
5 – Semantics of the While language

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 Preamble

1.1 Notable references

• Programming Languages and Operational Semantics: A Concise Overview,
Fernández

– Chapter 4 – Operational Semantics of Imperative Languages

1.2 Update history

Nov. 12 • A correction to the PDF version: missing prime symbols
were added.

• Slight cleanup; added references and table of contents.

Nov. 4 • Original version posted

1.3 Table of contents
• Preamble

– Notable references
– Update history
– Table of contents

• Introduction to operational semantics

– Why two different semantics?
– Syntactic correctness
– Defining a relation via inference rules
– Example inference rules – defining the “less than” relation

• Semantics of Expr0

– Meta-variables

1

– Small-step semantics of Expr0

∗ Explaining the small-step semantic rules of Expr0 – constants
∗ Explaining the small-step semantic rules of Expr0 – variables
∗ Explaining the small-step semantic rules of Expr0 – operators
∗ An example reduction sequence

– Big-step semantics of Expr0

∗ Notes
∗ An example evaluation
∗ Derivation tree

• Semantics of While

– Small-step semantics of While
∗ Assignment, composition
∗ Branch, loop
∗ Local variables

– Big-step semantics of While
∗ skip, assignment, composition
∗ Branch, loop
∗ Local variables

2 Introduction to operational semantics
An operational semantics describes the meaning of programs in terms of
computation steps on some abstract machine.

In particular, our “abstract machine” for the While language will be a
relation.

We consider two different semantics, each consisting of two relations.

• Small-step, or reduction, semantics,

– which defines two reduction relations
∗ _⟶_ : Expr × Env × State → Expr × Env × State
∗ _⟶_ : Stmt × Env × State → Stmt × Env × State

– These relations describe individual computation steps.

• Big-step, or evaluation, semantics,

– which defines two evaluation relations
∗ _⇓_ : Expr × Env × State → Value

· where Value is the set of values of the appropriate types
∗ _⇓_ : Stmt × Env × State → Env × State

– These relations describe the final results of computation.

2

2.1 Why two different semantics?

The two semantics we present, big-step and small-step operational seman-
tics, each serve a different purpose.

• The small-step semantics precisely describe the order in which expres-
sions/statements are computed.

– For instance, in the case of a binary operator, small-step seman-
tics describe which operand is computed first.

• The big-step semantics provide a simpler view of computation, in that
there are fewer rules.

– Sometimes big-step semantics are called “natural” semantics.

Neither approach is “correct” or “incorrect”; they are complementary!

2.2 Syntactic correctness

We assume in these slides that every program we consider is correct, meaning
it is

• syntactically correct, and in particular that they are

– well typed,
– well scoped, and
– every variable is declared before it is used.

That is, we assume these syntactic/static semantic rules have been en-
forced

• by a context-free grammar

– (given in notes 3; we repeat the relevant portions below)

• and an attribute grammars

– (to be given as part of assignment 2).

3

2.3 Defining a relation via inference rules

To define our two semantic relations, we use inference rules.
An inference rule consists of

• a set of premises and

• a conclusion;

• we also give each inference rule a name.
Inference rules are written

premise1 premise2 … premise𝑛
–––––––––––––––––––––––––––––––––––– name

conclusion

and such an inference rule can be read
• If premise1, premise2, …, and premise𝑛 are true (satisfied), then

conclusion is true (satisfied).

2.4 Example inference rules – defining the “less than” rela-
tion

You are familiar with the relation ≤ : ℕ → ℕ.
• It can be defined via two inference rules.

– One “base case” rule with no premises, and
– one “induction step” with one premise.

–––––––––– Zero is least
0 ≤ n

m ≤ n
––––––––––––––––– Less than successor

suc m ≤ suc n

which can be read as
• Zero is less than or equal to any natural number n

and
• If m is less than or equal to n, then suc m is less than or equal to suc

m.

4

3 Semantics of Expr0

Recall our language of expressions, Expr0.

