x : 0 ≤ s(x ) < k

• For every edge (x , y , d) in the dependency graph, edges (x , y , d + 1) and
(y , x ,−d)

• Edges forcing all producers of control outputs to be in the last stage.

Then, we add some more constraints that are likely to yield a better stage
assignment:

• Edges forcing the operations with the greatest height to be in the first
stage.

This is essential for making the stage assignment yield good results.

• For each non-constant input, edges forcing all its consumers to be in the
same stage.

This constraint serves to subtly discourage, but not entirely forbid inter-
stage forward dependences (d ′ = 0 in the pipelined loop specification).
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These constraints are not logically necessary, and as such can cause negative-
weight cycles in S if they contradict other constraints. Therefore, if adding an
edge for one of these constraints would create such a cycle, the constraint is
simply ignored.

The algorithm then decides the boundaries between stages one by one,
starting at the last stage. The number of the stage below the boundary to be
decided shall be denoted by i .

For each boundary, the height and depth functions are used to clas-
sify each operation into three categories: above, below and undecided. The
primary aim here is to exclude stage assignments that violate the second con-
dition stated above, i.e. assignments where one of the stages, when scheduled
individually, is longer than we would like our final loop body to be.

We calculate the height and depth functions based on a subgraph of
the codegraph G ; all nodes that are (according to S ) known to be in stage
i + 1 or below are excluded. Thus, the total height and depth correspond to
all the instructions from the first stage to stage i , inclusively.

Rather than pre-determining a target λ, we just strive to split up the
codegraph into stages of roughly equal size, as measured by the height and
depth functions. As the height function is intended to give a lower bound of the
distance in cycles between an instruction and the “bottom” of the codegraph,
we force all operations with a height greater than htot/i to be in stage i − 1
or above; likewise, all instructions with depth greater than (i − 1)dtot/i to be
in stage i .

The graph S is augmented to reflect this new information by adding
the appropriate edges to and from z . If adding such an edge would create a
cycle with negative weight in S , then it is skipped. This means that previous
decisions, or their consequences, contradict the new “recommendation” that
was derived from the height and depth functions. Precedence has to be given
to the earlier decisions.

We can now extract the set of all operations whose position with respect
to the stage boundary under consideration is not yet known from the graph S .
The exact boundary is then determined in a way that minimises the number
of registers required (as described below). The results of that decision is then
recorded in S again, and the process repeated for the next lower-numbered
boundary, until all stages are decided.
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4.3 Stage Separation

Now let us turn to the problem of determining where to draw the exact bound-
ary between two stages. We have already narrowed down our choice so that
condition 1 will always be fulfilled.

The goal now is to find a partitioning that fulfills the other two con-
ditions, i.e. one that minimises register use without violating any of the con-
straints and without generating too many forward dependences. Of course,
we must still make sure that our choices don’t violate any other constraints
defined in the previous section.

We can do this by transforming the remaining codegraph (after re-
moving the nodes that are already known to be either above or below the
boundary) to an instance of the minimum cut problem; the minimum cut will
be the stage boundary that uses the smallest number of registers at the top of
the loop.

We want to define a graph Gcut such that:

1. A minimum cut yields two stages with no illegal dependences.

2. The size of the minimum cut equals the number of values that have to
be kept in registers from one stage to the next.

Definition 4.5 Given a codegraph G, we first define a graph G ′
cut containing

• A “source” node s

• A “sink” node t

• For every operation in the codegraph, an “operation” node

• For every node in the codegraph, a “value” node

• An edge with infinite weight from each consumer of a value to the pro-
ducer

• An edge with weight 1.0 from each producer to the corresponding value
node

• An edge with infinite weight from each value node to each of its con-
sumers.
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Figure 4.1: Transforming parts of a codegraph (left) to a minimum cut problem
(right). Edges A and D are known to be above and below the stage boundary
beforehand; using the minimum cut we decide to put B and C below the cut,
because that requires the least number of registers to be live at the top of the
stage.

Definition 4.6 Based on G ′
cut , a set A of operations (hyperedges in the code-

graph) known to be above the boundary, i.e. in stage i − 1 or less, and a set
B of operations known to be below the boundary, i.e. in stage i or greater, we
define a graph Gcut by

• Deleting all operation nodes in A ∪ B

• Deleting all value nodes that are not connnected to a consumer or pro-
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ducer not in A ∪ B

• Deleting all edges that connect two deleted nodes

• Replacing all mention of nodes in A in the remaining edges with s

• Replacing all mention of nodes in B in the remaining edges with t

Figure 4.1 illustrates this transformation on a simple example.
If at least one of the consumers of a value is above the cut, then the

producer must also be above the cut. This is easily achieved by having an edge
with infinite weight point from each of the consumers to the producer; any cut
where the producer is below the cut but one of the consumers is above would
therefore have infinite weight, and therefore cannot be the minimum cut.

