
1 Introduction
“Principles of programming languages”

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 Preamble

1.1 Notable references

• Concepts of Programming Languages, Sebesta, 10th ed.

– Section 1.3 - Language Evaluation Criteria
– Section 5.4 - The Concept of Binding
– Section 5.5 - Scope

• Concepts, Techniques, and Models of Computer Programming

– Preface
– Section 2.1.1 - Language syntax

1.2 Update history

Sept. 12 • The description of the lifetime of stack dynamic variables
has been changed.

– From: “lifetime is the amount of runtime spent in that scope
or sub-scopes”.

– To: “lifetime is the portion of runtime between when the unit
of code containing the variable is entered and when control
returns to the invoker of the unit of code.”

1



1.3 Table of contents
• Welcome!

– Instructor: Mark Armstrong
– Teaching assistant: Musa Alhassy
– Teaching assistant: Maryam Kord

• About the notes and slides for this course

– Emacs
– Org mode
– Literate programming

• Purpose and goals of this course

– Informal objectives
– Course preconditions
– Course postconditions
– Formal rubric for the course

• Principles of programming languages

– A brief definition of “programming language”
– The two components of every programming language

∗ Implementation strategy: another component?
– Paradigms: classifying programming languages

∗ The commonly discussed paradigms
∗ A taxonomy of programming paradigms
∗ One language, many paradigms
∗ Exercise: On paradigms

– Subjective criteria for comparing and evaluating languages
∗ Readability
∗ Writability
∗ Reliability
∗ Cost

• Key concepts and terminology

– Compiled, interpreted, and hybrid approaches
∗ Compilation
∗ Interpreters
∗ Hybrid methods
∗ Exercise: Researching implementations

– Abstraction
∗ Levels of abstraction

– Static vs. dynamic
– Scope

2



∗ Exercise: On dynamic scoping
∗ Exercise: Entities which introduce scope

– Variables and memory
∗ The data segment, stack, and heap
∗ Kinds of memory allocation
∗ Exercise: Memory allocation in C++
∗ Lifetime
∗ Garbage collection

• Exercises

2 Welcome!
Welcome to the course!

2.1 Instructor: Mark Armstrong

• Email: armstmp “at” mcmaster.ca

• Website: http://www.cas.mcmaster.ca/~armstmp/

• Office: ITB-229

3

http://www.cas.mcmaster.ca/~armstmp/


2.2 Teaching assistant: Musa Alhassy

• Email: alhassm “at” mcmaster.ca

• Website: https://alhassy.github.io

• Office: ITB-229

2.3 Teaching assistant: Maryam Kord

• Email: kordm “at” mcmaster.ca

3 About the notes and slides for this course
• The notes/slides for this course are developed in Emacs using Org

mode.

– Along with almost everything else for the course!

• Specifically,

– the slides are created by exporting the Org files to HTML using
the org-reveal package, and

– the document style pdf’s are created by exporting the Org files
to LATEX.

4

https://alhassy.github.io
https://github.com/yjwen/org-reveal


• The slides are laid out in two dimensions.

– When viewing them in your browser, press ? to see a help page
describing the possible interactions.

– Most importantly, press esc or o to see an overview of the slide
deck.

3.1 Emacs

Emacs is

An extensible, customizable, free/libre text editor — and more.
At its core is an interpreter for Emacs Lisp, a dialect of the Lisp
programming language with extensions to support text editing.
— GNU Emacs homepage

• The learning curve is fairly steep compared to most similar tools, but:

– Distributions (configurations) such as Spacemacs and doom-emacs
optionally ease the learning curve.

– As the longest lived extensible text editor, Emacs has an unri-
valed ecosystem of extensions.

– Emacs is best configured by writing code, a natural exercise of
your talents.

• Especially if you have not settled on an editor for general use, check
out Emacs!

3.2 Org mode

Even if you do not use Emacs, I recommend checking out Org mode.

Org mode is for keeping notes, maintaining TODO lists, plan-
ning projects, and authoring documents with a fast and effective
plain-text system.
— Org mode homepage

While Org mode is used in plain-text documents, it supports exporting
to various formats, including pdf’s (through LATEX), html, and odt, all “out
of the box”!

• Write once, export many.

