)
Z
<
@)
x
s
e
(= "4
O
&

43d8v4a 1 L¥4390%

ek SOFTWARE REFLECTED

Copyright notice

Copyright Robert Laurence Baber. This
document may be copied, printed and
distributed for educational or personal use
under the condition that no charge
whatsoever is made for such copying,
printing, distributing, etc. For any other use
permission must be obtained from the
copyright owner, Robert Laurence Baber.
2001 July.

Software Reflected

The Socially Responsible Programming
of Our Computers

Robert Laurence Baber

e
iz
‘S«‘,%

(=)
1982

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM - NEW YORK - OXFORD

© NORTH-HOLLAND PUBLISHING COMPANY, 1982

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic mechanical, photocopying,
recording or otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 86372 9

PUBLISHED BY:

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM - NEW YORK - OXFORD

SOLE DISTRIBUTORS FOR THE U.S.A. AND CANADA:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 VANDERBILT AVENUE
NEW YORK, N.Y. 10017

Library ol Congress Cataloging in Publication Data

Baber, Robert Laurence.
Software reflected.

Bibliography: p.

Includes index.

1. Electronic digital computers--Programming--
Social aspects. I. Title.
QA76.6.B26 303.4'83h 82-3491
ISBN O-444-86372-9 AACR2

PRINTED IN THE NETHERLANDS

Acknowledgments

Many of the ideas expressed in this book were formulated during the
course of discussions with my wife, Ursula. Only by trying to explain to
her, a layman in computer matters, what is wrong with the way we
currently go about trying to develop software did it become evident to
me how difficult it is for a non-computerite to believe that the software
situation of today could be as bad as it really is. Her efforts to
comprehend the nature of the process by which we design and develop
software, our trials and tribulations as well as the causes of our current
difficulties have contributed significantly to the arguments presented in
this book.

I am deeply indebted to my many past and present consulting clients,
teachers, business colleagues and personal friends who have, in the course
of time, contributed to the formation of the ideas contained in this book.
They have also contributed, unintentionally, much of the anecdotal and
narrative material in chapter 2.

My thanks go to Roger M. Pickering and Henry F. Sherwood for
reviewing a draft of this book and contributing many helpful comments.
To Drs. Willem Dijkhuis of the North-Holland Publishing Company I
am grateful for encouragement, constructive critism and an observation
on the connection between mathematics and the- development of a
scientific field (see the introductory comments in chapter 3).

Cartographic credit is due to my daughter, Ingrid, for preparing the
map of the land of the Ret Up Moc.

I am also grateful to the many computer hardware engineers who have
contributed to the development of microcomputer systems. Without such
a system, the preparation of the draft of this book would have taken

vi Acknowledgments

much longer and would have involved much tedious effort. I am very
glad that such systems became available to individual authors at home
before I started to write this book.

Thanks are due also, of course, to those who prepared the word
processing software used in the preparation of the draft of this book. But
I must note, unfortunately, that the quality of this software was not quite
up to the standards met by the hardware. While the errors in that
software were minor and did not preclude productive use of the system,
they were more than cosmetic defects -- which brings me to the subject of
this book.

Robert Laurence Baber

6380 Bad Homburg v.d.H.
Federal Republic of Germany
June 1981

Contents

ACKNOWLEDGMENTS
CHAPTER 0. Prologue: the land of Moc
CHAPTER 1. Introduction

CHAPTER 2. The practice of software design and development:
yesterday and today

The 1950’s
The 1960’s
The 1970’s
The 1980’s
The state of software affairs today

CHAPTER 3. A test for practitioners of the science/art/craft/
trade /racket of software design and development

Questions
Postscript

CHAPTER 4. The practice of software design and development:
tomorrow?

The reckless, audacious Future A
Epilogue to Future A

vii

11

23

26
29
34
51
60

71

74
84

85

87
94

1X

Vil

")'8 00vT "8 "0 dn 19y Ay jo pue Ay

v NN NN Y TY T oy Y
Ny ~ R S TV 2 0 0 2 s T AR G e LT
NNVNINN LN v
YN AN A VY Y AL A T A A Y T Y Y
v NNy Y S B T 2 Y SR T e e U e e A A St
N M A VYN v YA A YT T
A SN VTN Y™
Yooy [N N p
N LN v VYN v N S e S S e S Y Y T Y
Vv YNy R eV
YA Y Y Y e, IV
N 2 T T R e N e B AR s

NN VYN S
NN NN LYY

AR
Y VY

Ny vy Y YN
N R 2
YN Y Y
Y N Y

N

N

VyV
“—.‘ <‘ ? <<

N Va) D AN o oon oo O QO >0 aw 0O —_
%9 0%012 3334M67788889 o)}
—_ =R =~ e e e e e et e —

definitions and axioms

s

craft /trade /racket of software design and develop-

MocPENDIUM: Answers for practitioners of the science/art/
Algorithms: implementation, execution and correctness

<
Q
<
m..n %)
Q. Q 4
Qs]
3 < Q s
(o)
° 2 & =
.m » © 4 [=]
@ g %2 a S
(3 Q.2 O =1
— Q Pol Q -
3 S o 0 = 3
50 wmw S a.
Fe > o S) m
° 5 o ‘A 5] 2
Mmt dﬂ& < [.
E S =2 o 5 F
~ mmw % 2 o a
s g ffg g RN z
oS o = 2 o))
.3 S ez = w,mw et £
ke S [o 3 = & s o] lem. o
§8 F 835 s £ExEEzg @
o . pf 0T w —_— 80 mour o
= o 02 . ¢ E & Wy e =9 ss g
2 38 < % 0 o 8« §553%2 g
o = = <5 33 <3 IWIrm =} Z
39 s 3E3 RES=E33350w:3 =
e - fasg ~ESEtgeasEels %
L L o~ eeMn o S0 nmmMoOc.&AWC M
< .a m S g e} S 3 O Q 0 O R R) [C)
(= B RR20 QA<B<000ARAFAS 3
P 3
T g
@) M

Chapter 0

Prologue: the land of Moc

It is better 1o be unborn than untaught, for
ignorance is the root of misfortune.

Plato (ca. 428 B.C.—ca. 348 B.C.)

He who knoweth not what he ought to know
is a brute beast among men.

Pythagoras (ca. 572 B.C.—ca. 497 B.C.)

Around 2500 B.C. the land of Moc was one of the more advanced
societies in the cradle of civilization, the Middle East. While Moc’s
economy was based primarily on agriculture, its growing internal and
foreign trade was already of considerable importance. It had reached
such a stage of development that a number of closely interacting cities
and towns had arisen; the largest of these had a population of some
100,000. Hierarchically organized governmental and religious bureaucra-
cies of moderate size had been established and two or three centers of
learning appear to have existed.

The construction of the towns and cities over the years had given rise
to a significant building industry and to a certain demand for architect-
ural and civil engineering services. The suppliers of these services pre-
pared themselves for their careers by attending a specialized school where
they studied arithmetic, geometry, elementary algebra, a rudimentary
form of materials science, something we might today call project manage-
ment and several other relevant subjects. After completing this three year
formal academic program, the newly graduated architect or engineer
worked under the close supervision of an experienced professional for
another one to two years. Upon passing an examination, he was then
licensed to practice his craft.

2 Chapter 0

In 2480 B.C. a development occurred which was to have a tremendous
impact on Mocsian society. A small group of civil engineering teachers at
the most advanced institution worked out a new technique for designing
a building. Key elements of this technique were several new structural
geometries and the application of a newly developed mathematical
method to the problem of calculating stresses in complicated structures
of load carrying elements. Using this new technique, multistory buildings
could be designed and built which were much larger than any built
before. Perhaps even more importantly. the proper application of the new
technique could reduce construction costs to about one tenth of their
previous levels.

Not surprisingly, this unexpected new development was followed by a
sudden, sharp increase in the demand for new construction. Larger
versions of traditional types of buildings (houses, apartments, shops,
offices, sports arenas, etc.) were in great demand. Many peasants who
had previously lived in self-made mud and straw huts could now afford
housing of a type previously available only to the middle and upper
classes. The political leaders decided to build several huge monuments to
the glory of Mocsian society. Religious leaders commissioned important
new structures for use as temples and as astrological and astronomical
observatories.

The application of this new technology was not without its dark side,
however. The sharply increased demand for architectural and civil en-
gineering services greatly exceeded the capacity of the trained Mocsian
professionals. In order to train greater numbers of these professionals,
the capacity of the training centers would have had to be increased. But
the economic pressures of the market place had just the opposite effect —
some of the teachers left academia to earn even more money as practicing
professionals and few, if any, of the new graduates went into teaching.

Compounding the problems was the fact that the already trained
professionals were not really able to understand and apply the new
techniques satisfactorily. Additional training, especially in geometry and
a new branch of mathematics, was necessary. Few practitioners were
inclined and in a position to take leave of their work for six months in
order to learn these subjects.

Economic forces soon caused the gap between supply and demand to
be bridged. By about 2420 B.C., the following state of quasi equilibrium
had been reached.

Prologue: the land of Moc 3

Suppliers of building materials had developed short courses (about
three weeks in length) which more or less successfully conveyed some of
the essentials of the new engineering techniques. A few already trained
professionals attended these courses at first, but the majority of the
participants were either completely new to the building industry or had
previously been laborers on construction teams. These courses were
especially popular among apprentice sod carriers, who soon realized that
preparing construction plans in a cool office was less strenuous and more
rewarding work than carrying large volumes of sod in the heat of
Mocsian summer.

Other groups of persons involved in the building industry, including a
few trained architects and civil engineers, developed design kits. These
kits included
— a design handbook,

— sample forms, drawings and plans,

— special purpose slide rules,

— preprinted graphs and diagrams for calculating stresses in beams,
walls, floors and ceilings,

— drawing templates and graphic tools,

— designers’ checklists,

— a book summarizing the theories underlying the new design technique

and a variety of other similar tools and design aids, some of which were

of dubious value. Characteristic of the written materials in these kits was

the extensive use of pictorial information, for a significant fraction of the

new designers was barely literate.

Armed with such a design kit, most of those who completed one of the
three week courses were able to prepare construction plans for new
buildings. Because they did not, however, really understand the theory
underlying their designs, minor catastrophes were common. About 30%
of all newly designed buildings collapsed during construction. Often,
minor but required features were forgotten in the plans and post-
construction rework was usually necessary.

Even after taking these problems into account, construction costs were
still only a fraction of what they would have been using the older
methods. No one, therefore, seriously considered or suggested reverting
to the old ways. Loss of life of the occupants of completed buildings and
of other members of the public was actually rare, because the buildings
collapsed only during or immediately after construction. There was

4 Chapter 0

clearly a net benefit to society of using the new design technique and so
its use not only continued, but grew rapidly.

To combat the problem of loss of life of laborers when buildings
under construction suddenly collapsed, elaborate testing schemes were
worked out. Certain stages of construction were identified as pre-critical
ones. When a building reached such a stage of construction, the site was
cleared and the structure tested by loading it with sand and rubble.
Various arrangements of cranes, winches and ropes were used to bring
the loads into place so that laborers were not in danger should the
structure collapse. After construction was complete, a similar final test
was conducted. A very considerable part of the total cost and time
required to construct the typical building could be attributed to these
testing procedures, but without them, no construction foreman was
willing to assume responsibility for the lives of his laborers. Some small
organizations even supplied a variety of testing kits, similar to the design
kits described earlier.

Nevertheless, tempers and frustration with cost overruns, missed
schedules and the generally poor quality of buildings ran high. In order
to protect themselves from legal claims, the designers began to write a
standard legend on each drawing or plan delivered to their clients. This
legend, which had long been an unsolved mystery in our study of the
Mocsian culture, has only recently been successfully translated as fol-
lows:

DISCLAIMER

These building plans are supplied on an “as-is” basis. The
designer makes no guarantees, warranties or representations that
these plans are suitable for any particular purpose, that they are
correct or that a building constructed using them will satisfy any
particular needs of the purchaser. The designer agrees to supply a
replacement copy of any part(s) of these plans which was (were)
illegible at the time of purchase. Otherwise, he accepts no liability
of any kind.

The purchaser of these plans should note that good construction
practice dictates that appropriate tests be conducted at the several
pre-critical stages of construction as well as upon completion of the
building and that normal precautions be taken to safeguard the
lives of construction laborers.

Prologue. the land of Moc S

The above translation has, however, been questioned by some scho-
lars. They point out that it is in conflict with our knowledge of Mocsian
commercial practice and law. In Moc, a long commercial tradition
required that the seller repair or replace goods found to be defective or
that he refund the purchase price if the goods could not be made to fulfill
their intended purpose. Suppliers of services accepted a similar obliga-
tion. This tradition was well established and was anchored in Mocsian
commercial law. If the above translation of the disclaimer legend is in
fact correct, the new breed of building designers constituted the only
known exception to this long commercial tradition.

Recent excavations in Moc have even turned up small stone tablets
with the disclaimer legend engraved in reverse. It has been postulated
that these tablets were used then as we use rubber stamps today.

Between 2420 and 2400 B.C., the teachers and their professionally
trained assistants refined the new technique, with the result that con-
struction costs declined even more and demand for new construction rose
to still higher levels. As a consequence, not even the rather large number
of “three week wonders with design kits” (as the professionally trained
designers contemptuously labelled their minimally trained colleagues)
could cope with the demand for plans for new buildings. Some relief was
obtained by using one set of plans for many buildings (a practice
commonly called “off-shelving”), but individual tastes and differing
requirements limited the extent to which this approach could be used.

Some larger trading and other organizations set up small staffs of
designers they had recruited from among their employees. Each of these
new designers was sent to an abbreviated version of the three week
courses and upon his return was given his own design kit. While these
internal designers were reasonably effective at designing additions and
modifications to their organization’s existing buildings, they were gener-
ally less successful in designing completely new structures. Cost overruns,
construction delays and collapses of partially constructed buildings
seemed to occur more often when structures they designed were being
built. Members of these internal design staffs generally worked under less
time pressure than their independent colleagues. Because they were

~ usually paid less than independent designers could earn, the more

ambitious and the better designers did not usually remain in the employ
of a large organization for any really significant length of time.
Some designers joined together and formed small design teams or

6 Chapter 0

organizations. These became popularly known as “design houses”, a kind
of play on words which is more effective in the original Mocsian than it
is in translation. Some of these design houses developed a variation of
“off-shelving”: they accumulated libraries of standard plans for parts of
buildings (rooms, tracts, entire floors, etc.). Such plans for parts of
buildings could be combined more or less arbitrarily as needed to make
up a set of plans for a new building. This approach was called “mod-
ularized off-shelving” and became something of a craze.

Some design houses had one or two professionally trained designers
on their teams. These professionals usually contributed considerably to
the effectiveness of the designers with less formal training. Most of these
design houses enjoyed a good reputation and were very successful.

Despite the development of improved methods, the designers could
not keep up with the growth in demand for their services. By 2400 B.C.,
the situation had reached the point that a prospective builder had to wait
about two years for a set of plans to be prepared — even for plans for a
relatively simple building. The overall quality of the designs being
produced was not really improving. While the “three week wonders”
were learning from their experience, more complex and more ambitious
projects were being initiated. Because their specific experience with
previous designs was only of limited applicability to typical new projects
and because their understanding of theoretical geometry and statics was
so limited, they were not successful in their attempts to improve the
fundamental quality of their designs. In fact, the collapse rate (the ratio
of collapses to new building starts) was actually increasing. According to
official government statistics, it reached a new high of 34.9% in 2400 B.C.

Except for the “three week wonders”, who were convinced that the
current situation was Adad’s will (and wasn’t really all that bad anyway),
no one was really satisfied with the state of affairs in the Mocsian
building industry in 2400 B.C. Several studies were conducted, the results
of which were somewhat contradictory. Most of the studies tried to
compare and evaluate proposed ways of improving the situation, rather
than to identify the causes of the problems. An almost unbelievable
number of new tricks, methods, procedures, etc. was invented and
promulgated. Some were useless. Others were based on incorrect assump-
tions and were actually harmful. But many definitely were valuable and
effective; the only problem was that the less well trained designers could
not understand these new methods well enough to apply them meaning-

Prologue: the land of Moc 7

fully. The relatively few professionals could, and many of them did,
apply these methods successfully, but the overall effect on the industry as
a whole was disappointingly small.

The professional designers (about 10% of all designers in 2400 B.C.)
were particularly annoyed by the fact that much of their time was spent
correcting or trying to overcome the effects of the mistakes perpetrated
by their less thoroughly trained colleagues. Upon his arrival one day at
the scene of an especially catastrophic collapse, a particularly eloquent
professional was overheard to remark in disgust, “rubbish in, rubble
out”. The “rubbish in” to which he referred was, of course, the set of
plans prepared by a “three week wonder”. The “rubble out” was an
immense pile of rubble which then occupied the site. He estimated that it
would take 1,000 laborers and 200 draft animals one year to remove the
rubble and to clear the site in preparation for the next construction
attempt.

The professionally trained designers were worried about the long term
effect these problems were certain to have upon their reputation and
social standing. They were also frustrated by the small — in their view —
difference between their earnings and those of the “three week wonders”.
They were convinced that the collapse rate was closely correlated with
the professional qualifications of the designer preparing the plans. Their
professional guild had conducted a few surveys, the results of which, to
no Qne’s surprise, confirmed this contention. Purchasers were generally
willing to pay more for plans prepared by a professional designer, but in
the eyes of the professionals this difference was much less than was
warfapted by the reduced risk of collapse. The official government
statistics on collapse rates did not distinguish between buildings designed
by the two groups so were of no relevance to discussions of this issue.

A few enlightened leaders in Mocsian society agreed by and large with
the professional designers. They, too, were convinced that a certain body
of theoretical knowledge was very useful to anyone practicing the craft of
designing buildings. In the long run, the profegsional education of
prospective designers was clearly of considerable economic value.

) The difficulties were great, however, in inducing a transition to the
ideal situation in which most, if not all, designers would complete a
professional training program before embarking upon their careers. First,
.the capacity of the professional training institutions would have to be
Increased substantially. The problem of financing this increase was a very

8 Chapter 0

difficult one. Then there was the question of how to select those experi-
enced professionals who should leave their practices in order to help
teach the next generation of designers. Even if they could be selected. it
was not at all clear how they could be motivated to give up interesting
and lucrative careers in favor of an uncertain future in teaching. And
even if that problem could be solved, there still remained the task of
inducing prospective designers to postpone substantial earnings for some
three years while they received a professional education.

Neither the professional guild nor the few enlightened leaders of
similar opinion were in a position to solve the problem of financing a
major expansion of the professional training institutions. Either a much
larger group from the private sector or the political leadership of the
country would have to be convinced of the desirability of these contem-
plated changes if sufficient funds were to be mobilized for this purpose.
In view of the fact that the productivity of Mocsian society and the
standard of living of its citizens were at an all-time high, it was essentially
impossible to generate any large scale, popular support for an expensive
scheme justified by nebulous promises of an even better possible future.
Any attempt to achieve a quantum jump in the structure of the building
industry seemed to be doomed.

The many low and middle class purchasers of buildings were quite
unimpressed by the various proposals put forth. They couldn’t have
cared less about detailed analyses of the reasons for failure or about
philosophical discussions of long term solutions. They suspected that the
intelligentsia was attempting to divert some of their economic gains (the
reduction in construction costs) in order to increase its own social power
and to enlarge its own empires (e.g. the training institutions and the
professional guild). The introduction of the new design technique had in
fact been followed by a noticeable shift in power from the upper
intellectual and professional classes to the middle and lower classes. The
latter, of course, did not want to see the former recoup their losses.

The attitude of the majority of the building purchasers was pragmatic
and their desires were quite simple: they wanted good designs for
buildings that would satisfy their needs and they wanted them yesterday.
All the political debate and the philosophical discussions of theoretical,
long-term solutions were only adding to the design delays and were
diverting attention from more promising short-term solutions to their
problems. The majority of the building purchasers had clearly defined

Prologue: the land of Moc 9

priorities: first, reduce the delays in producing the designs and then —
only then - improve their quality. Although they did prefer profes-
sionally trained designers to “‘three week wonders”, they preferred a
“three week wonder” in three weeks to a professionally trained designer
in three years. Increasing the rate of production of professional designers
would not solve the crucial problem: the unnecessary delays in the
process of designing buildings today.

The professionals countered these arguments by pointing out that the
proliferation of unqualified practitioners was the underlying cause of
both the time and the quality problems. A professional designer could
not only prepare better plans, he could also prepare them somewhat
faster than his less qualified colleagues. More importantly, the consider-
able time which the designers were forced to devote to supervising the
elaborate testing procedures and to rework and corrections detracted
greatly from their effective capacity.

insufficient
professional
educational
capacity
.h.igh and under-
immediate qualified
dem?.nd for practitioners
practitioners
unsatisfied low
demand for - productivity,
services high
\—/ collapse rate

The Mocsian vicious circle

10 Chapter 0

The professional designers also felt that the purchasers should concern
themselves less with the time required to prepare building plans alone
and direct their attention instead to the total time elapsed until the new
building was standing and ready for use. By improving the quality of the
designs, much time could be saved during the construction phase. In
particular, the major delays caused by collapses and by the elaborate
testing procedures could be all but eliminated. The issues of quality and
time could not be separated as simply and neatly as the purchasers
implicitly assumed. Until proper — i.e., professional — training facilities
with adequate capacity existed, neither problem could be solved satisfac-
torily.

Such was the situation in the land of the Ret Up Moc (Glorious
Society of Moc) when progress was interrupted by an epidemic (see also
[Zinsser]*). The disease was highly contagious, moderately incapacitating
but not lethal. Perhaps the respite in the hectic pace of Mocsian life
would give time for much-needed reflection. Or was it just the calm
before the storm?

* Square brackets [] enclose bibliographical references.

Chapter 1
Introduction

If rational men cooperated and used their
scientific knowledge to the full, they could
now secure the economic welfare of all.

Bertrand Russell (1872-1970)

The story of the land of Moc is obviously pure fiction. Such a
ridiculous story could never be true. Or could it?

It is the thesis of this book that the story of the land of Moc is true.
“Only the names have been changed to protect the guilty.” The time is
not 2480 B.C. to 2400 B.C., but 1940 A.D. to the present. The industry is
not an ancient construction industry, but our modern computer software
industry. The location is not the cradle of civilization, but the industrial-
ized part of the world. Within not so many years, the location may have
grown to include essentially all populated areas of the planet Earth.

The true version of the story centers not on the designers of buildings,
but on the programmers of our society’s computers. (Throughout this
book, the term “programmer” is used in its broadest sense and includes
all persons directly involved in the detailed specification, design and
development of computer software.) The products of these programmers’
efforts are already of considerable — in some cases, even critical —
importance to our society and to its various organizations and structures.
Also of major consequence are the errors and shortcomings embedded in
these products. The impact of both the positive and the negative aspects
of these products on our life (both individual and collective) will cer-
tainly increase in the future. There will be no return to the softwareless,
programmerless days of the recent past.

This book proposes that the activity of programming — specifying in

11

12 Chapter 1

detail, designing and developing computer software — is by nature an

engineering discipline but that it is not generally regarded as such in our

society today. Some of the most serious consequences of our current

non-engineering approach to programming are:

— disappointing and shoddy products, often containing simple errors of
a fundamental nature,

— unnecessarily low productivity,

— frequent failures of such size that major projects must be aborted at a
late stage of development,

— diversion of considerable effort to fundamentally unproductive tasks
and

— generation of confusion, fear, frustration and misunderstanding among
direct and indirect users of computer based systems. '

Practitioners are illuded into believing that after a three week course,
they are aware of just about all existing fundamental knowledge relevant
to their endeavors; all that they then need to be fully effective is the right
kit bag of small tools and a quickly attainable familiarity with the latest
technical details in whatever specific area happens to be of current
concern. The most unfortunate effect of this illusion is that it diverts into
unrewarding directions their searches for ways to fundamentally improve
the situation. Instead of taking the time to build a solid foundation for
their current and future work, they are deceived into searching for a
fountain of youth or a pot of gold at the end of the rainbow. They
mistake technical details and minor facts of fleeting value for fundamen-
tal knowledge and understanding of lasting and general applicability.
They mistake partial solutions to today’s problems for complete solutions
to yesterday’s, today’s and tomorrow’s problems. The even more unfor-
tunate ones are deluded into quixotic crusades.

Is programming an engineering discipline? What is an engineering
discipline? In the narrowest sense, one can define engineering as those
fields of activities which are concerned with applying the physical laws of
matter and energy to the construction and operation of useful machines,
buildings, bridges, etc. While this was certainly an adequate definition a
century ago, it is too restrictive today. It seems to miss, for example, the
essence of that part of electrical engineering concerned with electronics.
While matter and energy are necessary aspects of the implementation of
electronic devices and systems, the purely mathematical aspects of signal

Introduction 13

processing would seem to be of more fundamental importance. The
abstract aspects of the various building blocks used by the electronics
engineer and the manner in which he interconnects them to form a
system with characteristics very different from those of its constituent
parts seem somehow to be more essential than the physical embodiment
of those elements and systems. (See note at the end of this chapter.)

The essential aspects of “engineering” would seem then to be not
machines, matter and energy but rather the application of an extensive
body of scientific knowledge (e.g. physics, chemistry, etc.) and logic (i.e.,
mathematics) to the task of designing and constructing something which
takes on an identifiable, tangible form and which is of practical value.
While this certainly does not capture all aspects of engineering work (in
particular the creative and artistic aspects), it does seem to contain those
key elements of engineering which differentiate it from other, non-
engineering activities.

In deciding whether programming is, or is not, an engineering disci-
pline one must, then, consider the following questions:

1. Does a significant body of scientific and mathematical knowledge
exist which is relevant to programming?

2. Has the programmer mastered a substantial part of that body of
knowledge?

3. Does the programmer actually make use of this knowledge in the
course of performing his work?

4. Does the final result (software) take on an identifiable, tangible form?

5. Is the software produced of practical value?

Whether the body of knowledge relevant to programming is “signifi-
cant” and whether a “substantial” part of it has been mastered by any
particular programmer are, of course, subjective judgments. To make
these judgments, it is useful to draw comparisons with other, accepted
engineering fields. We can ask if the body of scientific and mathematical
knowledge relevant to programming is similiar in character and size to
that relevant to accepted engineering disciplines (for example as reflected
in the technical literature). We can ask whether the formal education of a
programmer is similar in quality and length to that of others whom we
accept as engineers.

To answer the first question above, it is suggested that the reader
peruse the professional literature in the field of computer science. Chapter
3 illustrates a small extract of this material. It is the contention of this

14 Chapter 1

book that the body of scientific and mathematical knowledge relevant to
programming has become qualitatively and quantitatively comparable to
that relevant to other engineering disciplines. Before 1960, this was
probably not true. Around 1970, the point could be argued. Today, it is
true.

In chapter 2 it is shown that - as in the case of the building designers
in Moc in 2400 B.C. - only a small fraction of the programmers in our
society today has successfully completed formal academic programs in
computer science. While some others have acquired comparable knowl-
edge in other ways, many practitioners have not mastered a substantial
part of the relevant body of knowledge. Thus even if one does conclude
that programming is an engineering discipline, not all programmers of
today can be considered to be engineers. '

The third question above should give rise to little controversy. Most
programmers do regularly use in their work much of the relevant com-
puter science knowledge they have. They may very well make use of a
larger fraction of their store of professional knowledge in their daily work
than engineers in other disiplines typically do.

The fourth’ question can also be answered affirmatively. A finished
piece of software takes on several identifiable, tangible forms: printed
listings, magnetic recordings, electronically stored patterns, video dis-
plays as well as various types of documents intended for human readers.
The behaviour exhibited by a software system (or more precisely, by a
computer executing the software) can be observed, tested and measured.

While not all software, after it has been produced, has any practical
value, much of it must be of considerable practical value — otherwise we
would not expend ever increasing amounts of effort to produce more and
more. Almost all, if not all, software produced or attempted was at least
originally intended to have practical value, that is, to satisfy some real
need. Even the recent wave of game software for microcomputer systems
must be recognized as satisfying a demand for entertainment and there-
fore as having practical value. Much of it certainly has economic value.

A few writers and professional groups do seem to have recognized
programming as an engineering discipline. Norbert Wiener described
programming (he used the term ‘“taping”) as “a highly skilled task for a
professional man of a very specialized type” [Wiener, p. 156]. The term
“software engineering” was used, albeit more in a provocative than in a
descriptive manner, as early as 1968, when the NATO Science Committee

Introduction 15

sponsored a conference in Europe on that subject. The term “software
engineering” was chosen as the title of the conference in order to express
“the need for software manufacture to be based on the types of theoreti-
cal foundations and practical disciplines that are traditional in the
established branches of engineering” [Naur and Randell, p. 13]. Since
1975, the Institute of Electrical and Electronics Engineers in the U.S.A.
has been publishing a scientific journal entitled “Transactions on Soft-
ware Engineering”. Also since the mid-1970’s, several professional socie-
ties have sponsored various conferences and symposia with titles includ-
ing the term “software engineering”. The Association for Computing
Machinery has founded a Special Interest Group on Software Engineer-
ing (SIGSOFT). In 1979, Richard E. Fairley, the chairman of the IEEE
Computer Society’s Subcommittee on Software Engineering Education,
stated that “software engineering has evolved into a major subdiscipline
of computer science and engineering. Although much remains to be done,
a body of knowledge and a set of guidelines have emerged which
incorporate traditional engineering values into the production and main-
tenance of software systems.” [Fairley]

While a definite trend toward the recognition of programming as an
engineering discipline can be discerned in the professional, technical and
trade literature, this trend is not a particularly strong one. Such recogni-
tion has not yet become widespread by any means [Kimm, p. 5].
Programming is probably more widely recognized as an engineering
discipline in academic computer science circles and among graduates of
college level computer science programs than anywhere else. Such recog-
nition is probably less pronounced among software houses and other
software producers. Most purchasers and users of software products
would undoubtedly respond to the suggestion that programming is an
engineering discipline with an unbelieving smile, if not a cynical laugh.
While they might wish that this were the case, and might feel that it
should be the case, few, if any, would agree that it is the case today. But
probably only relatively few people connected with the software industry
have ever really given the matter any serious thought at all.

The programmers of our software industry work in many places in our
economy. They can be found within the various organizations which
directly utilize their products. These programmers are most frequently
grouped together in the EDP department, information systems depart-
ment, etc., as it is variously called, but some can already be found

16 ' Chapter 1

directly in the user departments. Most employees of software houses,
many employees of systems houses and some members of consulting
organizations are programmers in our sense of the word. Quite a few
programmers do not belong to any organization, but work as free lance
systems analysts or coders (programmers in the narrow sense of the term)
or as independent consultants of various types. Considerable numbers of
programmers can, of course, be found in the software divisions of
computer manufacturers. Finally, programmers are at work in growing
numbers in organizations which develop products containing computers
(especially microprocessors) as an integral component. In short, they are
scattered over many places. In the future, they may very well become
even more widely spread throughout society and its organizations.

There are many aspects of the social responsibilities associated with
the programming of our computers (or with the application of any
important technology, for that matter). It is convenient and useful to
divide these aspects into two broad categories. The first category deals
with what computers should (and /or can) be programmed to do and with
the social consequences of what they do or may be made to do. The
second category deals with how they are programmed to do what we have
decided they should be set to do and with the social consequences of how
we program them.

The what issues include, for example, such questions as the following:

Should the accounts of company X be processed by computer? Its
payroll?
Should typesetting be computerized?

Should credit information on individuals be stored in computer sys-
tems?

Should such credit information be exchanged automatically between
computers in different companies? What legal rights might be in-
fringed by such exchange?

What restrictions should be placed generally on the computer storage
and exchange of personal data?

Which aspects of controlling nuclear reactors should be performed by
computer instead of by a human operator?

Introduction 17

Which aspects of controlling commercial air traffic should be com-
puterized?

Which functions of a country’s military defense systems should be
performed by computer systems? Of its offensive systems?

What safety precautions against computer failure should be included
in such systems?

Which, if any, of the tasks currently performed by factory workers on
production line X in company Y should be performed by computer
controlled machines instead?

What are the meaningful and proper roles of a computer in the home?
Of a “personal” computer in the office?

Should we set out to design a computer controlled robot for the home
which will vacuum the floors and dust the furniture by itself (without
damaging delicate antique glassware on the shelves) — thus enabling a
considerable number of people to devote much effort to other tasks
which also need to be performed?

Should the main catalog of a national library be stored on an on-line
computer system and be accessible by all private citizens from their
homes?

Should the full texts of the publications in that library be similarly
stored and made available within seconds to remotely located users?