A value is live at the top of the loop if the operation that produces it
is above the cut and at least one of the consumers is below the cut. For every
value, we want an edge with weight 1.0 that crosses the cut if and only if the
value is live at the top of the loop. We only want one such edge per value in
order to avoid counting any live value twice. Therefore, this edge with weight
1.0 connects the producer node to the value node; edges with infinite weight
are used to connect the value node to each of its consumers. Note that there
is no edge going from the consumer to the value, so that it is possible for a
value node to be below the cut while the operation node that consumes the
value is above the cut.

We express the constraint that we want all consumers of an input to be
in the same stage at this level by adding a cycle of edges with infinite weight
between all successors of each input.

If a value has a producer or consumer whose stage is already known
and a producer or consumer whose stage is not yet known, the transformation
is done as above, but t is substituted for any operation that is known to be in
stage i or greater, and s is substituted for any operation that is known to be
in stage i − 1 or less.
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Chapter 5

Merge Scheduling

Merge scheduling is based on the idea of “merging” two or more scheduled
pieces of code to be executed in parallel. The individual stages we just created
have relatively few inter-stage dependences, which works in our favour.

Analogous to the use of the term “merging” in the well-known merge
sort algorithm, we do not rearrange the instructions in any one input schedule
with respect to other instructions from the same input schedule. Merging can
be done optimally in O(nk+1) cycles, where k is the number of schedules to
be merged and n is the number of instructions involved.

This naturally leads to the following plan for software-pipelining loops:

1. Heuristically assign instructions to stages

2. Schedule the individual stages using a conventional scheduling algorithm

3. “Merge” the individual linear schedules.

5.1 Separate Scheduling

After the stages have been decided, we need to come up with separate schedules
for each of the stages. For this, we can essentially use any scheduling algo-
rithm for straight-line code, as long as we enforce a few additional restrictions
imposed by loop carried dependences.

After staging, loop carried and inter-stage dependences can be classified
in two groups depending on the value of their associated component in d′, and
based on whether the producing and the consuming instruction are in the same
stage or not.
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• d ′ = 0, same stage

This can only be caused by an input/output pair with d = 0 in the
original loop specification. We can eliminate this either before or after
staging by identifying the input and the output node in the codegraph
and removing them from the input and output sequences.

• d ′ = 0, different stages

An inter-stage forward data dependence constraint is passed on to the
merging algorithm; no special treatment is required when scheduling the
individual stages.

• d ′ = −1, same stage

The producer will overwrite the value used by the consumer — this
is a data antidependence which needs to be taken into account when
generating the schedule for the stage.

• d ′ = −1, different stages

The inter-stage antidependence is passed on to the merging algorithm.

Also, in the d ′ = −1 case, there is a forward dependence between
the producer in one iteration of the pipelined loop and the consumer in the
following iteration. First, let us observe that this can be ignored completely;
violating these dependences does not affect correctness, but it will introduce
a pipeline stall once for every iteration of the loop.

Adding the appropriate number of empty cycles to the end of each of
the individual schedules is a definite win if not all schedules require the same
amount of padding; the merging algorithm will automatically try to schedule
the empty cycles in parallel with instructions from other stages.

Deciding the schedule for one stage amounts to arbitrarily adding edges
to the dependency graph for operations that do not depend on each other but
happen to appear in a certain order in the schedule. When scheduling a stage,
decisions that have already been made while scheduling other stages have to
be respected.

Assume we have two stages; 1 contains operations op1 and op2, and
stage 2 contains op3 and op4. Further assume that, due to inter-stage depen-
dences, op3 has to appear before op1 and op2 has to appear before op4 in the
final schedule (solid arrows in figure 5.1). While scheduling stage 1, we decide
that op1 will appear before op2 in the schedule (dashed arrow in the figure).
If we schedule stage 2 without taking that decision into account, we might
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Figure 5.1: Avoiding dependence cycles when scheduling seperately

decide to schedule op4 before op3, thereby creating a cycle in the dependency
graph which prevents merge scheduling from succeeding (figure 5.1, top).