⟨expr⟩ ∷= ⟨bexpr⟩ | ⟨iexpr⟩
⟨bexpr⟩ ∷= true | false

| ⟨expr⟩ == ⟨expr⟩ | ⟨expr⟩ \= ⟨expr⟩
| ⟨expr⟩ =< ⟨expr⟩ | ⟨expr⟩ < ⟨expr⟩
| ⟨expr⟩ >= ⟨expr⟩ | ⟨expr⟩ > ⟨expr⟩

⟨iexpr⟩ ∷= number | var
| ⟨iexpr⟩ + ⟨iexpr⟩ | ⟨iexpr⟩ - ⟨iexpr⟩
| ⟨iexpr⟩ * ⟨iexpr⟩ | ⟨iexpr⟩ div ⟨iexpr⟩ | ⟨iexpr⟩ mod ⟨iexpr⟩

We’ll define both the small-step and big-step semantics of expressions
before moving on to statements.

3.1 Meta-variables

Throughout this section, the meta-variables

• E, E1, E2, E', etc. vary over expressions,

• c, c1, c2, c', etc. vary over constant expressions of either integer or
boolean type,

• x is any variable,

• Σ is any environment, and

• σ is any state.

3.2 Small-step semantics of Expr0

Let ⊕ be any of the binary, infix operators of the Expr0 language.

• That is, ⊕ is a meta-operator standing in for ==, \=, +, *, etc.

We make the (arbitrary) choice to always reduce the left subexpression
first.

• An alternate small-step semantics could reduce the right subexpres-
sion, or give different orders for different operators.

Then the small-step semantics of Expr0 can be given by just four infer-
ence rules.

5

n = σ(Σ(x))
–––––––––––––––––––––––––––––– variable
(x , Σ , σ) ⟶ (n , Σ , σ)

(E1 , Σ , σ) ⟶ (E1' , Σ , σ)
–– operator-left
(E1 ⊕ E2 , Σ , σ) ⟶ (E1' ⊕ E2 , Σ , σ)

(E2 , Σ , σ) ⟶ (E2' , Σ , σ)
––– operator-right
(c ⊕ E2 , Σ , σ) ⟶ (c ⊕ E2' , Σ , σ)

c = c1 ⊕ c2
–––––––––––––––––––––––––––––––––––– operator-apply
(c1 ⊕ c2 , Σ , σ) ⟶ (c , Σ , σ)

3.2.1 Explaining the small-step semantic rules of Expr0 – con-
stants

Let us examine each small-step semantic rule.
First, note there are no rules given for the expressions true, false and

number.

• That is, there are no rules for constant expressions.

• This is because constants are irreducible; they cannot be simplified
any further!

– The presence of such rules would mean we could infinitely “re-
duce” expressions, which is undesirable.

3.2.2 Explaining the small-step semantic rules of Expr0 – vari-
ables

The first rule we give

n = σ(Σ(x))
–––––––––––––––––––––––––––––– variable
(x , Σ , σ) ⟶ (n , Σ , σ)

6

says that a variable reduces to the value stored at the variable in the current
environment and state.

• Recall that we only have integer variables in Expr0.

3.2.3 Explaining the small-step semantic rules of Expr0 – opera-
tors

The three remaining rules

(E1 , Σ , σ) ⟶ (E1' , Σ , σ)
–– operator-left
(E1 ⊕ E2 , Σ , σ) ⟶ (E1' ⊕ E2 , Σ , σ)

(E2 , Σ , σ) ⟶ (E2' , Σ , σ)
––– operator-right
(c ⊕ E2 , Σ , σ) ⟶ (c ⊕ E2' , Σ , σ)

c = c1 ⊕ c2
–––––––––––––––––––––––––––––––––––– operator-apply
(c1 ⊕ c2 , Σ , σ) ⟶ (c , Σ , σ)

tell us respectively:

• If the left subexpression can be reduced (it is non-constant), then
reduce it.

• If the left subexpression is a constant, (expressed by the fact we use the
variable c) and the right subexpression can be reduced, then reduce
the right expression.

• If both subexpressions are constants, then perform the operation.

– We abuse notation a small amount here; in the premise, c1 ⊕ c2
refers to the application of the operator ⊕ to the constants, not
an expression.

3.2.4 An example reduction sequence

Consider the expression

5 + 3 == 2 * x

7

and suppose in the current environment and state,

• Σ(x) = R and

• σ(R) = 4.

We can test out our reduction rules by trying to reduce this expression
to its value, which should be true.

