5 - Semantics of the While language

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 Preamble

1.1 Notable references

- Programming Languages and Operational Semantics: A Concise Overview, Fernández
- Chapter 4 - Operational Semantics of Imperative Languages

1.2 Update history

Nov. 12 - A correction to the PDF version: missing prime symbols were added.

- Slight cleanup; added references and table of contents.

Nov. 4 - Original version posted

1.3 Table of contents

- Preamble
- Notable references
- Update history
- Table of contents
- Introduction to operational semantics
- Why two different semantics?
- Syntactic correctness
- Defining a relation via inference rules
- Example inference rules - defining the "less than" relation
- Semantics of Expro
- Meta-variables
- Small-step semantics of $E x p r_{0}$
* Explaining the small-step semantic rules of Expr r_{0} - constants
* Explaining the small-step semantic rules of Expr r_{0} - variables
* Explaining the small-step semantic rules of Expr 0_{0} - operators
* An example reduction sequence
- Big-step semantics of Expro
* Notes
* An example evaluation
* Derivation tree
- Semantics of While
- Small-step semantics of While
* Assignment, composition
* Branch, loop
* Local variables
- Big-step semantics of While
* skip, assignment, composition
* Branch, loop
* Local variables

2 Introduction to operational semantics

An operational semantics describes the meaning of programs in terms of computation steps on some abstract machine.

In particular, our "abstract machine" for the While language will be a relation.

We consider two different semantics, each consisting of two relations.

- Small-step, or reduction, semantics,
- which defines two reduction relations
* _ \longrightarrow_{-}: Expr \timesEnv \timesState \rightarrow Expr \times Env \times State
* _ \longrightarrow_{-}: Stmt \timesEnv \timesState \rightarrow Stmt \times Env \times State
- These relations describe individual computation steps.
- Big-step, or evaluation, semantics,
- which defines two evaluation relations
$* _\Downarrow_{_}:$Expr \timesEnv \timesState \rightarrow Value
where Value is the set of values of the appropriate types
* _ $\Downarrow_{_}$: Stmt \timesEnv \timesState \rightarrow Env \times State
- These relations describe the final results of computation.

2.1 Why two different semantics?

The two semantics we present, big-step and small-step operational semantics, each serve a different purpose.

- The small-step semantics precisely describe the order in which expressions/statements are computed.
- For instance, in the case of a binary operator, small-step semantics describe which operand is computed first.
- The big-step semantics provide a simpler view of computation, in that there are fewer rules.
- Sometimes big-step semantics are called "natural" semantics.

Neither approach is "correct" or "incorrect"; they are complementary!

2.2 Syntactic correctness

We assume in these slides that every program we consider is correct, meaning it is

- syntactically correct, and in particular that they are
- well typed,
- well scoped, and
- every variable is declared before it is used.

That is, we assume these syntactic/static semantic rules have been enforced

- by a context-free grammar
- (given in notes 3; we repeat the relevant portions below)
- and an attribute grammars
- (to be given as part of assignment 2).

2.3 Defining a relation via inference rules

To define our two semantic relations, we use inference rules.
An inference rule consists of

- a set of premises and
- a conclusion;
- we also give each inference rule a name.

Inference rules are written

```
premise }
    conclusion
```

and such an inference rule can be read

- If premise ${ }_{1}$, premise e_{2}, \ldots, and premise ${ }_{n}$ are true (satisfied), then conclusion is true (satisfied).

2.4 Example inference rules - defining the "less than" relation

You are familiar with the relation $\leq: \mathbb{N} \rightarrow \mathbb{N}$.

- It can be defined via two inference rules.
- One "base case" rule with no premises, and
- one "induction step" with one premise.
- Zero is least
$0 \leq \mathrm{n}$
$\mathrm{m} \leq \mathrm{n}$
Less than successor
suc $\mathrm{m} \leq$ suc n
which can be read as
- Zero is less than or equal to any natural number n
and
- If m is less than or equal to n, then suc m is less than or equal to suc m.