Therefore, when scheduling stage 2, we have to take the fact into ac-
count that after scheduling stage 1, there is a path from op3 to op4 in the
dependence graph, and therefore op3 has to be scheduled before op4, as shown
at the bottom of figure 5.1.

To summarise, the following steps have to be performed to build the
per-stage schedules:

1. Generate the pipelined loop specification (G ′,d′) (see chapter 3).

39



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

2. Let the dependency graph D0 be a graph consisting of:

• For every hyperedge in G ′, a node.

• For every node in G ′, edges from the producer to each consumer,
labelled with the producer’s latency.

• For every input/output pair with d ′ = −1, edges from each con-
sumer to the producer (antidependence), labelled with 0.

• For every input/output pair with d ′ = 0, edges from the producer to
each consumer (forward dependence), labelled with the producer’s
latency.

3. For each stage i from 1 to k ,

(a) Build a dependence graph for the operations in the stage by taking
the subgraph of the transitive closure of Di−1 consisting of only the
operations in stage i .

(b) Run the list scheduling algorithm (or another straight-line schedul-
ing algorithm) on this graph.

(c) Let Di be the graph that results from adding edges (x , y) with label
0 to Di−1 for every pair of nodes x and y where x has been scheduled
before y .

4. For each stage i from 1 to k ,

(a) For each input/output pair in G ′ with an associated d ′ = −1 where
the producing operation is in stage i , check the latency from the
producer to the consumers.

(b) Add the minimum number of empty cycles at the end of the schedule
for stage i required to satisfy the latency constraints.

5.2 Merging

At this point, we have k non-software-pipelined schedules for the individual
stages, and a set of dependences between those stages.

The dependences are now neatly divided into two groups:

• data antidependences

These indicate that a consuming instruction in one stage has to be sched-
uled before a producing instruction in another stage, which will overwrite
the data with a new value; this kind of dependence arises very often.
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• forward dependences

A consuming instruction in one stage requires data produced by a pro-
ducing instruction from another stage; the producer has to be scheduled
after the consumer in the resulting schedule, while taking account of la-
tency. Forward dependences are rare because our staging algorithm tries
to avoid them in most situations.

5.2.1 Merging without dependences

To explore the basics of merging schedules, let us disregard all inter-stage
dependences for a while.

The input consists of schedules Si for each the k stages; we denote the
length in cycles of each schedule as ni . Every cycle contains zero or more
instructions which can be issued in that cycle. All pipeline stalls are explicitly
represented by empty cycles in the schedule.

The instructions in each cycle j use a subset Ui ,j of the functional units
U of the processor.

In the process of merging, two instructions from the same stage are
never reordered; more specifically,

• If two instructions are in the same cycle of one stage schedule, they will
be in the same cycle in the final schedule.

• If two instructions are in cycles c1 and c2, c2 − c1 = d > 0 in one stage,
then they will be in cycles c ′1 and c ′2 in the merged schedule, such that
c ′1 ≥ c1 and c ′2 − c ′1 ≥ d .

At each cycle of the merged schedule, the merging algorithm can sched-
ule a combination of the first unscheduled cycles from each of the stage sched-
ules.

After picking which instructions to issue in the first cycle, the remaining
schedule can be found by recursively solving the subproblem of merging the k
schedules with the already-scheduled instructions removed, so that ni − 1 ≤
n ′i ≤ ni . All the subproblems that arise this way are obviously independent
from each other, and there are only

∏k
i=1 ni such subproblems; the problem

can therefore be solved using the technique known as dynamic programming,
where subproblems of increasing size are calculated by a loop, storing the
results that might still be needed in an array.

This leads us to the following algorithm: We define A[x1, . . . , xk ] to be
the minimum number of cycles required to merge the first xi cycles of each of
the k stages. Trivially, we define A[0, . . . , 0] = 0.
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To determine the value of A[x1, . . . , xk ], we need to examine all combi-
nations C ∈ P 1, . . . , k of stages such that the instructions Si ,xi for i ∈ C do
not cause a resource conflict, i.e. ∀ i , j ∈ C , i 6= j : Ui ,xi ∩ Uj ,xj = ∅.

Let bi = 1 if i ∈ C and bi = 0 otherwise. We pick C such that
A[x1−b1, . . . , xk−bk ] is minimal; then, A[x1, . . . , xk ] = 1+A[x1−b1, . . . , xk−bk ].
We also define an array L and define L[x1, . . . , xn ] = C ; at the end, the schedule
can be constructed from L by going backwards starting at L[n1, . . . , nk ].