5 + 3 == 2 * x
⟶⟨ “operator-left” with “operator-apply” ⟩

8 == 2 * x
⟶⟨ “operator-right” with “operator-right” with “variable” with fact 4 = σ(Σ(x)) ⟩

8 == 2 * 4
⟶⟨ “operator-right” with “operator-apply” ⟩

8 == 8
⟶⟨ “operator-apply” ⟩

true

For each reduction step, we state the inference rule used.

• If the inference rule has a premise involving ⟶, we must further state
the inference rule which justifies the premise.

3.3 Big-step semantics of Expr0

Once again, let ⊕ be any of the binary, infix operators of the Expr0 language.
The big-step semantics of Expr0 can be given by just three inference

rules.

–––––––––––––––––– constant
(n , Σ , σ) ⇓ n

n = σ(Σ(x))
–––––––––––––––––– variable
(x , Σ , σ) ⇓ n

(E1 , Σ , σ) ⇓ n1 (E2 , Σ , σ) ⇓ n2 n = n1 ⊕ n2
–– operator

(E1 ⊕ E2 , Σ , σ) ⇓ n

8

3.3.1 Notes

• Recall that we did not give a reduction rule for constants; in contrast,
we do give an evaluation rule for them.

– Any expression can be evaluated; not all expressions can be re-
duced.

• The evaluation relation is between

– expression, environment, state triples and
– values;

we do not “return” the environment and state because they never
change.

– Expressions are evaluated only for their value, not for a side ef-
fect.

• These evaluation rules “look similar” to the behaviour of the inter-
preter provided for assignment 1.

– It is possible to write an interpreter following the small-step se-
mantics.

3.3.2 An example evaluation

Let us consider once more the expression

5 + 3 == 2 * x

and an environment and state such that

• Σ(x) = R and

• σ(R) = 4.

Evaluation semantics do not define steps; to evaluate this expression, we
will have to evaluate each subexpression in turn.

(1) (5 , Σ , σ) ⇓ 5, by “constant”.
(2) (3 , Σ , σ) ⇓ 3, by “constant”.
(3) (2 , Σ , σ) ⇓ 2, by “constant”.
(4) (x , Σ , σ) ⇓ 4, by “variable” with fact 4 = σ(Σ(x)).
(5) (5 + 3 , Σ , σ) ⇓ 8, by “expression” with (1) and (2)

9

and fact 8 = 5 + 3.
(6) (2 + x , Σ , σ) ⇓ 8, by “expression” with (3) and (4)

and fact 8 = 2 * 4.
(7) (5 + 3 == 2 + x , Σ , σ) ⇓ true, by “expression” with (5) and (6)

and fact 8 == 8.

This proof could also be presented as a “derivation tree”, but this presenta-
tion is unwieldly.

3.3.3 Derivation tree

(Pardon the poor rendering in LATEX)
For completion’s sake, here is the evaluation of expression

5 + 3 == 2 * x

presented as a derivation tree. We omit the names of the rules used for
space.

–––––––––––––––
4 = σ(Σ(x))

––––––––––––––––– –––––––––––––––– ––––––––––––– ––––––––––––––––– ––––––––––––––– –––––––––––––
(5 , Σ , σ) ⇓ 5 (3 , Σ , σ) ⇓ 3 8 == 5 + 3 (2 , Σ , σ) ⇓ 2 (x , Σ , σ) ⇓ 4 8 == 2 * x

––– ––
(5 + 3 , Σ , σ) ⇓ 8 (2 * x , Σ , σ) ⇓ 8

––
(5 + 3 == 2 + x , Σ , σ) ⇓ true

4 Semantics of While
With the semantics of expressions defined, we are now prepared to give the
semantics of While statements (programs).

Recall the grammar for While.

⟨stmt⟩ ∷=
skip

| local var in ⟨stmt⟩
| var ≔ ⟨expr⟩
| ⟨stmt⟩ ⟨stmt⟩
| if ⟨bexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexpr⟩ do ⟨stmt⟩

10

• With expressions, we wanted to reduce/evaluate to a constant.

– For statements, we will want to reduce to the simplest program:
skip.

– And we will evaluate statements for their side effects, meaning
we return a (potentially updated) state.