Packages for Org mode are available for both VSCode and Atom.

5

https://www.gnu.org/software/emacs/emacs.html
http://spacemacs.org/
https://github.com/hlissner/doom-emacs
https://orgmode.org/


3.3 Literate programming

Org mode is especially useful in that it provides support for literate pro-
gramming.

Let us change our traditional attitude to the construction of
programs: Instead of imagining that our main task is to instruct
a computer what to do, let us concentrate rather on explaining
to human beings what we want a computer to do.
— Donald E. Knuth, “Literate Programming”

Regardless of the tools you choose to use, in this course it will be expected
that you follow this philosphy.

• The purpose of your programs here is to explain to the course staff
what you want the computer to do.

That is, documentation is not optional, and not to be an afterthought.

4 Purpose and goals of this course
The undergraduate calendar description of this course is

Design space of programming languages; abstraction and modu-
larization concepts and mechanisms; programming in non-procedural
(functional and logic) paradigms; introduction to programming
language semantics.

But we should be more specific.

4.1 Informal objectives

• Expose you to several programming languages.

– A relatively shallow but comprehensive survey.
– Focussing on general-purpose languages.

• Formally describe programming language syntax and semantics.

– An application of theory you have learned previously.

• Analyse the building blocks of languages.

6

http://www.literateprogramming.com/


– Programs can be massive entities, but they are composed of rel-
atively few small pieces.

• Provide you with criteria by which to judge languages.

– So you can identify what languages fit what tasks.

• Examine the origins of certain languages/groups of languages.

– Historical context provides insight into why languages are de-
signed the way they are.

4.2 Course preconditions

Before beginning this course:

1. Students should know and understand:

(a) Basic concepts about integers, sets, functions, & relations.
(b) Induction and recursion.
(c) First order logic, axiomatic theories & simple proof techniques.
(d) Regular expressions & context-free grammars.
(e) Programming in imperative language
(f) Basic concepts of functional programming languages.

2. Students should be able to:

(a) Produce proofs involving quantifiers and/or induction.
(b) Understand the meaning of a given axiomatic theory.
(c) Construct regular sets & context-free languages.
(d) Produce small to medium scale programs in imperative languages.
(e) Produce small scale programs in functional languages.

4.3 Course postconditions

After completion of this course:

1. Students should know and understand:

(a) The basics of several programming languages.

7



(b) Formal definitions of syntax & semantics for various simple pro-
gramming languages.

(c) Various abstraction & modularisation techniques employed in
programming languages.

2. Students should be able to:

(a) Reason about the design space of programming languages, in par-
ticular tradeoffs & design issues.

(b) Produce formal descriptions of syntax & semantics from informal
descriptions, identifying ambiguities.

(c) Select appropriate abstraction & modularisation techniques for a
given problem.

(d) Produce (relatively simple) programs in various languages, in-
cluding languages from non-procedural paradigms.

8



4.4 Formal rubric for the course
Topic Below Marginal Meets Exceeds
Familiarity Shows some Shows Achieves Achieves
with various competence competence competence competence
programming in in with the with
languages procedural procedural basic intermediate
(PLs) languages, languages usage of usage of

but not and limited various various
languages competence languages languages
from other in
paradigms languages

from other
paradigms

Ability to Cannot Identifies Identifies Identifies
identify and consistently such such sucj
make use of identify constructs, constructs constructs
abstraction, such but does not and shows and shows
modularisation constructs consistently some ability mastery of
constructs make use of to make use them when

them when of them when programming
programming programming

Ability to Unable or Comprehends Makes only Consistently
comprehend and rarely given minor fully
produce formal able to grammars, errors understands
descriptions comprehend but regarding given
of PL syntax given produces precedence grammars and

grammars; grammars or produces
does not which are ambiguity correct
identify ambiguous when grammars.
ambiguity or which do reading or
or not producing
precedence correctly grammars
rules specify

precedence
Ability to Rarely or Usually Comprehends Comprehends
comprehend and never comprehends such such
produce comprehends such semantic semantic semantic
operational such descriptions, descriptions descriptions
semantics for semantic but cannot and produces and produces
simple PLs descriptions consistently them with them without

produce them only minor errors
errors

Ability to Rarely or Inconsistently Consistently Consistently
comprehend never comprehends comprehends comprehends
denotational comprehends such semantic such and can
and axiomatic such descriptions semantic produce some
semantics for semantic descriptions simple
simple PLs descriptions semantic

descriptions

9



5 Principles of programming languages
Before we begin in earnest, let us set the stage by answering some basic
questions.