What benefits would thereby accrue to the user? to society as a whole?
How can the rights of copyright holders be adequately protected?
Should the full texts of all publications or only of those that are out of
print be made so available?

Should the contents of newspapers, magazines and books be distrib-
uted via computerized data transmission networks instead of in printed
form?

Should we attempt to employ computer systems to diagnose diseases
and other medical conditions (partially replacing the physician)?

Should we attempt to employ computer systems to prescribe therapy
(replacing the physician to an even greater extent)?

18 Chapter 1

Should company X install a computerized electronic mail and telecon-
ferencing system, enabling its employees to work at home three days
per week?

The answers chosen to questions of this type obviously have major
short, medium and long-term consequences for many members of society.
The list of such issues could, of course, be continued almost indefinitely.

The how issues include not only questions of technical method which
are of direct concern only to the programmer, but also — and more
importantly for our purpose — questions of consequence to other mem-
bers of society. While many of these consequences are indirect (involving
the effects of software quality, the availability of new products and
services, the education of a new, potentially large group of professionals,
etc.), they are often more significant than one might at first expect.
Examples of such how issues include:

Should we entrust programming to professionally trained specialists,
to less thoroughly trained technicians, to persons of other specialities
who have been briefly familiarized with programming or to some
combination of the three?

If to some combination, what is the best balance between the several
types of programmers? .

What formal and informal programs for the original training of the
several types of programmers should be instituted?

What training capacity is needed? Who should conduct the training?

How are programmers to be kept informed of new techniques, meth-
ods, discoveries and other developments of value to them in their
work? How do we encourage them to keep themselves informed and
up to date?

How do we ensure that programmers have convenient access to and
maintain an adequate awareness of the available bodies of knowledge
relevant to their work? How do we ensure that they take full ad-
vantage thereof?

What balance should be established between the numbers of pro-
grammers who are

— employees of the department using their products,

Introduction 19

— employees of a special department or staff of the same organization,

— employees of other organizations producing and supplying software
and related services and

— independent professionals?

What balance should be established among the various areas of
specialization in the programming field, e.g.

— application software (financial systems, inventory control systems,
production planning and control systems, order processing systems,
etc.),

— system software (compilers, operating systems, data base manage-
ment systems, data communications, etc.),

— management,

— teaching,

— research, etc.?

In which areas should we attempt to increase our capabilities (e.g.
translation between natural languages, pattern recognition, voice out-
put, speech recognition, robot control, graphics, storing and process-
ing pictorial data, supporting high level decision making, etc.)?

What formal standards for the professional and /or technical qualifi-
cations required of programmers should be established (if any)? Who
should set and enforce them?

Which programming activities should be performed only by persons
possessing such formal qualifications?

What are the social and economic consequences of not setting or not
enforcing standards for programmers’ qualifications? Is it necessary to
set such standards? Can society afford not to set them?

To what extent is the public exposed to the risk of possible injury or
economic loss resulting from the malfunction of computer systems
(hardware or software)? How severe is the potential damage? How can
the associated risk be minimized?

What precautions can and should be taken to ascertain that the
software in any particular system is free of faults that could cause
catastrophic failure?

20 Chapter 1

To what extent should the general public be educated in subjects
related to programming? Should, for example, every school child be
required to take a course in computer appreciation and /or computer
programming?

The what issues are, perhaps, of greater fundamental importance in the
long run than the how issues. But our shortfall in achieving what we have
set out to do with computers and in achieving what we know to be
possible to do with them is so great that the how issues appear to be, at
least now and in the near future, of greater consequence to society. As
long as the large gap continues to exist between what is possible and
what we set out to do on the one hand and what we can, in practice,
reliably achieve on the other hand, many of the what questions are
academic. Primarily for this reason, this book deals only with how issues.

That is not to say that we should not concern ourselves with the what
issues. In fact they have received attention in important works, for
example [Wiener] (1950), [Dreyfus] (1972) and [Weizenbaum] (1976), just
to cite a few. They will undoubtedly receive more attention in the future,
and that is certainly justified.

Many of those deeply concerned with the what issues point out that
mankind should not try to do everything which is technologically possi-
ble to do. This is undoubtedly true. This proposition seems, h@wever, to
be interpreted by some to mean or to imply that we should limit attempts
to extend our technological capability. On the contrary, the two proposi-
tions
1. mankind should strive to achieve the technological capability to do

whatever he decides he should do and
2. mankind should not do everything which his technological capability

enables him to do

contrast with one another, but they are not contradictory. In fact,
attempting to maximize mankind’s social and economic welfare necessi-
tates that he 1) strive to increase his capability to do all kinds of things
and 2) exercise the good judgment and will power to apply this capability
in ways which contribute to his well being and to refrain from applying it
in ways which would detract from his well being. The how issues referred
to above relate to the first of these two propositions; the what issues arise
from the conflicts inherent in the decision-making processes implied by
the second.

Introduction 21

The application of the first proposition above to programming places
a responsibility on programmers to strive to improve their abilities to
create software which does what has been specified and which does not
do anything else which would cause injury, loss or inconvenience to
society in general or to its individual members. In particular, this places
certain obligations on programmers with respect to the quality and
correctness of their products and especially with respect to their ability to
verify that correctness. In chapter 2, it is shown that we are very far from
fulfilling this responsibility — despite the fact that methods are known
which, when used appropriately and skillfully, enable programmers to
improve the quality of their products very considerably. Some of these
methods appear in chapter 3.

The application of the first proposition above to programming also
places a responsibility on programmers to strive to improve their produc-
tivity. While productivity does not affect what one can in principle do
with a given technology, it does affect, often very fundamentally, what
society can in practice do with it.

As mentioned earlier, this book is concerned with how issues only.
These issues are of immediate importance and concern but are currently
receiving much less attention than they properly deserve. Our inadequate
resolution of them is currently impeding our progress in applying com-
puter systems to many tasks that are both possible and socially desirable.

Programmers, both collectively and individually, have a social respon-
sibility to improve their capabilities very considerably and more rapidly
than they are now doing. Other members of society have an obligation to
help, guide and, if necessary, coerce programmers to fulfill this responsi-
bility better in the future. These responsibilities and obligations have
been overlooked too long. The social costs of continuing to overlook
them are increasing rapidly and will soon become unacceptably high.

This book is directed primarily to the following groups, who will —
actively or passively — influence strongly our software future:

— software practitioners (today’s “system analysts” and “programmers”),

— managers of software development groups,

— educators (both in academia and in secondary schools),

— software users and user management and

— persons responsible for the formulation of public and private policy in
the above areas.

22 Chapter 1

This book, it is hoped, will contribute to an increased awareness of our
present and probable future problems in the areas of software design,
development and application and will stimulate discussion of the perti-
nent issues by all parties concerned. While it ends with general sugges-
tions for actions to be taken by each of the groups listed above, it is
beyond its scope to attempt to develop a final, detailed action plan for
every party involved in shaping our software future. That effort requires
the active participation of members of all of the above mentioned groups.

Note. The pronoun “he” is used in this book strictly in the sense of the
second definition given on page 1041 of “Webster’s Third New Interna-
tional Dictionary of the English Language Unabridged”, published by
G.&C. Merriam Company. Springfield, Massachusetts, U.S.A., 1976.
I.e., no connotation of gender is to be attributed to this pronoun or to
any of its several declined forms as they appear in this book.

Chapter 2

The practice of software design and
development: yesterday and today

What is not fully understood is not pos-
sessed.

Johann Wolfgang Goethe (1749-1832)

Ignorance gives a sort of eternity to pre-
Judice, and perpetuity to error.

Robert Hall (1764-1831)

The practice of software design and development yesterday and today
has many parallels in the practice of civil engineering in the land of Moc
between 2480 and 2400 B.C. The practice of software design and devel-
opment has been, and still is, characterized by a similarly high rate of
Mocsian-like “collapses”. Whereas in Moc buildings collapsed only dur-
ing construction, our software systems “collapse” not only during con-
struction but also after they have been put into service. Design and
construction by trial and error (following the Mocsian motto “try build-
ing it and see if it collapses™) seems to be a widely used and accepted
approach to the task of software development.

Every engineering discipline has its collapses, of course. Collapses
occur much more frequently in the area of software development, how-
ever, than they do in any other field of engineering. The collapse of a
bridge or building during construction is a newsworthy event; the public
is surprised — precisely because such events are seldom. The discovery of
a design error of comparable consequence in commercial aircraft in
service, to cite another example, is a similarly unusual and surprising
event. Such failures usually make headlines, lead to changes in the

23

24 Chapter 2

practice of the corresponding field of engineering and become key
examples in engineering education. When these errors are discovered, the
perpetrator is expected. and normally legally obliged, to make amends.
Major collapses are so frequent in the software field, however, that only
the very largest and most spectacular ones are considered newsworthy;
most receive relatively little attention. They come as disappointments,
certainly, but not as surprises. They are accepted as the norm that they
have come to be, occurring so frequently that it would be unrealistic to
expect the perpetrator to make amends.

In every engineering discipline, trial and error also has its place, but
only when the designer is knowingly and intentionally working in new
areas, “pushing the state of the art” as it is sometimes called. In such
cases, the “trial and error” approach normally takes the form of scientific
experimentation. Experiments are designed to yield answers to the open
questions, to discriminate between alternative hypotheses, to extend the
limiting frontiers of knowledge. The risks are consciously accepted and
appropriate precautions are taken. Trial and error is not acceptable when
the designer is working in areas in which his own personal expertise is
lacking and is not up to the “state of the art”. In such a case, the engineer
is expected to familiarize himself with the relevant literature and accu-
mulated experience of others before embarking into what is, for him, new
territory. To do otherwise is considered irresponsible.

This attitude does not seem to be the norm now in the field of
software development. Experiments designed to yield specific informa-
tion needed by the designer are not commonplace. All too often, the
software developer makes use of the “trial and error” approach in its
crudest form instead of consulting the often rich and voluminous profes-
sional literature. In many cases, this is understandable: The programmer
is often unaware of the limitations in his knowledge and experience until
an unexpected collapse occurs. Many practicing programmers today are
unable to read the computer science literature. Often they are even
unaware of its very existence. The other literature which they can
understand often contains insufficient detail, contains exaggerated claims,
is inadequately indexed and /or is not easily and quickly accessible.

The reasons for this state of affairs also have their parallels in the state
of affairs in Mocsian civil engineering in 2400 B.C. Our programmers —
like the Mocsian designers — have had little opportunity and even less
incentive to attend professional training programs. Our educational

Software development: yesterday and today 25

systems have not responded adequately to the rapid development of the
field of software engineering. The economic pressures of the market place
seem to value a “three week wonder” in three weeks at least as highly as a
professionally trained practitioner in a few years. In any event, there are
not enough of either to satisfy the rapidly growing demand. The short-
term problems are so great that we concentrate on them, knowingly
postponing attention to the mid- and long-term problems — even when
we recognize that the latter may turn out to have even more severe
consequences.

The following randomly selected anecdotes and short narratives il-
lustrate the problematic state of affairs in the field of software develop-
ment. All these stories are true; only unimportant details have been
modified in some cases to preserve anonymity. While they do not give a
complete, statistically balanced picture of the software industry yesterday
or today (the success stories are underrepresented), these narratives are —
unfortunately — typical of the goings-on in this field.

The evolution of the nature of software projects is reflected in these
stories. In the 1950’s, even advanced software “systems” tended to be
limited in scope and interacted little, if at all, with other systems. In the
1960’s, the typical software system was larger in scope, represented a
more ambitious undertaking and, especially in the latter part of the
decade, interacted closely with several other systems. “Integrated” sys-
tems received much attention and became something of an ideal for
planners and designers until a number of spectacular collapses at the end
of the 1960’s and in the early 1970’s had a sobering effect. The 1970’s
constituted a period of somewhat steadier (but still rapid) growth and a
sort of consolidation. While larger, ambitious software projects continued
to be developed, time sharing systems and the advent of the minicom-
puter led to a renewed popularity of smaller applications which exhibited
at most only loose interaction with other systems. With the appearance of
tl}e microcomputers in the late 1970’s, this trend continued, supported by
disillusionment and disappointment with the software industry’s in-
abililty to satisfy the demand for larger systems running on “mainframe”
(i.e. relatively large) computers.

When reading the following narratives, the reader should note how the
same problems and causes recur over and over again in many different
contexts. We do not seem to be learning from our mistakes. While the
errors being committed are much the same over the decades, their

26 Chapter 2

negative consequences are becoming ever more serious as the systems
being developed become larger and more complex.

While it is obvious that the software industry has increased its
capacity — in terms of both total output and individual project size -
tremendously over the last 20 to 30 years, the following narratives raise a
question regarding the improvement of software quality. Some observers
feel that the quality of the typical software product has actually declined
over this period. Others feel that it declined during the 1960’s, reached a
low in the early 1970’s, and has been slowly improving since then. In any
event, it is clear that software quality has been a major problem for more
than two decades and still leaves much to be desired. And, also just as in
Moc, the problem of insufficient capacity is still with us.

The 1950’s
Computer programming for graduate students only?

For several years in the 1950’s, a single course in computer program-
ming was offered at a particular engineering school. Considered to be a
very specialized course, it was offered only to graduate stuflents. The
professor in charge of the course was somewhat taken aback one day
when a sophomore applied to enroll in the course. The student wanted to
take a professional elective but lacked the prerequisites for other courses
in which he was interested. He was admitted to the course and completed
it successfully.

Thus, a significant gap between supply and demand for software
oriented education was filled satisfactorily — perhaps for the last time?

Computer programming for freshmen, too

Two years later, this course as well as other, new ones in computer
programming had become so popular among undergraduates that it was
decided to offer a freshman elective in computing. A high level of interest
was expected; some predicted that as many as 10% of the freshman class
might be interested in the course. The first meeting was a chaos — well
over 20% of the freshman class tried to enroll. The number of instructors
available was hopelessly insufficient to meet the demand.

Software development: yesterday and today 27

It was assumed, of course, that this large gap between supply and
demand for the education of programmers was only a transient phenome-
non. Little did one know.

Programming in machine language

For a popular computer model, no assembler or compiler was availa-
ble. All programming was done in machine language. A few programs
were available from the user’s group. One of these was an interpreter
which effectively extended the machine’s instruction set to include float-
ing point arithmetical operations, trigonometric functions, etc. This inter-
preter seemed to be robust and was successfully used by several installa-
tions. The documentation for the interpreter was brief, unpolished in
appearance but generally adequate.

Retrogressive plagiarism

A relatively sophisticated assembler was written for a medium sized
computer system. An extensive library of macroinstructions was provided
with this assembler, including in-line routines and subroutines for mag-
netic tape operations, error handling, searching and manipulating tables,
calculating various mathematical functions, etc. A few years later, essen-
tially the same assembly system was made available for a newer, more
popular computer. For the new machine, however, only an extremely
meager library of essentially useless routines was provided. Especially
disappointing was the complete lack of library routines for tape opera-
tions.

This step backward went unnoticed by many persons involved with
the new machine.

The inefficient assembler

The algorithm used for searching the library in an otherwise well-
designed assembler system was very inefficient. A simple modification
would have more than doubled the average speed of the searching
operation.

Apparently, the system’s designers lacked the time, the ability or the
inclination to analyze and compare systematically the execution time
required by several alternative searching algorithms.

28 Chapter 2

A software tool for hardware designers

Within a computer manufacturer’s engineering organization, a soft-
ware system was developed which provided extensive support to a
hardware design group. The system checked that hardware designs
fulfilled certain technical criteria, contained complete and consistent
information, etc. It also prepared printed logic diagrams in final form. It
contained a program generator for creating checking routines for newly
defined circuits. It produced useful results for some time, although some
parts of the system had a cumbersome structure and required continual
revision.

Many homework assignments = a system?

A software system for analyzing electrical circuits was prepared by an
engineer who taught an evening course in computing to student en-
gineers. Some of the homework assignments consisted of writing certain
routines for the system. As a result, the various parts of the system were
quite heterogeneous, especially with respect to their quality and the
distribution of errors. -

Later, instructors and students of this and comparable courses
wondered if this was a good way of developing a software system and if
this was a good way of training new programmers.

The disappearing programs

To facilitate running students’ programs, many university computing
centers installed a monitor, a primitive form of what we would today call
an operating system. Many a student received back not only his output
listing, but also that of the student whose program was placed after his
own in the run queue. The second student, of course, received no listing
at all. This problem was caused by minor mistakes in the first or last card
in the deck of cards submitted by the student. Because many of the
students were inexperienced, such errors occurred moderately frequently.

Few seemed concerned that neophyte programmers were forced to
suffer the consequences of errors and oversights for which others (the
system’s designers) were responsible. On the other hand, perhaps this was
a good way to introduce the neophytes to the realities of the software
world.

Software development: yesterday and today 29

The 1960’s
Fully tried and tested?

A FORTRAN compiler was supplied with a new computer system
installed in a small, new computer center in the early 1960’s. Purportedly,
the compiler had been tested by the computer manufacturer’s software
department and had already been successfully installed at other customers’
sites. When users at the computer center were unable to compile even the
simplest program, the manufacturer’s software support representatives
were called in. After many hours, they identified an error in the compiler
and applied a temporary modification. Some time later, the error was
permanently corrected in a revised version of the compiler.

Such problems were attributed to the newness of the industry, of the
techniques for software development and distribution and of the mac-
hine. In the future, difficulties of this type would constitute the exception
rather than the rule — or would they?

The impossible error message

Personnel in a computing center noticed that if a particular program
was assembled with a certain tape in a particular tape drive, an error
message something like “ERROR NUMBER 982 IN PASS 4 PHASE 2”
was printed out. The normal documentation did not list this error code.
A special document, intended only for the computer manufacturer’s own
software staff, explained the error roughly as follows: “An internal

system error has been detected. This error message should never occur.”

Because the error message did not appear when other tapes were
mounted in the drive in question, an error in a tape error routine in or
before the cited pass and phase was suspected. An examination of some
of the corresponding programs in the assembly system revealed that each
contained several different tape error routines. It appeared that the
various tape error routines contained several errors of different types.

One can only wonder why the system’s designers had, apparently,
never heard of subroutines (a program element already well known by
that time) and had never thought about “user friendliness”.

30 Chapter 2
It works — most of the time.

In the same installation, a standard program for sorting data on tape
was used. Most executions of the sort program were successful. Occasion-
ally, however, extra data records would suddenly appear during a merg-
ing phase. Again, an error in a tape error routine was suspected.

If you can’t fix the errors, ignore them.

During the development of a large software system, a software house
was severely hampered by a very high rate of tape errors occurring on the
customer’s computer system. In order to enable compilations to run to
completion, the software house removed from the compiler all tests for
tape errors. This permitted the software house to proceed with program
development, but the compiled programs behaved erratically when the
customer tested them.

While the approach taken would seem to have been a practical one in
a certain sense, one must question whether it was a responsible one. In all
likelihood, its perpetrators did not weigh fairly the cost to others of the
consequences of their decision.

Cards, cards, everywhere

A ‘moderately large software system was supplied to an important
customer by a well-known software house. Preparing the data for this
system each month (“loading the data base”) was a cumbersome opera-
tion. First, a deck of some 25,000 cards was reproduced. The two decks
were then sorted using an electromechanical card sorter. Each deck was
sorted into a different, complicated sequence (ascending on some fields,
descending on others, mixed on still others) necessitating approximately
15 passes through the sorter. Three to six shifts of two or three people
each were required to perform the entire operation. The sorted decks
were then read and processed by a series of computer programs which
copied the data onto magnetic tape in the format required by the
software system. The operation of this set of programs was also intricate
and problematic. The sequence check built into the program usually
detected sequence errors, of course.

A newly arrived programmer, who was totally confused by his first

Software development: yesterday and today 31

confrontation with so many piles of so many cards in various inter-
mediate stages of sorting, scattered all over the tab room, was frightened
by the possibility that he might be asked to supervise this operation some
day. In about a week, he designed and wrote a program system which
used a standard tape sorting program to do all sorting. His system, which
“loaded the data base” in a few hours, required an absolute minimum of
manual intervention.

After the improved system was successfully implemented, its creator
learned that software “experts” had earlier gone on record as saying that
it was impossible to use the standard sort program for this application.

This raises some doubt regarding the adequacy of the education and
training of these — and other — software “experts”.

The TOP SECRET blank pages

In a particular department of one country’s defense establishment, a
series of programs printed a long classified report. The security legend
was printed at the top and at the bottom of each page. In addition, each
page was numbered. Because of logical flaws in the programs’ printing
routines, a few pages would, from time to time, be printed which
contained one or both security legends but no data. They could not be
deleted from the report without introducing a discrepancy in the page
count. This led to the ludicrous situation in which blank pages were
classified “TOP SECRET” and registered accordingly.

A shell game

A library of mathematical subroutines contained four different sub-
routines for numerically solving differential equations. All four were tried
in an attempt to find the solution to a particular equation. One sub-
Foutine terminated abnormally with an overflow error. The other three
yielded significantly different answers. The documentation was incom-
Plete and of no help in determining which, if any, of the routines gave the
correct answer to the problem at hand.

It is sobering to ponder what the consequences of applying an
incorrect solution to the real problem at hand might have been.

32 Chapter 2

Error messages simplified to the extreme?

For one of its computer series, an important computer manufacturer
supplied a compiler which issued only one error message stating that an
error had been found in the source program. Neither the type of error
nor the source statement in error was identified.

Again, a system’s users were forced to pay the price of the designer’s
convenience — or was it his laziness or inability?

Send it to the field — working or not.

To facilitate the sales of a new computer, a program which simulated
an older, popular computer built by a competitor was developed. The
simulator was not completed on time. Because some sales offices had
already arranged customer demonstrations, a preliminary version of the
simulator was made available to the manufacturer’s field organization.
Rigged demonstrations were partially successful, but all attempts to
demonstrate the simulator with customers’ programs failed to produce
satisfactory results. In a few cases, use of the simulator even caused an
otherwise extremely rare I/0 fault condition to arise. Actfon by the
repair personnel was required to reset the condition and to restore the
system to an operational state. The simulator was revised several times
before it became reliable.

A few wondered silently whether the rigged demonstrations con-
stituted deception of an almost criminal degree.

Can software failure bankrupt a company?

A major computer manufacturer installed several very large, fast
computers in a new model series. When it was discovered that both the
hardware and the operating system were unreliable, failing randomly but
frequently, many customers withheld payment of the monthly rental fees.
The manufacturer soon resolved the hardware problems, but the operat-
ing system — despite many corrections and revisions — continued to
function unsatisfactorily. The manufacturer’s cash flow situation became
very strained; some observers of the industry expected the company to
become insolvent. Finally, large infusions of loan capital enabled the
supplier to remain in business while the errors in the operating system
were being corrected.

Software development: yesterday and today 33

Insecure data

Appended to the output listing given to a customer by a computing
center was an extract of the computing center’s own payroll. It turned
out that the customer’s program had not run successfully. As a result, it
did not write an end of file marker on his output tape, which had
previously been used for a payroll calculation. When a job control
statement in the customer’s card deck called for his output tape to be
printed, the latter part of the payroll file was also printed out.

Theory simplifies practice.

In a large information system, data relating to individual persons was
indexed by the person’s name. A method was required for locating data
on a particular person even when the name available to the searcher was
misspelled. This was to be accomplished by transforming the available
name into a kind of abbreviation in such a way that 1) typical mis-
spellings of a name transformed to the same abbreviation as the correct
name and 2) as few as possible different correct names transformed to
the same abbreviation.

The data processing department had obtained several different sug-
gested rules for transforming the names into abbreviations. One rule had
been programmed and tested using a large collection of representative
names. The program contained very intricate logic and had a very
confused structure. Some suspected that it contained errors.

A new programmer was given the task of identifying and correcting
any errors in the existing transformation program, programming the
other transformation rules and evaluating the several different rules.
After about two months, he had managed to find and correct a few errors
in the program but had otherwise made disappointingly little progress.
When he estimated that some two months would be required to program
each of the remaining transformation rules but could not predict when
the project would be finished, his manager asked a consultant for advice.

The consultant observed that such a transformation of names was
homomorphic to (and could therefore be represented by) a finite automa-
ton with a small number of states. The table defining the automaton’s
state transitions and outputs could be derived in a more or less straight-
forward manner from the given transformation rules. One program could

34 Chapter 2

be written which, given any table of state transitions and outputs, would
perform the corresponding name transformation. The table-driven pro-
gram would be much simpler in structure than the one already written
and could be used without modification for all of the several transforma-
tion rules to be evaluated. It was decided to use this approach.

In attempting to formulate the state transition table for the first rule
for transforming names, it was quickly discovered that the specified rule
was ambiguous and contained inconsistencies. This situation had ap-
parently led the original programmer to become confused, without his
realizing the true underlying reason. His attempts to correct specific
errors as he discovered them resulted unavoidably in the introduction of
other errors. The many iterations of this trial and error approach to
getting his program right led ultimately to the unsystematic structure of
his program. His approach would never have led to success, of course, for
he had been - unknowingly — trying to program an unprogrammable
process. :

The transformation rule was modified in a way that appeared linguis-
tically reasonable to obtain an unambiguous and consistent rule. In two
to three months, the proposed new program for transforming names was
written, the state transition tables for the several rules were formulated
and the analysis and comparison of all transformation rules were com-
pleted. Using the original approach, it would have taken much longer to
complete the project — assuming that the attempt would have been
successful at all.

After his first discussion with the consultant, the programmer, who
had had no previous computer science training, obtained from a library
and read several moderately sophisticated articles on finite automata and
closely related subjects. During the course of the project, he became
something of an expert in applying his newly acquired knowledge to
practical problems.

The 1970’s

An integrated collapse in the new world

One company had decided in the mid-1960’s to implement a truly
integrated information system to satisfy both operational and manage-

Software development: yesterday and today 35

ment needs. The design specified subsystems for order entry and process-
ing, sales forecasting, inventory control of finished goods, finance and
accounting, market research, product design and development, produc-
tion planning and scheduling, materials planning, personnel, manage-
ment reporting, budgeting, etc. The various subsystems were to be
implemented over a period of about 7 years. The system would be based
on a very large and expensive multi-computer configuration at the central
site with a data communications network linking the company’s various
offices. A large number of sophisticated video and printing terminals
would be located at the many users’ locations.

The main goals of this system were to provide more complete, accurate
and timely information for management decision making, to optimize
operational control (e.g. to optimize production schedules, inventories,
etc.) and to increase the efficiency of clerical and other operations.

Unfortunately, these noble goals were never realized. In the early
1970’s, shortly before the system was to be completed, it became pain-
fully obvious to all concerned that the system could not be developed and
implemented. It was finally recognized that the plan was too ambitious
and that it was based on overly optimistic and unrealistic assumptions.
The project culminated in a meeting of top management which was
subdued in form but explosive in content and impact. The net result was
that the project was abandoned. Many key members of management
both within and outside the information systems area left the employ of
the company, some voluntarily, some not. The estimated net loss ex-
ceeded $10 million.

Following this unpleasant experience, the pendulum of data processing
policy swung to the opposite extreme in this company. For many years,
an overly conservative approach toward EDP was followed by manage-
ment, who were determined to avoid the risk of such a catastrophe
occurring again. Many potentially profitable medium sized EDP systems
were never seriously considered. The opportunity cost associated with
this policy was never estimated but was undoubtedly substantial.

In the design and development of this integrated system, errors similar
to those made in situations described earlier were committed. But here
they were made in a system of much greater scope and involving many
more people—developers and users alike. The consequences of the
system’s shortcomings were no longer of an annoying but acceptable
nature (as, for example, in the stories “It works—most of the time” and

36 Chapter 2

“Cards, cards, everywhere” on page 30). In this case, the consequences of
the system’s shortcomings had such widespread repercussions that its
users could not accept it. The unfortunate result of this major failure was
an overly conservative reaction which would later be observed again in
other companies.

An integrated collapse in the old world

It was generally fashionable in the 1960’s to point out that the old
world was some years behind the new in matters concerning EDP.
Unfortunately, however, the old world’s programmers of our computers
did not lag behind their brethren on the other side of the Atlantic when it
came to creating spectacular collapses.

The management of a medium sized industrial company approved in
the mid-1960’s a plan to design and implement an integrated information
system. The system was to become operational at the end of the decade.
The project was clearly showing signs of great strain at the turn of the
decade; the collapse came shortly thereafter.

It was intended that this system should contribute to the profitability
of the company, support the management decision making process by
providing appropriate information, projections and proposed decisions
and that it should relieve people of routine, operational tasks. Subsystems
were foreseen for sales forecasting, order processing, production planning
and scheduling, materials management, personnel, finance and account-
ing, planning and budgeting, management control, etc. Each subsystem
was further subdivided into groups of closely related business functions
and finally into individual programs.

This system was based on a centralized computer system with several
subsidiary computer centers at key office and plant locations. A data
communications network was planned to link the various computers and
users’ terminals.

Several hundred man years of effort were invested in the specification,
design, development and implementation of the application software.
When the collapse came, quite a number of programs were running, a
few of them well, but the functions and services provided to the system’s
users were somehow not quite what they wanted and had expected. Just
why this situation came about never really became completely clear, but
ineffective communication between management, the system’s intended

Software development: yesterday and today 37

users and the development team appeared to have been an important
part of the cause.

In the early 1970’s, management decided to abandon the project. Only
a small fraction of the results of the project could be meaningfully
salvaged. The EDP manager, the project manager, several key members
of the project team and certain members of the company’s top manage-
ment team were replaced.

Considering these independent integrated collapses in the new and old
worlds (see above) in the light of Murphy’s Law (“if anything can go
wrong, it will”), one might expect a single integrated collapse in both
worlds to occur sometime in the future.

The $1,000 loop

In the early 1970’s, a sophisticated simulation system for a particular
class of business problems was designed and developed by a consulting
organization. It was used successfully both for consulting projects and as
a teaching tool in seminars. During its long, useful life, its users (the
consultants) were plagued by the many errors it contained. The most
expensive of these “bugs” was an infinite loop in one subroutine; this
loop once consumed about $1,000 worth of computer time on a very
large and fast time sharing system before the consultants interrupted the
run. In the early years of its use, most errors discovered were in those
parts of the programs which simulated unusual business strategies. Many
years later, when the system was translated to another higher level
language, a series of errors were discovered which gave rise to the
possibility of division by zero. The original version of the program
contained a control statement which caused run-time error messages to
be suppressed (including error messages indicating division by zero).

The consequences of the errors in this relatively limited system were
correspondingly limited and thus acceptable. More seriously, many of the
users of this system experienced here, for the first time, the possibilities
and potential dangers of computer based systems. Given the difficulties
they encountered, it would not be surprising if they were to become
rather skeptical potential users of future computer systems.

38 Chapter 2
Fully tried and tested? (2)

A business firm designed and implemented a software system for sales
forecasting. The plans for this system called for several standard pro-
grams available from the hardware manufacturer to be incorporated into
the new forecasting system. During the implementation phase, several
major errors were discovered in these programs, which had purportedly
been successfully implemented in several other companies. One error,
found by a consultant to the user, was caused by a fundamental mistake
in the mathematical analysis underlying the formulae imbedded in the
program. Other errors were simple “bugs”. The computer manufacturer’s
representatives could not explain why the errors had not been detected
by previous users. A new program, specified by the consultant and
written by the user’s programming staff, replaced the manufacturer’s
erroneous programs.

Cases of “fully tried and tested” software found to be unusable were
by this time no longer surprising. They were fairly common throughout
the 1960’s (see page 29). The earlier assumption that they represented a
transient phenomenon was beginning to be proved false.

Sometimes software systems do work—but not by chance.

One of the purposes of the sales forecasting system outlined above was
to provide data needed by an inventory control system being developed.
The development team consisted of representatives from the company’s
management, the inventory control department, other departments di-
rectly affected by the new system and the EDP department as well as
several consultants. Of the many issues that had to be resolved in the
course of this project, two are of particular interest here.

A set of formulae had been specially derived for the system which
could be solved only by iterative approximation. One of the members of
the team was concerned that the iterative method might not always
converge, that it might sometimes converge to an undesired solution or
that problems of numerical accuracy might arise. A lengthy mathematical
analysis showed that no such problems would arise in the particular case
at hand, but that a particular kind of non-linear interpolation in a table
was required in one part of the computation.

Another member of the team was concerned about the possible

Software development: yesterday and today 39

consequences of the unavoidable delays in the man-machine communica-
tion in this batch system. The system would issue recommended re-
plenishment orders for action by the inventory control department. The
possibly modified orders would then be entered into this and other
computer based systems by the responsible persons. It was, in principle,
possible that before the person had acted upon one recommendation, the
system could issue another related recommendation. Analysis showed

- that the tentative design would in some situations indeed lead to con-

siderable and serious mutual confusion between the man and the ma-
chine.