One of the main concerns with software pipelining is the increased
register pressure. Therefore, it is worthwhile to extend the algorithm to choose
the schedule with the minimum number of simultaneously live values among
all the possible schedules with minimum number of cycles.

To do so, we need every instruction in the non-software-pipelined sched-
ules to be annotated with the difference Di ,j between the number of values that
are live beginning at that instructions and the number of values that die at
that instruction.

For this algorithm, we define Rmax such that Rmax [j , x1, . . . , xk ] is the
minimum number of simultaneously live values required when merging the
first xi cycles of each of the k states into a merged schedule with a length of
j cycles; we further define R[j , x1, . . . , xk ] to be the number of simultaneously
live values after cycle j in that optimal merged schedule. As initial values,
R[0, 0, . . . , 0] = Rmax [0, 0, . . . , 0] = r0, the number of live values at the top of
the loop, and R[0, xi , . . . , xk ] = Rmax [0, xi , . . . , xk ] = ∞ (if at least one xk 6= 0).

We again examine all combinations C that do not cause resource con-
flicts; this time, we pick C such that Rmax [j − 1, x1 − b1, . . . , xk − bk ] is min-
imal, and define R[j , x1, . . . , xk ] = R[j − 1, x1 − b1, . . . , xk − bk ] +

∑
i∈C Di ,xi ,

and Rmax [j , x1, . . . , xk ] = max (Rmax [j − 1, x1 − b1, . . . , xk − bk ],R[j − 1, x1 −
b1, . . . , xk − bk ]).

5.2.2 Merging with antidependences only

The dynamic programming algorithm can easily be extended to accomodate
antidependences. An antidependence tells us that a certain instruction in one
stage must be scheduled before another instruction in another stage, because
the latter instruction overwrites and destroys an input for the former.

When considering whether to schedule the instructions at position xi

from stage i in a cycle j , we know exactly how many instructions from each of
the stages have already been scheduled before cycle j . If the dependence is vi-
olated, the instructions from that stage are simply not eligible to be scheduled
at this point.
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5.2.3 Handling forward dependences

A forward dependence between two instructions means that one instruction
from one stage must be scheduled at least a certain number of cycles after
another instruction from another stage, because the latter calculates data used
by the former.

Unfortunately, handling latencies at this point violates one of the fun-
damental requirements of the dynamic programming approach. For dynamic
programming to work, all the subproblems have to be independent from one
another; in the presence of latencies greater than one, we cannot tell whether
a particular schedule for the cycles up to j is optimal without knowing what
code follows.

We can approximate the solution in the presence of forward depen-
dences by counting only the cycles within one stage. To satisfy a forward
dependence that requires the instructions from cycle j1 of stage a to be sched-
uled at least l cycles after the instructions from cycle j2 of stage b, we instead
require the instructions from cycle j2 + l of stage b to be scheduled before the
instructions from cycle j1 of stage a.

43



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

44



Chapter 6

Adding Control Flow — The
Multiloop

Control flow in software-pipelined loops has been the subject of much research.
In the context of software pipelining, it is always necessary to impose some
kind of limitation on control flow, or to accept the fact that the presence of
control flow might severly limit the efficacy of software pipelining.

In many cases, it is beneficial to avoid control flow altogether and in-
stead use some kind of conditional “select” instructions to select one result
after calculating both alternatives unconditionally.

One possible approach to implementing limited forms of control flow
is to have several versions of the entire software-pipelined loop body and to
jump to the appropriate version of the loop body after every iteration.

This approach becomes very interesting when we have direct control
over which operation is scheduled in which stage. Given a loop of the form

for i=0..n

A(i);

B(i);

c = C(i);

case c of

1 -> D1(i);

2 -> D2(i);

...

n -> Dn(i);

end case

end for

we can restrict all the Dn operations to the last stage; we can then software-
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pipeline the loop, resulting in the following structure:

A(0);

A(1); B(0);

A(2); B(1); c = C(0);

for i=0..n-3

case c of

1 -> A(i+3); B(i+2); c = C(i+1); D1(i);

...

n -> A(i+3); B(i+2); c = C(i+1); Dn(i);

end case

end for

In fact, the branch instruction at the end of the loop will be a computed
branch that will jump to the appropriate version of the loop body for the next
iteration. A branch hint instruction scheduled earlier can make this jump
almost free of cost.

Let us now extend the definition of a loop specification from chapter 3
for multiloops:

Definition 6.1 A multiloop specification with n cases is a tuple (G , n,d)
containing

• a codegraph G : F ×K → F n × C

• a positive integer n

• a sequence of integers d, one for each element of F .