• What are “programming languages”?

• What are their components?

• How can we compare, group or classify them?

5.1 A brief definition of “programming language”

• A finite, formal language for describing (potentially) infinite processes.

– Usually the language is actually quite small!
∗ A CFG for all of C has only 91 nonterminals (as constructed

in the C11 international standard, appendix 2).
∗ We will construct simple languages with far less than 100

productions.
– Formality is required because we want our programs to be run

on machines.
∗ Machines fair poorly with informal language.

– Considering just the set of commands executable by the proces-
sor, modern computers are fairly simple machines.

5.2 The two components of every programming language

Languages can be distinguished by two components:

• Syntax: the rules for the form of legal programs.

• Semantics: the rules for the meaning of legal programs.

Colourless green ideas sleep furiously.

Change either, and you have a different language.

10

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf


5.2.1 Implementation strategy: another component?

Sometimes implementation strategy is also considered a component of a pro-
gramming language.

• i.e., whether it is compiled or interpreted.

We do not take this view.

• Implementation strategy is external to the language.

• A language may have many compilers, interpreters, runtime environ-
ments, etc.

5.3 Paradigms: classifying programming languages

Classifications of programming languages based on what kind of abstractions
they (natively) support.

• One language may support many paradigms.

• It is often possible to write programs following a paradigm the lan-
guage does not natively support.

– For instance, following object oriented principles when writing C
code.

– Native support is important!
∗ It frees the programmer from having to “hold” the abstrac-

tion in their own mind.
∗ We will see time and time again that well designed languages

save the programmer work and mental effort!

• Supported abstractions should be orthogonal; separate from each other,
but able to be combined in sensible, predictable ways.

– Ideally there is a hierarchy of abstractions.

5.3.1 The commonly discussed paradigms

It is common to consider only a small number of paradigms, usually in this
hierachy.

Imperative/Procedural Declarative
Object-oriented Non-Object Oriented Functional Logic

But this is far from a complete picture!

11



5.3.2 A taxonomy of programming paradigms

— Van Roy, P. “Programming Paradigms for Dummies: What
Every Programmer Should Know”

5.3.3 One language, many paradigms

Different paradigms lend themselves to different tasks, so it is beneficial for
a language to support more than one.

But then, “More is not better (or worse), just different”!

All computation models have their place. It is not true that
models with more concepts are better or worse. This is because
a new concept is like a two-edged sword. Adding a concept to
a computation model introduces new forms of expression, mak-
ing some programs simpler, but it also makes reasoning about
programs harder.

12



For example, adding mutable variables to functional languages enables object-oriented
programming techniques.
But reasoning in the presence of mutable variables is notoriously difficult!

5.3.4 Exercise: On paradigms

Pick a language you are familiar with, and research what paradigms it sup-
ports. (Don’t expect to find a definite yes/no answer for every paradigm
from Van Roy’s taxonomy).

Then try to determine paradigms which are not natively supported, but
are still feasible to follow when coding.

5.4 Subjective criteria for comparing and evaluating languages

We can use a mixture of objective and subjective criteria to compare and
evaluate languages we discuss.

We use four main subjective criteria. Note there is overlap!

• Readability

• Writability

• Reliability

• Cost

5.4.1 Readability

• How easily can code be interpreted by humans?

– How much “noise” is there?

• How easily can errors be detected by visual inspection?

• How many constructs must the reader be familiar with?

• How many ways can constructs be combined?

– Do the combinations behave in predicatable ways?

The last two points deal with orthogonality.

13



Orthogonality in a programming language means that a rela-
tively small set of primitive constructs can be combined in a
relatively small number of ways to build the control and data
structures of the language.
— Concepts of Programming Languages 10th ed.

5.4.2 Writability

• How easily can humans create code?

• How many abstractions are supported?

– How easily can abstract ideas be captured in the language?
– Of course this depends upon how well the idea fits the paradigm!