Such a possibility was, of course, unacceptable to the user department.
The system’s designers decided to define a number of states of recom-
mended orders. For each state, they specified which events would cause
the system to generate which messages and recommendations and which
state transitions would occur. A number of discussions between the
designers and the users were required to define the states, the transitions
between them and the behaviour of the system in all combinations of
states and events. During these discussions, a number of possible se-
quences of events came to light which no one had considered before and
which forced the user to think through in detail what he really wanted
from the system.

The system was implemented successfully and employed profitably for
many years.

If one examines the narratives of the more successful systems and
computer projects, a symbiosis of theoretical and practical capabilities is
often observed (see e.g. “Theory simplifies practice”, page 33). In the less
successful situations, one of these two important ingredients tends to be
lacking (e.g. in the following narrative).

A data base: a good foundation?

A company decided to implement a large and ambitious information
system for production and inventory control. The development plan
called first for a major part of the necessary data base to be developed.
Then the other, operational parts of the system were to be designed and
developed. After several years of hard work, a data base had been
established (at considerable cost). Because the operational parts of the
system had not yet been designed or implemented, there was little

40 Chapter 2

incentive to take the time and to expend the effort necessary to keep the
data base up to date. Because it was not maintained, the one or two
occasional applications which did use it could not be meaningfully
executed. Therefore, they also fell into disuse. In the meantime, it became
evident that organizational changes should be introduced in the factories
before implementing the operational production and inventory control
applications, but no specific action was ever taken on these organiza-
tional issues.

The net result of the project was that after several years, a consider-
able investment had been made in an obsolete, seldom used data base.
Perhaps equally important, valuable resources were diverted from the
development of other, potentially profitable information systems in this
company.

Reasonably careful attention was paid here to the technicalities of
data base systems. Unfortunately, too little attention was given to the
system’s practical utilization. Because of this unrealistic, imbalanced
approach, the system was technically successful but commercially a
failure, making no significant net contribution to the company which
developed and implemented it.)

Data base management systems: panacea, placebo or poison?

The management of a large company approved a proposal for a large
EDP system for order entry and processing. The company sold their
products through a large number of sales offices and distributors. Each
day, many small orders were processed and delivered. Because the
locations of the delivery warehouses did not coincide with the locations
of the sales offices, the new system would include a nationwide data
communications network connecting the various sales offices and
warehouses with the very large data base at the national data processing
center.

Detailed studies were made of the requirements the system would have
to fulfill, the data volumes, etc. An extensive investigation of several
available and planned data base systems was made. Finally, the hardware
and software supplier was selected and the development of the applica-
tion software was initiated.

From the outset, some members of the project team were concerned
about the system’s response time. A special group of technical experts

Software development: yesterday and today 41

from the supplier’s organization analyzed this potential problem area and
concluded that while no precise forecasts of the response time could be
made, serious problems were not to be expected.

The system was developed and installed and the implementation phase
began. As the data base was built up, it was noticed that the system
became slower and slower. The relationship between the speed with
which the system entered each new set of data and the amount of data
already loaded was analyzed and projected. It became clear that just
loading the complete data base would require a year or so of computer
time.

It was evident that it would not be possible in practice to create the
complete data base, much less use it. While the response time was a less
serious problem, it appeared that it also would become unacceptable long
before the entire data base was loaded. Installing larger, sufficiently fast
hardware would increase the cost to prohibitively high levels, so that was
not a practical alternative. Operational tests also uncovered serious
problems in the data base software which sometimes resulted in the
wrong data being retrieved and in data becoming effectively lost.

Management was forced to conclude that the project, already well into
the implementation phase, was technically infeasible. The project was
abandoned.

One can only draw the conclusion that this failure would have been
avoided if the technical directors of the project had had a better theoreti-
cal grounding. A familiarity with the theoretical aspects of data struc-
tures and with the time complexity of algorithms for accessing data
structured in the several basic ways would almost certainly have enabled
them to anticipate the technical problems long before any significant
system development work had been performed—instead of after it had
been essentially completed.

A system expands until it collapses.

One company’s management decided to have an encompassing soft-
ware system for production planning and materials control designed and
implemented. Work began on the project, but for several reasons, pri-
marily lack of backing and pressure from top management, the project
gradually waned into oblivion.

A few years later, it was decided again to implement some sort of

4?2 Chapter 2

similar system. This time, operating management decided to take a
different approach. A subsystem of limited scope was identified which, in
itself, would be economically justifiable. Later, other subsystems of
similar nature could be added on. In this way, progress would be made,
step by step, toward the all encompassing system originally planned.

After work on the first subsystem had reached a promising stage, the
attention of upper management was drawn to the project. It was decided
that its scope should be expanded considerably and that the project team
be enlarged accordingly. After a new dynamic start, the enlarged project
began to fizzle as key milestones approached. Only one part was com-
pleted successfully. While it represented a potentially very useful and
valuable basis for other subsystems, it did not yield any significant
benefits on its own. It was therefore not utilized in practice by the
operating departments concerned.

Again, a lack of consistent, practical objectives seems to have been the
major cause of this unsuccessful attempt to develop on application
system (see “A data base: a good foundation?”, page 39).

An arbitrary restriction in system software

A user contracted for the design and programming of a software
system for a specialized business application. The system was to be
implemented on his existing computer system. The designer determined
early in his analysis that an arbitrary restriction in the computer’s file
management system prevented him from using the most obvious method
for structuring the new application system’s data., He therefore selected
another method for structuring the data files. The chosen method was
described in many computer science text books and was commonly used
in various types of system software.

Considerable difficulty and delay then arose during the programming
phase. Despite the fact that the programmers were all college graduates
who had majored in computer science or mathematics, they were only
superficially familiar with the selected method. Finally, however, the
system was completed and installed successfully.

Here, an adequate knowledge of the underlying theory of data struc-
ture enabled the designer of this system to circumvent what would have
otherwise been a very serious obstacle to the successful development of
this application system. The lack of such knowledge on the part of some

Software development. yesterday and today 43

members of the team gave rise to significant difficulties during the
programming phase. This case confirms once again the usefulness of a
good theoretical foundation in computer science. It also raises a question
regarding the quality of some university level computer science programs.

Keep trying until it works.

A free lance programmer contracted to write a particular program for
a software house. The experienced programmer was not familiar in detail
with all technicalities of the target system. Because a critical area was
described ambiguously in the manual, he turned to the software house’s
specialist for that computer system for clarification. When the specialist
could not give a definite answer to his question concerning a commonly
used file management function, the programmer asked the specialist how
he resolved such problems. The specialist replied, “I just keep trying
different possibilities until one works.”

The programmer felt uneasy about the risk associated with that
approach. Even if it would lead to a solution that would work in all of his
test cases, he could not be confident that it would work properly under
other conditions that he could not foresee but that would certainly arise
sometime during the productive lifetime of his program. Instead of
following the system specialist’s suggestion, he assumed only what was
unambiguously stated in the manual and wrote his program accordingly.
While isolated parts of his program may not have been written in the
most elegant manner possible, he had confidence in the correctness of his
product. In fact, no error was ever discovered in his program after he
released it. The same could not be said for other programs in the same
system written by the specialist.

Notice the proposed use of the trial and error method in this situation.
Despite its shortcomings, despite the known fact that it does not always
lead to a solution, it was — and still is — often employed. (See, for
example, “Theory simplifies practice” on page 33, in which a pro-
grammer used the trial and error approach in an unsuccessful attempt to
get his program to exhibit the desired behaviour.)

The software development backlog

A large company asked a group of consultants to recommend im-
provements to certain operational procedures. Although the company’s

44 Chapter 2

management recognized that such improvements should involve com-
puter based systems, it was specified from the outset that the consultants’
recommendations were not to involve the EDP department’s resources in
any way. The data processing department was already overloaded with
preparations for the replacement of its large computer system in a year’s
time. Existing plans for new software systems would fully occupy the
development staff for at least another year. It would be over two years,
therefore, before the development of any new application system could
be initiated.

The user always had to wait for a software system while it was being
designed, developed and implemented. But in the 1970’s, the gap between
supply and demand grew (just as in Moc) to the point where the user
often had to wait a year or more before the development team could even
start to work on his system. Among the reasons for this large and
growing gap between available supply and demand are 1) the waste of
resources in unsuccessful developmental efforts (see e.g. “An integrated
collapse in the new world” on page 34), 2) the misguided diversion of
resources (see e.g. “A data base: a good foundation?” on page 39), 3) the
quantitatively inadequate provisions for training software developers (see
e.g. “Computer programming for freshmen, too” on page 26) and 4) the
qualitatively inadequate education of software designers (see “An arbi-
trary restriction in system software” on page 42 and the next story
below).

Computer science education?

The governing board of a university decided that a department of
computer science should be established. Initially, the various computer
oriented subjects taught in other departments were listed in the univer-
sity’s catalog together under the heading “computer science”. This formed
the base of the new department.

A number of the professors teaching these courses were strongly
encouraged to transfer to the new department. Many were afraid, how-
ever, that it would prove to be less than a success — assuming that it ever
got off to a real start at all. Unwilling to accept the personal professional
risk associated with such a move, several with established reputations
overtly and successfully resisted attempts to induce them to join the
computer science department. Some others quickly changed their profes-

Software development: yesterday and today 45

sional postures by ceasing to teach any computer oriented courses for
several semesters; instead they taught courses safely within the confines
of their old departments, courses having no connection with computer
science whatsoever. Those that did transfer to the computer science
department were careful to leave open the possibility of returning to their
old departments later (many did in fact do so). Attempts to attract full
time professors from outside the university into the new department
were, for the most part, unsuccessful.

After several years, the computer science “department” was operating
more or less successfully, but on a small scale and more as an interdisci-
plinary committee than as a full-fledged department. The curriculum did
not offer a comprehensive treatment of computer science; rather it
consisted of a minimal base of computer science to which a collection of
several system techniques and various applications had been added.

While this educational program was more extensive than those availa-
ble one to two decades earlier (see e.g. “Computer programming for
freshmen, too” on page 26), it was probably even farther behind what
was needed at the time than those earlier courses had been. Even worse,
the content of the new courses was much farther behind the state of the
art than was the content of the course referenced in “Computer program-
ming for freshmen, too” in its day. In other words, the education of
software practitioners is progressing, but much more slowly than it could
and should be advancing.

A tale of two operating systems

A microcomputer system was designed and readied for the market.
Many observers were surprised when the manufacturer decided to com-
mit the system’s new operating system and its interpreter for a high level
language to read only memory (ROM). They pointed out that all such
software systems contain errors and that releasing a revised version
would necessitate hardware modifications to all delivered units, a logisti-
cally difficult and very expensive undertaking. These observers were later
surprised by the quality of this software — in practice, only one or two
truly minor errors were identified and no modification of systems in the
field was ever necessary.

The manufacturer later supplied as an accessory disk units together
with a disk operating system. This software contained a tremendous

46 Chapter 2

number of errors. Not until the fourth version was released did the
purchasers have a usable system. Even that version still contained errors,
but these did not preclude productive use of the system. In the meantime,
independent software suppliers developed and marketed corrected and
enhanced versions of the disk operating system. These also had their
shortcomings and errors.

These examples illustrate that reasonably complicated software sys-
tems of high quality (i.e., essentially error free) can be developed in
practice — but still we revert to our old ways and turn out shoddy work.

A heuristic program for production planning

The manager of a production planning department asked an EDP
specialist with a mathematical bent to investigate the feasibility of
optimizing a regularly recurring task of his department. The goal was to
schedule the production of a particular type of product so that the
amount of scrap generated would be minimized.

The specialist investigated the applicability of several mathematical
methods to this problem. He found that all required so much computer
time that they were not economically justifiable in the given situation. In
the course of his investigation, however, fie discovered a simple heuristic
method which almost always gave optimum results and always gave
better results than the previously used manual method. He programmed
the new method on a small microcomputer system which was purchased
for this application.

The project cost a few weeks of the specialist’s time, a few man days of
the time of members of the production planning department and less
than $1,000 for the microcomputer. The new system saved about 40% of
the time of one production planner and more than 3% of those produc-
tion costs affected by his planning decisions. The production planner was
glad that he could now devote much of his time to other important tasks
which he had heretofore been forced to neglect.

Again, the combination of a good foundation in theoretical principles
and a good sense of what is needed in practice seems to be associated
with success. (See “Sometimes software systems do work — but not by
chance.” on page 38).

Software development: yesterday and today 47
Internally recruited coding technicians

Most of the coding technicians (programmers in the narrow sense) in a
data processing department had been recruited from other departments
of the company. Their data processing training consisted of a few short
courses conducted by one computer manufacturer. They also attended an
occasional seminar conducted by external training organizations. Even
after a number of years of programming experience, their error rate was
high and overall productivity was low. On more than one occasion it had
been necessary to scrap man-weeks of programming work and start
writing a program anew. Their programs did not exhibit a uniform style
or structure and were therefore difficult to maintain and modify.

A consultant who was asked to evaluate the staff’s technical com-
petence found that these programmers had never been exposed to a
number of fundamental subjects of value in programming, only to
technical details of specific software systems. Their lack of exposure to
logical (Boolean) algebra, for example, explained many of their errors in
writing IF statements. Their lack of familiarity with basic concepts of
strings and string operations was an underlying cause of the rigidity
designed into some of the application systems they had produced. None
knew more than one programming language; most were familiar with
only one or two dialects of that language.

It would seem that the training given to a “three week wonder” is
simply insufficient in today’s software world, just as that type of training
was insufficient in Moc in 2400 B.C.

Theory predicts problems in practice.

Several members of the programming staff of a company’s data
processing department attended a seminar on data and algorithmic
structure. Among the topics covered were the interaction between data
definition and the overlay structure of a program and, in particular, the
problems that could arise if such interaction were not carefully consid-
ered when designing the program’s structure. Several weeks later, one of
the programmers experienced mysterious, erratically occurring problems
while testing a program he had just written. After some time, he was able
to identify the nature of the problem and to relate it to the material
covered in the course. By following suggestions discussed in the course,

48 Chapter 2

he was able to solve his problem quickly.
The usefulness of a basic knowledge of computer science theory is
again confirmed.

Macroproblems with microsystems

Management of a small distributor of industrial products were dis-
satisfied with the poor control they had over their inventory. They
decided to implement a simple inventory control system using a micro-
computer. Preliminary analysis showed that, for their inventory, such a
system was technically and economically feasible, but that the limited
storage capacity of the diskettes would impose a very severe design
constraint. The probable consequences would be “disk jockeying” (the
need to remount diskettes frequently) and a certain amount of time
overhead for file accessing caused by the need for indexed files with
variable length records with variable length fields. It was pointed out
that, from a technical standpoint, a small minicomputer configuration
would constitute a much better basis for the desired system. Because a
suitable minicomputer configuration would have cost very much more
than a microcomputer system, however, it was decided to proceed with
the microcomputer approach, despite its obvious shortcomings.

The problems began when the hardware was installed. After much
trouble shooting, it was discovered that the hardware was unduly sensi-
tive to electrical noise on the power line. Installation of a power line filter
and an engineering change to the hardware by the supplier (other
installations had experienced the same problem) solved the hardware
difficulties.

The first disk operating system supplied by the manufacturer turned
out to be very unreliable. A new release worked better but was still
‘unsatisfactory. Finally, a third version was released which solved the
problems in the operating system. By this time, however, all data files
had become contaminated by the effects of the errors in the earlier
versions of the operating system. After several months, the data files were
finally restored to a correct state.

The system’s useful life finally began. The information which the
system provided was of considerable interest and value to management,
so their demand for output reports increased considerably. The speed of
the system, especially in the file accessing area, became a serious limita-

Software development. yesterday and today 49

tion. The report printing programs were therefore modified slightly so
that a series of them could be executed overnight in an unattended run.
This procedure worked well — only once did the paper jam and cause
damage to the printer. The ‘“disk jockeying” represented a distinct
inconvenience but was mastered by the users, who had had no previous
experience with computer systems.

After the system had been in successful operation for about a year, a
compiler was announced for the language in which the application
programs were written. In order to speed up one important program in
particular, the compiler was purchased. The first attempts to compile the
programs failed — the compiler and its associated loader could handle
only trivially small programs. In addition, they contained many major
errors. A revised version was promised in two months; it was finally
delivered about six months late. While it apparently still contained a few
less serious errors, it could be used to some extent. In some cases, it was
necessary to reduce the size of a program (by eliminating some of its
functions) before it could be compiled and loaded.

Except for the lack of programming errors in the application software,
all of the classical problems with computer systems (old and new, large
and small) arose in connection with this system. Despite the many
problems encountered, this application is considered by its users to be,
on balance, a successful one. In addition to the improved control over
their inventory, the users have gained much useful experience in the
application of computer systems to their business activities. They are now
much better prepared for their next system than they would be without
this experience.

After some two decades, we are still experiencing the same problems
and making the same mistakes. (Compare “The disappearing programs”
on page 28, “Fully tried and tested?” on page 29, “It works — most of the
time” on page 30, etc.) In the case of the microcomputer, though,
different people are making them. This suggests that our mechanisms for
transmitting knowledge and accumulated experience from one generation
of practitioners to the next — i.e., our educational and training programs
— are not achieving their objectives. But despite all the difficulties, there
is still a net benefit to be derived from utilizing these systems.

50 Chapter 2
A utility’s experience with EDP

Just before the decade 1970-1980 began, one utility converted their
billing system from an electromechanically supported manual operation
to a computer based system. It was expected, of course, that this
progressive step would result in a smoothly operating, cost-effective
administration of billing and related activities. This expectation turned
out to be unrealistically optimistic, even naive.

During the decade 1970-1980, the computerized billing and accounts
receivable system was revised five times. Three major revisions were
required within one and a half years. Two modifications were accompa-
nied by so much chaos and turmoil that parts of the billing operation
became delayed by as much as six months. Two of the revisions required
complete replacement of the application software. All but one of the
revisions involved reprogramming substantial parts of the software.

This company’s experience illustrates that not only do the same
problems arise repeatedly in the industry as a whole, the same problems
tend also to recur within one organization. Even individuals seem not to
be learning from their mistakes.

At the end of the decade, they’re still collaps;ng.

A system was developed in a large corporation for consolidating
divisional and regional sales forecasts and for calculating the net require-
ments of finished goods. The new system was designed and developed in
about two years by a team consisting of members of the materials
management, production, marketing and EDP departments. After the
new system had been in operation for about six months, it was decided
that it was unusable in practice: It was, therefore, scrapped.

The user reverted to the old “system” — a collection of programs
which had evolved over many years. It was felt that these programs,
despite their known shortcomings, satisfied the users’ needs better than
the new, specially designed system.

To collapse or not to collapse?

A large wholesale distributor contracted with a computer manufac-
turer for a computer system and specially developed software for a

Software development. yesterday and today 51

specific business application. The application involved was considered to
be of moderate complexity but well within the state of the art. When the
hardware was installed, more or less on time, the application software
was not yet ready for use. After a few months, the manufacturer released
the software to the customer for acceptance testing. The software system
failed the test miserably. The manufacturer’s software staff worked on
the system for some time, after which the acceptance test was repeated.
While fewer major problems were discovered during the second test, the
system still did not perform satisfactorily. After more rework and a third
acceptance test, the customer conditionally approved the system. At the
end of the decade, the system was being implemented — more than one
year late. The prognosis for success was reasonably good but by no
means certain.

The 1980’s

Even though the 1980’s have only started, there is no dearth of
collapses and lesser problems in this decade to relate:

An integrated collapse in the whole world

A world wide transportation company contracted with an important
computer manufacturer for the supply of several large computer systems
and for the development of customized software for an integrated fleet
operations and accounting system. Two years later, shortly before key
elements of the system were to be installed, the supplier announced that
it had discontinued the project and would not deliver the application
software.

After “An integrated collapse in the new world” and “An integrated
collapse in the old world” (see pages 34 and 36, respectively), this was
bound to happen sooner or later.

A computer work week is shorter than a human work week.

A citizen received a bill from a governmental agency. He did not
understand why the small amount was due and telephoned the agency for
clarification. A civil servant replied to his request for information, “Our

52 Chapter 2

on-line terminals are turned off now. Please call back on a Monday,
Wednesday or Friday morning between 8:30 and 12:00.” When the
citizen called back at one of these times, all telephone lines to that
governmental agency were, of course, busy.

This episode begs the question, “Who is there to serve whom — man to
serve the machine or the machine to serve man?” Surely the latter, for if
the former, then everyone would agree that we should get rid of the
machine as quickly as possible. But if the latter, then the machine must
be available when needed by man, not when convenient for the machine.

Why is my EDP department so slow?

The president of a corporation asked a consultant, who had just
completed a short assignment in one of the functional departments using
EDP systems, “Is my EDP department any good? It takes at least two
years to get any new system developed and running. And then, more
often than not, their systems do not really fulfill our needs. What is
wrong? What should I do about it?”

Can a computer system push the button?

A failure in one country’s computerized defense control system resulted
in a false report of an enemy attack. Interceptors were sent to ward off
the attack. Fortunately, the error was discovered before any weapons
were launched and armed.

What might have happened if the error had not been discovered until
later? To what extent was the possibility of this type of failure properly
considered by the system’s designers and developers? Did they take all
feasible steps to ensure that their software system was as free of errors as
possible? Do software practitioners in general give adequate considera-
tion to the possible negative consequences (large and small) of the
mistakes they embed in their systems? Because the potential negative
consequences of errors in software are becoming ever more serious
(compare this episode with “The TOP SECRET blank pages” on page
31), it is becoming increasingly important that all software designers and
developers consider these issues more carefully and seriously in the future
than they have in the past. If they do not, then other members of society
will have to ban them from creating such systems.

e

Software development: yesterday and today 53
Keep trying until it works (2).

A large, hierarchically structured, modular program formed the center
of an on-line system being developed for the sales department of a
moderately large corporation. When the coder was nearly finished writ-
ing all modules in the large program, he tried to link and load them. Not
really surprised to see the error message “MEMORY OVERFLOW?”, he
set about defining an overlay structure for the program.

The project manager, who had expected that the program would
require overlaying, became concerned when days went by and no promis-
ing signs of progress could be discerned. He asked one of the program’s
designers to look into the matter.

The designer found that the coder — one of the better ones on the
project team — had been trying various overlay structures to see if any
could be successfully loaded. While the coder had not simply picked
combinations at random to try, his approach was something less than
systematic. The designer quickly recognized that the number of logically
feasible ways of grouping modules into overlay segments was so large
that no trial and error approach could be considered a reasonable way to
try to solve the problem. It had not even been demonstrated that the
problem had a solution, i.e. that an overlay structure existed which would
enable the program to fit into memory.

The designer, working together with the coder, collected the relevant
data on each module (size and subsidiary module(s) called) and prepared
a short program for analyzing this data. A first analysis showed that the
program as coded could not be overlayed so that it would fit into
memory, i.e. the trial and error approach employed earlier would never
have yielded a solution. With this information and knowing the precise
amount of memory they had to save, the designer and coder reviewed the
program’s structure. They noticed that they could reduce the memory
requirement sufficiently by redefining certain large data areas local to
several modules as global data areas. After this was done, the analysis
program was run again. Several adequate overlay structures then became
apparent. One which would minimize the reloading of overlay segments
during execution was then selected.

The method of trial and error has been used extensively for designing
and developing software. This method has stood the test of time very
poorly. Often (as in this case and in the episode “Theory simplifies

54 Chapter 2

practice” on page 33) it cannot lead to a solution. In other cases (see
“Keep trying until it works” on page 43), it all too often leads to a
solution which works only some of the time. Despite its shortcomings, the
method of trial and error seems to remain popular among software
practitioners. Perhaps they know no other way to solve certain problems?

Taxation by computer

A tax office responsible for a large European city implemented a new,
computerized system for processing taxpayers’ accounts. Many taxpayers,
their tax consultants and lawyers described the episode as “chaos”.
Taxpayers received incorrect tax bills and overdue notices for amounts
neither due nor previously billed. The problems were attributed to
programming and administrative errors.

Again, innocent persons were forced to suffer the consequences of
software developers’ mistakes.

The beginnings of an information society?

An individual subscribed to a data communications and data base
service. Shortly after receiving his password, he successfully accessed and
used the system.

His initial euphoria was soon replaced by a more realistic awareness of
the true nature of the computer and software world. Two days later, he
tried to access the system again. Repeatedly, he was refused access by the
system. He called a customer service representative, who informed him
that during a revision of the network’s software the night before, a
number of subscribers’ entries had been inadvertently deleted from the
system. A few hours later, his user number and password had been
reentered and he could access the system again.

If such experiences are typical of the difficulties to which members of
the general public will be exposed when computer based public services
are introduced over the next years, we should not be surprised when
public acceptance is poor. Society has become accustomed to a certain
level of reliability of other common, technologically based services, for
example, the supply of water and electricity, telephone service, automo-
biles, home appliances, television, etc. Until the reliability of services
based on computer technology reaches a comparably high level, we

Software development. yesterday and today 55

cannot expect the public to avail itself of those services. Until computer
based services become sufficiently reliable, society cannot afford to let
itself become dependent upon them.

Software failure can bankrupt a company.

A small wholesale distributor of office supplies and equipment
purchased a minicomputer system with application software from an
established computer manufacturer. The salesmen assured the customer
that their system was capable of performing the functions the customer
required in the invoicing, accounts receivable, accounts payable and
accounting areas.

The system was installed. Within a short time, essentially all of the
customer’s administration in the above mentioned areas was “on the
computer”. After a few months, problems arose. Difficulties with the
system resulted in delays in invoicing customers and in paying suppliers.
The situation became progressively worse and the company finally be-
came insolvent.

While one can, did and will argue about whether the computer system
or imprudent management was the real reason for the bankruptcy, there
is no denying that the failure of the application software to perform as
promised by the salesmen and as expected by the customer contributed
to this company’s difficulties and its ultimate downfall.

Software improvements?

A software system for the consolidation and rebilling of invoices was
designed, programmed and implemented in an organization which func-
tioned as an invoice clearing house. After the normal errors and problems
were overcome during the immediate post-implementation phase, the
system was used without major mishap for almost two years.

Then, suddenly, the main operational file was found to be in an
inconsistent state and unusable by the system. The several daily genera-
tions of this file which were maintained by the normal security proce-
dures were all incorrect. For more than a week, the clearing house was
unable to rebill the amounts due and was forced to request payments on
account from the purchasers of the goods involved.

An investigation of the situation was conducted. It was discovered that

56 Chapter 2

a short time before the problem arose, an erroneous revision had been
made to a program which updated the file and a hardware failure had
occurred. While it was not possible to identify with certainty the true
cause of the loss of the file, it appeared probable that the error in the
revision to the program was to blame.

The consequences of this error on the cash flow of this organization
were considerable, not to mention the much increased workload on the
people in the billing and accounting departments. The organization had
become totally dependent upon the computer system and that system was
out of service for more than a week. One wonders if the software
practitioner who had inadvertently caused the failure was aware of the
severity of the possible consequences of his error. Are software practi-
tioners in general consciously and adequately aware of the heavy respon-
sibility they often carry? Do they realize how severe the consequences of
their carelessness or insufficient attention to detail can be?

Better late than never

Management in a moderately large company approved a proposal to
develop an on-line system for the marketing and sales department. The
development project involved designing, programming and implementing
application software as well as selecting and installing minicomputer
equipment. Based on specific assumptions which were well documented
by the project manager, the initial development plan called for imple-
mentation to take place nine to ten months after the detailed design
effort started. This project, one of the more successful larger system
development efforts undertaken by the company’s EDP department in
years, was finally completed fifteen months late.

The reasons for the slippage were identified as conflicts in resource
allocation, overly optimistic estimates of the time required to complete
the various individual activities in the project and low programmer
productivity. Several times, a program coder was taken off the project
without warning to correct or modify an old, operational program which
did not function as required. Usually, he returned to the development
project in a few weeks. In one or two cases, however, the coder never was
reassigned to the project. In other cases, a coder was scheduled to join
the development project team after completing another assignment but,
in fact, never did.

Software development: yesterday and today 57

These problems were not new in this decade. They have been with us
for decades. We seem not to be learning from any of our mistakes, be
they technical or managerial in nature.

Computers work to rule.

On one data communications and data base network, the computers
on which some data bases are resident work only eight hours a day, five
days a week. Perhaps their programmers have endowed them with a mind
of their own so that the machines have outside interests and have raised
themselves above the level of slaves. Or have their programmers simply
been unable to endow these systems with the ability to operate reliably
for some hours without human assistance?

If computer based services of widespread interest are to become
accepted and commonplace, they — like other utilities — must be available
at all times. (See “The beginnings of an information society?”” on page
54.)

Out of service

When a major revision to the software in a data communications
system was installed, the entire network was inoperative for several days.
The network had been in operation for over one year when this interrup-
tion of service occurred.

Again, this episode raises serious questions regarding the reliability
and availability of publicly accessible information networks. One wonders
how seriously the system’s designers and developers take these social
requirements. Or do the demands of developing these systems simply
exceed their technical abilities?

Better late than never (2)

A large transportation company contracted with a computer manufac-
turer for the supply of a computer system. The system included specially
developed application software for the reservation of vehicles and space
thereon and for related operational functions. The software system
centered around a large scale data bank.

The manufacturer quoted a delivery time of two years. The actual
delivery time was more than four years.

S8 Chapter 2
Better late than never (3)

A governmental agency contracted with a computer manufacturer for
an air traffic control system for a region including a very busy commer-
cial airport. The planned development time was two years; the actual
development time was more than four years.

The delay was attributed to ineffective communication between the
system’s designers and users within the customer’s organization. This led
to a less than adequate specification for the system. This, in turn, resulted
in minor disagreements between the supplier and the customer over the
meaning of various passages in the specification. Finally, delays were
caused by the unwillingness of the quality control manager to approve
some sections of the software when originally submitted by the program-
ming and testing teams.

The same, decades old problems continue to arise in developmental
projects.

Computer programming for high school freshmen

In several high schools with good academic reputations, computing
courses were offered for students in all grades. Whereas the teachers of
biology, chemistry, physics, history, social studies, languages, mathe-
matics, etc., had all studied their subjects for several years in college, the
teachers of the computing class had had only brief contact with their
subject in college. The better prepared teachers had taken computing
courses for one or two semesters in college; others had learned the
rudiments of programming within the framework of another course.

While the students were expected to delve into the grammatical
structure of natural languages, they were not expected to become familiar
with the syntactical rules of the programming language they were learn-
ing. While they were expected to be able to prove the Pythagorean
theorem, to prove that the square root of two is not a rational number
and to derive the quadratic formula, they were not expected to be able to
prove that the algorithms they specified and the programs they wrote did
anything in particular, much less that they did something correctly. While
they were -expected to be able to organize their essays clearly and
logically, they were not expected to be able to structure their programs in
a similar manner. In short, lower standards of quality were set for their

Software development: yesterday and today 59

work in computing courses than in other classes.

Not only universities initiate substandard educational programs for
software related subjects (see “Computer science education?” on page
00). Now, secondary schools are experiencing the same difficulties — and
making the same mistakes.

The seminar for experienced software designers

An international organization arranged a seminar on advanced meth-
ods for designing and developing algorithms and computer programs.
Among the lecturers engaged to conduct the seminar were some of the
world’s recognized leaders in the field. Both academicians and advanced
practitioners were invited to apply for admission to the seminar.

The number of applications greatly exceeded the expectations of the
organizers and, of course, the planned capacity. It was necessary to reject
a very considerable number of well qualified applicants.

Where shall we get the teachers?

Many educators have experienced considerable difficulty in attracting
qualified persons into college teaching careers in the computer science
field. Many reasons have been cited for the reluctance especially of new
Ph.D. graduates to choose careers in academia. The salaries offered by
colleges and universities are not competitive with those offered by
industry. Industrial research laboratories are usually better equipped
than those in academic institutions. The administrative burden on the
academic researcher is often perceived to be heavier than that on his
industrial colleague.

The result is that many planned faculty positions go unfilled. In turn,
many needed faculty positions probably go unplanned. Our current
severe shortage of academically trained software engineers is likely to
continue — if not get worse.

When one compares these last two situations with the lack of instruc-
tors in “Computer programming for freshmen, too” (page 26), it is
evident that we have made surprisingly little progress in the last two to
three decades. Does this mean that we are really no better off now than
we were in the 1950’s? Will the next decades be qualitatively much like
the last decades? Have we, like ostriches, had our heads buried in the
sand all this time? How much longer will we leave them there?