3 Semantics of Expr 0_{0}

Recall our language of expressions, Expr ${ }_{0}$.

```
<expr\rangle ::= \langlebexpr\rangle | \langleiexpr\rangle
\langlebexpr\rangle ::= true | false
    | \langleexpr\rangle == \langleexpr\rangle | \langleexpr\rangle \= \langleexpr\rangle
    | \langleexpr\rangle =< \langleexpr\rangle | \langleexpr\rangle < \langleexpr\rangle
    | \langleexpr\rangle>= \langleexpr\rangle | \langleexpr\rangle> \langleexpr\rangle
<iexpr\rangle ::= number | var
    | \langleiexpr\rangle + \langleiexpr\rangle | \langleiexpr\rangle - \langleiexpr\rangle
    | \langleiexpr\rangle * \langleiexpr\rangle | \langleiexpr\rangle div \langleiexpr\rangle | 〈iexpr\rangle mod \langleiexpr\rangle
```

We'll define both the small-step and big-step semantics of expressions before moving on to statements.

3.1 Meta-variables

Throughout this section, the meta-variables

- $\mathrm{E}, \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}^{\prime}$, etc. vary over expressions,
- $c, c_{1}, c_{2}, c^{\prime}$, etc. vary over constant expressions of either integer or boolean type,
- x is any variable,
- Σ is any environment, and
- σ is any state.

3.2 Small-step semantics of Exprr_{0}

Let \oplus be any of the binary, infix operators of the Expro language.

- That is, \oplus is a meta-operator standing in for $==, \backslash=,+, *$, etc.

We make the (arbitrary) choice to always reduce the left subexpression first.

- An alternate small-step semantics could reduce the right subexpression, or give different orders for different operators.

Then the small-step semantics of Expr_{0} can be given by just four inference rules.

3.2.1 Explaining the small-step semantic rules of Expr $\boldsymbol{E x}_{0}$ constants

Let us examine each small-step semantic rule.
First, note there are no rules given for the expressions true, false and number.

- That is, there are no rules for constant expressions.
- This is because constants are irreducible; they cannot be simplified any further!
- The presence of such rules would mean we could infinitely "reduce" expressions, which is undesirable.

3.2.2 Explaining the small-step semantic rules of Expr_{0} - variables

The first rule we give

```
        n}=\sigma(\Sigma(x)
(x , \Sigma,\sigma)}\longrightarrow(\textrm{n},\Sigma,\sigma
```

says that a variable reduces to the value stored at the variable in the current environment and state.

- Recall that we only have integer variables in $E x p r_{0}$.

3.2.3 Explaining the small-step semantic rules of Expr r_{0} operators

The three remaining rules
$\frac{\left(E_{1}, \Sigma, \sigma\right) \longrightarrow\left(E_{1} ', \Sigma, \sigma\right)}{\left(E_{1} \oplus E_{2}, \Sigma, \sigma\right) \longrightarrow\left(E_{1} ' \oplus E_{2}, \Sigma, \sigma\right)}$ operator-left
$\left(E_{2}, \Sigma, \sigma\right) \longrightarrow\left(E_{2}^{\prime}, \Sigma, \sigma\right)$
$\left(c \oplus E_{2}, \Sigma, \sigma\right) \longrightarrow\left(c \oplus E_{2} \prime, \Sigma, \sigma\right)$
$c=c_{1} \oplus c_{2}$
$\left(c_{1} \oplus c_{2}, \Sigma, \sigma\right) \longrightarrow(c, \Sigma, \sigma)$
tell us respectively:

- If the left subexpression can be reduced (it is non-constant), then reduce it.
- If the left subexpression is a constant, (expressed by the fact we use the variable c) and the right subexpression can be reduced, then reduce the right expression.
- If both subexpressions are constants, then perform the operation.
- We abuse notation a small amount here; in the premise, $\mathrm{c}_{1} \oplus \mathrm{c}_{2}$ refers to the application of the operator \oplus to the constants, not an expression.