• How much syntactic sugar is available?

– Syntactic sugar is syntax which does not add constructs/fea-
tures, only (presumably simpler) ways to express existing con-
structs/features.

For instance, the actor model of concurrency naturally fits in an object oriented language,
but may not fit as well in a functional language.
But the functional reactive model of concurrency will fit better in the functional
paradigm.

5.4.3 Reliability

• To what extent is syntactically valid code guaranteed to be valid?

– What types of errors are caught before runtime?

• What tools are provided to the programmer for recovering from errors
that do occur?

• Are “unsafe” features included in the language?

• What tools are provided/available to the programmer for specifying
and verifying code?

– Formal specification involves using mathematical language to de-
scribe the meaning of programs.

14



∗ Axiomatic semantics.
∗ Sometimes, automated tools can check code meets formal

specifications.
∗ See CS3EA3: Software Specifications and Correctness.

5.4.4 Cost

• How much work is involved in

– Training programmers in a language?
– Writing new code?

∗ Writability!
– Maintaining a code base?

∗ Readability and reliability!

• Are good programming tools/environments available? Do they have a
cost?

• How efficient are compilers for the language (if code is to be compiled)?

• How efficient is compiled code (or the interpreter, if the code is to be
interpreted).

– What optimisation options are availble for compiled code?

There is a tradeoff between efficiency of the compiler and the amount it optimises code.

• For ease of development, you want quick compilation, and can sacrifice efficiency
of the compiled code.

• For a good end product, you want efficient compiled code, even if compilation
takes longer.

6 Key concepts and terminology
Following are some key concepts and terms which

• we will either see repeatedly throughout the course, or

• which we should clarify before we move on.

(Some of this information simply won’t have a better place to go).

15



6.1 Compiled, interpreted, and hybrid approaches

Languages exist in a hierarchy.
• We are focused on the “upper portion” of the hierarchy.

– High-level languages!
– We may use the term low-level for some languages, C in particu-

lar, but this is relative.
∗ C is much higher level than assembly!

• We need to translate into machine code to run our programs.

– Compilation, interpretation and “hybrid approaches” are strate-
gies for doing this.

6.1.1 Compilation

Translate the whole program (and any libraries or other code resources
needed) ahead of running it.

• High upfront cost (time), for increased efficiency at runtime

• Not portable; machine code is machine dependent.

6.1.2 Interpreters

Translate the program as we are running it.
• No upfront cost, but less efficient.

• Portable; can be run on any machine with an interpreter.

– Alleviates some of the programmer’s responsibility.
∗ One user (or group) writes the interpreter once (per machine

type); it can be used by any number of users for any number
programs.

• Efficiency is improved by using just-in-time compilation.

– Store the result of interpretation so it can be used again.

• Can achieve better error reporting.

– Relationship between original and translated codes is known at
runtime.

– This relationship is discarded when compiling code.

16



6.1.3 Hybrid methods

Compile into an intermediate language, which is then translated into assem-
bly.

• This intermediate language is usually similar to assembly.

– But targets a virtual machine, not actual hardware!

• Usually called bytecode.

• Greatly offsets efficiency cost of interpretation.

• More portable than compiled code; just need a bytecode interpreter
for each target machine.

6.1.4 Exercise: Researching implementations

Research for yourself what implementations are available for languages you
are familiar with.

Consider:

• Can you find different approaches (compiler, interpreter, hybrid) for
the language?

• Is one approach “the norm” or “preferred” for the language?

• What is the availability for each implementation?

– Who maintains them?
– Are they open source?

6.2 Abstraction

The concept of an abstraction is central to programming languages.

We define an abstraction loosely as a tool or device that solves
a particular problem.
— Concepts, Techniques, and Models of Computer Programming

Briefly, abstraction means the ability to define and then use com-
plicated structures or operations in ways that allow many of the
details to be ignored.
— Concepts of Programming Languages 10th ed.

17



6.2.1 Levels of abstraction
Highly abstract
(User knows fewer details)
A writing instrument
↓
A pencil
↓
A mechanical pencil
↓
This pencil
Highly concrete
(User knows all details)

Language A is “higher-level” than language B if it allows you to work at
a higher level of abstraction than language B.