60 Chapter 2
The state of software affairs today

As stated earlier, the preceding narratives understate the successes of
the software producing sector of our society. Obviously, there have been
successes — substantial successes — which more than offset the negative
consequences outlined above. But anyone who has been involved for any
length of time in producing or using software systems will find many of
the true situations described above to be representative of his own
experiences. The problems, difficulties and shortcomings outlined above
are not the exceptions, they are, unfortunately, the rule.

Is this the picture of a profession or an industry fulfilling its social
responsibility? If it is trying, it does not appear to be succeeding very
well. One can only conclude that most practitioners either are acting
irresponsibly or — more probably — are simply underqualified for the
tasks they are attempting to perform.

Is this the picture of a society making optimum use of the pro-
grammers of its computers? The qualitatively and quantitatively inade-
quate initial education of these resources alone prevents them from
making an optimum contribution to their employers and to their fellow
man. The moderate amount of on-going technical training does not,
cannot compensate for the inadequate development of their capabilities.
Not only the programmers of our computers but also our business,
intellectual, political and social leadership is inadequately prepared for
the task of ensuring that society takes optimum advantage of computer
technology.

Who is to blame? Everyone and no one. Everyone concerned with
software — directly and indirectly — has contributed to the current state
of affairs. But because this situation has become, tacitly at least, accepted
business practice, no one group can be singled out as the culprits.
Certainly one cannot blame our many “three week wonders”, for they
have responded to the market demand and to the challenge in greater
numbers than any other group. Considering the cursory preparation they
have been given, they have, for the most part, tried hard and performed
well. But more of them should be motivated, encouraged and helped to
upgrade their base of fundamental, general knowledge of computer
science topics and of relevant background subjects.

It is interesting to compare the above state of affairs in the software
field with the situation prevailing in the computer hardware field. The

Software development: yesterday and today 61

hardware field, from its very beginning a recognized engineering disci-
pline, has succeeded in developing sophisticated, reliable equipment. The
computer industry has succeeded in producing it in large quantities. The
reliability and capacity of typical hardware systems have been increasing
at an almost unbelievable rate for many years. At the same time, the cost
of hardware has been declining rapidly. These trends are certain to
continue for years to come. While the collapse rate in the hardware field
is not zero, it is much, much lower than that in the software field.

It is striking that the developers of computer hardware are academi-
cally trained engineers. The academic programs for these engineers
evolved naturally from already well established courses of study in
electrical engineering. The evolution took place for the most part within
existing, relatively large departments of electrical engineering at recog-
nized academic institutions. It was not necessary to found new depart-
ments and faculties in order to establish the organizational base for
sound engineering programs in computer hardware development.

In the software field, academia has experienced much greater prob-
lems. No established base existed upon which software engineering could
grow in a natural way. While important roots existed in the mathematics
and electrical engineering departments, software engineering differs in
fundamental ways from both of these fields. At the same time, other
academic fields are also of considerable importance to the software
engineer, namely those dealing with the various application areas. Thus,
an academic program in the software area must borrow heavily from a
number of other academic disciplines but is sufficiently different from
each that none provides a base for its evolutionary development. This has
given rise to a basic dilemma. It is not clear just how this new field
should be fitted organizationally into the academic world. Several alter-
natives are still being tried. It remains to be seen which will pass the test
of time.

Striking differences also exist between the attitudes of those persons
responsible for selecting designers of hardware and software systems. It is
customary that a prospective hardware designer have an engineering
education. If he does not, he is expected to demonstrate that he possesses
equivalent knowledge and experience. Lacking this, he may be engaged
as a technician or designer’s assistant, but not in a designing capacity. In
the software field, the situation is very different. Any previous experi-
ence, almost regardless of quality and length, is implicitly assumed to be

62 Chapter 2

a more than adequate preparation for designing software systems. Sel-
dom is a prospective software system designer expected to have fulfilled
any particular formal educational requirements. This is particularly true
in the case of software for business applications — probably the largest
segment of the software market. While the persons selecting these desig-
ners are not really satisfied with the results, they do not, in their view,
have any other choice. Truly qualified software designers are simply not
available in the quantities needed.

Another important attitudinal difference contributes to the mainte-
nance of the status quo. From the earliest days of computing, the
purchaser has subconsciously felt that what he was really buying was the
hardware. The software was a minor accessory. This attitude probably
reflected the cost structure of computer systems in the 1940’s and early
1950’s reasonably well. Beginning in the late 1950’s and during the 1960’s
and the 1970’s, however, the cost of a typical computer system was more
or less balanced between hardware and software. For a long time,
however, the industry’s pricing policy did not reflect this cost structure
and the typical computer user still had the impression that he was buying
the valuable hardware and getting the cheap software as an accessory.

Today, the sophisticated user realizes that the solution to his problem
lies not in the hardware but in the software. Starting from his problem,
he determines his software requirements. Only then does he select the
hardware required to execute the software. He is really buying the
software; the hardware is the accessory.

Even when the user consciously recognizes this fact, his subconscious,
however, still often perceives the hardware to be the object being
purchased and the software to be the unimportant accessory. There is an
understandable reason for this psychological effect. To every human
being, even software experts, computer hardware is more tangible than
software. The very choice of the words “hardware” and “software” can
be attributed to this common human perception. The more tangible
thing, having more substance, is perceived subjectively to be of greater
value. While software takes on tangible forms, its essence is perceived as
largely intangible and hence of less intrinsic value. The person who
subconsciously and genuinely recognizes that software is the real good
being purchased and that the hardware is only a minor accessory has
managed to overcome a deeply ingrained aspect of his human psychol-

ogy.

GLR ey

Software development: yesterday and today 63

According to an established rule of thumb in software production,
testing (a euphemism for finding and correcting mistakes) accounts for
about half of the development effort of a typical software system
[McGowan, p. 2], [Myers, p. vii], [Schulz, p. 9]. The remaining half is
divided unequally between program design and coding. After develop-
ment is pronounced complete, considerable additional cost — often more
than the development cost ~ is incurred during the system’s lifetime for
maintenance (i.e. finding and correcting mistakes not found during
testing, implementing design changes and finding and correcting mis-
takes introduced thereby). The very large amount of effort expended in
“testing” should be an unmistakable signal that something is fundamen-
tally wrong with our approach to designing and coding program systems.
Apparently, however, this message is not getting through to the pro-
grammers of our computers. The high cost of testing seems to have
spawned valiant efforts to develop and refine tools and techniques for
testing — rather than to get our designs and code right in the first place.
In other words, the medicine we are taking will (if it works) give us
symptomatic relief from our ills but will not cure us.

Why has the state of affairs reflected by the preceding narratives
become the socially accepted modus operandi? The computer is a funda-
mentally new tool so useful that even when sloppily applied by beginners
and amateurs, the net benefit — after due consideration of the collapses —
is still very great. The benefits are so great in the short term that we
cannot economically and socially justify foregoing them while we take
time out to prepare ourselves to take better advantage of this new tool in
the future.

While we can be proud of the abilities we have acquired and of the
positive results we have so far achieved, we must beware of unjustified
self-laudation and its likely consequences. Our successes should not be
interpreted to mean that we are doing a good job, but rather that we
have, more or less by accident, stumbled onto a good thing. We could
and should endeavour to make much more of this good thing in the
future than we are now doing.

What is wrong with the current situation?

Because the net benefits are so great, one might ask, “What is really so
bad about the current state of affairs? We are producing large quantities

64 Chupter 2

of software which is of considerable value to its users. As long as this
situation prevails, we don’t really have a problem.” Perhaps the poten-
tially worst aspect of the current situation is illustrated by the two
narratives regarding defense applications. As our systems become bigger,
better and more beneficial, so does the potential damage resulting from
their failure become more serious. While the “TOP SECRET blank
pages” (page 31) in the 1960’s constituted a ludicrous situation involving
only a little waste and certainly no danger, the episode “Can a computer
system push the button?” (page 52) represents a potentially very danger-
ous situation. While no one really objected to his bank account being
processed by computer ten years ago, many people might justifiably
object to flying in an aircraft whose route will be monitored and
controlled solely by computer software of the same quality as that in the
preceding stories. The damage done by software failures in the past was
almost always reversible; in the future, it is likely that more and more
irreversible damage will be done if we continue on our present path.

There are other negative consequences of our current approach to the
programming of our computers. From a simple economic standpoint, the
main shortcoming is the considerable gap between supply and demand in
the software market. More generally, we are paying unnecessarily high
costs for our software and its use and we are obtaining less benefit than
possible. We too often incur avoidable costs as a result of errors and
failures. Such costs are sometimes shifted unfairly onto persons who are
not responsible for the errors and failures that cause them, onto persons
who have no control over the situation and onto persons who cannot
protect themselves from the consequences of such errors and failures. For
example, many taxpayers lost considerable time and incurred legal fees as
a consequence of “Taxation by computer” (page 54). In many similar
situations customers of an organization whose software has malfunc-
tioned have been inconvenienced and have incurred costs and lost time in
correcting the mistakes. Even when the costs to any one person are low,
the total economic loss can be high when the number of persons affected
is large — as is often the case.

Another negative consequence of our present approach to computer
education seems to be receiving too little attention. The ability to use and
to interact meaningfully with information systems is becoming more and
more important to the individual as a productive element in society.
Those who do not acquire basic skills in the use of informational tools of

Software development: yesterday and today 65

various types are likely to be at a disadvantage in our future society,
much as those who cannot read, write, perform basic arithmetic opera-
tions or drive an automobile are at a considerable disadvantage today. If
we do not start conveying basic “informational skills” to all our children
in the schools soon, a substantial fraction of the next few generations
may be “computer illiterate”. The opportunity costs associated with such
a situation would be high, to say nothing of the potential social conflict
that could arise from the attendant polarization of society into the
informationally poor and the informationally rich.

Why do we have severe software problems?

Why do we have such serious problems in the software field today?
The immediate answer is, of course, simple and obvious: we have too few
programmers and the ones we do have are not as good as we would like.
Right now, we appear to need every living, breathing programmer we can
get — almost regardless of quality. While marginally qualified practi-
tioners are normally squeezed out of a field by economic and competitive
forces, these forces are more than counteracted in today’s software
market by the large gap between supply and demand. Marginal practi-
tioners are seldom forced out of the software market; instead they move
on to another employer (and receive an increase in pay in the process, of
course).

Just as in Moc in 2400 B.C., we have simultaneously a shortage of
quantity and quality. This shortage stems, in the final analysis, from a
bottleneck in the educational process. The bottleneck, caused fundamen-
tally by the rapid growth of the computer field, is aggravated by our
concentration on short term benefits. In order to obtain maximum
benefit now, we are diverting valuable resources from the education of
tomorrow’s programmers of our computers. Potential teachers are en-
gaged as practitioners or in research; potential students of computer
science are engaged as poorly prepared “system analysts” and coding
technicians today and tomorrow instead of as good software engineers
tomorrow.

Many failures of software projects have been attributed to managerial
error. Within the context of individual projects and systems, managerial
errors have frequently been a contributing cause of our many collapses.
When unrealistic goals and expectations are set, when the ability of the

66 Chapter 2

organization to design, develop, implement and absorb software systems
is greatly overestimated, when a software project is initiated (or allowed
to continue) which requires more highly qualified people than those
assigned to the project team, then management must accept responsi-
bility for the ensuing collapse. But managerial misjudgment is only one
of several causes of our problems. These managerial errors hardly explain
the large gap between our practical ability to realize software systems on
the one hand and what we know can be achieved in principle on the
other hand. They do not adequately explain why highly qualified people
are in such short supply or why the available people are not better
qualified. They do not explain why the total supply of software practi-
tioners is so much less than the demand.

Managerial misjudgment is only an intermediate expression of more
fundamental causes of our problems. We must ask further why business
leaders commit these errors. All too often, they are not adequately aware
of the possibilities and limitations of computer technology as it can be
applied in business and society. Often unclear to them is the important
distinction between what one can in principle achieve on the one hand
and what a particular group of people can achieve in a particular
organization within a limited period of time on the other hand. Euphoria
over what is possible in principle often leads to unrealistic expectations;
then the resulting collapse causes the pendulum to swing to the other
extreme and their attitudes become overly pessimistic and excessively
conservative. Good advice based on sound knowledge of the technical
possibilities and limitations is not always available. When it is, the
manager is not always in a position to recognize good and bad advice as
such and to distinguish between the two. When faced with a choice
between foregoing a software system because qualified developers are not
available or trying to develop it with underqualified staff, the decision
process is all too often dominated by the hope that this time everything
will somehow work out all right. Often, of course, it doesn’t and the net
result is that resources already in short supply are wasted.

The shortage of qualified software practitioners is further aggravated
by frequent conversions of a technical nature. Considerable manpower is
required to convert from one computer system to another, from one
operating system to another, from batch to on-line operation, from
traditional file management systems to data base management systems,
etc. While most such conversions are motivated by the expectation of

Software development: yesterday and today 67

increased productivity, too frequently they consume more resources than
they free.

In an attempt to circumvent the shortage of qualified software practi-
tioners, we have, often quite consciously, tried to deskill programming.
This has only made matters worse. By creating the impression that
programming requires only minimal skill, we have discouraged many
highly capable persons from becoming programmers and have encour-
aged too many with marginal aptitude to join the ranks of coders. This
effect is particularly noticeable in some European countries, where until
recently it was socially unacceptable to place a college graduate in the
position of a “programmer”. The low quality of the resulting software
should not surprise anyone. If we were to deskill aircraft piloting, we
would expect an increase in crashes and lesser accidents. If we were to
deskill the task of civil engineers, we would expect an increase of
Mocsian collapses. If we were to deskill the task of the physician, we
would expect an increase in diagnostic errors, surgical deaths, misuse of
medicines, inappropriate therapy, etc. Having deskilled programming, we
are observing the comparable consequences.

By deskilling programming, we have drawn attention away from the
programmers’ need for a solid base of fundamental knowledge. Instead
of emphasizing a fundamental understanding of the nature of informa-
tion and information processing, we have been stuffing the programmer
full of unorganized and often confusing technical details of this or that
system. Over and over again, we have searched for a kit bag of the right
tools, with which the most difficult problems could be solved simply and
easily. At best, this has been like Ponce de Leon’s legendary search for
the fountain of youth: while the goal was not achieved, useful by-products
derived from the effort. But all too often our searches for the right tools
have been more akin to a search for the pot of gold at the end of the
rainbow: much effort has been expended and no useful results have been
achieved. Still other efforts have been quixotic adventures.

All too often, the “technical details” of the software system being
learned are nothing more than the arbitrary and unnecessary restrictions
imbedded into it by its creators. The new programmer is soon deluded
into mistaking such technical details of a system for true knowledge of
general applicability. This sort of training does not broaden his mental
horizons; on the contrary, it narrows them. Instead of improving the
capabilities of the next generation of programmers, this type of training

68 Chapter 2

tends to pass on to them our inabililties rather than our abilities and
thereby to perpetuate undesirable aspects of the status quo.

As promising new tools turn out not to solve all our needs after all,
confusion often sets in. After much discussion and some investigation,
the proponents announce that the tool is fine, but that it is not being
applied properly. The search then begins for the right technique for
applying the tool and the vicious cycle begins again. This process is very
much like the situation in which the programmer was unknowingly trying
to program the unprogrammable (see “Theory simplifies practice”, page
33). As one difficulty is resolved, another pops up to take its place. We
seem to be unwilling to face up to the obvious conclusion: specific tools
and techniques can complement, but never replace a fundamental under-
standing of the nature and structure of the problem.

In this context, it is interesting to ask how many of the programmers
of our computers are graduates of a university level computer ,science
program. While the various sets of statistics relevant to this topic are
problematical, in part because of definitional difficulties, it is clear that
only a very small fraction of*our programmers have studied computer
science in any depth. In the U.S.A., some 29,600 bachelor’s degrees were
awarded in computer and information sciences in the six year period
1972-1977 [U.S. Bureau of the Census, p. 169]. These courses of study
were first offered in the 1960’s and are still growing; therefore it can be
assumed that in all years before 1972, at most a comparable number of
such degrees were awarded. The number of master’s degrees and
doctorates awarded is undoubtedly even smaller. These numbers are
quite small in comparison with the number of active programmers (in our
sense of the word) — certainly many hundreds of thousands, if not a
million or more in the U.S.A.

In the Federal Republic of Germany, the European country with the
largest market for computer equipment and services, the situation is
similar. According to governmental statistics, 10,851 students entered
university level courses of study in computer science (“Informatik™) in
the five years 1974-1978 [Statistisches Bundesamt, p. 342, and earlier
editions]. Until the early 1970’s, such courses of study were essentially
unknown. The number of programmers (again, in our sense of the word)
in the F.R.G. is certainly several hundred thousand.

In addition to graduates of computer science programs, there are, of
course, many graduates of other courses of study who are performing

Software development: yesterday and today 69

programming functions. While some of these have acquired a knowledge
of computer science subjects, it is probably fair to say that most have
acquired only a technical knowledge of one or two programming lan-
guages and one or two computer systems. While many of them may be
engineers in other fields, only relatively few can be considered to be
programming or software engineers.

Often it is assumed - sometimes implicitly, sometimes explicitly — that
the difficult, critical aspects of designing, developing and implementing a
software system lie in the area of EDP technicalities. A system analyst is
therefore assigned to some particular project who is familiar with the
technical idiosyncracies of standard software package X. A coder is
selected for the project on the basis of his knowledge of compiler Y and
operating system Z. The system analyst conducts a few superficial
interviews with the user, designs the software system, passes on corre-
sponding instructions to the coder and defines the data to be collected by
the user.

It should not, but usually does, surprise everyone that the resulting
system does not perform meaningfully - in terms of the users’ needs.
What has happened? Specialists in computer systems X and Y and Z
have been assigned to design, for example, a system for forecasting sales
and optimizing inventories of finished and semi-finished goods. But they
are not aware of the business economics involved; they are not familiar
with the cost structure of manufacturing and inventory systems. They do
not have the mathematical background needed to cope with the statistical
questions which arise in sales forecasting or to determine which, if any, of
the many inventory optimization models in the theoretical literature
might apply to their company’s situation. They are not intimately familiar
with the unique operational problems, personal preferences, prejudices
and political forces existing in the using organization. As a result, they
are all too often unable to recognize the users’ real informational needs.

The designers of such a software system must apply relevant business
theories, mathematics and computer systems (hardware and software) to
the tasks of a specific organizational unit in their company. Of these four
important areas, they are seldom masters of more than one. Because
neither the user nor the computer specialist speaks a language the other
understands, communication is ineffective. Instead of a dialog, two (or
more) monologs are conducted. Because the computer specialist under-
stands neither the business theory nor the mathematics behind the

70 Chapter 2

various formulae in the book from which he hopes to select his solution,
no real communication takes place between him and these vast bodies of
knowledge, either. The final system will run on a computer, but whether
it represents a solution to the user’s real problem or not is a completely
different matter.

What are we doing in effect? To solve a problem or to perform a task
which we don’t really understand, we design and build a computerized
system (which we don’t fully understand, either). Implicitly we assume or
hope that the omnipotent computer will somehow compensate for the
gaps in our understanding. Of course, it doesn’t — because it can’t. The
only thing surprising under these circumstances is that we actually expect
the system to do something useful.

insufficient
. professional
educational
capacity
high and under-
immediate qualified
demand for software
sof?v.vare practitioners
practitioners
unsatisfied low
demand for productivity,
software high
_’/ collapse rate

Our contemporary vicious circle

Chapter 3

A test for practitioners of the
science /art /craft /trade /racket of
software design and development

Ignorance, when voluntary, is criminal, and
a man may be properly charged with that
evil which he neglected or refused to learn
how to prevent.

Samuel Johnson (1709-1 784)

Pure mathematics do remedy and cure many
defects in the wit and faculties of individu-
als; for if the wit be dull, they sharpen it; if
too wandering, they fix it; if too inherent in
the sense, they abstract it.

Francis Bacon (1561-1626)

It is a thesis of this book that there is no kit bag of a few tools and
techniques which, if learned and applied by the programmer, will ensure
his success. The software engineer must first master a certain body of
fundamental knowledge consisting of ideas and concepts selected from
the fields of computer science and mathematics. This body of knowledge
deals with the basic nature of data, the structure and properties of
algorithms and the interaction between data and algorithmic processes.
Only after mastering this body of knowledge will the software engineer
be able to apply the many available tools and techniques properly and
meaningfully — and be able to develop new tools and techniques himself
when the need arises.

The questions in the following test have been selected to emphasize

71

72 Chapter 3

such basic, fundamental knowledge rather than the many specific tech-
niques and the idiosyncracies of typical contemporary software systems.
This is not meant to imply that skill in the use of such techniques and an
awareness of the specific characteristics of typical software systems are
not important to the programmer; they obviously are. While they are
necessary, they are not sufficient, however. The accent on fundamental
concepts in the following exercises is an attempt to rectify the current
overemphasis on specifics and underemphasis on the understanding of
fundamentals.

The knowledge required by the successful programmer of our com-
puters encompasses computer oriented technical subjects, basic mathe-
matics, planning and management of software projects and the applica-
tion area(s) for which he develops software. The following exercises deal
primarily with the first two of these. Project planning and management is
dealt with in only a brief, introductory manner because little in this area
is really unique to software engineering. Software engineering is but one
of many areas of application of the well known, well documented and
empirically verified principles of project planning and management.
Because the areas to which software systems are applied are so numerous
and so different in nature, they are not dealt with at all in the following
exercises.

Even within the areas of basic computer science and mathematics, this
set of exercises does not purport to be exhaustive. The author’s intention
is that it be illustrative of typical basic principles and of the usefulness to
the programmer of a good foundation in basic mathematics. Additional
exercises on computer subjects can be found in [Knuth, Vols. 1, 2 and 3]
and [ACM].

Why is mathematics so important to the programmer? As anyone who
has ever worked with computer systems knows, they are sticklers for
detail. When studying, talking about and designing data structures,
algorithms and programs for computer systems, it is essential that we pay
particular attention to precision and rigorous logic in our discourses. We
need a language which permits, even encourages, precise and logical
expression. We need a language which discourages, even prevents, vague
and fuzzy thinking and expression. The language of mathematics has
been developed over the millennia to fulfill just these needs; it seems to
fulfill them well. While we could, in principle, create some other language
of discourse, there would seem to be no good reason to reinvent the

Test for practitioners 73

wheel. We will, therefore, make free use of the language of mathematics
- supplemented with some computer terminology - in the following
questions and answers. It should be noted that it is not so much the
content of the field of mathematics as the language of mathematics which
is of interest and importance to us as programmers.

Why is mathematics so important to the field of software develop-
ment? In order to answer this question, it is useful to consider the typical
evolution of scientific fields such as astronomy, biology, chemistry,
medicine, physics, etc. They all seem to have begun with superstition
surrounding a class of phenomena of practical significance to mankind
(e.g. astrology, alchemy, etc.). In a second phase, the phenomena were
observed intensively. Afterwards, the voluminous collection of observa-
tions was organized, structured and analyzed. Numerous hypotheses were
formulated; predictions derived from them were compared with the
observations. In this third phase, an understanding of the phenomena,
their causes and their implications was developed — and the field became
a science. In the fourth phase, this understanding was applied, at man’s
will, to modify his environment, at least to some limited extent.

The key factor enabling the transition through the first phase —
superstition — seems to be man’s innate psychological need to explain his
environment. During the second phase — observation — technical skills in
observing, measuring and recording dominate. A key prerequisite for the
transition through the third phase — understanding - is a formal lan-
guage and structure for thinking which enables one to draw rigorously
logical conclusions from given or assumed facts or observations — i.e.,
precisely what we call mathematics today. In the fourth phase — applica-
tion — creative abilities become essential. These prerequisites are cumula-
tive in the sense that in each phase not only its special prerequisite is
employed, but also those of preceding phases.

The field of software development as it is typically practiced today
represents a schismatic situation: We are trying to act as if we were in the
fourth phase although most practitioners have not, in fact, even made a
good start into the third phase. (Some are still stuck in the first phase.)
Only when a large fraction of our practitioners has acquired the prere-
quisite for tackling the third phase will we make significant progress.
Only then can our field mature and join the ranks of other scientific and
engineering disciplines.

Some readers may find that the exercises below expose gaps in their

74 Chapter 3

knowledge of the language of mathematics. It is suggested that they
review introductory material on set theory and functions. A familiarity
with basic mathematical terminology and a few elementary definitions in
these areas will be sufficient background for answering the questions
below. Such material can be found in the introductory chapters of many
modern books on algebra, real analysis, measure theory, probability
theory, functional analysis, etc. See e.g. [Brady, Appendix A}, [Harrison,
chapter 1] or [Royden, chapter 1].

Answers to the following exercises will be found in the Mocpendium
of selected software engineering topics beginning on page 133. If the
reader is not able to answer a question, it is suggested that he look up the
answer and go on to the next exercise.

The reader who has difficulty with some of these questions should not
feel bad; he is not alone. Few software practitioners will be able to
answer all the following questions completely and with ease. But because
material in all areas covered in this test has been found to be either of
direct relevance to gommon practical problems or of significant value as
background knowledge, the reader should polish up his knowledge of
those areas in which he experienced difficulty. He should consult the
literature referenced in the answers to the questions which he found
difficult as well as other pertinent sources. If he has difficulty reading the
material referenced, he should work on improving his fluency in the
language of mathematics as suggested above.

Good luck!

Questions
Data and algorithms: basic concepts, definitions and axioms

1.1. What is a variable or a data element?

1.2. What is meant by the zype of a variable or data element?
1.3. What is an array? a subscripted variable?

1.4. Define the word “algorithm”.

1.5. What is a data environment (e.g. of an algorithm)?

1.6. What is a computational task?

1.7. What is a data declaration?

1.8. What is an assignment statement?

Test for practitioners 75

What is a global variable? a local variable? an own variable?
What is a conditional statement?
What is a WHILE statement?
The FOR statement is a loop control statement which appears in
several programming languages. Define its basic form in terms of
the WHILE statement.
13. What is a linear list?
. Explain what a linked linear list is.
15. What is a stack?
. What is a recursive algorithm? Give an example of one.

——— \O

___._
N —=O

Automata

2.1. Describe in general terms what a Turing machine is.
2.2. Give a precise definition of a finite automaton.

2.3. When are two finite automata equivalent?

2.4. What is a von Neumann machine?

Boolean algebra

3.1. What is Boolean algebra?
3.2. Define the AND function. Is it associative? commutative?
3.3. Define the OR function. Is it associative? commutative?
3.4. Define the NOT function.
3.5. Are the expressions

NOT (x AND y)

and

(NOT x) OR (NOT y)

equal for all possible values of x and y? If so, prove. If not, give a
counterexample.
3.6. Are the expressions

NOT (x OR y)
and
(NOT x) AND (NOT y)

equal for all possible values of x and y? If so, prove. If not, give a
counterexample.

76

3.7

3.8.

3.9.

3.10.

Chapter 3

Are the conditional statements

a. IF x THEN statement] ELSE statement2
b. IF NOT x THEN statement2 ELSE statementl

equivalent? If so, give a precise proof. If not, give a counterexam-
ple.
Show that the statements

a. IF x AND y THEN statement]l ELSE statement2
b. IF (NOT x) OR (NOT y) THEN statement2 ELSE statementl

are equivalent.

In a program, the elements of two arrays, lastname and firstname,
are to be sorted. Write the Boolean expressions for use in IF
statements to determine whether the entry with subscript i

a. is lower (less) than the entry with subscript j,
b. is higher (greater) than the entry with subscript j or
c. is equal to the entry with subscript j.

A programmer wrote the following nested IF statement:

IF x

THEN statementl

ELSE IF y
THEN statementl
ELSE statement2

Simplify this statement. Prove that your simplified statement is
equivalent to the above.

. Algorithms: implementation, execution and correctness

4.1.
4.2,

How are recursive algorithms executed on real machines?

What does the following algorithm do? Under what conditions
does it do it correctly? What is varying in the loop? More im-
portantly, what is not varying during the execution of the loop?
Give a detailed proof.

sum < 0
i<0
WHILEi<n DO {i « i+ 1; sum < sum + x(i)}

4.3.

4.4,
4.5.
4.6.

4.7.

438.
4.9.
4.10.
4.11.
4.12.
4.13.

‘4.14.
4.15.

4.16.

Test for practitioners 77

State the conditions for which the following algorithm is correct.
Prove that it computes the desired result.

FUNCTION factorial(n);

IFn=0

THEN return 1 as the value of factorial

ELSE return the value of n=*factorial(n — 1)
as the value of factorial;

What can be said about the behaviour of the above algorithm if the
value of the argument is a non-integral positive number? a negative
number?

What types of data values can be sorted?

Describe in general terms the sorting method called “quicksort”
due to C. A. R. Hoare.

Write an algorithm for quicksort. (Assume that a suitable algorithm
exists for subdividing the collection of values to be sorted into two
subcollections.)

What requirements must the algorithm satisfy which subdivides the
collection of keys to be sorted?

Prove that your algorithm for quicksort is correct.

Suggest a loop invariant for the main loop in the algorithm which
will subdivide the collection of key values to be sorted.

Design the algorithm for subdividing the collection of key values to
be sorted.

Prove the correctness of your algorithm for subdividing the collec-
tion of key values.

Write a non-recursive algorithm for quicksort. (Use the previously
designed algorithm for subdividing the collection of key values to
be sorted.)

Prove the correctness of your non-recursive algorithm.

A program is to be written which will print a report with an
unspecified number of pages. Each page will contain a header and
a footer. The page number will be printed in both the header and
the footer. In some cases, a group of a small number of successive
lines of data must be printed on the same page. Specify precisely
the criteria for the correctness of the format of such a report.
Design a set of algorithms for controlling the paging and the
printing of the header and footer for this report. Specify the control

78

4.17.

4.18.

4.19.

4.20.

Chapter 3

variables required and their exact meanings. Assume only that
system functions are available for printing one line and for skip-
ping a specified number of lines.

In a particular application, a number may be represented by an
optional sign, followed by one or more decimal digits, followed
optionally by a decimal point and one or more decimal digits.
Describe precisely the syntax of such a number using BNF (Backus
-Naur-Form) notation.

Design an algorithm which determines whether a given string of
characters satisfies the above definition of a number.

Names are to be abbreviated as follows. The letter H is to be
disregarded unless it is the first letter in the name. A sequence of
consonants is to be abbreviated by the first consonant. Similarly, a
sequence of vowels is to be abbreviated by the first vowel. Finally,
certain letters are to be replaced as follows when they appear
within the name (but not as the first letter):

Replace with
e 1y e
b,p b
¢k, s c

d t d
8] g
m,n m
vV, W \

For example, the abbreviation of JOHANSSON is JOMOM.
Define an algorithm for generating the abbreviation of any given
name (string of letters).

An inventory control system is to be designed which will review the
stock status of each article in the inventory daily. If the availability
(stock on hand and reordered or recommended for reordering) of
an article is below the reorder point for that article, the system
should generate a replenishment recommendation. Normally, these
recommendations will be held within the system until the weekly
reorder summary is printed. Only if the availability of the article
falls below a lower critical level is an urgent recommendation to be
printed immediately. When the recommendations have been manu-

Test for practitioners 79

ally reviewed and a replenishment order placed (possibly for a
different quantity), a message to this effect will be entered into the
system.

In order to avoid confusion, the system should not normally print a
second replenishment recommendation until manual action has
been taken upon the first one. However, if an urgent recommenda-
tion has been printed in a daily run, later included in a weekly
summary and still no order placed, then the system may issue a
second recommendation if the criterian is met again. If no order is
placed within a certain time after a recommendation first appeared
on a weekly summary, the system should assume that the recom-
mendation has been overlooked, cancel the recommendation, issue
a warning notice to that effect and continue normally (usually
issuing another recommendation for a different quantity). But such
a recommendation should only be cancelled if it last appeared on a
weekly summary, not on a daily list of urgent recommendations.
An urgent recommendation should be printed only once, of course.
The weekly summary should include all open recommendations,
whether printed previously or not.

Specify the logic for controlling the issuing and printing of recom-
mendations in this application software system.

4.21. Consider the following modules written in COBOL:

Main program:

PROCEDURE DIVISION.

PARA.
DISPLAY “MAIN PROGRAM” ERASE.
CALL “MODA”.
CALL “MODB”.
CALL “MODA”.

EXITPARA.
STOP RUN.

MODA:
WORKING STORAGE SECTION.
01 DATA-A PIC X VALUE “1”.
PROCEDURE DIVISION.
PARA.

80

Chapter 3

DISPLAY DATA-A.

MOVE “2” TO DATA-A.
EXITPARA.

EXIT PROGRAM.

MODB:
PROCEDURE DIVISION.
PARA.
DISPLAY “MODULE B”.
EXITPARA.
EXIT PROGRAM.

What will be displayed on the video screen when the main program
is executed? Why? Does it make any difference if the program’s
modules are overlaid or not?

