Testing out the memory model of various languages

Mark Armstrong

October 2, 2019

Contents

1 Ruby 1
1.1 Non-mutable values. 1
1.2 Mutable valueso 2
1.3 The problem with aliases 2

2 F# 2
2.1 Immutability is the default 2
2.2 The mutable keyword 3
2.3 Mutability by references 3

3 Oz 3
3.1 Single assignmento 3
3.2 Incorporating the treading into the code 4
3.3 Order doesn’t matter L. 5

1 Ruby

Unlike the C-like languages, in Ruby, assignment between variables never
copies the value. Instead, an assignment y = x makes the variable y an alias
(an alternate name) for x.

1.1 Non-mutable values

In addition, for non-mutable types such as integers, assignments of variables
to values simply makes the variable an alias for the value.

We can see this by examining the object_id (Ruby’s reference type) of
x and y below. They both refer to the same object, 5. Any way we have to

“store” 5 will have the same object_id, because 5 is immutable; only one
copy can exist.

puts "5's object_id is #{5.object_idl}"
puts "x's object_id is #{x.object_id}"
puts "y's object_id is #{y.object_id}"

1.2 Mutable values

For mutable values, more than one copy of the value may exist. For instance,
strings are mutable, so in the below x and y refer to different instances of
the same string.

"hello world"
"hello world"

X

y

puts "(A new) \"hello world\"'s object_id is #{"hello world".object_id}"
puts " x's object_id is #{x.object_id}"
puts " y's object_id is #{y.object_id}"

However, assignment between variables (assignment of the form y = x)
still creates aliases.

x = "hello world"
y=x
puts "(A new) \"hello world\"'s object_id is #{"hello world".object_id}"

puts " x's object_id is #{x.object_id}"
puts " y's object_id is #{y.object_id}"

1.3 The problem with aliases

2 F#

2.1 Immutability is the default

As is often the case in functional languages, variables in F# are by default
immutable.

let x = 10

printfn "x is immutable, so while in scope it will always be %d" x

Note that x might be shadowed by another declaration of x (though we
can’t redeclare it in the same scope).

2.2 The mutable keyword

F+# provides some support for imperative programming by allowing a vari-
able to be declared mutable, so its value can be updated. This update
(assignment) is written using the left-facing arrow <-.

let mutable x = 10

printfn "x is mutable, so even though right now it's value is %d...

x <-x+1
printfn "it's value can change to %d!" x

2.3 Mutability by references

F# also includes reference types which allow mutability.

let y = ref 2

printfn "The identifier y is bound to a reference to %d." !y
printfn "y is actually a record %A" y

y :=3

printfn "Now y's reference points to %d instead." !y

printfn "What happened is that y is now the record %A" y

3 Oz

3.1 Single assignment

The result of this code is obvious; X becomes the sum of 2 and 3, so we get
5 in the browser.

declare X Y Z in

Y =2
Z =3
X=Y+ 2
{Browse X}

If we try to run the following code, what should the result be? In the
single-assignment store model, which is a kernel of Oz, the assignment X =
Y + Z will block until we know what Y and Z are. So we never get output if
we just feed this to the virtual machine, because it gets stuck. (We do get
some type information; it knows that Y and Z are char type, since they are
added, and we get a long list of potential types for X).

declare X Y Z in

X=Y+ Z
Y=2
Z =3
{Browse X}

We can feed the lines Y = 2 and Z = 3 (the command C-. C-1 feeds
one line), and if we do so, then we get the output.
3.2 Incorporating the treading into the code

Manually feeding lines is a hassle. We can automate it away by explicitely
threading our code.

declare X Y Z in
thread
X=Y+ 2

end

thread

{Browse X}

3.3 Order doesn’t matter

declare X Y Z in

thread
X=Y+ 2
end

thread
{Delay 1000}
Y =2

end

thread
{Delay 1000}
Z =25

end

{Delay 2000}
{Browse X}

	Ruby
	Non-mutable values
	Mutable values
	The problem with aliases

	F#
	Immutability is the default
	The mutable keyword
	Mutability by references

	Oz
	Single assignment
	Incorporating the treading into the code
	Order doesn't matter