For instance, C++ and C# are higher-level than C, because as a modularisation con-
struct, classes hide more implementation details than the C alternative of defining structs
and procedures using them.
(Pure) functional languages are higher-level than imperative languages, because the user
need not be aware of the state of memory.
Logic lanauges are even higher-level than functional languages, because the programmer
does not concern themselves with the algorithm, only the problem description.

6.3 Static vs. dynamic

We will see these terms in particular applied to many concepts.

• Static: set before runtime; fixed throughout the runtime.

– Sometimes the phrase “compile time” is used.
– But “static” may also mean “load time”.

∗ I.e., the time at which the program is loaded into memory.
– And if we are using an interpreter, there is no “compile time”!

• Dynamic: set during runtime; (potentially) changes throughout run-
time.

18



6.4 Scope

The scope of an entity is the portion of the program in which it is “visible”.

• Usually scope is statically determined.

– So the scope of entities can be determined by reading the code.
– With dynamic scoping, the scope of entities depends upon the

“execution trace”, i.e., the “path” through the program.
– Dynamic scoping is definitely the exception.

∗ The detriments strongly outweigh the benefits.

A scope is a portion of the program to which the visibility of entities
may be limited.

• Design decision: what constructs introduce scopes?

– Almost certainly subroutines do.
– Do conditional branches? Loop bodies?

6.4.1 Exercise: On dynamic scoping

• Historically, Lisps (languages directly descended from Lisp) were dy-
namically scoped.

• Presently, the only widely used Lisp which uses dynamic scoping by
default is Emacs Lisp (eLisp).

Try out this snippet of Emacs lisp code, either in Emacs or using an
online REPL.

(let ((x 2) (y 5)) ; "global" variables x and y
(progn
(defun mult-x-y ()

(* x y)) ; returns x * y

(defun A ()
(let ((x 3)) ; local variable x
(mult-x-y)))

(defun B ()
(let ((y 10)) ; local variable y

19

https://repl.it/languages/elisp


(A)))

(message "mult-x-y returns %d, A returns %d and B returns %d"
(mult-x-y) (A) (B))))

1. Ensure you understand the results.

2. Using this understanding, formulate some advantages and disadvan-
tages of dynamic scoping.

6.4.2 Exercise: Entities which introduce scope

In a few different programming languages, investigate whether condition
branches and loop bodies introduce scopes.

I.e., test out code such as

if B then
int x = 0

endif

y = x % Is x still in scope?

Specifically, investigate languages which have iterating loops, (usually
called for loops). What is the scope of an iterator for such loops?

6.5 Variables and memory

• A variable is an abstraction of a memory cell.

– Come in many forms.
– Typically we use variable to mean a named, mutable cell of mem-

ory.
– When possible, we use more specific words.

∗ Argument, parameter, constant, reference, etc.
– Or qualify the word variable.

6.5.1 The data segment, stack, and heap

In the context of running a program (or a thread of a program):

• The data segment is a portion of memory used to store the program
itself and static/global variables.

20



• The stack is an organised portion of memory allocated for the program.

– Blocks at the “top” of the stack are reserved when entering units
of code.

∗ Units of code include subroutines and/or unnamed blocks,
depending upon the language.

– They are popped off the stack when leaving the unit of code.

• The heap is an unorganised portion of memory allocated for the pro-
gram.

– Allocation/deallocation may be independent of units of code.
– Disorganisation can lead to inefficiency and other problems.

∗ Cache misses, page faults, etc.
∗ Running out of memory or appropriately sized continguous

blocks.
∗ Garbage, dangling references, etc.

6.5.2 Kinds of memory allocation

We can distinguish four kinds of memory allocation.

• Static

– Allocation is done before runtime (static), in the data segment.
∗ At load time, when the program is loaded into memory. (Not

compile time).

• Stack dynamic

– Allocation is dynamic, automatic, and on the stack.
– Amount of memory needed must be known when entering their

scope.
– This is “the usual method” in most imperative languages.

• Implicit heap dynamic

– Allocation is dynamic, automatic, and on the heap.
– Memory is simply allocated when the variable is assigned; the

programmer does not need to “do anything”.

21



• Explicit heap dynamic

– Allocation is dynamic, manual, and on the heap.
– The programmer must use a command to allocate memory before

assignments can be made.
∗ E.g., malloc or new.