Is the variablg DATA-A in MODA a local or an own variable?

Concurrent execution of computational tasks

S.1.

Consider a system for processing airline seat reservations in which
seats for any particular flight may be reserved from any terminal.
In particular, the system permits any number of terminals to
reserve seats on the same flight essentially simultaneously. To
enable this to be done, a computational task is established for each
active terminal; data on any flight’s reservation status is accessible
by any computational task (i.e. is in a common data environment).
Intermediate variables used by a particular computational task are
assigned to that task’s local data environment. The following is an
extract of the algorithm proposed for reserving seats in this system:

flight < flight identification input from keyboard
seatsdesired < number input from keyboard

IF seatsdesired < available(flight)

THEN available(flight) < available(flight) — seatsdesired
ELSE display message that seats are not available

where the array available is in the common data environment and
all other variables referenced above are in the task’s local data
environment.

Would you expect any problems to arise during the operation of
this system? If not, prove that the algorithm is correct. Otherwise,

5.2

5.3.

Test for practitioners 81

indicate the problems you would expect to arise. How can they be
prevented?

Give an example of a deadlock in a system permitting concurrent
execution of tasks.

How can a deadlock be prevented? Discuss in detail.

Computer arithmetic

6.1.

6.2.

In mathematics, the set of real numbers and the binary operations
addition and multiplication form a field. Is the corresponding
system of floating point arithmetic as implemented in a typical
computer a field? Discuss in detail.

A particular computer system evaluates the expression 65000 —
65000 + .01 —.01 and obtains the correct answer 0. When it
evaluates the expression 65000 + .01 — 65000 — .01, it obtains the
obviously incorrect answer 0.0017175. Explain.

Computational complexity

7.1,
7.2.

7.3.

What is meant by the computational complexity of an algorithm?
What is the time complexity of the following algorithm for search-
ing a sequenced list for a given item?

linearsearch(key, start, end, searchkey);

FOR i « start TO end STEP 1

IF key(i) = searchkey

THEN return the value of i as the value of linearsearch;
NEXT i

return the value of start — 1 as the value of linearsearch

What is the time complexity of the following algorithm for search-
ing a sequenced list for a given item?

binarysearch(key, start, end, searchkey);
il < start
ih « end
WHILE il<ih
DO BEGIN
ip < integer((il + ih)/2)

82 Chapter 3

IF key(ip) < searchkey THEN il « ip + 1
ELSE IF key(ip) > searchkey THEN ith — ip — 1
ELSE return the value of ip as the value of binarysearch;
END;
return the value of start — 1 as the value of binarysearch

7.4. Interpret your answers to the above questions with regard to a
situation in which a fast computer executes the linear search
algorithm and a slow computer executes the binary search.

7.5. What is the maximum number of entries which can be stored in the
stack when executing the non-recursive algorithm for quicksort (see
question 4.13)?

Data structure

8.1. Whatisa secIuential file?

8.2. What is a relative file?

8.3. What is an index?

8.4. What is an indexed file?

8.5. What is an inverted file?

8.6. What is a hierarchical index?

8.7. Why are indices sometimes structured hierarchically?

Program structure

9.1. What is meant by the terms modular programming, structured
programming and hierarchical programming?

9.2. What are the advantages claimed for modular programming, struc-
tured programming and hierarchical programming?

9.3. When applying these programming techniques, how large should
the designer make each single module?

9.4. What information must the specification and documentation of a
single module contain?

Testing

10.1. What is the purpose of testing computer software?
10.2. What is “black-box” testing?

Test for practitioners 83

10.3. What is “white-box” testing?

10.4. How can the correctness of a module be demonstrated by black-box
testing?

10.5. How can the correctness of a module be demonstrated by white-box
testing?

10.6. What criteria should one use to decide when to stop testing a
module or a system?

Project management

11.1. A project manager is in charge of a group of five programmers,
each of whom will design and write between one and four closely
related programs. All programs are part of one application system,
for which general system specifications exist. The time required by
each programmer to complete his own programs has been esti-
mated; the estimates vary between six and eight months.

The project manager intends to monitor progress as follows. Every
two weeks, each programmer is to report the percentage of his
assigned work already completed and the number of hours actually
worked on this project during the two week period. From this data,
the project manager will calculate the number of hours each
programmer still needs to complete his programs. Similarly, the
projected completion date will be recalculated. The project manager
will also use the data on hours worked to verify that the pro-
grammers are not spending more than the agreed amount of time
on other projects.

How effective is this method of project management in your
opinion?

11.2. Would you suggest any improvements to this method of project
management?

11.3. What should a project manager do if the plan he has prepared calls
for a much later completion date than is desired?

In closing
12.1. How would you describe the relevance of the material covered in

this test to the detailed specification, design and development of
computer software?

84 Chapter 3

a. quite relevant, but patchy in coverage, just scratches the surface
of the applicable theoretical background

b. relevant, but too mathematical, qualitative aspects neglected

c. moderately relevant, but methods for selecting and using specific
techniques, packages, etc. missing

d. not very relevant, too theoretical, importance of the structure of
the computer industry and of the strengths and weaknesses of
the various sources of software and software personnel over-
looked

e. quite useless and irrelevant. Finding and hiring warm bodies
who can spell computer programming without making too
many mistakes is all that counts.

Postscript .

It is suggested that the reader compare his answers with those in the
Mocpendium at the end of this book (see page 133 ff.) — even his answers
to those questions with which he had little or no difficulty. In some cases,
he may find that the answers in the Mocpendium give a different view of
the problem and its solution.

The typical reader will have had little difficulty with questions in some
areas, but will find that other questions covered unfamiliar topics. All
areas covered in this test are, as mentioned earlier, important to the
software practitioner. The reader who found certain areas difficult or
unfamiliar should, therefore, strive to complement his knowledge accord-
ingly. The mature, professional software engineer must have a certain
command of all of the areas of knowledge covered in this test.

The reader who was able to answer essentially all the questions on this
test completely, correctly and with little difficulty may consider himself
to be an advanced software universalist. We need more of his kind in
software engineering. Such a reader should strive to transfer his breadth
of knowledge to others in the software field and to motivate others to
seek out such knowledge on their own.

Chapter 4

The practice of software design
and development: tomorrow?

The dangers of knowledge are not to be
compared with the dangers of ignorance.
Man is more likely to miss his way in
darkness than in twilight, in twilight than in
Sfull sun.

Richard Whately (17871 863)

The nature of the software world of the future will be determined by
many factors, the most important of which are our own choices and
decisions regarding what sort of a future we desire. We can have just
about any kind of software future we want — provided that we are willing
to make the appropriate decisions, to put forth the requisite effort and to
take the necessary steps.

It is not the intention of this book to predict what our software future
will be like, but rather to identify the alternatives open to us. It is up to
the reader to weigh the advantages, disadvantages and costs of each
alternative and to decide for himself which of the possible software
futures he wants to strive to achieve.

The spectrum of possible software worlds of the future can be char-
acterized by three extremes, called Future A, Future B and Future C in
the paragraphs below. Any possible software future is intermediate to
these three extremes. In the audacious Future A, much is attempted,
capabilities are limited and major failures are frequent. In the backward
Future B, strong pressures are present to restrict computer applications
to those within the limited capabilities of the software practitioners and
their customers. These systems are usually successfully realized, but of

85

86 Chapter 4

course much is left undone. In the celestial Future C, the competence of
the average practitioner has been developed to such a high level that even
very complex applications are normally implemented without major
difficulty or problems of a fundamental nature. The extreme Future A
can be simply described as a reckless future; Future B, reactionary; and
Future C, radical.

The two dimensions of the space of possible software futures are the
average level of professional competence achieved by software practi-
tioners (cf. the how issues, chapter 1) and the complexity of the applica-
tions attempted (cf. the what issues, chapter 1). The collapse rate is
determined by these two variables. The space of possible software futures
is represented below as a triangle with the Futures A, B and C at its
vertices:

- radical
Future C
high
T
professional
competence
¥
low
Future A Today Future B
reckless reactionary

advanced <—applications —> limited
high <«—collapse rate —> low

The characteristics of today’s software world as discussed in chapter 2
place us between Future A and Future B, but closer to Future A. Many
trends and developments in data processing, especially the advent of the
microcomputer, will result in considerable pressure to apply computer
technology much more extensively throughout society in the next decades

Software development: tomorrow? 87

[Evans]. This will push us even closer to the point representing Future A.
If we decide to develop our professional software capability much more
extensively in the future, we can deflect our path away from Future A
and toward Future C. If we do not decide to do so, the catastrophic
collapses characteristic of Future A can be expected to give rise to a wave
of public reaction leading us to Future B.

In order that we may decide where in the triangle of future software
worlds we want to position ourselves, let us look at each of the character-
istic extremes — Future A, Future B and Future C - in more detail.

The reckless, audacious Future A

Future A represents the logical extension of our current world of
software collapses. As computers are applied to a greater variety of tasks,
involving human lives and public safety to an ever increasing extent, the
consequences of software collapses will take on more and more frighten-
ing dimensions. Characteristic of the audacious Future A is that little
restraint is exercised on what is attempted, completely inadequate efforts
are made to acquire the necessary technical expertise and, as a result,
major failures and catastrophes are common. In Future A, the software
industry has become, in effect, an overly optimistic, blundering bull in a
china shop.

Particularly applicable to Future A is what might be called the
software corollary to Parkinson’s Law and the Peter Principle: Software
developers will conceive and try to build ever more complicated systems
until the limit of their ability to cope with complexity is exceeded.

Despite our numerous past and present software collapses, there is
today among broad segments of society an almost snug feeling of
optimism and confidence in our computer based future. This state
reminds one of ths world situation in the eighteenth and early nineteenth
centuries: continuous improvement and progress on_all fronts seemed
assured. In the world of science, for example, physics had attained a
highly refined state by the middle of the nineteenth century; we knew
and understood just about all there was to know and understand. Our
knowledge was perfect, only a little minor polishing up remained to be
done. Then, in the late nineteenth and early twentieth centuries, the
bubble burst with unexpected, widespread and by no means only positive

88 Chapter 4

consequences. Social and political upheaval of a previously unimagined
magnitude occurred. In the world of science, it became evident that old,
cherished physical theories were hopelssly inadequate for describing a
wide range of important phenomena and that a completely revised view
of our physical world was required. A comparable shock could be
awaiting us in the computer scene. There is a very real danger that we
will allow our current euphoria to sweep us very close to the reckless,
audacious Future A — where the reality bears little or no resemblance to
our optimistic expectations.

If the audacious Future A comes to be, software situations something
like those described below can be expected to occur. These episodes
represent an extrapolation of the events of the past and present (see
chapter 2). While entirely plausible, the episodes described below are,
today, fiction. But how long will they remain fiction?

The quick descent)

Four jumbo jets collided over Paris one cloudy morning. All 1,631
passengers and crew members as well as 525 people on the ground were
killed. Another 1,000 people on the ground were injured. The damage to
property was considerable. Traffic congestion, the worst ever recorded in
the area, remained a major problem for two days. During this time only a
small fraction of the area’s 25,000 office workers could get to and from
work.

The cause of the accident was identified as an obscure error in one
section of the software used in the air traffic control system: if four
airplanes were located in the second quadrant, if they were flying in a
northeasterly direction (a flight pattern used only during unusual weather
conditions) and if no airplane was in any other quadrant, a routine was
executed in which a minus sign had been inadvertently omitted from one
statement. This had the effect of bringing the airplanes together instead
of directing them apart. The computerized air traffic control system had
been in successful operation for over 20 months when the accident
occurred.

Microprocessors and macrofires

One night, an unoccupied warehouse caught fire and burned to the
ground. Investigators determined that the heating system had overheated

Software development: tomorrow? 89

an interior room in which inflammable chemicals were stored. At first, it
was suspected that an arsonist had disabled the thermostatic controls,
leaving the heating system turned on.

Further investigation revealed that similar fires had occurred in three
other buildings in the preceding year. In all of these buildings a new,
microprocessor controlled heating and air conditioning system had been
installed. It was discovered that the software for this system contained a
shortcoming or limitation which, however, could not clearly be classified
as a mistake. When the temperature exceeded 128 degrees F., truncation
of high order bits of the temperature variable in the program occurred.
The program then “thought” that the room was much too cold instead of
too hot, so it caused the room to be heated at the maximum possible rate.
When the temperature reached the flash point of the inflammable
material, the fire broke out.

The bigger they are, the harder they fall.

After an extended period of financial difficulty, one of the largest
companies in a medium sized European country went into bankruptcy.
Although lengthy investigations revealed many specific instances of
errors, inconsistencies and delays in many management reports and
operational documents, only vague and nebulous conclusions regarding
the overall reasons for the failure of the company could be drawn. Only
one thing was really clear: the company’s information and communica-
tions systems were in such a state that the company had become
unmanageable.

An old-fashioned Mocsian collapse

A thirty story building collapsed during construction. The building’s
designers, registered architects and civil engineers with many years of
successful practice, conducted a detailed examination of the design and
of the events leading to the accident. They discovered errors in the
calculations of stresses in certain elements of the building’s structure.

Originally, all these calculations had been made and checked by com-
puter.

90 Chapter 4
The automated autobahn

Two months after a new automatic vehicle control system was in-
stalled in a section of an autobahn, an accident involving 400 automo-
biles occurred. It was determined that under certain conditions of traffic
volume and velocity, the computer programs did not execute sufficiently
fast. This, in turn, caused certain logical deficiencies in the program to
affect the behaviour of the system which, in the specific case investigated,
led to loss of control and to the collision.

Blackout at high noon

At noon one day, a computer controlled electrical power generating
network shut itself off. The cause of the failure was found to be a
combination of factors, one of which was a mistake in a computer
program. The day before, two new power generators had been connected
to the network, bringing the number of such stations to 257. Within the
computer programs, the generator identification had previously been
stored in an 8-bit field, so it had been necessary to modify the software in
order to expand the size of this field. In the process, an obscure error was
introduced into the program which caused one of the generators to be
shut down at noon. This resulted in an overload being placed on the
other generators, which were, in turn, shut down to protect them from
damage.

A computer system can push the button.

The computerized defense control system of country A detected the
initial phase of an enemy attack and placed its defense forces into full
retaliatory status. A number of weapons were launched in accordance
with country A’s DECAP (defensive counterattack plan). Shortly after
two of the nuclear missiles had been armed in flight, it was discovered
that an error had been made; country A was not under attack after all.

The head of state of country A communicated with the leader of
country B via their “hot line”. Country A’s leader apologized profusely,
of course, for the erroneous counterattack against country B and solicited
the latter’s assistance in avoiding a catastrophe. Country B’s defense
system was able to intercept one of the two armed missiles, but the other

Software development. tomorrow? 91

one reached and destroyed its target: a military base and a neighboring
town. Approximately 75,000 persons were killed; radioactivity effectively
prevented access to the area for over a year.

The cause of the error was found to be a mistake in a computer
program in the EAVES (enemy attack verification subsystem).

A computer controlled nuclear reactor

A major accident in a new nuclear reactor facility was caused by two
software errors and a defective safety valve. The core overheated, the
coolant boiled and part of the piping was burst by the excessive pressure.
A large quantity of water containing radioactive contaminants was
released into the central building, preventing access to the area for
several months.

Analysis showed that the computer programs used to calculate heating
rates within the reactor and the required cooling capacity contained a
mistake. As a result, the cooling mechanisms in the core had been
underdimensioned. When the reactor was first operated at full power, the
core overheated slightly but not dangerously. As a result of a mistake in
the reactor’s operational control program, the rate of cooling, instead of
the reactor’s activity level, was reduced. This, of course, made matters
worse instead of better and led finally to the damage to the reactor.

Management of the company operating the reactor pointed out that
only in combination did the two mistakes in the software and the
defective safety valve lead to the conditions which caused the accident.

An on-line, remotely accessed data base for medical diagnosis

Because a data base network system was inoperative for an entire
weekend, a patient died. The doctors in attendance at the hospital to
which he was taken were unable to diagnose the disease. As it turned out,
the patient had contracted a relatively rare tropical disease while on a
business trip. He first developed symptoms after returning home, where
the disease was unknown among practicing physicians.

In the complex legal litigation which ensued, it was clearly shown that
had the physicians been able to access the diagnostic data base, they
would have been able to diagnose the unusual disease correctly and to

92 Chapter 4

prescribe appropriate therapy. The prognosis for the patient would then
have been very good.

After the physicians were thereby absolved of responsibility for the
patient’s death, the controversy centered on the cause of the mistake in
the software which resulted in the system’s becoming inoperative. The
system’s developers were accused of professional incompetence on the
grounds that they were not familiar with any of the professional (as
opposed to the trade) literature on the design of data base and data
communications software. They countered by claiming that the literature
in question was of a highly theoretical nature and was, therefore, of no
practical value. Their adversary’s attorneys succeeded in demonstrating
in court that the literature in question was of no value to the system’s
designers for another reason: they lacked the prerequisite knowledge for
understanding it.

Furthermore, responsible members of the software supplier’s manage-
ment were accused of criminal neglect for having knowingly assigned
unqualified personnel to the task of designing a system upon which
human life would depend. Some even felt that they should be charged
with being accessories to manslaughter.

Would you bank with a computer?

Because of mistakes in its software, an important system for clearing
interbank transactions failed one Thursday morning. It was not dis-
covered until Thursday afternoon, however, that transactions were being
processed incorrectly. Finally, around noon on Friday, after feverish, all
night activity, programmers succeeded in identifying the mistakes in the
software. By Sunday evening, the software had been corrected, in time
for the opening of business on Monday.

The conduct of the nation’s business was severely disrupted, of course,
by the banking system’s long period of inoperation. During the early part
of the week following the near catastrophe, the system was heavily
overloaded with delayed transactions. Several weeks passed before most
erroneously processed transactions were identified and corrected.

Fly away

A space vehicle with four astronauts on board was lost in deep space
because of a mistake in a program in its navigational guidance system.

Software development. tomorrow? 93

The vehicle was in the vicinity of the asteroid belt when its rockets were
suddenly fired at full thrust, placing it on an incorrect course. By the time
the error was discovered and a correction prepared for transmission to
the computer on board the vehicle, it was beyond communication range.
Calculations showed that it had gone into a highly eccentric orbit around
the sun with a period of 203.554963 years. When the incident occurred,
enough oxygen and provisions were on board to last the four astronauts
approximately 10 months.

The annual survey on collapses

A major firm providing computer consultancy and market research
services conducted an annual survey on failures of software development
projects. A large sample of projects completed or abandoned during the
preceding year was selected and analyzed in detail. Only projects involv-
ing more than 10 man years of effort were included.

The results of the survey indicated that the collapse rate had been
slowly but steadily increasing for years. The last year’s collapse rate was
reported to be 62.4%. Another 19.7% of the projects included in the
sample exhibited major shortcomings and problems but were judged to
be salvageable.

The 2000 phenomenon

In the last weeks of the year 1999 and in early 2000, business in the
computerized economies of the world all but collapsed. For bills rendered
in 1999 but due in 2000, overdue notices were issued already in 1999,
charging the debtor interest for some 99 years. After January 1, 2000,
many systems failed to issue overdue notices for amounts due in 1999 but
not yet paid. The data in many reports were printed in the incorrect
sequence; data pertaining to the year 2000 preceded data for the year
1999 instead of following it. Many computer runs terminated abnormally
during this time because of overflow and similar errors. For software
maintenance personnel this was a very difficult and trying time, during
which the time pressure under which they worked was unusually severe.

The problems could all be attributed to the widespread use of a
two-digit field for the year in computerized data files. In the late 1970’s,
the 1980’s and the early 1990’s, programmers had made incorrect as-

94 Chapter 4

sumptions regarding the operational lifetimes of the programs and the
data files they designed.

Epilogue to Future A

The underlying cause of the catastrophic collapses typical of Future A
seems clear: computer applications were attempted which exceeded the
effective capability of the available software designers and developers.
Society has two basic options open for improving such a situation. It can
1) restrict what is attempted to that which is safely within the current
reach of software practitioners (by modifying its position on the what
issues) or it can 2) take action which will result in a fundamental and
major increase in the abilities of its software designers and developers (by
modifying its position on the how issues).

When incidents wth consequences as serious as those outlined above
begin to occur with sufficient frequency, a public reaction can be
expected. It will consist of calls — some rational, some emotional — for
legal and political action. The result will be some combination of 1)
restricting and curtailing new developments based on computer technol-
ogy and 2) social, political, legal and economic pressure to improve the
quality of software products and the capabilities of software producers.
Public reactions of these types have already occurred in connection with
other engineering fields — most recently, for example, nuclear reactors for
electrical power generation and proposed nuclear fuel reprocessing plants
have been the targets of demonstrations and legal actions by groups of
citizens in a number of countries.

If and when society decides that Future A is not acceptable and if
reactions of the first type outlined above dominate, society’s position on
the what issues will change and a transition toward the reactionary
Future B can be expected. If, instead, reactions of the second type
outlined above prevail, society’s position on the how issues will change
and a transition toward the radical Future C will follow.

The reactionary, backward Future B

Characteristic of the reactionary Future B is that decisions on what
issues are strongly and unduly influenced by the inappropriate and

Software development: tomorrow? 95

inadequate resolution of how issues. These very different types of issues
become confused in the minds of lay citizens, who perceive computer
technology itself (as opposed to its inept application) to be dangerous. To
protect themselves, they then react in such a way as to restrict severely
the application of the technology perceived to be so dangerous. The
applications which are permitted are burdened by extensive and costly
procedures for testing and verifying their safety and by a heavy legal
liability. A low rate of occurrence of catastrophic failures is achieved, but
at high cost in terms of monetary expense, long delays in realizing new
applications and, probably most importantly, foregone benefits.

A situation similar in some respects (but less extreme) can be observed
today in connection with nuclear technology. In the late 1940’s and the
1950’s, it was much touted as a means for achieving many benefits for
mankind and as the key to a future world of plenty. In the 1960’s and
1970’s, as serious potential dangers were perceived by the public, this
euphoria gave way to an antinuclear movement which in major countries
succeeded in bringing nuclear reactor construction to a standstill for
some time. If something similar happens in connection with computer
technology, we might find ourselves in Future B.

If the backward Future B comes to be, software related situations
something like the — currently - fictitious ones described below will
occur.

Computers may not guide airplanes.

In a large country with a highly developed civil aviation industry, a
law was passed to restrict the implementation of computerized air traffic
control systems. The new law required very extensive testing of any new
proposed system, including complete, parallel operation of the old and
the new systems for an extended period of time. Only after 10 months of
error free operation had been logged was the air traffic control agency
allowed to convert to the new system.

In addition, the agency was required to take out public liability
insurance in the amount of the equivalent of U.S.$ 10,000,000,000 if a
computer system were used for automatically routing flights (as opposed
to simply preparing data for display to human controllers). After the law
was passed, a spokesman for one of the control centers announced that a
new computer based system, fully developed and ready for implementa-

96 Chapter 4

tion, would be scrapped. He explained that the cost of compliance with
the new law would render the new system completely uneconomical.

The new law had been passed with little controversy after several
major disasters, attributable primarily to mistakes in software, had
occurred over a period of time. Public reaction to the disasters as well as
the complex legal issues that had arisen in the various suits and counter-
suits filed in the aftermath of the catastrophes led political leaders to
conclude that drastic legislative measures were required.

Microprocessors and macrofires

A court of appeals upheld the ruling of a lower court which had
decided that a supplier can, under certain conditions, be held liable for
consequential damages resulting from errors in software embedded in a
microprocessor based product. The case involved a microprocessor based
control system for a heating and air conditioning installation. Errors in
the system’s control program had resulted in a large fire which caused
personal injury and property damage.

The defendant in the case, a company supplying heating and air
conditioning equipment, announced that this decision would force it to
redesign a considerable number of its products. The new products, based
on a more traditional technology, would be more expensive but less
effective and less reliable. As a result, sales were expected to decline. The
company would, in all likelihood, be forced later to lay off a significant
fraction of its 2,500 employees.

Software collapses and job security

During lengthy negotiations, a union in a European country success-
fully blocked the planned implementation of an extensive computer
based information system in an organization which was one of the
country’s larger employers. When interviewed, the union’s representative
explained its position: “If the system would work as projected, substan-
tial benefits could be expected. Management was willing to share these
benefits with employees in ways which were acceptable to us. But if the
system were to fail, a severe financial crisis would be the almost certain
result. This would endanger the organization’s existence and therefore,
the jobs of a large number of employees. The risk was simply greater
than we could responsibly accept.”

Software development: tomorrow? 97
Do not enter a building designed by computer.

During the course of designing a large building, a dispute arose
between some of the architects and engineers involved. At a late stage of
the project, some of them claimed that they had discovered errors in
computer programs used to perform various design calculations. They
insisted on redoing all calculations manually. They pointed out that it
would be irresponsible to trust the computer calculations and proceed
with construction as originally scheduled. Others felt that such a drastic
step was unnecessary and much too costly. It was decided to proceed
with the project without delay.

When the building was completed, the designers who had discovered
the presence of the errors in the programs picketed the building. Of the
people who came to the building during the first two weeks it was open,
only about 10% actually entered it.

Ban the Computer.

When members of the interest group “Ban the Computer” discovered
that applied research was being conducted on a computerized vehicle
guidance and control system for automobile highways, they organized a
massive reaction. Members and sympathizers staged a two day “sit in
and lie in” strike on all major roads within some 50 km of the headquarters
of a company which was partially funding the project. Threats of
violence were directed at the project’s chief scientists and engineers.

When plans for implementing an improved, computer based system
for monitoring and controlling a large nuclear reactor were disclosed,
combined anticomputer and antinuclear demonstrations were organized
and conducted. The implementation of the system was delayed so long
by demornistrations and by legal actions brought by “Ban the Computer”
in local courts that the operator of the reactor finally discontinued the
project.

A computer cannot be permitted to push the button.
The organization “International Friends of Peace” staged simulta-

neous, week long demonstrations in seven countries which maintained
large and powerful military forces. These demonstrations were directed

98 Chapter 4

against the rumored forthcoming implementation of top secret computer
based defense control systems which could automatically initiate a defen-
sive counterattack. The outspoken president of the International Friends
of Peace wrote in a press release, “It is bad enough that our political
leaders, in a moment of irrationality, emotionality and /or lunacy can
willfully decide to start W.N.W. I (World Nuclear War I). We cannot,
and will not, allow our collective safety to be further endangered by a
bug infested computer system understood by no one which can decide,
against all our desires, to push the button.”

As a result of the public reaction triggered by the demonstrations, the
defense ministries of four of the countries announced that they would
review their decision to participate in the international project to imple-
ment the system.

Don’t wire me into your information society.

A new national service was offered which enabled a private individual,
from a video terminal in his home, to access a variety of data collections
offered by a number of organizations, to order merchandise from any
one of a number of suppliers, etc. The system was capable of largely
eliminating the need for traditional postal services, newspapers, many
magazines and some library services. The cost of using the system was
sufficiently low that it was definitely competitive economically with the
classical services it could potentially replace.

Despite the obvious advantages of using such a system, it was not a
commercial success. At the end of the system’s first year of operation,
fewer than 1% of the households in a large region had subscribed to the
service. The organization operating the system commissioned a study of
the reasons for the poor acceptance of the system by the public. The
results of the study were perhaps best summarized by one of the persons
interviewed when he said, “A friend of mine who has a terminal
demonstrated the service to me once. You have to be an electrical
engineer or a computer scientist to use it and even then it doesn’t work
half the time. If that’s what your information society is all about, don’t
wire me in.”

Software development: tomorrow? 99
They wouldn’t bank with a computer.

When a group of depositors of a bank learned that their bank’s
computer system was connected to a national banking network which
had been plagued by various minor problems, they founded the “Deposi-
tor’s Initiative Action Group”. By the end of their second week of
activity, in which they distributed brochures to other depositors, held
discussion meetings, etc., approximately 35% of the bank’s depositors
had closed their accounts.

The radical, celestial Future C

Characteristic of the radical Future C is that high demands are placed
on applications of computer technology and that the capabilities of both
software personnel and computer system users have been developed to
the extent that such high demands can be successfully and reliably met.
When currently unrealistic desires are expressed, they are easily identified
as such; where appropriate, the software researchers and developers set
about complementing their knowledge and capabilities so that they will
be able to meet these desires in the future.

Seen from our viewpoint today, the radical Future C represents a
pleasant and ideal situation, seemingly a dream world. While Future C is
not easily and effortlessly achievable, neither is it out of reach in the
middle to long term. If we choose, we can start very soon to move in its
direction. Our rate of progress in that direction will depend only upon
how earnestly we want to achieve that state of affairs and upon how
much effort we are willing to expend to achieve it.

If the celestial Future C comes to be, software connected situations
something like those described below will occur. These episodes, while
plausible and in principle possible, are fiction today. If we take the
necessary steps, perhaps one day they will be reality.

Remaining aloft
A near miss situation was reported by a computerized, fully auto-

mated air traffic control system which had operated uneventfully and
error free since its installation several years earlier. Two aircraft were

100 Chapter 4

suddenly found by the system to be on a collision course, 45 seconds
flying time apart. The emergency subsystem automatically took control
and directed the airplanes apart. Shortly thereafter, the system displayed
information on the situation and the corrective action taken to (human)
air traffic monitors on the ground and to the flight monitor on board
each airplane involved.

The system identified the cause of the emergency to be a traffic
volume which exceeded its design specifications by 34%. It pointed out
that it would not be able to prevent reliably a collision if the overload
exceeded 65%.

Electronic postal services for the home

A postal project involving the installation of electronic postal connec-
tions to 100,000 offices and private residences was completed on time
and within budget. The new equipment and software functioned as
planned from the very outset. In the first year of operation, no interrup-
tion of service was reported.

This system enables a subscriber to access, from his home or office,
any one of a number of services offering selective access to news reports,
business and professional literature, information for consumers, library
catalogs, encyclopedias, other works of reference and many other similar
collections of information. The subscriber can also send a message to any
other subscriber, for example, an order for merchandise, a credit transfer
to his bank, a bill to a customer, etc. He receives messages from other
subscribers, for example, his bank statements, order confirmations, letters
from friends and relatives, bills, etc.

Ban manual control of dangerous processes.

Despite warnings from a computerized control system for a nuclear
reactor, an accident occurred. No one was injured. The only damage was
to the reactor, which was out of service for six weeks for repair.

The incident was initiated by an operator’s error. The computerized
control system detected the error and warned the operator. Two succes-
sive actions recommended by the system were overridden by the opera-
tor. The system was finally compelled to take over control from the
operator and shut down the reactor.

Software decelopment: tomorrow? 101

In a subsequent hearing, the operator stated that the chain of events
took place so fast that a human was incapable of making rational,
considered decisions effectively. Following the hearing, both public and
expert opinion called for revising safety regulations to require more fully
automated control of such processes. All agreed that a computerized
control mechanism is better able to make critical decisions based on a
great variety of data and in a fraction of a second than is a human
operator.

Some things cannot be done — yet.

The director of the translation services division of an international,
intergovernmental organization needed improved computer support for
the rapidly growing activities of his division. He asked the computer
support division for assistance in planning a new system which would
accept voice input in any one of ten languages and spoken by any one of
several hundred different people. The system was to provide translated
output in the form of simulated speech, printed documents or microfilm.

Several experts in the fields of computer technology, linguistics and
modern languages were assembled. After a short investigation, they
reported that the current state of the art was not sufficiently advanced to
permit the design and development of such a system intended for
productive operation. While research was relatively advanced and prom-
ising in almost all areas relevant to the design of such a system, there
were some small gaps in the spectrum of prerequisite knowledge and
capabilities which effectively precluded the construction at that time of a
properly engineered, effective and reliable system of the type needed.

No plans for pursuing the matter further were formulated at that time.
It was recommended that the idea be reviewed again two years later.

No computer systems, no profit

A medium sized company, one of the oldest in existence in its field,
became insolvent and went out of business. The company’s demise was
attributed to a variety of detailed causes, but all could be traced
ultimately to outdated, mostly manually based systems and procedures
used in the conduct the company’s business. For example, fewer than a
third of the company’s managers and only about half of its clerical staff

102 Chapter 4

had convenient and direct access to the company’s rather limited infor-
mation systems. Few had any significant computer based support for
their individual tasks. The company had not taken optimum advantage
of modern devices and systems for increasing the productivity and the
effectiveness of management and administrative staff. As a result, its cost
structure and its inability to adapt quickly to changing market conditions
rendered it unable to compete successfully against other, better equipped
firms.

