5 -Semantics of the While language

Mark Armstrong, PhD Candidate, McMaster University

Fall, 2019

1 Preamble

1.1 Notable references

- Programming Languages and Operational Semantics: A Concise Overview, Fernández
 - Chapter 4 Operational Semantics of Imperative Languages

1.2 Update history

- Nov. 12 A correction to the PDF version: missing prime symbols were added.
 - Slight cleanup; added references and table of contents.
- Nov. 4 Original version posted

1.3 Table of contents

- Preamble
 - Notable references
 - Update history
 - Table of contents
- Introduction to operational semantics
 - Why two different semantics?
 - Syntactic correctness
 - Defining a relation via inference rules
 - Example inference rules defining the "less than" relation
- Semantics of *Expr*₀
 - Meta-variables

- Small-step semantics of ${\it Expr}_0$
 - * Explaining the small-step semantic rules of $Expr_0$ constants
 - * Explaining the small-step semantic rules of $Expr_0$ variables
 - * Explaining the small-step semantic rules of $Expr_0$ operators
 - * An example reduction sequence
- Big-step semantics of $Expr_0$
 - * Notes
 - * An example evaluation
 - * Derivation tree
- Semantics of While
 - Small-step semantics of *While*
 - * Assignment, composition
 - * Branch, loop
 - * Local variables
 - $-\,$ Big-step semantics of $W\!hile$
 - * skip, assignment, composition
 - * Branch, loop
 - * Local variables

2 Introduction to operational semantics

An *operational semantics* describes the meaning of programs in terms of computation steps on some abstract machine.

In particular, our "abstract machine" for the While language will be a relation.

We consider two different semantics, each consisting of two relations.

- Small-step, or *reduction*, semantics,
 - which defines two reduction relations

* _--->_ : Expr × Env × State - Expr × Env × State

* $_\longrightarrow_$: Stmt × Env × State → Stmt × Env × State

- These relations describe individual computation steps.

• Big-step, or *evaluation*, semantics,

- which defines two evaluation relations

* _ \Downarrow : Expr × Env × State → Value

• where Value is the set of values of the appropriate types

* _ \Downarrow : Stmt × Env × State → Env × State

– These relations describe the final results of computation.

2.1 Why two different semantics?

The two semantics we present, big-step and small-step operational semantics, each serve a different purpose.

- The small-step semantics precisely describe the order in which expressions/statements are computed.
 - For instance, in the case of a binary operator, small-step semantics describe which operand is computed first.
- The big-step semantics provide a simpler view of computation, in that there are fewer rules.
 - Sometimes big-step semantics are called "natural" semantics.

Neither approach is "correct" or "incorrect"; they are complementary!

2.2 Syntactic correctness

We assume in these slides that every program we consider is *correct*, meaning it is

- syntactically correct, and in particular that they are
 - well typed,
 - well scoped, and
 - every variable is declared before it is used.

That is, we assume these syntactic/static semantic rules have been enforced

- by a context-free grammar
 - (given in notes 3; we repeat the relevant portions below)
- and an attribute grammars
 - (to be given as part of assignment 2).

2.3 Defining a relation via inference rules

To define our two semantic relations, we use *inference rules*. An inference rule consists of

- a set of *premises* and
- a conclusion;
- we also give each inference rule a *name*.

Inference rules are written

 $\begin{array}{c|c} \texttt{premise}_1 & \texttt{premise}_2 & \dots & \texttt{premise}_n \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \texttt{conclusion} \end{array}$

001101401011

and such an inference rule can be read

• If premise₁, premise₂, ..., and premise_n are true (satisfied), then conclusion is true (satisfied).

2.4 Example inference rules – defining the "less than" relation

You are familiar with the relation \leq : $\mathbb{N} \rightarrow \mathbb{N}$.

- It can be defined via two inference rules.
 - One "base case" rule with no premises, and
 - one "induction step" with one premise.

---- Zero is least 0 \leq n

 $\texttt{m} \leq \texttt{n}$

------ Less than successor

 $ext{suc m} \leq ext{suc n}$

which can be read as

- Zero is less than or equal to any natural number ${\tt n}$

and

• If m is less than or equal to n, then suc m is less than or equal to suc m.