The control outputs C are interpreted to specify which of the n blocks
of F outputs are to be used as the output of this iteration; only instructions
that the selected set of outputs or the control outputs depend on are to be
executed for this iteration of the loop.

Definition 6.2 We define control dependent nodes and edges in a multiloop
specification inductively:

• A node that occurs in the output sequence of G, but not at exactly the
same position(s) for all cases is control dependent.

• If a node is control dependent, then its producer is control dependent.
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• If a node is control dependent, then all its consumers are control depen-
dent.

• If an edge is control dependent, then all its targets are control depen-
dent.

Control dependent edges are those operations which have to be different
for different cases of the multiloop, after register allocation; if one edge in G
delivers its result to the ith output of one case, and to the j th (i 6= j ) output
of another case, then it is control dependent, because the assembly language
instructions in the final schedule will have to differ by their target register.

When a multiloop is software pipelined, all control dependent edges
have to be in the last stage. For every case, a separate version of the entire
loop body is scheduled. The individual versions contain the same instructions
for stages 1 to k − 1, they only differ in the last stage.

The edges that generate the control outputs C have to be in the second-
to-last stage, so that the branch instruction at the end of the loop can select
which version of the final stage (and therefore, which version of the scheduled
loop body) to execute.

In the context of multiloops, the decision to disallow the scheduler
from duplicating any instructions from section 2.3 pays off. For a simple loop,
modulo variable expansion is always an option; in a multiloop, our scheme for
handling control flow would break down if we allowed the loop body to be
replicated.
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Chapter 7

Experimental Results

We have implemented a prototype scheduler based on the algorithms described
in this thesis; concurrently, several efforts have been underway in our group to
develop code and other tools target the Cell SPU and the Coconut declara-
tive assembly language [ACK+04], a textual representation of codegraphs. In
the following, we give some results on how our algorithms perform on some of
that code.

7.1 Simple Loops

We evaluate the performance of the algorithm for regular loops on a library
of basic mathematical functions for the Cell SPU that has been developed at
our work group.

Each of the basic mathematical functions takes one or two arguments
and returns one or two results; the majority take one argument and return one
result. They operate on vectors of four floating point values in parallel. We
have run the scheduler on loops that sequentially read input values from an
input area in memory and store the output values to a different memory area.

We can apply two different preprocessing steps to the code before
scheduling it; we can unroll the loop by replicating the loop body a u times in
parallel (the parallel instances of the loop body will use common loop counting
instructions).

We can also apply a preprocessing step that splits up the m nodes
with the greatest lifetimes (as estimated before scheduling using the heightLU

function from section 4.1) by inserting register-to-register move instructions
(we use the rotqbyi 0 instruction, rotate quad word by zero bytes).

Tables 7.1 and 7.2 show the result of applying the heuristic staging
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u = 1 u = 2
s m b n r s m b n r

acos 6 2 28 43 38 6 4 55 59 58
acosh 5 2 23 32 37 5 4 45 45 49

asin 6 2 28 54 39 4 4 55 77 44
asinh 5 2 21 35 36 5 4 41 42 46
atan2 2 2 24 103 32 2 4 47 103 43
atanh 7 2 20 21 40 3 0 39 42 41

cbrt 3 2 21 26 39 3 4 41 44 41
cos 4 2 26 29 41 4 4 51 51 53

cosh 6 2 17 28 36 6 4 33 34 44
div 2 2 13 24 13 2 4 17 20 17
exp 4 0 13 23 29 4 4 23 25 36

log10 5 2 15 23 35 6 4 25 25 48
log 5 2 15 23 35 6 4 25 25 48

pow 5 2 23 41 45 4 4 45 46 58
qdrt 5 2 13 25 17 4 4 25 40 23
rcbrt 5 2 24 32 40 5 4 47 49 56

rec 4 2 11 15 13 3 4 14 19 14
rqdrt 4 2 12 21 17 4 4 19 26 24
rsqrt 4 2 11 19 15 2 4 14 23 18

sin 4 2 26 30 43 3 4 51 51 50
sincos 5 2 29 32 50 3 0 57 57 51

sinh 6 2 17 28 36 6 4 33 34 44
sqrt 4 2 11 23 15 3 4 14 20 18
tan 5 2 33 40 45 2 4 65 65 47

tanh 8 2 19 25 37 6 4 37 37 46

Table 7.1: Results of scheduling math functions in simple loops for unrolling
factors 1 (no unrolling) and 2

algorithm followed by a simple list-scheduling algorithm to schedule the trans-
formed loop body; for each function and each value of the unrolling factor
u, the table shows the number of stages s and the number of inserted moves
m that yielded the shortest schedule; for this shortest schedule, it shows the