Relations between the company’s management and union representa-
tives had been strained for some time because, in the union’s view,
management took such a conservative and backward approach to the
application of advanced information systems in the firm. Relations never
broke down completely, however, because the more discontented em-
ployees resigned on their own initiative more or less continually during
the several years preceding the insolvency. They invariably left to find
more interesting and challenging work with other firms, where they could
gain more valuable experience.

The “Softwaremation” annual survey

In the July, 2000, issue of the trade magazine “Softwaremation”, it
was reported in the annual feature article “Survey of the Software
World” that the “fraction of system development effort devoted to
testing and debugging declined this year to approximately 10% for
medium and large systems. Most of the errors found during testing and
debugging were of a typographical nature or were minor oversights which
were quickly and easily corrected. Old-timers will recall (but newcomers
will probably not believe) that some twenty years ago, this figure was
well over 50%. The absolute amount of effort devoted to testing and
debugging a typical system declined even more sharply, however, for
overall productivity has improved (and hence total developmental effort
for a particular system has declined) by a factor of 5 to 10 in the last two
decades.” .

In another part of the survey, it was reported that “of a sample of
2,500 software development projects involving more than 5 man years of
effort each, 60% were completed within the original time and cost
budgets. Only 10% were completed more than 1 month late or at a cost
exceeding 115% of the budget. (Almost all of these projects were at the

Software development: tomorrow? 103

forefront of the state of the art.) Slightly more than 98% of the projects
met their specifications and were considered successful. On the negative
side, three of the 2,500 projects were reported to be complete failures.”

The survey also revealed that “practicing software developers are now
more highly educated and professionally trained than ever before. Be-
yond the usual secondary education, the average coding technician has
successfully completed a three year technical training program, including
6 months of industrial practice. The typical semi-professional software
designer has completed a four year university level course, while every
software engineer has completed a university level program of study
lasting five years or longer. The average semi-professional designer and
software engineer who graduated more than five years ago reported
attending, during the past five years, professional development seminars
totalling 20 weeks in length.

“Of the coding technicians included in the survey, 30% regularly read
professional papers available through the various on-line professional
literature services, while 83% of the semi-professional designers and 100%
of the software engineers reported doing so.”

Chapter 5

The path from today to tomorrow

We see it is accounted an error to commit a
natural body to empiric physicians, which
commonly have a few pleasing receipts
whereupon they are confident and adventur-
ous, but know neither the cause of diseases,
nor the complexions of patients, nor peril of
accidents, nor the true method of cures: we
see it is a like error to rely upon advocates
or lawyers, which are only men of practice
and not grounded in their books, who are
many times easily surprised when matter
falleth out besides their experience, to the
prejudice of the causes they handle.

Francis Bacon (1561-1626)

Ignorance is the curse of God; knowledge
the wing wherewith we fly to heaven.

William Shakespeare (1564—1616)

How can we proceed to a better software world of the future? First, we
must agree that we do, in fact, have a serious problem which must be
solved. Because a great deal of software is being produced and because
the net benefits derived from our computer systems are so great, some
might be inclined to conclude that we don’t really have a problem at all.

Chapter 2 examined what is wrong with the current software situation.
It is evident that there is a considerable and growing gap between supply
and demand for software, that we are incurring unnecessarily high costs
and inconvenience in developing and using software today and that the
potential danger to the public of software failures is increasing. I.e., both

105

106 Chapter 5

the quantity and the quality of our software fall far short of satisfying
our needs and the shortfall is, if anything, increasing.

If we do conclude that we have serious and fundamental problems
which should be corrected, then we must decide whether we want a better
software future earnestly enough to take active steps to change the
direction in which we are currently going. We must decide whether we
are willing to expend the extra effort required to achieve that better
software future.

The path of least resistance: the passive approach

We will decide whether and how to improve our method of software
production. If that decision is made by default, that is, if we make no
conscious decision but simply continue to muddle along more or less as
we are now doing, the future is relatively clear. The very impressive
improvements in microelectronics and computer hardware will support
an increasing — even accelerating - demand for many more new, ad-
vanced applications of computer technology. Already many futurologists
are predicting the advent of wondrous, advanced applications affecting
large segments of society in the rather near future (see e.g. [Evans]).

The advanced applications referred to above are, in most cases, clearly
within the grasp of our current technology — in principle. But where are
all the highly qualified software designers and developers to come from
who will be needed to make these systems? Our quantitatively and
qualitatively limited capability to design and develop software will re-
strict severely what we will be able to accomplish in practice in the
foreseeable future. While it is clear that the potential demand for
software will increase substantially, it is not at all clear that the supply
will increase correspondingly, the hopes and beliefs of some futurologists
notwithstanding [Evans, p. 238). Even if more people can be applied to
software development, it is not clear that sheer quantity can substitute
for missing quality. Seldom, if ever, can brute force compensate for a lack
of professional skill, ability and competence.

Unless a very major and fundamental improvement is made in our
ability to design and develop complex software in quantity, the strong
demand for advanced applications will lead us to attempt software
systems which will, in many cases, be well beyond the capabilities of the

The path from today to tomorrow 107

software practitioners assigned to their development. The demand for
increasing numbers of software systems will induce greater numbers of
underqualified people to join the ranks of software developers. As a
result of these two tendencies, one can expect software productivity to
stagnate or even to decline, the collapse rate to increase and the conse-
quences of software failures to become more severe and serious. In short,
we will move in the direction of the reckless, audacious Future A
described in chapter 4.

When serious incidents of the types characteristic of Future A (see
chapter 4) begin to occur with sufficient frequency, a public reaction will
result. It will consist of calls — some rational, some emotional — for legal
and political action. As discussed in chapter 4, the result will be some
combination of 1) restricting the application of computer technology and
2) pressure to improve the quality of software products and the capabili-
ties of software producers. As long as we follow a comparatively passive
approach, the response to the pressure of the second type (the improve-
ments in software capabilities) will be less than satisfactory and the
pressure of the first type (to restrict new applications) will dominate. This
pressure will then push us in the direction of the reactionary, backward
Future B.

An unexpectedly sluggish acceptance or a curtailment of new develop-
ments based on computer technology could have a serious negative effect
on the world economy, for computer technology represents perhaps the
most promising basis for future growth and improvement in the in-
dustrialized countries. But if its exploitation by inadequately prepared
technicians brings more cost, danger, damage and risk than benefit to
society, that exploitation must — and will — be restricted.

Some of the various types of pressure to improve the quality of our
software products and the capabilities of our software producers can also
be expected to have a restrictive effect on new applications of computer
technology. The introduction of legal liability for damages resulting from
the effects of software errors would force software suppliers to take the
correctness of their products more seriously. This would presumably lead
them to employ only those programmers capable of producing corre-
spondingly reliable software. The registration and /or licensing of soft-
ware engineers, at least of those working on certain types of critical
systems, will be proposed more frequently and will certainly be consid-
ered more seriously in the future. If the supply of appropriately qualified

108 Chapter 5

software practitioners is not increased substantially, software output will
be restricted.

More direct pressure from users of software systems can also be
expected. Today, such pressure usually takes a relatively mild and passive
form: the user department by-passes the EDP department when procur-
ing systems to solve its problems, for example. In the future, we can
expect disgruntled management of the user departments to convince
upper management that it is time to put as much pressure on the EDP
manager as is necessary to get him to put his house in order. The
turnover rate of EDP managers will, in all likelihood, increase somewhat
as a result, but this will not bring about an overall improvement in the
software development area. On the contrary, a conservative reaction can
be expected.

Industry will continue its search for more and better tools and
techniques for designing and developing software. At the same time, the
call for more practically oriented training of more software practitioners
will continue.

Marginal improvements will continue to be made in all these areas,
but the potential demand for software will grow even more rapidly. The
result will be a large and growing backlog of desired but unrealized
software systems, continuing increase in the number of unqualified
entrants into the field of software production, at best a marginal im-
provement in software quality and increased frustration and disappoint-
ment on the part of all involved. In short, we will have more of
everything — good and bad.

The old saying “the road to hell is paved with good intentions” applies
to the path resulting from the passive approach. While one might argue
about whether the reckless Future A — the first station on that path — or
the reactionary Future B — the end of that path — is hell, it is clear that
neither is heaven. Neither of these is the sort of future in fashion among
technological prophets today.

Good intentions are not enough if a better software future is to be
achieved. If we want to move in the direction of the radical Future C, we
must be willing to put forth considerable and intelligently guided effort,
taking an active, instead of a passive, approach.

The path from today to tomorrow 109
The path to ideal results: the active approach

The situation outlined above can be avoided — but only if we want a
better software future seriously enough to take active steps to change the
direction in which we are currently going.

Probably the most important change which must be made is to “get
down to basics”. Just as the finest surgical instrument is of value only
when in the hands of a professionally trained and skilled surgeon, so are
the tools and techniques of our software technology of full value only
when applied by professionally trained and skilled software engineers.
Much more emphasis must be placed on building the necessary base of
fundamental knowledge among a much larger fraction of our software
producing practitioners. Much less emphasis should be placed on the
search for magical, panacean tools and techniques.

If one traces the productive ancestry of any software system — through
the programming department, software house or computer manufacturer
which supplied it, through all the compilers, assemblers, program genera-
tors, editors, other tools and techniques used to develop it, etc. —
ultimately the human brain will be found to be its original progenitor.
The human brain is, therefore, the primary factor of production of
software. A software system can be only as good as its developers’
intellects are capable of making it. The quality of a software system
depends directly upon the extent to which the intellects creating it have
been developed to synthesize logically consistent structures of consider-
able complexity.

To improve the quality of our software, the quality of the intellects
which produce it must, therefore, be improved. To increase our quantita-
tive capacity to create software, the requisite knowledge and skills must
be transferred to a greater number of human minds. In other words, to
improve the quality of our software, better education must be provided
for our software practitioners; to increase our productive capacity, more
practitioners must be educated. Providing more and better tools and
techniques to practitioners inadequately equipped intellectually to em-
ploy them creatively will not solve our software problems any more than
producing more and sharper scalpels or equipping more operating rooms
will advance our medical profession’s ability and capacity to transplant
organs successfully.

Educating software practitioners does not mean having them mem-

110 Chapter 5

orize the syntactical rules of some particular programming language or
the various technical idiosyncracies of some particular system or systems;
such “knowledge” is no more adequate a background for designing and
developing software systems than the ability to hold a scalpel and make a
straight incision is an adequate preparation for performing surgery. Such
skills are necessary, but far from sufficient, conditions for success in the
respective fields of endeavor.

When considering the educational needs resulting from the application
of computer software technology, it is useful to consider generally the
educational paths followed by those persons technically responsible for
the application of older technologies to society’s various needs. The
designers and developers of buildings of all types, bridges, production
plants of all types, electrical equipment of all kinds (including computers
and communication equipment), nuclear reactors, ships, automobiles,
aircraft, space vehicles, medicines and other chemical preparations, etc.
must all have completed a several year, academically oriented, university
level course of instruction before practicing their professions. While this
was not always so, society has, in the course of the last century or so,
found such an educational background highly desirable as a preparation
for these occupations — and in many cases, necessary as a means of
protecting itself from the consequences of mistakes perpetrated by
mountebanks and charlatans.

Society found that it was schizophrenic to believe that an educational
system adequate for a relatively decentralized, non-industrialized, rural
society with only loose economic coupling between its various parts could
suffice for a society in which the application of relatively advanced
technologies had become an important aspect of economic life. With
technological advance came the need for a correspondingly more intense
educational preparation both of the technical specialists and, to a some-
what lesser extent, of the population as a whole. And as our society
continues to become increasingly dependent upon the ever more exten-
sive application of newer, more advanced technologies, so does the need
for education increase still further. If this increased need for education is
not satisfied, further technological development will be inhibited. Both
the fraction of the population which receives a higher level education and
the average length of such education must continue to increase, for it is
illusory to think that only a secondary education is an adequate prepara-
tion for a creative role in the highly technological world and complex

The path from today to tomorrow 11

society of today and tomorrow. One component of this general trend is
the need for a much more extensive educational preparation of our
software designers.

On the other hand, society has found by experience that less thor-
oughly trained persons — technicians, mechanics, etc. — can in most cases
be employed to construct, install, operate and repair the above men-
tioned technological products (although construction is usually moni-
tored by professionals). But in the case of software, these activities
involve relatively less effort (and therefore should presumably require
relatively fewer people to perform them) than is the case with other
engineering fields. The construction phase for software systems is rela-
tively insignificant, for even writing the last few lines of program code
involves making design decisions. Repairing (as opposed to correcting
errors in the design or modifying the design) is all but unknown in
software systems, being confined to reloading a correct copy of software
altered by hardware malfunction or by errors in other parts of the
software. (Software, in contrast to physical objects, does not wear or
otherwise change its characteristics as a result of use and hence never
needs repair in the traditional sense of the word.)

The following examples illustrate why an academic education is
useful — even necessary — for designers of the types of technological prod-
ucts mentioned above. Without a working knowledge of calculus, it is
difficult, if not impossible, to really understand why an electrical circuit
containing inductance, capacitance and resistance resonates, under what
conditions it is underdamped, critically damped or overdamped and why
the factor 2xpi occurs in the formula for the resonant frequency.
Without knowledge of calculus and of Maxwell’s equations describing
the physical behaviour of electromagnetic fields, the electrical technician
will have difficulty understanding why a transmission line has a char-
acteristic impedance and what the significance of this property is. With a
working knowledge of calculus and the relevant areas of physics, the
electrical engineer can derive the corresponding formulae and analyze the
behaviour of such circuits and transmission lines relatively easily. (Any-
one who uses a telephone should be glad that some electrical engineer
took such phenomena correctly into account when the telephone equip-
ment and network he uses was designed. If the engineer had not, echoes,
oscillation, resonance, inadequate frequency response and many other
effects would make communication impossible.) Similarly, the building

112 Chapter 5

technician will not be able to calculate stresses and strains in beams
loaded and supported in ways not described in his designers’ handbook.
He can memorize or look up formulae and apply them to situations
already encountered and solved by someone else, but he cannot work out
solutions to new problems involving unusual configurations of loads and
supporting restraints. The mechanical or civil engineer, with his knowl-
edge of the relevant areas of mathematics, will be able to solve the
differential equation describing the bending of a beam with new and
unusual boundary conditions in order to determine the stresses which the
beam will have to withstand. And perhaps more importantly, if he does
not have the mathematical knowledge he needs to solve his problem, he
will recognize that fact and will be able to turn to the mathematical
literature to acquire the needed knowledge.

The same types of considerations apply to the design and development
of computer software. Many programmers are — often without realizing
it — somewhat hamstrung by the lack of recursive facilities in the pro-
gramming languages they use. Many programmers still write slow inter-
nal sorting routines because they have never read about “quicksort”, even
though it appeared in the professional literature almost two decades ago.
Many have programmed a particular function the long, hard way, not
realizing that by applying a little knowledge of finite automata, they
could reduce the complexity of their task quite considerably. Many a
software designer has specified erroneous logic because he was not able
to simplify a boolean expression correctly. Still today some file manage-
ment systems are being developed which implement indexed files in such
a way that overflow areas and attendant, rather harsh restrictions are
forced upon the application programmer and the user — even though
simple and more effective solutions to the problems involved can be
found in the professional literature (and in some operational systems as
well). It still occurs that only after a software system is completely
developed do its designers discover that it executes unacceptably slowly
when the quantity of input data is large. When its designers do not know
how to calculate the time complexity of the algorithm used (perhaps
because they do not even know what time complexity is), they are not
able to determine such behavioural characteristics of their products
earlier and at less expense.

Noteworthy is the absence of software from the above list of techno-
logical products whose designers are expected today to be professionally

The path from today to tomorrow 113

educated. As we have seen in chapter 2, professional educational pro-
grams exist for software engineers, but only a very small minority of our
software designers and developers has had the opportunity to complete
such courses. Thus it is evident that, among all technologically based
fields, we are handling the education of the majority of our software
designers and developers in a truly unique way today. It is not, however,
at all evident that there is a rational justification, based in the nature of
software technology, for this unique approach to the education and
training of its practitioners. On the contrary, this state of affairs is almost
certainly due in the final analysis only to the relative newness of the field.
Sooner or later, we will find it necessary to educate software designers
and developers in fundamentally the same manner as we educate desig-
ners and developers in other technologically based fields. Until we do,
the software field will not be able to fulfill is obligations to society
properly and responsibly. Until we do, we will not make significant
progress toward Future C.

Where must we begin if we are to make our way toward Future C?
Who must do what to bring about a real improvement? All concerned
with the design and development of software — including the users — must
take some action. Without concerted efforts by all parties, no really
significant improvement can be expected. Some attitudes must be
changed, particularly notions of what is a socially and economically
acceptable modus operandi. We must become more demanding with
respect to the reliability and quality of our software. Users must become
more discriminating and less willing to accept software products of low
quality. Management of software development groups must become more
discriminating and less willing to employ underqualified personnel and
must take more effective steps to improve their employees’ fundamental
knowledge and basic skills in software development. Educational leaders
and educators must work to improve very greatly the quantity, quality
and effectiveness of programs for developing software practitioners.
Software practitioners must work, individually and collectively, to im-
prove substantially their own knowledge of relevant subjects and must
become more aware of the limits of their knowledge. Other members of
society must recognize the need for improvement and must demand,
encourage and actively support the corresponding efforts of those di-
rectly involved. Finally, all must deemphasize somewhat short term
objectives and benefits in exchange for more substantial improvements in

114 Chapter 5

the medium to long term - that is, everyone must be willing to demand
and produce relatively less software for use today in order to invest in
our ability to produce more and better software tomorrow. If we fail to
make such an investment today, tomorrow’s software will be — at best —
only marginally better and only slightly more plentiful than today’s and
the celestial Future C will be nothing more than an elusive dream.

Communication in the software development process

The process of software development consists of transforming the
user’s perception of his problem into machine language program code
which will execute on a computer in such a way as to assist the user in
solving his problem. This process necessarily involves translating the
user’s perception of his problem through several stages of specifications,
algorithms and computer programs. A number of intermediaries must
communicate with each other in order to complete this process success-
fully. These intermediaries form a communication chain beginning with
the user, passing usually through a user oriented information analyst, the
computer oriented system analyst, the programmer (in the narrow sense
of the term, i.e. the coder) and a multitude of software aids (editors,
generators, compilers, loaders, file management systems, utilities, the
operating system, etc.).

The following diagram illustrates the intermediaries and their com-
munication overlaps in a typical and reasonably successful software
development project today:

Problem Machine

User l
User analyst |
| System analyst |
I |
Programmer l
. System software
I

The path from today to tomorrow 115

Notice that only adjacent intermediaries in the communication and
translation chain are really able to communicate effectively with one
another. Usually (as in the above illustration) the areas of knowledge of,
for example, the user oriented analyst and the programmer do not
overlap enough to enable these people to communicate with one another
effectively. Even if they could communicate, their areas of interest and
concern do not overlap either, so there is little motivation for them to
communicate.

In such a situation, the entire chain of communication is totally
dependent upon each intermediary. If any one makes mistakes in his part
of the process of translating the problem into a program, there is a good
chance that no one else will detect the error until the system has been
completed and found to be unsatisfactory in some respect.

All too frequently, the communication overlaps in the design process
are more accurately illustrated by the following diagram:

Problem Machine
User

e

User analyst

| System analyst }
| 1

Programmer

LSystem software
f

Here, the areas of overlap are so small that even adjacent intermediaries
in the chain are barely able to communicate. Many misunderstandings
and oversights will result. Probably the final software system will be of
poor quality, if it is usable at all. The probability that it will satisfy the
user’s real needs is low.

The system analyst’s primary task is not to analyze, but rather, of
course, to synthesize a system. Recognizing this, “system analyst” is
replaced by the more accurate and descriptive term “system designer” in
the following discussion. Furthermore, all persons referred to above are
involved directly in the process of specifying, defining and preparing

116 Chapter 5

computer programs and are therefore programmers in a broad sense of
the word. Reflecting this, the job title “programmer” above is changed to
“coding technician” below. With regard to the tasks typically performed
by the “system analyst” and by the “programmer”, the distinction
between “designer” and “technician” is more appropriate, accurate and
important than the currently made distinction between “system” and
“program” - a distinction based on the rather arbitrary and solely
technical difference between one program and a collection of related
programs (i.e., a system).

In order to progress toward the radical Future C, the effectiveness of
communication in the design process must be improved by, among other
things, increasing the overlap of the knowledge and of the areas of
concern between the various parties involved. Ideally, it should become
possible for non-adjacent intermediaries to understand and to com-
municate with each other, at least to some extent:

Problem Machine

User
—

User analyst |

1
Software system designer

L
|
|
Coding technician |
| 1
. System software
!

Being in the middle of the communication and translation chain, the
system designer is here able to communicate with more intermediaries
than anyone else — in fact, he is the only one able to communicate with
every other intermediary. He thus assumes what is probably the most
critical role in the entire design process. If he has a software engineering
background, he should have a broader understanding of the system
software than the coding technician does (even though the latter works
directly with it more frequently). In this case, the diagram becomes:

;
|

The path from today to tomorrow 117

Problem Machine

User
—

User analyst

L 1
I |
Software system designer

|
1

Coding technician
|
I~ =
tSystv:m software
|

While the absolute range of knowledge and skill required by each
person is greater in the situation represented by this last diagram than in
the current situations represented by the first two diagrams above, the
relative role of the coding technician has been reduced in importance. He
is being “squeezed out”, so to speak, by the somewhat more extensive
capabilities of the system software on the one side and by the signifi-
cantly increased scope of the system designer’s responsibilities and abili-
ties on the other. In this last diagram, the coding technician has become a
sort of skilled assistant to the designer. His task is to translate into
detailed program code the algorithms and data structures previously
specified and defined by the designer. The coding technician performs his
work under the supervision of the designer, just as a technician in any
other field performs his work today under the supervision of the engineer
responsible for the design of the product being developed.

In order to minimize development costs, one might be tempted to
eliminate the user analyst in the above diagram. Unless the communica-
tion overlap between the user and the system designer is extensive, one
should resist this temptation. Yielding to it and eliminating the user
analyst could reintroduce a weak link in the communication chain,
increasing again the likelihood of inadequate communication and, there-
fore, of mistakes and inadequacies in the final system.

The guarantee duality

One of the main differences between the professional and the non-
professional supplier of goods or services relates to what they guarantee.

118 Chapter 5

The professional never guarantees results, he guarantees instead a certain
level of personal qualification for performing the service offered. For
example, the physician does not guarantee that his patient will recover,
but he does guarantee that his medical knowledge and occupational skills
meet specified minimum requirements. The lawyer does not guarantee
that he will win his client’s case in court, but rather that he has sufficient
knowledge and skill to handle the case in a proper way. The architect
does not legally guarantee that his client will find the house or building
he designs to be ideal in any particular way, but rather that he possesses
the necessary qualifications to be able to design a structure which will
meet the applicable building codes and which will not collapse as long as
environmental conditions remain within accepted design norms for the
area. Similarly, the engineer does not guarantee per se that his design will
fulfill a particular need, but rather that his knowledge and his ability to
apply it are adequate to design the structure or product to meet the
specified criteria under the specified conditions — or to be able to
recognize that the state of the art does not permit the specified criteria to
be met reliably. By implication, the professional’s qualifications will
ensure that the services rendered will, in general, satisfy accepted, overall
standards of quality, but no guarantee of success is made in any
particular case. Any legal claim against the professional must be based in
the final analysis upon his lack of (or substandard) qualifications or upon
his carelessness or negligence in applying his knowledge or skill, not upon
his failure per se to deliver services of any particular level of quality in
any specific situation.

In the case of the non-professional, the situation is precisely reversed.
He does not make any formal representation regarding his personal
qualifications or abilities; instead, he guarantees that the services ren-
dered (or goods delivered) will satisfy previously agreed standards or
specifications. If, in any particular case, the goods or his services prove
unsatisfactory, he must make amends. His qualifications or lack thereof
are irrelevant with regard to a dispute over the adequacy of his goods or
services.

Today, software is in a no man’s land. The disclaimer still frequently
found attached to software products states that the supplier makes no
warranties regarding the correctness, suitability or quality of the software
provided. But neither does he make any formal representations regarding
his qualifications to design and develop the software in question. This

The path from today to tomorrow 119

seems patently unfair to the purchaser, who clearly has a right to demand
some sort of guarantee of the quality of the goods or services he obtains.
The reasons for this situation are, on the other hand, obvious and
perfectly understandable: The typical software designer does not possess
relevant qualifications of a professional level and hence cannot guarantee
them. Furthermore, he realizes that he is not capable of designing and
developing a complex software system in which he can have enough
confidence that he can guarantee its performance. lL.e., the inability to
guarantee anything in connection with software is due in both instances
to the inadequate qualification of the typical software designer today.

If reasonable progress is to be made in the direction of Future C, the
qualifications of software practitioners must be improved so that they
can guarantee something rather than nothing. It would seem to be most
appropriate to take the professional approach for projects involving
design work near the forefront of the state of the art — i.e., guarantee the
qualifications of the designers but not the design itself. For design work
of a more routine nature, well within the state of the art and not
representing a significant departure from existing designs, the non-
professional route could be taken - i.e. guarantee the design itself, not
the professional qualifications of its designers. Today and in the foreseea-
ble future, a large fraction of our software design and development work
is likely to fall into the first category, for which the professional approach
would seem to be the more appropriate one.

Who must do what?

If progress is to be made toward the radical, celestial Future C,
everyone directly concerned with designing and developing software as
well as everyone involved in their education and training must take active
steps to improve the current software situation. Included among these are
software users and their managers who today all too often make critical
decisions on the basis of an incomplete — sometimes even faulty —
understanding of the issues and alternatives.

In the paragraphs below, general suggestions for the steps to be taken
by each of the following groups are given:

— members of the academic community,

120 Chapter 5

— managers of software development groups,

— software practitioners (today’s ‘““system analysts” and “programmers”),
— software users and user management and

— educators in the secondary schools.

The academician

Of the many areas in which special effort is required in order to
progress toward Future C, perhaps the most extensive changes must be
made within the academic community. In particular, its capacity in the
software oriented areas of computer science must be increased very
significantly. Academicians should pay more attention to the middle and
long term needs of industry but, if anything, less attention to its short
term needs than is now the case. The teaching of programming language
X and operating system Y on computer system Z should not receive high
priority in a computer science or software engineering curriculum simply
because the university happens to have those systems installed or because
a faculty member is familiar with them. Instead, the fundamental proper-
ties of data, data structures and algorithms, the structure, syntax and
semantics of programming languages, “comparative programming lingu-
istics”, the organization of computational structures and mechanisms, the
functions and structure of operating systems, the principles of operation
of computing systems, etc., should be emphasized.

It is essential that those areas of mathematics which are relevant to
these topics be given a high priority in the software engineering curricu-
lum. Many fundamental ideas in information processing are actually
quite old and well known — under different names — in mathematics. The
terms used by the software practitioner often tend to disguise this fact.
(The software practitioner talks of commands, instructions, operations,
reformatting; the mathematician talks of functions, operators, mappings.
The software practitioner talks of data, data elements, data types, data
values; the mathematician talks of variables, sets, elements of sets.) If
they manage to communicate, the mathematician recognizes - in
mathematical terms — what the software practitioner is talking about; but
all too often the software practitioner fails to recognize what the
mathematician is talking about, even when it is quite relevant to comput-
ing.

If all this is done, the new software engineering graduate will have the

The path from today to tomorrow 121

background knowledge he needs to understand quickly and thoroughly a
new system with which he will be confronted five or ten years later.
Especially in a field changing as rapidly as computer technology, the
initial educational preparation of practitioners must place greater empha-
sis on fundamental knowledge which is not subject to obsolescence and
less emphasis on technical details which will be of little value in a few
years and which tend to narrow, rather than broaden, the practitioner’s
mental horizons.

While close cooperation between academia and industry is called for
in order to expose students to real problems, the students’ exposure to
real solutions must be handled with great care. Many real solutions
provide good examples of how not to do things. Many others are not
pedagogically useful as examples at all. Too few are good examples of the
right way to do things.

Also important in the software engineering curriculum are courses in
the fields of application for which the student plans to design and
develop software during his career. Finally, his professional courses
should cover business economics, project management and organizational
structure and behaviour.

The underlying goal of the education of software engineers (or of any
other academic education, for that matter) should be to prepare the
graduate to learn on his own throughout the rest of his working life. He
should learn how to seek and acquire new knowledge later as the need for
it arises, when his professors are no longer available to assist him. He
should, at the end of his formal education, understand the languages
(technical, mathematical as well as natural) in which the professional
literature of later interest to him will be written.

If this goal is not met, then the graduate cannot be considered to be a
properly educated software engineer; he will have received only a techni-
cal training adequate for the first few years of a career as a better coding
technician. The aim of the academic education of the software engineer
should be to prepare him for his entire career, not to train him for his
first two or three years on the job. Educators have the responsibility to
reduce or eliminate the causes of software problems in the medium term
future; solving current problems is a task which must be left largely to
others.

122 Chapter §
The software development manager

Throughout the software producing sector of society the software
development manager should strive to eliminate the current distinction
between “system analysts” and “programmers” (coders), a distinction
based on the technical definition of “a program”. Instead, one should
distinguish between professionally qualified designers of data and algo-
rithmic structures (regardless of whether these structures are contained
entirely within one program or whether they extend over many programs)
on the one hand and coding technicians on the other hand. The qualifi-
cations and skills required by the practitioner as well as the value of his
contribution depend primarily on the nature of the task (creative design
vs. routine coding), not on the size of the structure designed or devel-
oped.

Through his hiring and training policies, the software development
manager should strive to develop a relatively greater number of designers
and a relatively smaller number of coding technicians in the future. With
the better programming languages, the step between the specification of
the algorithm and the program code is often not so great that someone is
needed only for writing the code. In many cases, the skilled designer will
need less time to produce the code for a particular algorithm than to
communicate the requirements to the coding technician, review the
resulting code and assist him in finding and correcting mistakes. To an
increasing extent, the skilled designer is likely to find it advantageous to
use an ad hoc program generator or already existing skeleton programs to
produce large quantities of similarly structured code. Employment, train-
ing and educational policies should be formulated to anticipate this shift
in needs rather than to react to it after developing the wrong mix of
people.

The manager of a group of software practitioners must strive to
increase the level of knowledge and skill of the members of his group.
One way to do this is to set higher standards for new employees.
Another, perhaps more difficult to achieve, is to upgrade the capabilities
of his present employees by setting goals for improvement and by
assisting them in meeting those goals, for example by arranging ap-
propriate training programs, internal professional development seminars,
etc. Such training must be of an on-going nature if it is to be effective;
little will be accomplished by conducting on-again, off-again crash pro-
grams in response to individual crises.

The path from today to tomorrow 123

In order to offset the mistakes of the past, these programs should
emphasize fundamentals (see “The academician” above). Among the
more basic and fundamental topics in computer science, the methodology
for proving the correctness of programs is perhaps a particularly ap-
propriate subject for training programs for practitioners. Teaching it can
convey an increased appreciation for and understanding of fundamental
principles. At the same time, it is directly applicable to practical prob-
lems and attacks head on one of our most pressing problems: software
fraught with errors. In addition, software development personnel should
be encouraged to increase their communication overlap with users (see
“Communication in the software development process” on page 114).

By putting continued effort into such training, the manager will be
able to increase his subordinates’ knowledge of fundamentals signifi-
cantly. Slowly, but surely, his programmers’ productivity and the quality
of their software will improve noticeably. If he is able to restrain his
understandable desire for immediate, cosmetic results, he may succeed in
avoiding the pitfalls of a search for the magic techniques which do not
exist.

In order to achieve and maintain a higher level of knowledge and skill
among a group of software practitioners, it is essential that they be given
convenient access to the relevant professional literature. While every
EDP department has shelves full of manuals on the specific software
systems in use on its computers, few, if any, have books, journals, etc. on
relevant computer science subjects in their libraries. (An investment of
$1,000 or so in a good selection of such books and professional journals
can often bring surprisingly large benefits in a short time.) Even fewer
software development managers provide their personnel with access to
any of the many on-line professional literature indexing services.

Organizations must be prepared to adjust the formal and informal
status of their software designers and developers if they are to attract and
hold more highly qualified personnel. While employers must expect to
pay higher salaries to better qualified personnel, they can expect in return
more than correspondingly higher productivity and software quality —
provided, of course, that they know how and are organized to utilize the
better qualified programmers. The difference in productivity among
individual software practitioners is so great that the productivity of a
software development group is much more dependent upon the quality
than upon the quantity of its personnel. Cheap quantity can never

124 Chapter 5

substitute for expensive quality - if several well qualified software
developers have difficulty developing a particular system, one can be
certain that a much larger number of “three week wonders” will have
even greater difficulty with it — if they are able to complete the system at
all.