4.1 Small-step semantics of While

4.1.1 Assignment, composition

(E , Σ , σ) ⟶ (E' , Σ , σ)
–– assign-reduce
(x ≔ E , Σ , σ) ⟶ (x ≔ E' , Σ , σ)

–– assign-number
(x ≔ n , Σ , σ) ⟶ (skip , Σ , σ[Σ(x) ≔ n])

(S1 , Σ , σ) ⟶ (S1' , Σ , σ')
––––––––––––––––––––––––––––––––––––––– compose-reduce
(S1 S2 , Σ , σ) ⟶ (S1' S2 , Σ , σ')

––––––––––––––––––––––––––––––––––––––– compose-skip
(skip S2 , Σ , σ) ⟶ (S2 , Σ , σ)

4.1.2 Branch, loop

(E , Σ , σ) ⟶ (E' , Σ , σ)
–– branch-reduce
(if E then S1 else S2 , Σ , σ) ⟶ (if E' then S1 else S2 , Σ , σ)

–– branch-left
(if true then S1 else S2 , Σ , σ) ⟶ (S1 , Σ , σ)

–– branch-right
(if false then S1 else S2 , Σ , σ) ⟶ (S2 , Σ , σ)

11

––– loop-unfold
(while E do S , Σ , σ) ⟶ (if E then (S (while E do S)) else skip , Σ , σ)

4.1.3 Local variables

(S , Σ[x ≔ nextref(x,Σ)] , σ) ⟶ (S , Σ[x ≔ nextref(x,Σ)] , σ')
–– local-reduce

(local x in S , Σ , σ) ⟶ (local x in S' , Σ , σ')

–– local-skip
(local x in skip , Σ , σ) ⟶ (skip , Σ , σ[nextref(x,Σ) ≔ undefined])

4.2 Big-step semantics of While

4.2.1 skip, assignment, composition

––––––––––––––––––––– skip
(skip , Σ , σ) ⇓ σ

(E , Σ , σ) ⇓ n
––––––––––––––––––––––––––––––––– assign
(x ≔ E , Σ , σ) ⇓ σ[Σ(x) ≔ n]

(S1 , Σ , σ) ⇓ σ' (S2 , Σ , σ') ⇓ σ''
––––––––––––––––––––––––––––––––––––––– composition

(S1 S2 , Σ , σ) ⇓ σ''

4.2.2 Branch, loop

(E , Σ , σ) ⇓ true (S1 , Σ , σ) ⇓ σ'
–– branch-left

(if E then S1 else S2 , Σ , σ) ⇓ σ'

(E , Σ , σ) ⇓ false (S2 , Σ , σ) ⇓ σ'

12

–– branch-right
(if E then S1 else S2 , Σ , σ) ⇓ σ'

(E , Σ , σ) ⇓ true (S (while E do S) , Σ , σ) ⇓ σ'
––– loop-do

(while E do S , Σ , σ) ⇓ σ'

(E , Σ , σ) ⇓ false
––––––––––––––––––––––––––––––– loop-skip

(while E do S , Σ , σ) ⇓ σ

4.2.3 Local variables

(S , Σ[x ≔ nextref(x,Σ)] , σ) ⇓ σ'
–– local

(local x in S , Σ , σ) ⇓ σ'[nextref(x,Σ) ≔ undefined]

13

	Preamble
	Notable references
	Update history
	Table of contents

	Introduction to operational semantics
	Why two different semantics?
	Syntactic correctness
	Defining a relation via inference rules
	Example inference rules â•ﬁ defining the â•œless thanâ•š relation

	Semantics of Exprâ‡•
	Meta-variables
	Small-step semantics of Exprâ‡•
	Explaining the small-step semantic rules of Exprâ‡• â•ﬁ constants
	Explaining the small-step semantic rules of Exprâ‡• â•ﬁ variables
	Explaining the small-step semantic rules of Exprâ‡• â•ﬁ operators
	An example reduction sequence

	Big-step semantics of Exprâ‡•
	Notes
	An example evaluation
	Derivation tree

	Semantics of While
	Small-step semantics of While
	Assignment, composition
	Branch, loop
	Local variables

	Big-step semantics of While
	skip, assignment, composition
	Branch, loop
	Local variables