50



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

u = 3 u = 4
s m b n r s m b n r

acos 5 0 82 87 59 3 0 109 112 69
acosh 3 6 67 69 51 2 0 89 91 56

asin 3 6 82 91 61 3 8 109 110 76
asinh 3 6 61 61 51 3 8 81 81 62
atan2 2 6 70 105 52 2 8 93 107 60
atanh 3 0 58 59 51 3 8 77 77 61

cbrt 2 6 61 61 51 2 8 81 81 60
cos 3 6 76 79 58 3 8 101 102 70

cosh 6 6 49 49 56 4 0 65 65 61
div 2 6 21 23 21 2 0 23 24 22
exp 4 6 34 34 44 4 8 45 45 52

log10 3 6 37 37 42 3 8 49 49 48
log 3 6 37 37 42 3 8 49 49 48

pow 3 6 67 67 63 3 8 89 90 74
qdrt 4 6 37 50 30 2 8 49 59 34
rcbrt 4 6 70 70 65 4 8 93 93 78

rec 2 6 17 19 17 2 8 20 21 20
rqdrt 3 6 28 37 28 3 8 37 44 34
rsqrt 2 6 17 23 22 2 0 21 24 25

sin 3 0 76 76 59 3 8 101 101 72
sincos 3 6 85 85 63 2 8 113 113 66

sinh 6 6 49 49 56 4 0 65 65 61
sqrt 3 6 19 37 22 2 8 25 37 26
tan 2 0 97 97 57 2 8 129 129 63

tanh 5 6 55 55 54 6 8 73 73 74

Table 7.2: Results of scheduling math functions in simple loops for unrolling
factors 3 and 4

theoretical lower bound b for the schedule length calculated from the number
of instructions for each of the Cell SPU’s two execution units, the achieved
schedule length (in cycles) n and the number of registers r used by the sched-
ule.

As was to be expected, we can see that we are more likely to find a
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u = 1 u = 2
s m b n nm ∆ s m b n nm ∆

acos 3 2 28 54 54 0 3 4 55 63 64 1
acosh 3 2 23 44 44 0 3 4 45 50 51 1

asin 3 2 28 77 78 1 3 4 55 82 93 11
asinh 3 2 21 51 54 3 3 4 41 50 54 4
atanh 3 0 20 41 42 1 3 0 39 42 44 2

cbrt 3 2 21 26 31 5 3 4 41 44 44 0
cos 2 2 26 39 41 2 3 0 51 52 55 3

cosh 3 2 17 43 45 2 3 4 33 43 48 5
div 3 2 13 24 32 8 2 4 17 20 29 9
exp 2 2 15 31 31 0 3 4 23 31 39 8

log10 3 2 15 29 27 -2 3 4 25 26 30 4
log 3 2 15 29 27 -2 3 4 25 26 30 4

pow 3 2 23 48 53 5 3 4 45 51 57 6
qdrt 3 2 13 34 36 2 3 4 25 43 43 0
rcbrt 3 2 24 39 38 -1 3 4 47 55 55 0

rec 3 2 11 18 25 7 3 4 14 19 32 13
rqdrt 3 2 12 36 38 2 3 4 19 37 36 -1
rsqrt 3 2 11 21 22 1 2 4 14 23 24 1

sin 3 2 26 36 50 14 3 4 51 51 57 6
sincos 3 2 29 38 47 9 3 0 57 57 63 6

sinh 3 2 17 43 45 2 3 4 33 43 48 5
sqrt 3 2 11 24 26 2 3 4 14 20 28 8
tan 3 2 33 51 53 2 2 4 65 65 69 4

tanh 3 2 19 52 52 0 3 4 37 54 54 0

Table 7.3: Merge Scheduling vs. List Scheduling, unrolling factors 1 and 2

schedule close to the minimum bound at higher unrolling factors; we have good
schedules for u = 1 for a few of the functions (atanh, cos, sin, sincos); at u = 2,
we have reason to be happy with most of the schedules, and for u = 4, almost
all functions schedule within a few cycles of the theoretical lower bound b.