Clear distinctions in status, responsibility, authority and pay must be
introduced between professionally qualified designers and less thor-
oughly trained and experienced coding technicians — just as such distinc-
tions are drawn in engineering laboratories between engineers and techni-
cians. Difficulties can be expected, especially during the transitional
period and when new and old programmers of significantly different
levels of ability and qualification are working side by side. Such diffi-
culties must be brought out into the open and resolved, however, not
avoided or brushed under the carpet.

One must avoid the temptation to utilize a good coding technician as a
designer when he does not possess the requisite knowledge and skill.
Neither the coding technician nor the user of the software will be served
by doing so.

Most small and many medium sized EDP departments in user compa-
nies would be well advised to consider seriously whether they should
attempt to develop new software systems or whether they should in the
future contract with organizations of professionally qualified software
engineers for this work. Such an EDP department may not have a
sufficient variety of developmental work to provide the atmosphere and
experience necessary to attract and to maintain sufficiently qualified
personnel. System developers in such companies run a serious risk of
becoming technically obsolescent in a few years. All too often, one finds
that instead of getting five years of experience in five years they get one
year of experience five times. They are frequently exposed to only one
EDP philosophy and to only one computer system (both of which can
easily become outdated over a period of not so many years). As a group,
they tend to become “inbred” and after a few years often exhibit
corresponding weaknesses. The alternative, bringing in “fresh blood”
frequently, often leads to an undesirable amount of disruption and
discontinuity.

By setting higher and more selective standards for new programmers,
the software development manager can apply pressure both on new
entrants to the software field to take full advantage of available educa-

The path from today to tomorrow 125

tional programs and on educational institutions to prepare more thor-
oughly greater numbers of software engineers. If a software development
manager is interviewing a ‘“‘three week wonder” (or a candidate “three
week wonder”) for a programming position in a commercial organi-
zation, it is probably best for the manager to be frank with the applicant:
The only thing the employer can really offer the applicant is a low level
job as a coding technician with little real potential for advancement into
a designer’s position. In the long run, the applicant, the manager and
society as a whole would all be better off if the prospective programmer
were to get a proper educational preparation for a career in software
development. As much as the manager would like to, he is simply not in a
position to provide a new programmer with that background. Budgetary
and commercial restraints prevent him from doing so.

The software development manager must consciously recognize that it
is not possible to produce even medium sized software systems of only
moderate complexity reliably and economically with inadequately quali-
fied personnel. While software engineering differs in detail from other
engineering disciplines, it is not inherently simpler. Therefore, software
designers and developers are needed who are at least as well qualified in
their field as are other engineers in theirs. Undertaking the development
of software systems with underqualified personnel serves only to increase
the software collapse rate still further and to hinder progress toward
Future C. A software development project for which only underqualified
personnel are available is better left unstarted.

The software practitioner

In order to start moving in the direction of the radical, celestial Future
C, each programmer (again, in the broadest sense of the term) must strive
to improve his own capabilities. While he can and should expect his
employer to support his efforts toward self-improvement and to offer
appropriate opportunities, each software practitioner must be prepared
to take the initiative in this endeavour. He should not expect his
employer to teach and train him; he should instead take it upon himself
to search out and acquire additional knowledge of relevance. In his
efforts to do so, he should let his own middle and long term personal
interests influence his choice of topics for self-study. This will lead him to
de-emphasize technical detail of temporary relevance and value and to

126 Chapter 5

concentrate instead on fundamental knowledge of a more general nature
and of lasting relevance and value to his entire career.

The software practitioner should take steps to improve his ability to
read the professional literature in order to gain easier and more effective
access to this vast source of knowledge. He should also attempt to
increase his “communication overlap” with others involved in the soft-
ware development process (see “‘Communication in the software develop-
ment process” on page 114). This he can do by learning more about the
worlds in which they live and work, their problems, goals, objectives, etc.

When selecting an employer, the software practitioner should pay
particular attention to the quality and value of the experience he will gain
on the job offered to him. He should try to assess the professional
qualifications of his prospective superior and of his prospective peers. He
should consider carefully the policies of each prospective employer
regarding professional development of the software staff and each pro-
spective superior’s willingness to support the employee’s own efforts
toward self-improvement. In particular, he should look for evidence of
the employer’s commitment to continuous (rather than sporadic) training
of the software staff.

The software practitioner should attempt to discover the limits of his
current knowledge. It is as important that he know what he doesn’t know
as it is that he have a broad range of specialized knowledge. The
theoretical and professional computer science literature relevant to soft-
ware engineering is extensive but not so much so that it is impossible to
acquire a reasonably good overview of it. Only a moderate — but
continual — effort is necessary to acquire and maintain an adequate
awareness of what is available in that body of literature and knowledge.

Perhaps most importantly, the prospective new entrant to the field of
software development should, before ever entering the job market, con-
sider carefully whether he should obtain more formal education as a
preparation for his intended career. A few years of immediate and good
pay may be more tempting than a few years of additional, expensive
study, but yielding to this temptation is a very shortsighted way to begin
a working career which will last some 40 to 50 years. The current boom
times for “three week wonders” may very well not last that long; the new
entrant to the field of software development who implicitly assumes that
they will is taking on a very great risk over the course of his working
lifetime. Neither the individual nor society is served by basing such an

The path from today to tomorrow 127

important and final decision — whose various direct effects will last for
about half a century - solely upon the monetary rewards to be received
in the first few years only.

The software user

Purchasers and users of software can make a significant contribution
to progress simply by becoming less willing to compromise on software
quality - if necessary, by explicitly foregoing substandard systems today
in favor of better ones tomorrow. Users should realize that cheap
software is, in reality, either useless or quite expensive, frequently both.
The costs of correcting and overcoming the effects of faults in the
software can, over the lifetime of a system, greatly exceed the difference
between the initial costs of the cheap and the good software. While
purchasers should shop around for bargains of good quality, they must
be prepared to face up to the distinct possibility that their hopes and
expectations may be unrealistic.

Users and, in particular, user management must learn to recognize the
difference between what one can in principle accomplish with computer
support on the one hand and what a particular group of people can
achieve in a particular organization within a limited period of time on the
other hand. They must find the golden mean between euphoria over what
i§ in principle possible and exaggerated pessimism resulting from nega-
tive experiences. They must come to realize that custom software of
acceptable quality cannot be made cheaply or by underqualified person-
nel. They must recognize that standard software (‘“packages”), distrib-
uted to many users, may or may not satisfy their own particular needs —
and that the burden of determining the suitability of such software rests
squarely upon the user’s shoulders.

While the user and his management should not and cannot expect to
become computer experts, they should take active steps to increase
significantly their familiarity with computer technology, its possibilities,
its inherent limitations and our current limitations in applying it to
practical needs. By doing so, they will put themselves into a better
position to make effective, meaningful and realistic decisions regarding
the application of computer technology to their particular needs. Also,
they will increase their “communication overlap” with the software
practitioners, thereby facilitating communication in the process of plan-

128 Chapter 5

ning and implementing computer based systems (see “‘Communication in
the software development process” on page 114).

The secondary school educator

Secondary schools must make major efforts to increase the quantity
and improve the quality of their computer oriented instruction. Espe-
cially they must stress basic concepts and principles of informational
processes in their curricula; any technical detail they teach is almost
certain to be obsolescent by the time the pupil has the opportunity to
apply such knowledge in practice. Secondary school teachers must avoid
the temptation to teach watered-down versions of decade old courses in
particular programming languages, using texts which have been mod-
ernized in style but not in content.

Undoubtedly the most difficult problem in this regard facing sec-
ondary school management is the severe shortage of teachers qualified to
teach computing subjects. The teachers of history, languages, sciences,
mathematics, etc., have all studied various aspects of their subjects for
several years in college. The teacher of computer subjects who has taken
two or three semesters of college courses in this field is comparatively
well prepared; most of his contemporaries have had even less exposure to
computing. This unsatisfactory situation must, of course, be remedied. In
the short term, secondary school management will have to rely primarily
on summer programs and self-study to improve their teachers’ qualifica-
tions. They should encourage and support such activities more exten-
sively than is usual in the case of other fields. In the longer term, they
should set higher and more selective standards for newly hired teachers
of computing subjects. In the meantime until these measures bear fruit,
secondary schools should take advantage of whatever assistance they can
obtain from local businesses and from their parent bodies, provided, of
course, that adequate quality can be ensured.

Teachers of computing subjects in secondary schools should beware of
a potential pitfall and take special care to avoid producing “compulsive
programmers” [Weizenbaum, chapter 4]. The student who is obsessed
with inconsequential and often trivial internal technical details of the
computer system and who is almost neurotically detached from the
realities of the world to which the computer is being applied is not likely
to make significant contributions to society later in life. Teachers must

The path from today to tomorrow 129

strive to present computing subjects in such a way that the student
develops a balanced appreciation for both computer technicalities and
the requirements of the application. He should not be encouraged to
become involved with the computer solely for its own sake, but rather
should come to see it as a useful instrument for achieving other worthwhile
goals.

It is difficult to overemphasize the importance of the way in which
computing subjects are handled in secondary schools. Within a few
decades — by the time pupils currently in secondary schools reach the
middle of their working careers — a very large fraction of the population
will almost certainly be in regular, direct contact with computer based
systems of various types. The effectiveness with which people will be able
to utilize these systems — even their willingness to use such systems at all
— will depend to a significant extent on their early preparation and
exposure to the possibilities of computer systems. The widespread appli-
cation of any technology requires mutual adaptation of the technology
and the society employing it. The ability and willingness of tomorrow’s
population to adapt this new technology to their needs and to adapt their
social structure to the possibilities and constraints of computer technol-
ogy depend in no small measure upon their early introduction to this
technology.

Conclusions

Sooner or later, computer technology will play as important a role in
our society and economy as do the automobile, electrical power, electron-
ics, the telephone, the airplane, radio and television today — technologies
upon which our way of life depends totally. The major restraint on its
progress will be imposed by software, not hardware, factors. The rate of
progress in applying computer technology to society’s needs on a
widespread basis will be determined by our success — or failure — in
overcoming the serious software problems discussed earlier in this book.
The country or countries which succeed first in finding truly satisfactory
solutions to these problems will likely enjoy a significant competitive
advantage in the economic world of tomorrow.

The successful and widespread application of each of the technologies
mentioned in the above paragraph became possible only after a cadre of

130 Chapter 5

professionally trained engineers had come into existence. Only after the
number of professionals in any one of these fields reached a certain
threshold was it possible to apply the respective technology to the direct
benefit of most members of society. Only then was society able to take
optimum advantage of the possibilities offered by that technology.

The same applies to the software field. But in the case of software, the
“take off point” has not yet been reached. Until an adequate number of
sufficiently well qualified software engineers has been developed, society
will not be able to utilize computer technology in as widespread and
effective a way as it already utilizes the other technologies mentioned
above. The sooner we develop these important resources, the sooner we
will be able to enjoy the benefits of a properly and reliably functioning
computer software industry.

Can a transition from the current state of software affairs to a
properly developed engineering discipline be successfully achieved in
practice? The effort required is considerable and, just as in Moc, there
are a number of restraining forces. But all of the other technological
fields mentioned above have successfully accomplished this transition in
the past — under similarly difficult conditions. Given a decisive will to
make the transition and a willingness to expend moderate effort, the
chances for success are undoubtedly very good. But if the will is lacking
or if those parties directly involved are too lazy or shortsighted to invest
the required effort, the software situation can only become worse. In the

radical
Future C

Future A Future B
reckless reactionary

The path from today to tomorrow 131

words of Edmund Burke (1729-1797), “The only thing necessary for the
triumph of evil is for good men to do nothing.”

In summary, everyone concerned with the unsatisfactory state of
affairs in the software field today can and must do his part to improve
the situation. Having created the problems over a period of at least two
decades, one cannot realistically expect to solve them overnight. With
conscious, concerted effort they can, however, be solved in the middle
term — provided everyone starts now.

Omnipotent, panacean tools and techniques for the software designer
and program coder do not exist. No tools, no techniques can compensate
for the software practitioner’s lack of knowledge, understanding and
skill. The real cause of all software ills is the inadequate fundamental
knowledge and understanding of informational processes among software
designers and developers, not the lack of better tools and techniques.

Until this shortcoming is corrected, the quality of our software will
remain poor.

Mocpendium: Answers for practitioners of
the science /art /craft /trade /racket of
software design and development

Data and algorithms: basic concepts, definitions and axioms

1.1. A variable or a data element is an association of three entities: a
name, a set and a particular element of that set. The particular element of
the set is called the value of the variable.

Example: (X, integers, 43) is a variable named X which can take on
(i.e., be associated with) integral values. The value of X is (currently) 43.

Example: (EMPLOYEE-IN-PERSONNEL-RECORD, alphanumeric
strings 20 characters long, “Jones, John E.) is a variable named
EMPLOYEE-IN-PERSONNEL-RECORD whose current value is
“Jones, John E. ”. This variable takes on values selected from the set
of sequences of letters and special characters exactly 20 characters long.
The special characters (as well as the particular alphabet of letters to be
used) must be precisely specified to complete the definition.

Example: (ADDRESS, alphanumeric strings at most 255 characters
long, “”) is a variable whose current value is the null string (a sequence of
zero characters). Note that this variable can assume values of different
lengths.

1.2. The type of a variable in essence characterizes the set of values which
the variable may assume. The set may be defined explicitly (as above).

133

134 Mocpendium

Often, expecially in older programming languages such as COBOL, the
set is implicitly defined by describing the way in which a variable is to be
represented in the computer’s memory. For example, the picture phrase
S9999 defines the value set as the set of all integers between — 9999 and
49999, inclusive. The picture phrase 999 defines the value set as the set
of all integers between 0 and 999 inclusive. See [Dahl, section 11.2] and
[Wirth, p. 4].

1.3. An array is a set of variables with similar names. The name of each
subscripted variable in the array is of the form arrayname(i), where i (the
subscript or index) is an element of a set I. I is usually a finite subset of
the integers or the Cartesian product of a finite number of such subsets.
(I.e., the subscript is usually an integer or an n-tuple of integers.) It is
usual (but not, in principle, necessary) that all subscripted variables in
one array be of the same type, that is, take on values in the same set. See
[Wirth, section 1.6].

1.4. The word “algorithm” can be defined in rather general or in quite
specific ways. In general, an algorithm is a precisely and unambiguously
specified procedure for doing something, usually of a computational or
information processing nature. For our purposes, an algorithm is best
thought of as a sequence of statements. The statements in the algorithm
are executed in an order determined by precise rules. The execution of
each statement causes a precisely defined action to be performed. See
[Knuth, Vol. 1, pp. 1-9}, [Schnorr, chapter 1] and [Weizenbaum].

1.5. A data environment is a collection (set) of variables. It is generally
useful to think of data on input/output devices as variables and to
include these in the definition of a data environment.

If variable names are required to be unique within a particular data
environment, then that data environment defines a mapping from a
variable name into a value.

If different variables within a particular data environment are per-
mitted to have the same name, then precise rules must be laid down for
resolving naming conflicts.

1.6. A computational task is the association of an algorithm, a data
environment and a processor (a mechanism for executing the algorithm).

Answers to the test for practitioners 135

The execution of the algorithm results in general in changes to the
associated data environment.

1.7. A data declaration is a statement which defines an association
between a variable name and a set of values. The declaration thus
establishes the existence of the variable and defines its name and type. In
some programming languages, a data declaration also serves to define an
initial value of the variable.

1.8. An assignment statement defines or redefines (changes) the value of
a variable, usually identified by name. Most commonly, the association
between the variable name and a set of values has already been estab-
lished when an assignment statement is executed (takes effect). If not, an
implicit declaration statement is, in some programming languages, as-
sumed before the assignment statement takes effect. See [Aho, p. 35],
[Knuth, Vol. 1, p. 3] and [Manna, pp. 162-163].)

Example: x < 5 +y. Five is added to the current value of the variable
whose name is y and the resulting number is assigned as the new value of
the variable whose name is x.

1.9. A global variable is a variable which is defined at all times during the
execution of a computational process.

A local variable is a variable which exists—i.e., is an element of the
data environment—only while a certain task or a certain part of an
algorithm is active (is executing). The variable is said to be local to the
task or to that part of the algorithm. When the task is no longer active or
when statements in the given part of the algorithm are not being
executed, the variable does not exist (and is therefore not accessible). '

An own variable is a variable which is global in existence but local in
access. That is, only statements within the part of the algorithm “owning”
the variable are allowed to access the variable (i.e. use its value or modify
the variable in any way). The own variable continues to exist, however,
when statements outside the given part of the algorithm are executing,
even though such statements are not permitted to access the variable.
Own variables are sometimes used within a subroutine which must
“remember” what it did during a previous execution, such as a pseudo-
random number generator, a module for reading sequential files, etc. See
[Naur, 1962].

136 Mocpendium

1.10. A conditional statement is a structure of the form:
IF condition THEN statement 1 ELSE statement 2

The condition is a logical expression (proposition) which can be
evaluated to determine whether it is true or false. If the condition
evaluates to “true”, then the entire conditional statement above is equiva-
lent to “statement 1”. If the condition evaluates to “false”, the entire
conditional statement is equivalent to “statement 2”. See [Aho, pp.
34-35] and [Manna, pp. 162-163].

Two statements are, by definition, equivalent when they have exactly
the same meaning and, when executed, have exactly the same effect upon
the data environment.

1.11. A WHILE statement is a statement of the form:
WHILE condition DO statement 1

When encountered in the process of executing an algorithm, the
condition is evaluated. If the condition evaluates to “false”, statement 1
is not executed; the execution of the algorithm proceeds with succeeding
statements or as otherwise determined by the rules of hierarchically
superior constructions. If the condition evaluates to “true”, statement 1 is
executed and the WHILE statement is executed again as described above.

In flow chart terminology, the WHILE statement is equivalent to the
following:

condition? |-true -~ statement 1

|

false

1

The WHILE statement is a fundamental construction for loop control
in algorithms. Various other loop constructions appear in the many

Answers to the test for practitioners 137

programming languages; almost all can be defined in terms of the
WHILE statement. The reverse is not true, therefore the WHILE state-
ment can be thought of as a sort of universal loop construction. See [Aho,
pp. 34-35] and [McGowan, p. 20 ff.].

1.12. The FOR statement and loop

FOR var « first TO last STEP incr
statement 1
NEXT var

can be defined to mean

var « first
WHILE (incr >0 AND first < var AND var < last)
OR
(incr <0 AND first > var AND var > last)
DO ({statement 1; var < var + incr}

Note that in some computer systems the FOR statement has been
implemented slightly differently. In some, statement 1 is always executed
at least once. In others, implicit assignment statements are executed
which assign the values of first, last and incr to internal variables before
the loop is executed; in this case, only these internal variables are
referenced when evaluating the loop condition. These different defini-
tions of the FOR statement can, of course, lead to different behaviour
during execution and often limit the extent to which a program written
for one computing system can be run on another.

1.13. A linear list is a sequence of data elements or groups of related data
elements. The only structural property of interest is the one-dimensional
relationship expressed by positional adjacency in the sequence, hence the
name linear. See [Knuth, Vol. 1, section 2.2].

1.14. A linked linear list is a linear list which is implemented in the
following way. Each term in the sequence consists of a group of sub-
scripted variables with the same subscript. The value of one of the
subscripted variables, called the pointer variable, is the subscript of the
next term in the sequence. A particular value of the pointer variable is
reserved to indicate the end of the list. See [Knuth, Vol. 1, section 2.2.3].

138 Mocpendium

1.15. A stack is a specific form of a linear list. Items are stored and
retrieved one at a time and only at one end of the list. Items are retrieved
in the reverse order in which they were stored (last in first out). See [Aho,
pp- 47-48].

1.16. A recursive algorithm is an algorithm which, during its execution,
invokes (calls upon) itself. Mathematical functions which are defined in
terms of themselves are often calculated by means of recursive algo-
rithms. The following is an example of a recursive algorithm for calculat-
ing the factorial of a number:

FUNCTION factorial (n);

IFn=0

THEN return 1 as the value of factorial

ELSE return the value of nx*factorial (n — 1)
as the value of factorial;

The following is an example of a recursive algorithm for summing the
values of the subscripted variables x(1), x(2),...,x(n):

FUNCTION sum(n);

IFn=0

THEN return O as the value of sum

ELSE return the value of x(n) + sum (n — 1)
as the value of sum;

See [Aho, section 2.3] and [McGowan, section 4.5].

Automata

2.1. A Turing machine is an abstract model for a computing device. It
consists of a tape with an unlimited number of cells, a read /write head
and a central control device which may be in any one of a finite number
of states. Depending upon the state of the control device and the symbol
in the cell currently under the head, the symbol in that cell may be
overwritten with a different one, the head moved one place to the left or
right and the state of the control device changed.

Using Turing machines, a number of important and fundamental
theorems have been proved about the “computability” of certain classes

Answers to the test for practitioners 139

of functions, the decidability of various classes of mathematical and
logical questions and the equivalence of computing devices exhibiting
different structures. See for example [Brady], [Manna] and [Weizenbaum].

2.2. A finite automaton (finite state machine) is another abstract model
for a computing device. It receives an input stimulus and, depending
upon its internal state, emits some particular response and undergoes a
transition to another internal state. Mathematically, a finite automaton
can be defined as a quintuple (In, Out, States, response, nextstate), where

In is a set of input symbols,

Out is a set of output symbols,

States is a finite set of internal states,
response is a function on In=* States into Out and
nextstate is a function on In=States into States.

Given an initial state and an input symbol, the functions response and
nextstate define an element of Out (the output symbol) and an element of
States (the next state) respectively. This state and another input symbol,
in turn, define another output symbol and the next state, etc. In this way,
a finite automaton provides a basis for defining a function on the set of
sequences of elements of In into the set of sequences of elements of Out.
Expressed differently, a finite automaton in effect maps an initial state
and a string of input symbols into a string of output symbols.

It is sometimes convenient to define the range of the function response
to be Out* (the sét of all finite sequences of elements of Out) instead of
the set Out.

A number of information processing tasks of practical importance can
be solved quite simply, easily and efficiently by a straightforward appli-
cation of this concept. In addition, finite automata are of theoretical
interest. See [Arbib], [Brady], [Manna] and [Minsky].

2.3. An automaton Al with initial state sl and an automaton A2 with
initial state s2 are said to be equivalent when they respond to any string
of input symbols with the same string of output symbols.

It can be shown that two automata Al = (In, Out, States 1, resp 1,
next 1) and A2 = (In, Out, States 2, resp 2, next 2) starting in states sl of
States 1 and s2 of States 2 respectively are equivalent if there exists a

140 Mocpendium

function ¢ on States 1 into States 2 such that

1. resp 1 (s,1) = resp 2 (c(s), 1),
2. c (next 1 (s, 1)) = next 2 (c(s), 1) and
3.c(sl)=s2

for all s in States 1 and all i in In. The function ¢ represents a
correspondence between equivalent states of the two machines. Equation
1 above expresses the requirement that the two automata respond identi-
cally when in equivalent states. Equation 2 expresses the requirement that
the two automata undergo transitions to equivalent states from equiva-
lent states. Equation 3 expresses the requirement that the initial states be
equivalent.

If the set c (States 1) contains fewer elements than States 1, then the
function c reduces Al to an equivalent machine with fewer states.

2.4. A von Neumann machine is another model for a computing device.
Of tremendous impact on the world of practical computing and data
processing, it has served as the basis for the design of the vast majority of
the digital computers built since the late 1940’s. It has a memory divided
into cells, each of which may contain data or a part of the program.
Depending upon the contents of the memory cell referenced by the
program counter (a special register containing a number), the contents of
one or more memory cells as well as the number stored in the program
counter are altered in a precisely defined way. The process is then
repeated indefinitely.

Abstract machines based on the structural principles underlying the
von Neumann machine have been mathematically defined, for example,
the RAM [Aho, section 1.2] and the RASP [Aho, section 1.4].

Boolean algebra

3.1. Boolean algebra, as applied to the design of computer hardware
and software systems, is an algebraic system in which each variable may
take on one of only two possible values. The two values are most
commonly called “true” and “false” or “0” and “1”. Three fundamental
operations, AND, OR and NOT are defined.

In designing and coding computer software, the ability to manipulate

Answers to the test for practitioners 141

Boolean algebraic expressions is useful. The conditions in IF and WHILE
statements (see the earlier questions on these statements) are, for exam-
ple, expressions in Boolean algebra.

Mathematically, Boolean algebras are normally defined in a somewhat
more general, axiomatic way. See [Harrison, chapter 2] and [Royden,
chaper 15, section 2].

3.2. The AND function has two arguments and is defined as follows:
X 'y Xx ANDy

false false false
false true false
true false false
true true true

This function is clearly commutauve (x AND y = y AND x for all
possible values of x and y). It is also associative, as can be seen from the
following table:

X y z x AND (y AND z) (x AND y) AND z

false false false false false
false false true false false
false true false false false
false true true false false
true false false false false
true false true false false
true true false false false
true true true true true

Because the AND function is associative, we can write
x AND y AND 2z
for x AND (y AND 2z) or for (x AND y) AND z without ambiguity.

3.3. The OR function has two arguments and is defined as follows:
X y xOR Yy

false false false

false true true

true false true

true true true

142 Mocpendium
This function is clearly commutative. It is also associative.

3.4. The NOT function has only one argument and is defined as follows:

X NOT x
false true
true false

Note that the NOT function is its own inverse, i.e. NOT (NOT x) = x for
all possible values of x.

3.5. The two expressions are equal. Applying the above definitions of the
functions AND, OR and NOT, we have:

x y NOT (x ANDy) (NOT x) OR (NOTy)

false false true true
false true true true
true false true true
true true false false

3.6. The two expressions are equal. To prove, construct a table as in the
answer to the previous question.

Note the symmetry of the functions AND and OR with respect to
negation (the NOT function):

NOT (x AND y) = (NOT x) OR (NOT y)
NOT (x OR y) = (NOT x) AND (NOT y)

Thus, each of the functions AND and OR can be expressed in terms
of the other and the NOT function:

x AND y = NOT ((NOT x) OR (NOT y))
x OR y = NOT ((NOT x) AND (NOT y))

3.7. They are equivalent.

Proof: The condition (Boolean expression) x has only two possible
values, true or false. Consider these two cases separately:
Case A: x = true.

By the definition of the IF statement, statement a is equivalent to
statement 1.

Answers to the test for practitioners 143

By the definition of the NOT function, NOT x = false. By the defini-
tion of the IF statement, statement b is equivalent to statement 1.
Statements a and b are both equivalent to statement 1 and hence to each
other.

Case B: x = false.

By the definition of the IF statement, statement a is equivalent to
statement 2.

By the definition of the NOT function, NOT x = true. By the defini-
tion of the IF statement, statement b is equivalent to statement 2.
Statements a and b are both equivalent to statement 2 and hence to each
other.

Le., for every possible value of the condition x, statements a and b are
equivalent. QED

In the above proof, we have assumed that two statements equivalent
to the same statement are equivalent to each other. This follows from the
definition of equivalence given in the answer to question 1.10.

3.8. By applying the results of the preceding question, statement a is
equivalent to

IF NOT (x AND y) THEN statement 2 ELSE statement 1

But NOT (x AND y) =(NOT x) OR (NOT y). Substituting the latter
expression for the former in the IF statement above, statement b is
obtained. QED

3.9. The required Boolean expressions (conditional expressions) are:

a. (lastname (i) < lastname (j)) OR (lastname (i) =
lastname (j) AND firstname (i) < firstname (j))
b. (lastname (i) > lastname (j)) OR (lastname (i) =
lastname (j) AND firstname (i) > firstname (j))
c. lastname (i) = lastname (j) AND firstname (i) = firstname (j)

Note that each of the relational functions <, =, < and > maps a pair
of values in a linearly ordered set to the set {true, false}. The relational
function = maps a pair of values in any non-empty set to the set {true,
false}. In the above expressions, the relational operators take precedence
over the Boolean operators.

144 Mocpendium

3.10. A simplified, equivalent statement is
IF x OR y THEN statement 1 ELSE statement 2

In the given IF statement, statement 2 is executed if and only if x is
false and y is false, i.e. if and only if the expression (NOT x) AND (NOT
y) is true. Otherwise, statement 1 is executed. The given IF statement is
therefore equivalent to

IF (NOT x) AND (NOT y) THEN statement 2 ELSE statement 1

But (NOT x) AND (NOT y) = NOT (x OR y) (see exercise 3.6 above).
Substituting this into the above IF statement, we obtain

IF NOT (x OR y) THEN statement 2 ELSE statement 1
which is equivalent to
IF x OR y THEN statement 1 ELSE statement 2

Algorithms: implementation, execution and correctness

4.1. Recursion is implemented by using a stack. Whenever a computa-
tional task is called (activated, invoked), all variables local to the calling
task are stored in the stack. Among these local variables is control
information indicating at what point in the calling task execution was
suspended. When the called task terminates, its local variables are deleted
from the data environment, the calling task’s local variables are retrieved
from the stack and execution of the calling task continues. The calling
task may, in this scheme, activate another task using the same algorithm
(program, subroutine, etc.) as it is itself using, i.e. the algorithm may be
‘recursive. In general, such a mode of operation presupposes that the
algorithm will not be modified during its use — in particular, that it does
not modify itself.

4.2. Proposition: If n is a non-negative integer, the algorithm terminates
with

sum = i x(j).

=1

Answers to the test for practitioners 145

Proof: Consider the flow chart of the algorithm:

sum <« 0
ie0
Aol b
l
3 *
B- x
l -E"
l —
i<n? true— * - i—i+1

sum <« sum + x(i)

E— *

In this proof, we will show that a particular condition involving the
values of the variables i and sum is always true at the points A, B, C, D
and E in the flow chart above. Although the values of the variables i and
sum are varying during the execution of the loop, the value of this
condition does not vary. It is therefore called the loop invariant. The
concept of the loop invariant is probably one of the most important ideas
in designing and coding programs. It deserves to be much more widely
known among programmers.

We will then use the fact that the loop invariant is true at all these
points of the flow chart to show that the algorithm terminates with the
stated value of sum.

"The loop invariant is

sum = é x(j).

=1

146 Mocpendium

At point A, the variables i and sum both have the value 0, so the loop
invariant is clearly true. The first time execution proceeds through points
B and C, the loop invariant will also be true.

Let ic be the value of the variable i at point C and id be the value of i
at point D. Similarly, let sumc be the value of the variable sum at point C
and sumd be the value of sum at point D. We assume axiomatically that
the execution of the two statements in the DO part of the WHILE
statement has the effect that

id=ic+1

and

sumd = sumc + x(id)

If the loop invariant is true at point C, then

ic

sumc= > x(j).

j=1
which implies that

sumd = i x(j) +x(ic+ 1)
j=1
ic+ 1
= 2 x()

1=1

= 3 ().

=1

i.e., the loop invariant is also true at point D.

Since the loop invariant is true when execution passes through point C
for the first time, it is also true when execution passes through point D
for the first time. It will therefore be true the second time through points
B, C, D, etc. Thus, the loop invariant will always be true at points A, B,
C and D. If execution ever passes to point E, it will be true there, also.

A second condition is also invariant: i < n. (The reader should prove
that this condition is true at points A, B, C, D and E.)

If execution passes to point E, i.e., if the algorithm terminates, we have

Answers to the test for practitioners 147

the two conditions
1
sum= Y x(j)
j=1
i<n
and the WHILE exit condition NOT (i < n). Therefore, i = n and
n
sum= Y x(j).
j=1
We have proved that if the algorithm terminates, it yields the correct
answer. Such an algorithm is called partially correct. To prove that the
algorithm is totally correct, we must, in addition, prove that it terminates
(in finite time).

To prove that the algorithm terminates, consider the sequence of
values of i at point B as the loop is repeatedly executed. When execution
passes through point B the first time, the value of i is 0. The second time,
the value of i is 1; the third time, 2, etc. The value of i increases by 1 each
time through the loop; as soon as i > n, the loop will terminate. Thus the
algorithm will terminate after the statements in the DO part of the
WHILE statement have been executed n (a finite number of) times.
Assuming axiomatically that each statement in the loop executes in finite
time, the loop will terminate in finite time. QED

Note the five key steps in the proof:

1. Identify the loop invariant.

2. Prove that the initialization of the loop establishes the truth of the
loop invariant.

3. Prove that the body of the loop maintains the truth of the loop
invariant.

4. Show that the loop invariant and the termination condition together
imply that the calculated result is correct.

5. Prove that the loop terminates.

Notice also that we have made certain axiomatic assumptions about
the effects of the execution of various types of statements on the data
environment. In addition to those explicitly pointed out in the above
proof, we have assumed that the evaluation of an IF or a WHILE
condition has no effect on the data environment. One must be careful to
verify that the system on which an algorithm is to be executed in fact
fulfills all axioms required by its proof. If any such axioms are violated

148 Mocpendium

by the real system in question, then the proof clearly does not apply to
the execution of the algorithm on that system.