3 Semantics of $Expr_0$

Recall our language of expressions, $Expr_0$.

```
\begin{array}{l} \langle expr \rangle & \coloneqq \langle bexpr \rangle \ \mid \ \langle iexpr \rangle \\ \langle bexpr \rangle & \coloneqq true \ \mid \ false \\ & \mid \ \langle expr \rangle == \ \langle expr \rangle \ \mid \ \langle expr \rangle \ \mid = \ \langle expr \rangle \\ & \mid \ \langle expr \rangle =< \ \langle expr \rangle \ \mid \ \langle expr \rangle \ < \ \langle expr \rangle \\ & \mid \ \langle expr \rangle >= \ \langle expr \rangle \ \mid \ \langle expr \rangle \ > \ \langle expr \rangle \\ & \mid \ \langle expr \rangle >= \ \langle expr \rangle \ \mid \ \langle expr \rangle \ > \ \langle expr \rangle \\ \langle iexpr \rangle & \coloneqq number \ \mid \ var \\ & \mid \ \langle iexpr \rangle \ + \ \langle iexpr \rangle \ \mid \ \langle iexpr \rangle \ - \ \langle iexpr \rangle \\ & \mid \ \langle iexpr \rangle \ mod \ \langle iexpr \rangle \end{array}
```

We'll define both the small-step and big-step semantics of expressions before moving on to statements.

3.1 Meta-variables

Throughout this section, the meta-variables

- E, E₁, E₂, E', etc. vary over *expressions*,
- c, c₁, c₂, c', etc. vary over *constant* expressions of either integer or boolean type,
- x is any variable,
- Σ is any environment, and
- σ is any state.

3.2 Small-step semantics of $Expr_0$

Let \oplus be any of the binary, infix operators of the $Expr_0$ language.

• That is, \oplus is a meta-operator standing in for ==, \=, +, *, etc.

We make the (arbitrary) choice to always reduce the left subexpression first.

• An alternate small-step semantics could reduce the right subexpression, or give different orders for different operators.

Then the small-step semantics of $Expr_0$ can be given by just four inference rules.

$$\begin{array}{c} \mathrm{n} = \sigma(\Sigma(\mathrm{x})) \\ \hline \\ \hline (\mathrm{x} , \Sigma , \sigma) \longrightarrow (\mathrm{n} , \Sigma , \sigma) \\ \hline \\ (\mathrm{E}_1 , \Sigma , \sigma) \longrightarrow (\mathrm{E}_1' , \Sigma , \sigma) \\ \hline \\ \hline (\mathrm{E}_1 \oplus \mathrm{E}_2 , \Sigma , \sigma) \longrightarrow (\mathrm{E}_1' \oplus \mathrm{E}_2 , \Sigma , \sigma) \\ \hline \\ \hline \\ (\mathrm{E}_2 , \Sigma , \sigma) \longrightarrow (\mathrm{E}_2' , \Sigma , \sigma) \\ \hline \\ \hline \\ \hline \\ (\mathrm{c} \oplus \mathrm{E}_2 , \Sigma , \sigma) \longrightarrow (\mathrm{c} \oplus \mathrm{E}_2' , \Sigma , \sigma) \end{array}$$
 operator-right

$$c = c_1 \oplus c_2$$

operator-apply
(c₁ \oplus c₂ , Σ , σ) \longrightarrow (c , Σ , σ)

3.2.1 Explaining the small-step semantic rules of $Expr_0$ – constants

Let us examine each small-step semantic rule.

First, note there are no rules given for the expressions true, false and number.

- That is, there are no rules for constant expressions.
- This is because constants are *irreducible*; they cannot be simplified any further!
 - The presence of such rules would mean we could *infinitely* "reduce" expressions, which is undesirable.

3.2.2 Explaining the small-step semantic rules of $Expr_0$ – variables

The first rule we give

 $n = \sigma(\Sigma(x))$ $(x , \Sigma , \sigma) \longrightarrow (n , \Sigma , \sigma)$ variable

says that a variable reduces to the value stored at the variable in the current environment and state.

• Recall that we only have integer variables in $Expr_0$.