Merge scheduling, while having polynomial complexity in the size of
its input, is exponential in the number of stages; For the math functions
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u = 3 u = 4
s m b n nm ∆ s m b n nm ∆

acos 2 6 82 90 87 -3 3 0 109 112 116 4
acosh 3 6 67 69 69 0 2 0 89 91 94 3

asin 3 6 82 91 100 9 3 8 109 110 119 9
asinh 3 6 61 61 65 4 3 8 81 81 85 4
atanh 3 0 58 59 59 0 3 8 77 77 77 0

cbrt 2 6 61 61 64 3 2 8 81 81 83 2
cos 3 6 76 79 81 2 3 8 101 102 106 4

cosh 3 0 49 57 53 -4 2 8 65 66 69 3
div 3 6 21 23 29 6 2 0 23 24 34 10
exp 3 6 34 40 43 3 3 8 45 48 47 -1

log10 3 6 37 37 43 6 3 8 49 49 55 6
log 3 6 37 37 43 6 3 8 49 49 55 6

pow 3 6 67 67 71 4 3 8 89 90 90 0
qdrt 3 6 37 53 50 -3 2 8 49 59 65 6
rcbrt 2 6 70 76 74 -2 2 8 93 95 95 0

rec 2 6 17 19 21 2 3 8 20 21 33 12
rqdrt 3 6 28 37 48 11 3 8 37 44 53 9
rsqrt 2 6 17 23 24 1 2 0 21 24 27 3

sin 3 0 76 76 80 4 3 8 101 101 104 3
sincos 3 6 85 85 88 3 3 8 113 113 115 2

sinh 3 0 49 57 53 -4 2 8 65 66 69 3
sqrt 3 6 19 37 39 2 2 8 25 37 40 3
tan 2 0 97 97 100 3 3 0 129 129 129 0

tanh 3 6 55 59 58 -1 3 0 73 75 76 1

Table 7.4: Merge Scheduling vs. List Scheduling, unrolling factors 3 and 4

(especially for u > 1), this means that the execution time required for merge
scheduling becomes impractical when using more than three stages.

Tables 7.3 and 7.4 show how merge scheduling stacks up against plain
list scheduling after the pipelining transformation. This time, we limit the
maximum number of stages to use to three, in order to be able to compare
both algorithms at equal values of s ; keep in mind, however, that by using list
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scheduling directly, we can use higher values for s and thereby achieve better
schedules in many cases.

In addition to the columns we have seen in the earlier tables, these
tables show the schedule length nm achieved by merge scheduling and the dif-
ference ∆ = nm−n between the schedule lengths achieved by merge scheduling
and list scheduling. The tables do not show register usage.

The difference ∆ varies from −4 to 14; in most cases, the simpler al-
gorithm, list scheduling, is also the better one. In those cases where merge
scheduling delivers a better schedule, it does so by only a few cycles; it is con-
ceivable that minor adjustments to the priority function used in list scheduling
might allow list scheduling to catch up there, too.

If we take into account the high time complexity of merge scheduling,
we unfortunately have to conclude that merge scheduling is not suitable for
practical use.

7.2 Multiloop

We have developed one real-world algorithm that exploits the strengths of the
multiloop to the fullest. The algorithm was initially developed by Dr. Anand
and not only serves as a test case for the multiloop scheduler, but also served
as the original inspiration for the concept of a multiloop.

As part of a non-uniform fourier transform, we need to resample non-
uniform samples in three-dimensional space to a regular grid; more specifically,
we have samples along a trajectory through three-dimensional space, and we
need to convolve these samples with a gaussian kernel. It boils down to having
to add something to the entries near the position of the sample in the three-
dimensional grid, for every sample on the trajectory.

The distance between two successive samples is small, so that many of
the same grid positions will be affected by two consecutive samples; in fact,
it is guaranteed to be less than the size of a grid cell per dimension. We
therefore have a window of interest that moves by at most one grid cell in
every dimension for each sample in the input.

At 128 registers, the Cell SPU’s register file is large enough to accomo-
date a decently-sized window of 4× 4× 4 complex values, stored in 32 vector
registers.

The loop will, at each step, add the kernel to the current window (which
is in registers) and then, depending on the trajectory, move the window by
storing “old” values, shifting all values in the window, and loading “new”
values. The 33 = 27 different possible directions to move the window (including

54



M.Sc. Thesis – W. Thaller – McMaster – Computing and Software

the case of not moving at all) are each implemented as a case of the multiloop.
Things are further complicated by the fact that the Cell SPU only

supports vector-aligned loads and stores; we therefore need to round up the
size of the register window in the unaligned case; we keep the “unused” parts
of the unaligned window in 4× 4 additional registers. Adding the convolution
kernel to the register window works the same for both aligned and unaligned
windows; the extra registers are not modified. Moving the window, however,
needs to be done differently for the aligned and for the unaligned case. This
doubles the total number of different cases to 54.