3.2.4 An example reduction sequence

Consider the expression
$5+3==2 * x$
and suppose in the current environment and state,

- $\Sigma(\mathrm{x})=\mathrm{R}$ and
- $\sigma(R)=4$.

We can test out our reduction rules by trying to reduce this expression to its value, which should be true.

```
    \(5+3=2 * \mathrm{x}\)
\(\longrightarrow\langle\) "operator-left" with "operator-apply" 〉
    \(8=2\) * \(x\)
\(\longrightarrow\langle\) "operator-right" with "operator-right" with "variable" with fact \(4=\sigma(\Sigma(x))\rangle\)
    8 == 2 * 4
\(\longrightarrow\langle\) "operator-right" with "operator-apply" 〉
    \(8=8\)
\(\longrightarrow\langle\) "operator-apply" \(\rangle\)
    true
```

For each reduction step, we state the inference rule used.

- If the inference rule has a premise involving \longrightarrow, we must further state the inference rule which justifies the premise.

3.3 Big-step semantics of Expr r_{0}

Once again, let \oplus be any of the binary, infix operators of the $E x p r_{0}$ language.
The big-step semantics of Expr Ean_{0} can be given by just three inference rules.

```
\((\mathrm{n}, \Sigma, \sigma) \Downarrow \mathrm{n}\)
    \(\mathrm{n}=\sigma(\Sigma(\mathrm{x}))\)
_ variable
    \((\mathrm{x}, \Sigma, \sigma) \Downarrow \mathrm{n}\)
    \(\left(\mathrm{E}_{1}, \Sigma, \sigma\right) \Downarrow \mathrm{n}_{1} \quad\left(\mathrm{E}_{2}, \Sigma, \sigma\right) \Downarrow \mathrm{n}_{2} \quad \mathrm{n}=\mathrm{n}_{1} \oplus \mathrm{n}_{2}\)
        \(\left(\mathrm{E}_{1} \oplus \mathrm{E}_{2}, \Sigma, \sigma\right) \Downarrow \mathrm{n}\)
```


3.3.1 Notes

- Recall that we did not give a reduction rule for constants; in contrast, we do give an evaluation rule for them.
- Any expression can be evaluated; not all expressions can be reduced.
- The evaluation relation is between
- expression, environment, state triples and
- values;
we do not "return" the environment and state because they never change.
- Expressions are evaluated only for their value, not for a side effect.
- These evaluation rules "look similar" to the behaviour of the interpreter provided for assignment 1.
- It is possible to write an interpreter following the small-step semantics.

3.3.2 An example evaluation

Let us consider once more the expression
$5+3=2 * x$
and an environment and state such that

- $\Sigma(\mathrm{x})=\mathrm{R}$ and
- $\sigma(R)=4$.

Evaluation semantics do not define steps; to evaluate this expression, we will have to evaluate each subexpression in turn.
(1) $(5, \Sigma, \sigma) \Downarrow 5$,
by "constant".
(2) $(3, \Sigma, \sigma) \Downarrow 3$,
by "constant".
(3) $(2, \Sigma, \sigma) \Downarrow 2$,
by "constant".
(4) $(\mathrm{x}, \Sigma, \sigma) \Downarrow 4$,
by "variable" with fact $4=\sigma(\Sigma(x))$.
(5) $(5+3, \Sigma, \sigma) \Downarrow 8$,
by "expression" with (1) and (2)

```
    and fact 8 = 5 + 3.
(6) (2 + x , \Sigma , \sigma) \Downarrow 8,
by "expression" with (3) and (4)
    and fact 8=2*4.
(7) (5 + 3 == 2 + x , \Sigma , \sigma) \Downarrow true, by "expression" with (5) and (6)
    and fact 8 == 8.
```

This proof could also be presented as a "derivation tree", but this presentation is unwieldly.

3.3.3 Derivation tree

(Pardon the poor rendering in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$)
For completion's sake, here is the evaluation of expression
$5+3=2 * x$
presented as a derivation tree. We omit the names of the rules used for space.

