
3b – Two Language Kernels (The Kernels)
while and sa-decl

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 The imperative “core” – While

The basic operation in imperative languages is the assignment. To make a
Turing-complete language, we additionally need sequencing and some control
structures.

• For Turing completeness, a conditional statement and a potentially
infinite loop statement are sufficient.

– A conditional and a jump (goto) are simpler (and less restrictive),
but jumps are hard to reason about.

– We instead prefer a conditional and a while loop.

1.1 Adding reference types

As mentioned, most imperative languages include some ability to work with
references to memory.

• Even if explicit referencing and dereferencing is rare, we often need to
reason about references to implement parts of the language, such as
with

– pass by reference parameter passing, or
– non-copying assignment.

To introduce reference types to our language, we extend Expr0 to Expr0,
adding

• expressions for referencing and dereferencing variables, and

1



• variables of reference type.

⟨expr⟩ ∷= ⟨rexpr⟩
⟨rexpr⟩ ∷= & var | var
⟨expr⟩ ∷= ! var

• The & operation obtains the reference to a variable.

• The ! operation dereferences a reference variable, returning the value
stored at the reference.

– If the given var is not of reference type, this results in a type
error.

∗ For the moment, we do not handle type errors.
– In many languages, the dereferencing operator is *.

1.2 A first language based on while

So let us define a kernel for imperative languages based on the while loop
and an if-then-else. We’ll call this language While0.

⟨stmt⟩ ∷=
skip

| var ⟨expr⟩
| ⟨stmt⟩ ⟨stmt⟩
| if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexpr⟩ do ⟨stmt⟩

Note that:

• Sometimes ; is used to sequence instructions, but this is abstract syn-
tax, so we omit it.

– Similarly, we do not require an end marker for the body of if’s
and while loops.

– We could omit the then, else and do keywords, but choose to
keep them for clarity.

• To emphasise that assignment is not equality, we will write it using
the symbol rather than =.

2



1.2.1 The shortcomings of While0

While0 is a sufficient language in many ways, but it is missing (at least) two
key abstractions.

Subroutines • Whether they take the form of functions, procedures or
a hybrid of the two, subroutines are a highly valuable abstraction.

– But we can encode them in While0 by “inlining”.

Scope and lifetime • While0 provides no means to declare variables.
– Every variable’s lifetime is the whole of the runtime.
– Every variable’s scope is the whole of the program.

Since we can encode subroutines as a linguistic abstraction, we do not
address the first shortcoming, at least for the moment.

However, to make the kernel language useful, we must address the second
shortcoming.

1.3 The While language

Most [imperative] programming languages have, among others,
five constructs: assignment, variable declaration, sequence, test
and loop. These constructs form the imperative core of the lan-
guage.
— Principles of Programming Languages (Dowek)

We add the “do nothing” command skip to this list of constructs to
obtain our language While.

⟨stmt⟩ ∷=
skip

| local var in ⟨stmt⟩
| var ⟨expr⟩
| ⟨stmt⟩ ⟨stmt⟩
| if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexpr⟩ do ⟨stmt⟩

1.4 Embedding While

In the kernel language approach,

• there is an implicit assumption that the kernel language is a proper
subset of the full programming language.

3



The syntax of While we have given

• is not a proper subset of the syntax of any full programming language

– (that I am aware of).
– (To some extent, this is because we have given only abstract

syntax).

• But, it is close to several,

– and we should be able to embed While programs into a any full
imperative programming language.

∗ This embedding may not always preserve meaning, though;
sometimes the languages don’t fully support the abstractions
we have in While.
· Functionally, this means that if we later show transla-

tions from practical languages to While, embedding and
translation may not be inverses of each other.

For interest, let us investigate this embedding with a language we are
familiar with:

• Ruby

1.4.1 Embedding While into Ruby – Expressions

Starting with expressions,

• all integer and boolean expressions are easily translated into Ruby.

• The refencing operation, &, we embed as the method object_id.

– & x x.object_id

• The referencing operation, !, we embed as the function ObjectSpace._id2ref.

– ! x ObjectSpace._id2ref(x)

1.4.2 Embedding While into Ruby – Statements

Considering each type of statement of While:

skip • We simply remove all instances of skip.

4



local var in ⟨stmt⟩ • We embed local variable declaration as the state-
ment var = nil; s where s is the embedding of the sub-statement.

var = expr • We embed assignment as is.

⟨stmt⟩ ⟨stmt⟩ • We place a semicolon between the embedding of the
statements.

if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩ • We add the keyword end after
the second statement.

while ⟨bexpr⟩ do ⟨stmt⟩ • We add the keyword end after the state-
ment.

1.4.3 Embedding While into Ruby – Example

By our embedding, the While program

local x in
local y in
x = 5
y = ! & x
while y > 0 do

y = y - 1

is embedded as

x = nil ; y = nil ; x = 5 ; y = ObjectSpace._id2ref(x.object_id) ;
while y > 0 do y = y - 1 end

2 A declarative model – SA-Decl
The second kernel language we consider

• is a proper subset of Oz, and

• contains 8 kinds of statements.

⟨stmt⟩ ∷=
skip // Empty statement

| ⟨stmt⟩ ⟨stmt⟩ // Sequence
| local ⟨var⟩ in ⟨stmt⟩ end // Variable creation
| ⟨var⟩ = ⟨var⟩ // Binding

5



| ⟨var⟩ = ⟨value⟩ // Value creation
| if ⟨var⟩ then ⟨stmt⟩ else ⟨stmt⟩ end // Conditional
| case ⟨var⟩ of ⟨pattern⟩ then ⟨s⟩ else ⟨s⟩ end // Pattern match
| `{` {⟨var⟩}+ `}` // Procedure application

3 Where do we go from here?
We will continue working with these kernel languages, beginning by

• providing linguistic abstraction translations for common language fea-
tures, and

• extending the languages with types.

We will also

• define operational semantics for these languages.

6


	The imperative â•œcoreâ•š â•ﬁ While
	Adding reference types
	A first language based on while
	The shortcomings of Whileâ‡•

	The While language
	Embedding While
	Embedding While into Ruby â•ﬁ Expressions
	Embedding While into Ruby â•ﬁ Statements
	Embedding While into Ruby â•ﬁ Example


	A declarative model â•ﬁ SA-Decl
	Where do we go from here?