3.2.3 Explaining the small-step semantic rules of $Expr_0$ – operators

The three remaining rules

$({f E}_1$, Σ , $\sigma)$ \longrightarrow $({f E}_1'$, Σ , $\sigma)$
$(E_1 \oplus E_2 , \Sigma , \sigma) \longrightarrow (E_1' \oplus E_2 , \Sigma , \sigma)$
$(\texttt{E}_2 \ , \ \Sigma \ , \ \sigma) \longrightarrow (\texttt{E}_2' \ , \ \Sigma \ , \ \sigma)$
$(c \oplus E_2$, Σ , $\sigma) \longrightarrow (c \oplus E_2'$, Σ , $\sigma)$
$c = c_1 \oplus c_2$ operator-apply

$$(c_1 \oplus c_2 , \Sigma , \sigma) \longrightarrow (c , \Sigma , \sigma)$$
 operator-app

tell us respectively:

- If the left subexpression can be reduced (it is non-constant), then reduce it.
- If the left subexpression is a constant, (expressed by the fact we use the variable c) and the right subexpression can be reduced, then reduce the right expression.
- If both subexpressions are constants, then perform the operation.
 - We abuse notation a small amount here; in the premise, $c_1 \oplus c_2$ refers to the application of the operator \oplus to the constants, not an expression.

3.2.4 An example reduction sequence

Consider the expression

5 + 3 == 2 * x

and suppose in the current environment and state,

- $\Sigma(\mathbf{x}) = \mathbf{R}$ and
- $\sigma(R) = 4$.

We can test out our reduction rules by trying to reduce this expression to its value, which should be **true**.

```
\begin{array}{l} 5+3 == 2 * x \\ \longrightarrow \langle \text{ "operator-left" with "operator-apply" } \rangle \\ 8 == 2 * x \\ \longrightarrow \langle \text{ "operator-right" with "operator-right" with "variable" with fact 4 = <math>\sigma(\Sigma(x)) \rangle \\ 8 == 2 * 4 \\ \longrightarrow \langle \text{ "operator-right" with "operator-apply" } \rangle \\ 8 == 8 \\ \longrightarrow \langle \text{ "operator-apply" } \rangle \\ \text{true} \end{array}
```

For each reduction step, we state the inference rule used.

• If the inference rule has a premise involving →, we must further state the inference rule which justifies the premise.

3.3 Big-step semantics of $Expr_0$

Once again, let \oplus be any of the binary, infix operators of the $Expr_0$ language.

The big-step semantics of ${\it Expr}_0$ can be given by just three inference rules.

```
(n, \Sigma, \sigma) \Downarrow n

n = \sigma(\Sigma(x))
(x, \Sigma, \sigma) \Downarrow n
variable

(E_1, \Sigma, \sigma) \Downarrow n_1 \quad (E_2, \Sigma, \sigma) \Downarrow n_2 \quad n = n_1 \oplus n_2
(E_1 \oplus E_2, \Sigma, \sigma) \Downarrow n
operator
```

3.3.1 Notes

- Recall that we did not give a reduction rule for constants; in contrast, we do give an evaluation rule for them.
 - Any expression can be evaluated; not all expressions can be reduced.
- The evaluation relation is between
 - expression, environment, state triples and
 - values;

we do not "return" the environment and state because they never change.

- Expressions are evaluated only for their value, not for a side effect.
- These evaluation rules "look similar" to the behaviour of the interpreter provided for assignment 1.
 - It is possible to write an interpreter following the small-step semantics.

3.3.2 An example evaluation

Let us consider once more the expression

5 + 3 == 2 * x

and an environment and state such that

- $\Sigma(\mathbf{x}) = \mathbf{R}$ and
- $\sigma(R) = 4$.

Evaluation semantics do not define steps; to evaluate this expression, we will have to evaluate each subexpression in turn.

(1) (5 , Σ , σ) \Downarrow 5,	by "constant".
(2) (3 , Σ , σ) \Downarrow 3,	by "constant".
(3) (2 , Σ , σ) \Downarrow 2,	by "constant".
(4) (x , Σ , σ) \Downarrow 4,	by "variable" with fact 4 = $\sigma(\Sigma(x))$.
(5) (5 + 3 , Σ , σ) \Downarrow 8,	by "expression" with (1) and (2)

(6) $(2 + x, \Sigma, \sigma) \Downarrow 8$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (6) $(2 + x, \Sigma, \sigma) \Downarrow 8$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (7) $(5 + 3 == 2 + x, \Sigma, \sigma) \Downarrow true$, (8) (5) = 3 = 3 = 3.

This proof could also be presented as a "derivation tree", but this presentation is unwieldly.

