
3 – Two Language Kernels
while and sa-decl

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 Preamble

1.1 Notable references

• Concepts, Techniques, and Models of Computer Programming, Van
Roy & Haridi

– Chapter 2 – Declarative Computation Model
∗ Section 2.2 – The single-assignment store

• Principles of Programming Languages, Dowek

– Chapter 1 – Imperative Core
∗ Section 1.3.1 – The Concept of a State
∗ Section 1.3.2 – Decomposition of the State
∗ Section 1.3.3 – A Visual Representation of a State

1.2 Update history

Sept. 25 • Original version (part a) posted

1.3 Table of contents
• Preamble

– Notable references
– Update history
– Table of contents

• Language kernels

– A meta-note about exams

1

– Justifying the kernel
– Extending the kernel

• A common set of expressions – Expr0

– Why subscript zero?

• The memory models

– Assignment vs Binding, Identifier vs Variable
– States, environments
– Explicit state without reference types

∗ Visualisation of explicit state without reference types
– Explicit state with reference types

∗ Visualisation of explicit state with reference types
– Single-assignment store

∗ Visualisation of single assignment store

• The imperative “core” – While

– Adding reference types
– A first language based on while

∗ The shortcomings of While0

– The While language
– Embedding While

∗ Embedding While into Ruby – Expressions
∗ Embedding While into Ruby – Statements
∗ Embedding While into Ruby – Example

• A declarative model – SA-Decl

• Where do we go from here?

2 Language kernels
In this approach, a practical language is translated into a ker-
nel language that consists of a small number of programmer-
significant elements. The rich set of abstractions and syntax
is encoded into the small kernel language. This gives both pro-
grammer and student a clear insight into what the language does.
— Concepts, Techniques, and Models of Computer Programming

2

2.1 A meta-note about exams

Some of these kernel languages will be proper subsets of the languages we
use in the course (especially Oz), but some will be theoretical languages.

In midterms and exams, you will generally not be expected to have
memorised the syntax of such theoretical languages.

In fact (unless it is announced otherwise before the tests), in questions
regarding these languages we will provide you (the relevant portions of) the
CFG defining the language syntax.

2.2 Justifying the kernel

For a kernel language to be “useful”, we must convince ourselves that it
includes

• enough abstractions to be practical, but

• not so many that it becomes difficult to reason about.

Almost any general purpose language serves as an example that violates
the second condition.

An example of a language which violates the first is the “Goto” language.
In this language,

• the only type is ℕ (the natural numbers),

• the only control structure is a conditional jump, and

• the only way to modify variables is to increment or decrement them
by 1.

⟨stmt⟩ ∷= [label] ⟨command⟩
| ⟨stmt⟩ ; ⟨stmt⟩

⟨command⟩ ∷= skip
| var ++
| var --
| if-zero var goto label

This language is useful for studying computability, but not so much for
studying language design.

3

2.3 Extending the kernel

There are two ways we will extend our kernel languages:

• syntactic sugar, and

• linguistic abstractions.

Syntactic sugar

• is a shortcut notation that can be translated into the kernel language.

• For example, omitting keywords or rearranging expressions.

– Such as the prefix control structures in Ruby.

Whereas a linguistic abstraction

• is a new abstraction which can be translated into the kernel language.

– Remember than an abstraction is a tool or device that solves a
particular problem.

• For example, adding functions to a language with only procedures, or
for loops to a language with only while loops.

3 A common set of expressions – Expr0

For simplicity’s sake, we will (for the moment) restrict our attention to
languages with

• only integer and boolean expressions,

• only integer and reference variables,

and we will not assume any type checking.
The abstract syntax of these expressions is given by the grammar

⟨expr⟩ ∷= ⟨bexpr⟩ | ⟨iexpr⟩
⟨bexpr⟩ ∷= true | false

| ⟨expr⟩ == ⟨expr⟩ | ⟨expr⟩ \= ⟨expr⟩
| ⟨expr⟩ =< ⟨expr⟩ | ⟨expr⟩ < ⟨expr⟩
| ⟨expr⟩ >= ⟨expr⟩ | ⟨expr⟩ > ⟨expr⟩

⟨iexpr⟩ ∷= number | var
| ⟨iexpr⟩ + ⟨iexpr⟩ | ⟨iexpr⟩ - ⟨iexpr⟩
| ⟨iexpr⟩ * ⟨iexpr⟩ | ⟨iexpr⟩ div ⟨iexpr⟩ | ⟨iexpr⟩ mod ⟨iexpr⟩

4

3.1 Why subscript zero?

We will later introduce more basic types than just integer and boolean (as
well as discussing type checking).

So we call this simple language of expressions Expr0.

4 The memory models
We are going to define two kernel languages; one imperative, and one declar-
ative.

Before we get to the statements of the languages, we need to explain the
memory model underlying each.

• The languages are built specifically for their memory models.

We will call these two memory models:

• Explicit state (with reference types).

– The memory model that applies to most imperative languages.
– So, likely what you are familiar with.