– In fact these blocks of memory can be considered nameless vari-
ables; we need other, reference variables to point to their address.

6.5.3 Exercise: Memory allocation in C++

Investigate:

• Which of the five kinds of memory allocation are available in C++.

• How each kind of memory allocation is denoted.

6.5.4 Lifetime

The lifetime of a variable is the portion of the runtime (not the code) during
which it has memory allocated for it.

• There may be several instances of a single variable in the code, each
with its own lifetime.

• The lifetime of a variable depends upon the memory allocation strategy
used for it.

– Static: lifetime is the whole of runtime.
– Stack dynamic: lifetime is the portion of runtime between when

the unit of code containing the variable is entered and when con-
trol returns to the invoker of the unit of code.

∗ In the case of functions/procedures, local variables end their
lifetime when the function/procedure returns.

∗ Note that a variable go out of scope, but still be alive.
– Implicit heap-dynamic: lifetime begins when assigned. The end

of lifetime depends upon garbage collection.
– Explicit heap-dynamic: lifetime begins when the allocation com-

mand is used. The end of lifetime may be
∗ when the programmer issues a deallocation command, or
∗ depend upon garbage collection.

22



6.5.5 Garbage collection

Definition 6.1. Garbage: allocated memory which is no longer accessible.

Definition 6.2. Garbage collection: deallocating garbage.

• A complex activity.

– We will discuss the basics here, and then likely not touch on it
again.

– Has a large influence on the efficiency of compiled/interpreted
code.

• Two main categories of garbage collection algorithms.

– Tracing
∗ Which includes the “mark & sweep” algorithm.

– Reference counting

• Additionally, language implementations may include compile time “es-
cape analysis”.

– Memory may be allocated off the stack instead of the heap if
no references to the variable are available outside its scope (if it
doesn’t “escape”).

• Tracing

– Usually triggered when a certain memory threshold is reached.
– Starting from some set of base references (usually those in the

stack and data segment), “trace” references, somehow marking
those that are reachable.

∗ Starting from the set of base references, “determine the tran-
sitive closure of reachability”.

– Once done, free memory that is not marked.
– “Naive” mark & sweep:

∗ Each object in memory has a bitflag for this “marking”, kept
clear except during garbage collection.

∗ When activated, traverse all reachable memory, “marking”
what’s reached, then “sweep” away all unmarked memory
(and reset the flags of marked memory).

23



· Have to pause the program to do this.
· Better methods do not require pausing.

• Reference counting

– An “eager” approach.
– As the program runs, keep a count of the number of references

to every object in memory.
∗ Must be constantly monitoring!

– When the number of references reaches zero, can free the memory
for that object.

– Have to account for cycles!
∗ Which increases the overhead.

7 Exercises
• On paradigms

• Researching implementations

• On dynamic scoping

• Entities which introduce scope

• Memory allocation in C++

24


	Preamble
	Notable references
	Update history
	Table of contents

	Welcome!
	Instructor: Mark Armstrong
	Teaching assistant: Musa Alhassy
	Teaching assistant: Maryam Kord

	About the notes and slides for this course
	Emacs
	Org mode
	Literate programming

	Purpose and goals of this course
	Informal objectives
	Course preconditions
	Course postconditions
	Formal rubric for the course

	Principles of programming languages
	A brief definition of â•œprogramming languageâ•š
	The two components of every programming language
	Implementation strategy: another component?

	Paradigms: classifying programming languages
	The commonly discussed paradigms
	A taxonomy of programming paradigms
	One language, many paradigms
	Exercise: On paradigms

	Subjective criteria for comparing and evaluating languages
	Readability
	Writability
	Reliability
	Cost


	Key concepts and terminology
	Compiled, interpreted, and hybrid approaches
	Compilation
	Interpreters
	Hybrid methods
	Exercise: Researching implementations

	Abstraction
	Levels of abstraction

	Static vs. dynamic
	Scope
	Exercise: On dynamic scoping
	Exercise: Entities which introduce scope

	Variables and memory
	The data segment, stack, and heap
	Kinds of memory allocation
	Exercise: Memory allocation in C++
	Lifetime
	Garbage collection


	Exercises