3.3.3 Derivation tree

(Pardon the poor rendering in IAT_EX) For completion's sake, here is the evaluation of expression

5 + 3 == 2 * x

presented as a derivation tree. We omit the names of the rules used for space.

	$4 = \sigma(\Sigma(\mathbf{x}))$	
$(5, \Sigma, \sigma) \Downarrow 5$ $(3, \Sigma, \sigma) \Downarrow 3$ $8 == 5 +$	3 (2, Σ , σ) \Downarrow 2 (x, Σ , σ)	
(5 + 3 , Σ , σ) \Downarrow 8	(2 * x , Σ , σ) ↓	
$(5 + 3 == 2 + x , \Sigma , \sigma) \Downarrow$ true		

4 Semantics of While

With the semantics of expressions defined, we are now prepared to give the semantics of *While* statements (programs).

Recall the grammar for While.

```
(stmt) ::=
    skip
| local var in (stmt)
| var := (expr)
| (stmt) (stmt)
| if (bexpr) then (stmt) else (stmt)
| while (bexpr) do (stmt)
```

- With expressions, we wanted to reduce/evaluate to a *constant*.
 - For statements, we will want to reduce to the simplest program: skip.
 - And we will evaluate statements for their side effects, meaning we return a (potentially updated) state.

4.1 Small-step semantics of While

4.1.1 Assignment, composition

$$(E , \Sigma , \sigma) \longrightarrow (E' , \Sigma , \sigma)$$

$$(x := E , \Sigma , \sigma) \longrightarrow (x := E' , \Sigma , \sigma)$$
assign-reduce

$$(x := n , \Sigma , \sigma) \longrightarrow (skip , \Sigma , \sigma[\Sigma(x) := n])$$

(skip S
$$_2$$
 , Σ , σ) \longrightarrow (S $_2$, Σ , σ)

4.1.2 Branch, loop

(E ,
$$\Sigma$$
 , σ) \longrightarrow (E' , Σ , σ)

----- branch-reduce

.

.

(if E then S $_1$ else S $_2$, Σ , σ) \longrightarrow (if E' then S $_1$ else S $_2$, Σ , σ)

(if true then ${\tt S}_1$ else ${\tt S}_2$, Σ , $\sigma)$ \longrightarrow (${\tt S}_1$, Σ , $\sigma)$

(if false then ${\tt S}_1$ else ${\tt S}_2$, Σ , $\sigma)$ \longrightarrow $({\tt S}_2$, Σ , $\sigma)$

(while E do S , Σ , σ) \longrightarrow (if E then (S (while E do S)) else skip , Σ , σ) 4.1.3 Local variables

— loop-unfo

— local-skip

$$\begin{array}{c} (\texttt{S} , \Sigma[\texttt{x} \coloneqq \texttt{nextref}(\texttt{x}, \Sigma)] \ , \ \sigma) \longrightarrow (\texttt{S} , \ \Sigma[\texttt{x} \coloneqq \texttt{nextref}(\texttt{x}, \Sigma)] \ , \ \sigma') \\ \hline \\ \hline \\ (\texttt{local x in S} , \ \Sigma \ , \ \sigma) \longrightarrow (\texttt{local x in S'} \ , \ \Sigma \ , \ \sigma') \end{array}$$

(local x in skip , Σ , σ) \longrightarrow (skip , Σ , σ [nextref(x, Σ) := undefined])

4.2 Big-step semantics of While

4.2.1 skip, assignment, composition

(skip , Σ , σ) $\Downarrow \sigma$

 $(E, \Sigma, \sigma) \Downarrow n$ $(x := E, \Sigma, \sigma) \Downarrow \sigma[\Sigma(x) := n]$ assign

4.2.2 Branch, loop

(E , Σ , $\sigma)$ \Downarrow false $~({\rm S}_2$, Σ , $\sigma)$ \Downarrow σ'

(if E then ${\rm S}_1$ else ${\rm S}_2$, Σ , $\sigma)$ \Downarrow σ'

(E , Σ , σ) \Downarrow false (while E do S , Σ , σ) \Downarrow σ

4.2.3 Local variables

(S , $\Sigma[\mathtt{x}\coloneqq \mathtt{nextref}(\mathtt{x},\Sigma)]$, $\sigma)$ \Downarrow σ'

 $(\texttt{local x in S , } \Sigma , \sigma) \Downarrow \sigma'[\texttt{nextref}(x, \Sigma) \coloneqq \texttt{undefined}]$