• Single-assignment store.

– A memory model suitable for declarative languages.
– Particularly useful for its simple support of concurrency.

We begin though by discussing a simpler model, which we call explicit
state without reference types.

4.1 Assignment vs Binding, Identifier vs Variable

A binding

• is an association between a variable and some entity.

– For instance, a value, or an address/memory reference.

• Generally, we use the term binding to mean a permanent binding; once
created, such a binding never changes.

• We instead use assignment to refer to non-permanant bindings.

5

In the simplest memory models, values are simply assigned to variables;
memory is a mapping between variable names and values.

In general, things are more complex, and it is useful to distinguish the
terms

• identifier to refer to the names of variables as they appear in the
program source, and

• variable to refer to the abstract notion of a cell of memory.

4.2 States, environments

We will generally denote the contents of memory using the symbols σ (sigma)
and (tau), possibly with subscripts (σ1, 2, etc.) or primes (σ', ''', etc.).

We use notation similar to substitution to update memory states.

• σ[x ≔ v] is read as σ with x updated to be v.

We will also need to discuss an environment for variables and proce-
dures/functions; we will use Σ (Sigma), adorned with subscripts or primes,
to denote environments.

4.3 Explicit state without reference types

In the explicit state without reference types model, we can view

• state as a mapping from identifiers to values.

So a state σ is a mapping between identifiers and values.

• σ : Identifier → Value

This is a nice, simple mental model.

• But it is too simple; most imperative languages include a reference
type abstraction that cannot be represented by this model.

6

4.3.1 Visualisation of explicit state without reference types

If σ is this state, the update σ[x ≔ v] changes the arrow coming from
x to instead point to value v.

4.4 Explicit state with reference types

When we add the concept of references or addresses to our memory model,
we must update our notion of state; we now view

• state as a mapping from references to values.

– Rather than from identifiers to values.

• We then need an environment to map identifiers to references.

The addition of references to our model provides the abstractions

• constants, as identifiers mapped to directly to values,

• reference type variables, as identifiers mapped to a reference which
maps to a reference.

7

4.4.1 Visualisation of explicit state with reference types

In this memory configuration, x is a constant, y is a (simple) variable, and
z is a reference variable.

Assignment changes the arrows leaving references; the arrows leaving
identifiers are fixed.

So if this state is σ, σ[r1 ≔ v] would be a new state where r1 points
to v instead of 5.

4.5 Single-assignment store

In a single-assignment store, variables can be bound to values at most once.

• Once (totally) bound, a variable is indistinguishable from the value it
is bound to.

We consider a single-assignment store model which allows partial bind-
ings.

• A value can involve variables.

– In which case we call it a partial value.
– If a value is just a variable, we call the binding a variable-variable

binding.

• The variables in a value may be bound later.

– A variable bound to a partial value is called partially bound.
– As opposed to a totally bound variable.

8

4.5.1 Visualisation of single assignment store

In this memory configuration,

• variable x is (totally) bound to the value 5,

• variable y is (partially) bound to the value 2 + z,

• variable z and z' are bound together, but neither is bound to a value.

5 The imperative “core” – While

The basic operation in imperative languages is the assignment. To make a
Turing-complete language, we additionally need sequencing and some control
structures.

• For Turing completeness, a conditional statement and a potentially
infinite loop statement are sufficient.

– A conditional and a jump (goto) are simpler (and less restrictive),
but jumps are hard to reason about.

– We instead prefer a conditional and a while loop.

9

5.1 Adding reference types

As mentioned, most imperative languages include some ability to work with
references to memory.

• Even if explicit referencing and dereferencing is rare, we often need to
reason about references to implement parts of the language, such as
with

– pass by reference parameter passing, or
– non-copying assignment.

To introduce reference types to our language, we extend Expr0 to Expr0’,
adding

• expressions for referencing and dereferencing variables, and

• variables of reference type.

⟨expr⟩ ∷= ⟨rexpr⟩
⟨rexpr⟩ ∷= & var | var
⟨expr⟩ ∷= ! var

• The & operation obtains the reference to a variable.

• The ! operation dereferences a reference variable, returning the value
stored at the reference.

– If the given var is not of reference type, this results in a type
error.

∗ For the moment, we do not handle type errors.
– In many languages, the dereferencing operator is *.

5.2 A first language based on while

So let us define a kernel for imperative languages based on the while loop
and an if-then-else. We’ll call this language While0.

⟨stmt⟩ ∷=
skip

| var ≔ ⟨expr⟩
| ⟨stmt⟩ ⟨stmt⟩
| if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexpr⟩ do ⟨stmt⟩

10

Note that:

• Sometimes ; is used to sequence instructions, but this is abstract syn-
tax, so we omit it.

– Similarly, we do not require an end marker for the body of if’s
and while loops.

– We could omit the then, else and do keywords, but choose to
keep them for clarity.

• To emphasise that assignment is not equality, we will write it using
the symbol ≔ rather than =.