Tables 7.5 and 7.6 show the results of scheduling the multiloop; for
each of the 54 cases, the table shows the lower bound b, the length n of the
schedule achieved by heuristic staging followed by list scheduling, the number
r of registers used, the length nm of the schedule achieved by heuristic staging
followed by merge scheduling, and the difference nm − n between the results
of the two scheduling strategies.

Merge scheduling is again outperformed on most cases, and it even
happens to deliver one of its worst results on case 53, which will be executed
most often, as it is the case where the register window does not move.

On the other hand, we see that by software pipelining the multiloop
using our heuristic staging algorithm, we can achieve close-to-optimal sched-
ules for most of the 54 cases of our code; we are confident that this level of
performance cannot be reached without using a software-pipelined multiloop.
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# b n r nm nm − n

0 151 151 110 151 0
1 151 156 92 159 3
2 151 152 110 151 -1
3 151 155 92 159 4
4 87 98 87 98 0
5 143 143 110 143 0
6 151 151 110 151 0
7 151 156 91 159 3
8 151 154 110 151 -3
9 151 156 92 159 3

10 87 104 88 103 -1
11 143 145 110 143 -2
12 139 141 108 139 -2
13 139 144 92 150 6
14 139 139 108 139 0
15 139 144 91 150 6
16 81 91 85 100 9
17 107 117 104 117 0
18 151 151 110 151 0
19 151 156 92 159 3
20 151 151 110 151 0
21 151 156 92 159 3
22 87 103 88 103 0
23 143 143 110 143 0
24 151 151 109 151 0
25 151 155 91 159 4
26 151 151 109 151 0

Table 7.5: Scheduling results for the 3D resampling multiloop, cases 0 through
26
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# b n r nm nm − n

27 151 155 92 159 4
28 87 101 87 102 1
29 143 143 110 143 0
30 139 139 107 139 0
31 139 144 90 150 6
32 139 139 107 139 0
33 139 144 91 150 6
34 81 91 83 100 9
35 107 117 102 117 0
36 139 139 109 139 0
37 139 144 92 151 7
38 139 139 108 139 0
39 139 144 91 151 7
40 80 97 88 101 4
41 107 115 110 115 0
42 139 139 108 139 0
43 139 144 92 151 7
44 139 139 107 139 0
45 139 144 92 151 7
46 80 99 87 99 0
47 107 120 108 114 -6
48 123 125 111 130 5
49 123 127 93 141 14
50 123 123 111 130 7
51 123 127 93 141 14
52 80 86 86 99 13
53 79 86 86 99 13

Table 7.6: Scheduling results for the 3D resampling multiloop, cases 27 through
53
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Chapter 8

Conclusions & Outlook

We have developed a new method of software pipelining that gives explicit
control about which stages operations are assigned to.

We have defined a way of describing loops that allows specifying arbi-
trary inter-iteration dataflow, allowing the user or earlier stages in the com-
pilation process to take better advantage of software pipelining. We have
formalised software pipelining as a transformation between such loop specifi-
cations.

Controlling stage assignment explicitly and avoiding the need for mod-
ulo variable expansion after scheduling allowed us to handle a special but very
useful case of control flow, the multiloop very efficiently. Even though several
design decisions were made specifically to support the multiloop, the algorithm
also performs well on a selection of simple loops.

As a future research direction, it should be investigated whether the
heuristics of decomposed software pipelining [WEJS94; GS94; CDR98], espe-
cially the circuit-retiming based approach given in [CDR98], can be adapted to
our framework. The algorithm of [CDR98] has a known efficiency bound, but
it does not currently have any provisions for pre-assigning stages (required for
the multiloop). Also, it does not limit the lifetime of values to λ, but instead
relies on modulo variable expansion to handle these long lifetimes, which again
precludes its use for scheduling multiloops.

In [KAC06], the concept of joins is discussed; the idea is to allow a node
in the codegraph to have multiple producers; the scheduler is then expected to
choose one alternative, based on which leads to the better code. This would
allow us to specify a loop like the one from figure 2.3 (section 2.5) without
having to decide on a value for the iteration distance x before scheduling;
instead, the loop specification would contain a join that tells the scheduler to
choose among several inputs with different d values.
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