4 Semantics of While

With the semantics of expressions defined, we are now prepared to give the semantics of While statements (programs).

Recall the grammar for While.

```
<stmt\rangle ::=
    skip
| local var in \langlestmt\rangle
| var := \langleexpr>
| 〈stmt\rangle\langlestmt\rangle
| if \langlebexpr\rangle then \langlestmt\rangle else \langlestmt\rangle
| while \langlebexpr> do \langlestmt\rangle
```

- With expressions, we wanted to reduce/evaluate to a constant.
- For statements, we will want to reduce to the simplest program: skip.
- And we will evaluate statements for their side effects, meaning we return a (potentially updated) state.

4.1 Small-step semantics of While

4.1.1 Assignment, composition

4.1.2 Branch, loop


```
(while E do S S \sigma)\longrightarrow(if E then (S (while E do S)) else skip, \Sigma,\sigma) loop-unfc
```


4.1.3 Local variables

$(\mathrm{S}, \Sigma[\mathrm{x}:=\operatorname{nextref}(\mathrm{x}, \Sigma)], \sigma) \longrightarrow\left(\mathrm{S}, \Sigma[\mathrm{x}:=\operatorname{nextref}(\mathrm{x}, \Sigma)], \sigma^{\prime}\right)$
(local x in $\mathrm{S}, \Sigma, \sigma$) \longrightarrow (local x in $\mathrm{S}^{\prime}, \Sigma, \sigma^{\prime}$) local-reduce
local-skip
(local x in skip , Σ, σ) \longrightarrow (skip , $\Sigma, \sigma[$ nextref(x, $\Sigma):=$ undefined])

4.2 Big-step semantics of While

4.2.1 skip, assignment, composition

$($ skip $, \Sigma, \sigma) \Downarrow \sigma$
skip
$(\mathrm{E}, \Sigma, \sigma) \Downarrow \mathrm{n}$
$(\mathrm{x}:=\mathrm{E}, \Sigma, \sigma) \Downarrow \sigma[\Sigma(\mathrm{x}):=\mathrm{n}]$
$\left(\mathrm{S}_{1}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime} \quad\left(\mathrm{S}_{2}, \Sigma, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}$
$\left(\mathrm{S}_{1} \mathrm{~S}_{2}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime \prime}$

4.2.2 Branch, loop

$$
\begin{aligned}
& (\mathrm{E}, \Sigma, \sigma) \Downarrow \text { true }\left(\mathrm{S}_{1}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime} \\
& \left(\text { if } \mathrm{E} \text { then } \mathrm{S}_{1} \text { else } \mathrm{S}_{2}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime} \\
& \text { br } \\
& (\mathrm{E}, \Sigma, \sigma) \Downarrow \text { false } \quad\left(\mathrm{S}_{2}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime}
\end{aligned}
$$

(if E then S_{1} else $\left.\mathrm{S}_{2}, \Sigma, \sigma\right) \Downarrow \sigma^{\prime}$ branch-right
(if E then S_{1} else $\mathrm{S}_{2}, \Sigma, \sigma$) $\Downarrow \sigma^{\prime}$
$(\mathrm{E}, \Sigma, \sigma) \Downarrow$ true $\quad($ S (while E do S) , $\Sigma, \sigma) \Downarrow \sigma^{\prime}$
$($ while E do $S, \Sigma, \sigma) \Downarrow \sigma^{\prime}$
$(E, \Sigma, \sigma) \Downarrow$ false
(while E do S , Σ, σ) $\Downarrow \sigma$

4.2.3 Local variables

$$
(\mathrm{S}, \Sigma[\mathrm{x}:=\text { nextref }(\mathrm{x}, \Sigma)], \sigma) \Downarrow \sigma^{\prime}
$$

(local x in $\mathrm{S}, \Sigma, \sigma$) $\Downarrow \sigma^{\prime}$ [nextref $(\mathrm{x}, \Sigma):=$ undefined]