5.2.1 The shortcomings of While0

While0 is a sufficient language in many ways, but it is missing (at least) two
key abstractions.

Subroutines • Whether they take the form of functions, procedures or
a hybrid of the two, subroutines are a highly valuable abstraction.

– But we can encode them in While0 by “inlining”.

Scope and lifetime • While0 provides no means to declare variables.
– Every variable’s lifetime is the whole of the runtime.
– Every variable’s scope is the whole of the program.

Since we can encode subroutines as a linguistic abstraction, we do not
address the first shortcoming, at least for the moment.

However, to make the kernel language useful, we must address the second
shortcoming.

5.3 The While language

Most [imperative] programming languages have, among others,
five constructs: assignment, variable declaration, sequence, test
and loop. These constructs form the imperative core of the lan-
guage.
— Principles of Programming Languages (Dowek)

We add the “do nothing” command skip to this list of constructs to
obtain our language While.

11

⟨stmt⟩ ∷=
skip

| local var in ⟨stmt⟩
| var ≔ ⟨expr⟩
| ⟨stmt⟩ ⟨stmt⟩
| if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexpr⟩ do ⟨stmt⟩

5.4 Embedding While

In the kernel language approach,

• there is an implicit assumption that the kernel language is a proper
subset of the full programming language.

The syntax of While we have given

• is not a proper subset of the syntax of any full programming language

– (that I am aware of).
– (To some extent, this is because we have given only abstract

syntax).

• But, it is close to several,

– and we should be able to embed While programs into a any full
imperative programming language.

∗ This embedding may not always preserve meaning, though;
sometimes the languages don’t fully support the abstractions
we have in While.
· Functionally, this means that if we later show transla-

tions from practical languages to While, embedding and
translation may not be inverses of each other.

For interest, let us investigate this embedding with a language we are
familiar with:

• Ruby

12

5.4.1 Embedding While into Ruby – Expressions

Starting with expressions,
• all integer and boolean expressions are easily translated into Ruby.

• The refencing operation, &, we embed as the method object_id.

– & x ≈ x.object_id

• The referencing operation, !, we embed as the function ObjectSpace._id2ref.

– ! x ≈ ObjectSpace._id2ref(x)

5.4.2 Embedding While into Ruby – Statements

Considering each type of statement of While:
skip • We simply remove all instances of skip.

local var in ⟨stmt⟩ • We embed local variable declaration as the state-
ment var = nil; s where s is the embedding of the sub-statement.

var = expr • We embed assignment as is.

⟨stmt⟩ ⟨stmt⟩ • We place a semicolon between the embedding of the
statements.

if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩ • We add the keyword end after
the second statement.

while ⟨bexpr⟩ do ⟨stmt⟩ • We add the keyword end after the state-
ment.

5.4.3 Embedding While into Ruby – Example

By our embedding, the While program
local x in
local y in
x = 5
y = ! & x
while y > 0 do

y = y - 1

is embedded as
x = nil ; y = nil ; x = 5 ; y = ObjectSpace._id2ref(x.object_id) ;
while y > 0 do y = y - 1 end

13

6 A declarative model – SA-Decl
The second kernel language we consider

• is a proper subset of Oz, and

• contains 8 kinds of statements.

⟨stmt⟩ ∷=
skip // Empty statement

| ⟨stmt⟩ ⟨stmt⟩ // Sequence
| local ⟨var⟩ in ⟨stmt⟩ end // Variable creation
| ⟨var⟩ = ⟨var⟩ // Binding
| ⟨var⟩ = ⟨value⟩ // Value creation
| if ⟨var⟩ then ⟨stmt⟩ else ⟨stmt⟩ end // Conditional
| case ⟨var⟩ of ⟨pattern⟩ then ⟨s⟩ else ⟨s⟩ end // Pattern match
| `{` {⟨var⟩}+ `}` // Procedure application

7 Where do we go from here?
We will continue working with these kernel languages, beginning by

• providing linguistic abstraction translations for common language fea-
tures, and

• extending the languages with types.

We will also

• define operational semantics for these languages.

14

	Preamble
	Notable references
	Update history
	Table of contents

	Language kernels
	A meta-note about exams
	Justifying the kernel
	Extending the kernel

	A common set of expressions â•ﬁ Exprâ‡•
	Why subscript zero?

	The memory models
	Assignment vs Binding, Identifier vs Variable
	States, environments
	Explicit state without reference types
	Visualisation of explicit state without reference types

	Explicit state with reference types
	Visualisation of explicit state with reference types

	Single-assignment store
	Visualisation of single assignment store

	The imperative â•œcoreâ•š â•ﬁ While
	Adding reference types
	A first language based on while
	The shortcomings of Whileâ‡•

	The While language
	Embedding While
	Embedding While into Ruby â•ﬁ Expressions
	Embedding While into Ruby â•ﬁ Statements
	Embedding While into Ruby â•ﬁ Example

	A declarative model â•ﬁ SA-Decl
	Where do we go from here?