The reader who is unfamiliar with correctness proofs should review
the above proof until he understands all steps and how they fit together.
This pattern forms the basis for the proof of the correctness of most
loops in algorithms. The structure of this proof is particularly useful to
the coder when he is writing his algorithm; often he can derive the
algorithm from his outline of a proof of its correctness. A later exercise
will illustrate this approach.

The reader will find more information on correctness proofs, verifica-
tion of programs, ensuring program reliability and loop invariants in
[Brady], [Kimm], [Manna] and [McGowan].

4.3. Proposition: If n is a non-negative integer, this algorithm terminates
and returns the factorial of n as the value of the function, i.e. the
algorithm is totally correct.

Proof: We will prove this proposition by induction on n. We begin by
restating the mathematical definition of the factorial of a non-negative
integer:

factorial(n) := n * factorial(n—1), ifn>0,
1, otherwise.

If n =0, then the body of the algorithm is equivalent to “return 1 as the
value of factorial”. In this case, the algorithm is clearly totally correct.

If n >0 the body of the algorithm is equivalent to “return the value of
n = factorial(n — 1) as the value of factorial”. If the algorithm is totally
correct for the argument n — 1, then it is clearly totally correct for the
argument n. QED

In the next to the last paragraph above, we have proved that the
algorithm is correct for n=0. In the last paragraph above, we have
shown that if the algorithm is correct for n =0, it is correct for n= 1.
This, in turn, implies that it is correct for n = 2, etc. Thus it is correct for
all non-negative integral values of the argument.

4.4. The value to be returned by the algorithm is not defined. If the
algorithm is executed with such a value for the argument, it will never
terminate. On most real systems, execution will stop and the system will
issue an error message indicating that the stack has grown to occupy all
available memory.

Answers to the test for practitioners 149

4.5. Data values can be sorted if they are elements of a set on which an
ordering relation (sometimes called a “collating sequence” in business
data processing) has been defined. l.e., if the values are in a linearly
ordered set, it is meaningful to speak of sorting them. Examples are the
set of numbers, the set of strings of some fixed length, the set of strings
of variable length, etc.

4.6. Quicksort rearranges and subdivides the collection of values to be
sorted (the sort keys) into two subcollections. One subcollection contains
the lower key values in the original collection; the other subcollection, the
higher keys. Quicksort calls itself recursively to sort each of the two
smaller subcollections thus formed. See [Aho, section 3.5], [Knuth, Vol. 3,
p. 114 ff.] and [Wirth, section 2.2.6].

4.7. Before designing the algorithm, it is useful to have an outline of its
correctness proof in mind. From the general description of the sorting
method (see answer to the preceding question), a proof by induction on
the number of items to be sorted is an obvious choice. We will assume
that our algorithm sorts collections of fewer than n keys and will
construct it so that it will sort a collection of n keys. The fact that a
collection containing zero or only one key is already sorted will provide a
convenient starting point for the inductive proof.

The following algorithm will rearrange (permute) the values of the
subscripted variables key(i), i = first, first + 1, ... last, so that they are in
ascending sequence, i.e. so that

key(first) <key(first + 1) < ..<key(last),
provided that last — first + 1 = 0.

quicksort(key, first, last);
IF first > last
THEN return (The subarray contains 0 or 1 keys and is therefore
already sorted.)
ELSE subdivide(key, first, last, mid)
quicksort(key, first, mid — 1)
quicksort(key, mid, last)
return;

150 Mocpendium

4.8. The algorithm subdivide must rearrange and subdivide the collection
of keys to be sorted into two subcollections in such a way that each is
smaller than the original and so that every key in one subcollection is less
than or equal to every key in the other subcollection. The algorithm must
further identify the boundary between these two subcollections.

These requirements can be stated more precisely as follows. When
called with parameters (key, first, last, mid), the algorithm subdivide
must permute the values of the subscripted variables key(i), 1 = first,
first + 1, ... last, and calculate a value of the variable mid so that

first < mid < last
and
max (key(i), first <i < mid) < min(key(i), mid <i<last).

Note that the above requirements imply that first <last. The calling task
must ensure that this condition is satisfied.

4.9. Proposition: If the algorithm quicksort (see the answer to question
4.7) is called with the parameters (key, first, last) and if last — first + 1 =0,
then it will terminate with

key(first) < key(first + 1) < ...<key(last).

Proof: Note that the number of keys in the collection to be sorted is
given by the expression (last — first + 1). We will call the value of this
expression n.

If the number of keys to be sorted is 0 or 1, then first > last. In this
case, the algorithm obviously terminates (it is equivalent to a null
algorithm, returning having done nothing). The rest of the proposition is
a null proposition which is, by definition, true.

We have shown that if the collection to be sorted contains fewer than
two keys, the algorithm sorts it correctly. Next, we will show that if the
algorithm sorts fewer than n keys, it will sort n keys, completing the
proof by induction.

If there are two or more keys to be sorted, then first <last. In this
case, the algorithm is equivalent to

subdivide(key, first, last, mid)
quicksort(key, first, mid — 1)
quicksort(key, mid, last)
return’

Answers to the test for practitioners 151

After the call to subdivide is executed, we have, by definition of that
algorithm,

first < mid < last.

The number of keys to be sorted by the first call to quicksort is
mid — first. But 0 < mid — first <last — first + 1 = n. The number of keys
to be sorted by the second call to quicksort is last — mid + 1. But
0 <last — mid + 1 <last — first + 1 = n. L.e., each of these calls to quick-
sort requires that at least one but fewer than n keys be sorted.

If quicksort sorts fewer than n keys correctly, then we have, after the

first call to quicksort,

key(first) < key(first + 1) < ..<key(mid — 1)

and after the second call to quicksort,

key(mid) < key(mid + 1) < ... < key(last).

It is obvious that

key(mid — 1) < max(key(i), first <i < mid)

and

min(key(i), mid <i <last) < key(mid).

But, by definition of the algorithm subdivide,
max(key(i), first <i<mid) < min(key(i), mid <i<last),

which implies that key(first) < ..< key(mid — 1) < key(mid) < ...<
key(last). Thus, if quicksort sorts fewer than n keys (and n=2), then
quicksort also sorts n keys. We showed earlier that quicksort sorts 0 or 1
key. Therefore, it also sorts 2 keys, and therefore 3 keys, etc. QED

Note that in the above proof certain implicit assumptions have been
made regarding the way variables and parameters are handled when the
algorithms subdivide and quicksort are called. These mechanisms are
outlined in the answer to exercise 4.1 above. To be mathematically
precise and complete, however, we would have to specify in detail the

effects upon the data environment of executing such calls to subsidiary
algorithms.

4.10. At intermediate steps in the subdividing process, the algorithm will
have formed three subcollections: one with low keys, one with high keys
and the third with key values not yet assigned to either of the other two

152 Mocpendium

subcollections. Initially, the third subcollection will contain all key val-
ues; upon completion of the subdivision process, none. If the key
variables to be subdivided are key(first), key(first + 1), ... key(last), then
we may define internal variables il and ih such that

(first <i<il) = key(i) is in the set of low keys

and
(ih <i<last) = key(i) is in the set of high keys.

This will be our loop invariant. If ih <il, then every key is.assigned to
either the set of low keys or to the set of high keys, in Wthh. case the
subdivision is complete. This will be the loop termination condition.

4.11. We begin by establishing the truth of the loop invariant. Writing .the
loop body so that the truth of the loop invariant is maintained and using
the loop termination condition stated in the answer to the preceding
question, we obtain the following algorithm:

subdivide(key, first, last, mid);
pivotindex « any element of {first, first + 1, ... last};
pivotkey < key(pivotindex);
il « first; ih < last;
WHILE il <ih
DO BEGIN
WHILE key(il) < pivotkey DO il < il + 1;
WHILE key(ih) > pivotkey DO ih < ih — 1;
ASSERTIONS: 1. il<ih+1,
2. key(ih) < pivotkey < key(il);
IF il =ih
THEN IF il < (first + last) /2
THEN il <il+ 1
ELSE ih —<ih—1
ELSE IF il <ih
THEN exchange the values of key(il) and key(ih),
il—il+1,ih<~ih—1
ELSE (empty);
ASSERTIONS: 3. first <il,
4. ih <last,
5.1 < ih+1;
END;
return the value of il as the value of mid;

E
E

Answers to the test for practitioners 153

Each condition in an ASSERTION statement is a proposition which is
purported to be true at the point in the algorithm where it appears. These
propositions will be used in the proof of the correctness of the algorithm.
During execution of the algorithm, they are disregarded. (Some real
computing systems evaluate assertions when the algorithm is executed. If
one is found to be false, execution stops and an error message is issued.)

A more precise formulation of the loop invariant than the one given
above is:

(first <i<il) = (key(i) < pivotkey)
and
(ih <i<Ilast) = (key(i) = pivotkey).

4.12. Proposition: When called with parameters (key, first, last, mid),
where first <last, the algorithm subdivide (see the answer to question
4.11) alters the array key only by permuting the values of the variables
key(i), i = first, first + 1, ... last, assigns a value to the parameter mid and
terminates with

first < mid < last
and

max (key(i), first <i < mid) < min(key(i), mid <i <last).

Proof: We begin by noting that the initialization establishes the truth of
the invariant of the main (outer) loop (see answer to exercise 4.11 above).

In order to prove that the two inner WHILE loops terminate, that
assertions 1 through 5 are true and that the truth of the loop invariant is
maintained, it is convenient to distinguish between the first and subse-
quent executions of the main loop:

Case A: first execution.

Initially, first =il <ih = last. In the first inner WHILE loop, il will be
increased until key(il) = pivotkey. At the latest, this will occur when
il = pivotindex. Thus, the loop will terminate with il < pivotindex. Simi-
larly, the second inner WHILE loop will terminate with pivotindex < ih.
Therefore, il <ih at assertion point 1 and assertion 1 is true.

The truth of assertion 2 follows directly from the exit conditions of the
two inner WHILE statements.

The first inner WHILE statement adds key values less than pivotkey

154 Mocpendium

to the set of lower key values (by increasing il). The value of the variable
il is increased from il0 to ill =il0 + 1 if and only if key(il0) < pivotkey,
maintaining the truth of the loop invariant. The second inner WHILE
statement performs the corresponding function for key values greater
than pivotkey and similarly maintains the truth of the loop invariant.

Consider the possible paths through the nested IF statements. The
ELSE-ELSE path is executed if and only if il >ih. But as we showed
above, il<ih, so execution cannot follow this path during the first
execution of the body of the main loop.

We prove assertions 3 and 4 by contradition. Assume that assertion 3
is false, i.e. first =il. Initially, il = first. No statement in the algorithm
reduces the value of il, therefore il is always greater than or equal to first.
Thus, il must be equal to first. The only paths through the nested IF
statements which do not increase il are the THEN-ELSE and the
ELSE-ELSE paths. The first of these is executed only if il = (first +
last) /2, which implies that first = last. This contradicts the given
condition that first < last. The second of these paths will not be followed
during the first execution of the loop body as was shown above. There-
fore, assertion 3 must be true.

Assertion 4 is proved in a similar manner. If assertion 4 is false, then
ih = last. The only possible path through the nested IF statements which
does not decrease ih is the THEN-THEN path. This path is taken only if
il =1ih and il <(first + last) /2, which together imply that first > last, a
contradiction of the given condition. Therefore, assertion 4 is true.

Denote the values of il and ih at assertion point 1 by ill and ihl
respectively. Denote the values of il and ih at assertion point 5 by il5 and
ih5 respectively. By considering all possible paths through the IF state-
ment, we have

(i11 = ih1) = either (il5 =ill + 1) and (ih5 = ih1)
or (ih5=1ih1—1) and (il5 =ill)
~(il5 = ihS + 1)
and
(ill <ih1) = (il5 =ill + 1) and (ih5 = ih1 — 1)
= (il5 <ihl + 1 =ih5 +2)
= (il5 < ih5 + 1).

Answers to the test for practitioners 155

Since ill <ihl, this proves the truth of assertion 5.

In the following, we will denote the values of key(.) at assertion points
1 and 5 by keyl(.) and key5(.) respectively. To prove that the nested IF
statements also preserve the truth of the loop invariant, we consider the
cases ill <ihl and ill = ih] separately.
. If il1 <ihl, assertion 2 and the effect of the IF statement will ensure
that

key5(ill) = key1(ih1) < pivotkey < key1(il1) = key5(ih1),
il5=ill +1 and ihS =ihl1 — 1.

This adds key5(il1) = key5(il5 — 1) to the set of low keys and key5(ih5 + 1)
to the set of high keys. Combining the above, we have

key5(il5 — 1) < pivotkey < key5(ih5 + 1),

i.e., the truth of the loop invariant has been maintained.

If il1 =ih1, keyl(ill) = key1(ih1) = pivotkey. This key value may be
added to either subcollection without violating the loop invariant.

The truth of the loop invariant is therefore maintained in all possible
cases.

Case B: subsequent executions

After the body of the main loop has been executed the first time,
first <il and ih <last (assertions 3 and 4). Because no statement in the
algorithm decreases il or increases ih, these conditions will remain true at
all subsequent times.

The first inner WHILE statement will cause il to be increased until
key(il) = pivotkey. The truth of the loop invariant at the beginning of the
loop together with the truth of assertion 4 throughout the loop imply that
th+1 < last and key(ih + 1) = pivotkey. Therefore, il will not be in-
creased beyond ih + 1, i.e. the first inner WHILE loop will terminate
with il <ih + 1. The truth of the loop invariant will be maintained by the
first inner WHILE statement (see proof for case A). Similarly, the second
inner WHILE statement will terminate with il — 1 <ih. This proves
assertion 1.

As in case A above, the truth of assertion 2 follows directly from the
exit conditions of the two inner WHILE loops.

Assertion 5 and the truth of the loop invariant may be proved as in
case A above. Here, however, we must consider the additional possibility

156 Mocpendium

that il1 = ih1 + 1. The IF statement is equivalent to an empty statement,
so assertion 5 follows from assertion 1.

Similarly, the truth of the loop invariant is maintained.
(End of case B.)

Because the body of the main loop is always executed at least once,
assertions 3, 4 and 5 are true when the loop terminates. Then, assertion 5
and the WHILE exit condition imply that il =ih + 1. Because the final
value of il is returned as the value of mid, we have

first < mid < last.
Upon termination, the loop invariant implies that
max (key(i), first <i< mid) < pivotkey < min(key(i), mid <i<last).

The only statement which changes the value of any of the variables key(.)
is the statement which exchanges the values of key(il) and key(ih). As we
have shown above, first<il and ih<last. The exchange statement is
executed only if il <ih, so we have first<il <ih <last. The exchange
takes place, therefore, within the range of subscript values specified in the
proposition. Exchanging objects is, of course, a permutation and a series
of permutations constitutes a permutation. Finally, if the exchange
statement is never executed, that constitutes a permutation also (the
identity permutation). Thus, the algorithm alters the array key only by
permuting the values of the variables key(i), i = first, first + 1, ... last.

Therefore, the algorithm is partially correct. Examining all paths
through the main loop, we see that the difference ih — il is decreased by
at least one on each execution. The main loop will therefore terminate in
finite time and the algorithm is totally correct. QED

A more formally structured proof of the correctness of quicksort and
of a slightly different version of subdivide can be found in [Foley]. In
that paper, the algorithm subdivide will, under certain circumstances,
form a third subcollection containing one element equal to pivotkey.

It is interesting and enlightening to compare the above approach to
designing this algorithm with the Mocsian approach: Build it and see if it
collapses; if it does, keep patching it until it doesn’t. The first try might
look something like this:

subdivide(key, first, last, mid);
pivotindex < any element of {first, first + 1, ... last};

v

it

SR o

Answers to the test for practitioners 157

pivotkey < key(pivotindex);

il « first; ih < last;

WHILE il <ih

DO BEGIN
WHILE key(il) < pivotkey DO il — il + 1;
WHILE key(ih) > pivotkey DO ih < ih — 1;
IF il<ih
THEN exchange the values of key(il) and key(ih),

ill<il+1,ih<ih—1

ELSE (empty);
END

return the value of il as the value of mid;

Here, as before, the collection of keys to be sorted is divided into two
subcollections. But now, the lower subcollection will contain keys less
than or equal to pivotkey (note the < in the first inner WHILE condition).
All keys greater than pivotkey will be assigned to the higher subcollec-
tion.

After writing the above algorithm and reviewing it cursorily, the next
step in the Mocsian approach is to “test” (try) it. The first error
encountered is likely to result from the selection of the highest key in a
small subcollection as pivotkey. In this case, the first execution of the
first inner WHILE statement will cause il to “run off the end”, i.e. to be
incremented to a value higher than last. What actually happens afterward
depends upon whether the subcollection being subdivided is the highest
one or not and if it is, what values are in the array key beyond the entire
collection of keys to be sorted. In any event, the observed symptoms of
this error may very well be confusing; the programmer’s attention will
not necessarily be directed immediately to the cause of the problem.

This error, if found, will probably be “corrected” by changing the
conditions in the two inner WHILE statements so that the variables i
and ih cannot “run off the end”:

WHILE il <ih AND key(il) < pivotkey DO ...
WHILE il < ih AND key(ih) > pivotkey DO ...

The first correction is made because it is necessary; the second one is
made to be “safe”.
Problems can still arise if array subscripts are checked during run

158 Mocpendium

time. If il =ih + 1 and ih = last, a bounds array error may occur when
evaluating the first WHILE condition above, even though the condition
would evaluate to false. This error will occur only if the highest subcollec-
tion is being subdivided and the highest key in that subcollection is
selected as pivotkey. Relatively few test cases will force this situation to
occur. It is probably just as easy to construct a proper proof of correct-
ness (and thereby discover all mistakes, not just one) as it is to determine
the need for and construct such a test case.

After introducing the above change, the algorithm will be run again on
the machine. Again, it may or may not terminate successfully. If the
“test” is successful and signals the presence of the other mistake, the
program will run until the stack has grown to occupy all available
memory. The programmer will probably spend considerable time perus-
ing dumps and/or listings of traces until he finds the reason - the
algorithm will have repetitively divided some collection of n elements
into two subcollections, one containing all original n elements and the
other one empty.

This failure will occur only if the highest key in a subcollection is
selected as pivotkey enough times to cause stack overflow. If pivotindex
is selected randomly and a relatively large amount of memory is available
for the stack, this is a rather unlikely event - unless all keys in the
subcollection are equal, also a relatively uncommon situation. This is a
good example of the kind of error which goes undetected during “testing”,
only to arise some time after the program is put into productive use and
when the programmer is no longer available to find and correct his
mistakes.

This error, due to a fundamental oversight in the design of the
algorithm subdivide, will send the programmer “back to the drawing
board”. An obvious way to patch up the mistake is to add code at the
end of the algorithm to check for this condition. When it arises, the
highest element is located and exchanged with the last element and two
subcollections of n—1 and 1 elements returned. This is, of course, a
rather inelegant way to circumvent the mistake. It also results in an
unnecessarily inefficient algorithm.

It is also possible that the programmer will fail to find the cause of
one of the above troubles. Especially a programmer with an inadequate
foundation in basic principles is likely to be stumped by the last
difficulty mentioned above. Understanding it presupposes an under-

Answers to the test for practitioners 159

standing of the method of inductive proof in mathematics. He might very
well conclude that recursion may be fine in theory but obviously doesn’t
work in practice. Not having really believed in the first place that this
method would work, he is not surprised that it doesn’t, and is likely to
attribute the failure to the method and not to his faulty application of it.

4.13. The following non-recursive version of quicksort calls the algo-
rithms stack and unstack. Stack saves an ordered pair of values in a
stack; unstack retrieves a pair of values from the stack. Each pair of
values in the stack represents an interval of subscripts whose key values
have not yet been sorted.

quicksort(key, first, last);
IF first = last
THEN return (The collection to be sorted contains O or 1 key and is
therefore already sorted.)
ELSE stack((first, last))
WHILE stack not empty
DO BEGIN
unstack((low, high))
subdivide(key, low, high, mid)
IF mid —low > 1 THEN stack((low, mid — 1));
IF high — mid + 1 > 1 THEN stack((mid, high));
END;
return;

Note that the ELSE part of each IF statement within the WHILE loop is
empty.

4.14. We will only outline the proof here. The loop invariant is:

1. each entry in the stack represents an interval of subscripts whose
corresponding key values must be rearranged — within the interval —
to complete the sort and

2. the value of a key whose subscript is not in an interval represented by
an entry in the stack is in its final place.

The loop invariant and the WHILE exit condition (the stack is empty)

together imply that sorting is complete.

Each execution of the body of the loop reduces the size of one interval

160 Mocpendium

in the stack (possibly replacing it by two smaller intervals). Because no
entry in the stack represents an interval containing fewer than two key
values, the algorithm will eliminate all stack entries, and therefore
terminate, in finite time. This argument can be formalized by considering
the sum over all intervals in the stack of a suitably chosen strictly convex
function of the number of key variables in the interval (e.g. the square of
this number). The value of this sum is reduced by at least a fixed amount
each time the body of the loop is executed, therefore the value of this
function will be reduced to zero in a finite number of steps. But a zero
value of the sum implies that the stack is empty, i.e., that the algorithm
terminates.

4.15. The report’s format must fulfill the following criteria. Each printed
page is correct when it contains

1. the header with page number,

2. at least one line of data,

3. if not the last page, at least a certain minimum number of lines of data,
4. at most a certain maximum number of lines of data and

5. the footer with the same page number as the header.

The report is correct when each page is correct, when no data group is
separated onto two pages and when the pages are numbered consecu-
tively beginning with a given first page number. The header and the
footer must appear in exactly the same positions on every page. Note that
if the report contains no data, neither a header nor a footer is to be
printed.

It should also be noted that the above specifications imply an upper
limit on the number of lines in a single data group. This maximum
number of lines per data group and the minimum and maximum number
of lines of data per page (specified in points 3 and 4 above) must be
selected so that they are consistent with one another, i.e. so that the
above specifications can always be met.

Answers to the test for practitioners 161

4.16. We define the global format control variables as follows:

Report page Line number Description
1 first line
Header
11h last line in header
11lh+1 first line of data
Data .

___________ minld minimum last data line
maxld last data line
maxld + 1 first line in footer

Footer
11p last line on page

In addition, we define the following global variables:

Variable Description

firstpage the number of the first page

pageno the current page number

lineno the number of lines printed on current page

We require that the algorithm generating the data to be printed first call
the algorithm “openprinting” to initialize printing, then call “printdata-
lines” as many times as needed and, finally, call “closeprinting” to end
the report. The algorithms openprinting and closeprinting have no
parameters. When openprinting is called, the printing mechanism must
be physically positioned at the top line of the first page. After closeprint-
ing is executed, the printing mechanism will be positioned at the top line
of the page following the report just printed.

The algorithm printdatalines has the parameters (dataline, first, last)
where dataline is an array of data lines and first and last are subscripts.
The algorithm printdatalines will print the variables dataline(first), data-
line(first + 1), ... dataline(last) on successive lines of the same page. The
calling algorithm must ensure that last — first + 1 (the number of lines to
be printed) does not exceed maxld — minld + 1 (the variability allowed in
the number of lines of data on one page).

Mocpendium

Our algorithms for printing a report are as follows:

openprinting;

pageno « firstpage — |
lineno llp

return;

printdatalines(dataline, first, last);

IF first > last THEN return (no data lines to print);
IF lineno = minld THEN newpage;

FOR i « first TO last STEP 1

print(dataline(i))

lineno < lineno + 1

NEXT i

return;

newpage;

IF pageno = firstpage THEN printfooter;
printheader;

return;

printheader;

pageno < pageno + 1

print the header (llh lines with pageno)
lineno < 1lh

return;

printfooter;

skiplines(maxld — lineno)

print the footer (llp — maxld lines with pageno)
return,

closeprinting;
IF pageno = firstpage THEN printfooter;
return;

Answers to the test for practitioners 163

and that the algorithms print and skiplines exist. Calling print causes the
argument to be printed on the next line of the report. Invoking skiplines
with an argument n =0 causes the printing mechanism to skip n blank
lines on the page.

The effect of the algorithm print is probably most simply defined as
follows:

print(datastring);
report(pageno, lineno + 1) < datastring
return

where report is the name of an array. The value of the subscripted
variable report(p,1) is the data appearing on line 1 of page p of the
printed report. This way of expressing the print command illustrates that
it (and any other input/output statement) is just a particular kind of
assignment statement.

The effect of skiplines can be defined in a similar way:

skiplines(n);

FORi<1TOn STEP 1
report(pageno, lineno + i) « blank line
NEXT i

return

The algorithm printdatalines above will print the minimum number of
data lines on each page consistent with the specifications. If the second
IF statement in printdatalines is replaced by

IF lineno + last — first + 1 > maxld THEN newpage;

then printdatalines will print the maximum number of data lines on each
page permitted by the specifications.

The reader should verify in detail that these algorithms, called as
specified above, will produce the correct results. Use the approach
employed in the answers to the previous questions.

It is interesting to contemplate how many times in the last decades this

The above algoriithms assume that
0 < 1lh < minld < maxld <1lp

“wheel has been reinvented” — incorrectly.

164 Mocpendium

4.17. The following is the syntax of a number, using BNF notation:

{(number) :: = {sign) (integer) (fraction)
{sign) ::= (empty)| +| —
{integer) :: = (digit)| (digit) (integer)
{fraction) :: = (empty)| .(integer)
(digit) ::=0]1]23]4]|5]6|7|8]9]|

4.18. The following is a state transition table for a finite automaton
which will determine whether a given string satisfies the above syntactical
definition of a number:

Next character of string

Answers to the test for practitioners 165

NEXT pos
return the value of (state IN correctfinalstates) as the value of
syntaxcorrect

It is assumed that the function length(string) returns the length of the
string in character positions and that character(string, pos) returns the
character in position pos of string.

4.19. The following is a tabular definition of a finite automaton which
will generate the abbreviation of a given string of letters. The upper entry
in each position of the table is the character to be appended to the
partially formed output abbreviation. (Where a blank appears, no char-
acter is to be appended.) The lower entry in each position of the table is
the next state. The automaton starts in state 1 and with an empty output
string:

State Description + — digit - other
1 Start 2 2 3 E E
2 Sign E E 3 E E
3 Digit E E 3 4 E
4 Digit. E E 5 E E
5 Digit . digit E E 5 E E
E Error E E E E E

The string satisfies the syntactical definition of a number if and only if
the automaton is in state 3 or state 5 after scanning the entire string.

An algorithm for simulating the finite automaton is given below. This
algorithm returns either “true” or “false” as its value depending upon
whether or not the value of its argument is a syntactically correct number
or not. It is assumed that the array nextstate contains the above data and
that the value of the variable correctfinalstates is a set consisting of the
states 3 and 5.

syntaxcorrect(string);

state < 1

FOR pos < 1 TO length(string) STEP 1
state — nextstate(state, character(string, pos))

State Next character of input string

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
ABCDEFGHIJKLMNOPQRSTUVWXY?Z
start 2 3 3 3 2333 233333233333233323
B CD F G GCLMM B QRCD vV Vv X 4
vowel 2 3 3 3 23 3 22333 332333332323323
A E E o 8] E
cons. 2 3 33 2333233333 233333233323

The algorithm to simulate this finite automaton is a minor modification
of the algorithm given in the answer to question 4.18:

abbreviation(name);

state « 1

abb < the null string

FOR pos < 1 TO length(name) STEP 1

abb < abb + output(state, character(name, pos))
state < nextstate(state, character(name, pos))

NEXT pos

return the value of abb as the value of abbreviation;

166 Mocpendium

In the above algorithm, “+” stands for the string concatenation opera-
tor. It is assumed that the values of the elements of the arrays output and
nextstate are as given in the table above.

The reader is invited to compare this definition of the algorithm with a
conventional program for generating the abbreviation.

4.20. We will use the structure of a finite automaton for specifying the
control logic for the recommendation process. The state of the automaton
will be one of the data items in each article’s data record. The “input” to
the automaton will be the event that has occurred:

ord: order placed

time: time for automatic cancellation

crinor: criterion for normal recommendation satisfied
criurg: criterion for urgent recommendation satisfied
week: time for weekly summary to be printed

If, during any one daily or weekly processing run, more than one of the
above applies to any one article, the events are processed in the above
order. The “output” from the automaton will be a command to execute
one of the following actions:

record: record open order

cancel: issue notice of automatic time cancellation

ordnor: calculate and record recommended reorder quantity

prturg: print urgent recommendation

pwdate: print on weekly summary and record date for automatic cancel-
lation

pws: print on weekly summary without modifying recorded date for
automatic cancellation

The following table defines the behaviour of the control mechanism. The

upper entry in each position of the table specifies which action (if any) is

to be performed. The lower entry specifies the next state.

Answers to the test for practitioners 167

State Event

ord time crinor criurg week
0 record ordnor
no rec. 0 0 1 0 0
1 record ordnor prturg pwdate
not pr. 0 1 1 3 2
2 record cancel prturg pws
weekly 0 0 2 4 2
3 record pwdate
daily 0 3 3 3 5
4 record pws
w/d 0 4 4 4 5
S record cancel ordnor pws
d/w 0 0 6 5 5
6 record ordnor pwdate
d/w part 0 6 6 6 S

As mentioned earlier (see the answer to question 2.3), it can sometimes

be shown that a given finite automaton is equivalent to another with
fewer states. In the actual situation from which this exercise was derived,
the interviews with the user led originally to an automaton with 18 states.
The designers had little difficulty in reducing that automaton to the
above one with only 7 states.

4.21. If the variable DATA-A in MODA behaves as an own variable, the
following will be displayed:

MAIN PROGRAM
1

MODULE B

2

If, however, the variable DATA-A in MODA behaves as a local variable,
non-existent between the return from and the next call to MODA, the
following will be displayed:

MAIN PROGRAM
1

MODULE B

1

168 Mocpendium

If DATA-A in MODA is an own variable, the value “2” will be retained
from one activation (call) of MODA to the next. If DATA-A in MODA
exists only locally, the second call of MODA will cause DATA-A to be
recreated. The VALUE phrase will ensure that it is initialized to “1”
upon recreation.

If no overlaying occurs, DATA-A in MODA will behave as an own
variable. It will exist throughout the activation time of the entire program
of which MODA is a part. If MODA and MODB are overlaid, then the
variable DATA-A ceases to exist when MODB is called and loaded.
When MODA is called the second time, it must be reloaded, in which
case DATA-A is initialized to “1” because of the VALUE phrase.

In many real COBOL systems, a variable declared in the working
storage section of an overlaid module may sometimes be treated as an
own variable and sometimes as a local variable, depending upon whether
the module in question was in fact reloaded or not. For example, if
MODA and MODB were overlaid and if the calls in the main program
were changed to:

CALL “MODA”.
CALL “MODA”.
CALL “MODB”.
CALL “MODA”.

then the following would be displayed by most systems:

MAIN PROGRAM
1

2

MODULE B

1

Between the first and second calls to MODA, no reloading is necessary
and DATA-A behaves as an own variable. The value “2” of DATA-A is
retained between the calls to MODA. Calling MODB causes overlaying;
the variable DATA-A ceases to exist, thus behaving as a local variable.
The third call to MODA causes it to be reloaded and DATA-A to be
recreated and initialized to the value “1”.

The inconsistent treatment of such local /own variables by some real
systems can lead to what appears to be erratic behaviour during execu-
tion. It can and often does confuse programmers, especially less experi-

Answers to the test for practitioners 169

enced ones. It also means that the program code itself is ambiguous —
obviously an undesirable situation. The parameters and control state-
ments specifying how the program is to be linked and loaded comple-
ment the program code; only this combination defines unambiguously
the behaviour of the program.

Concurrent execution of computational tasks

5.1. The criteria for the correctness of the algorithm are:

1. The value assigned to the variable available(flight) by one computa-
tional task must be the value of that variable when first accessed (i.e.
when evaluating the IF condition) less the value of the variable
seatsdesired input from the keyboard associated with that task.

2. When several requests for seats on one flight are made more or less
simultaneously, they must be processed in such a way that the final
value of available(flight) is equal to the initial value of that variable
less the sum of all requests honored.

In order to satisfy the first criterion above, it is essential that the value of
available(flight) not be changed by another task between the two fetching
references to this variable made by a task executing the proposed
algorithm. In order to satisfy the second criterion above, it is essential
that no other task reference (fetch the value of or assign a new value to)
the variable available(flight) between the times this variable is first
referenced and ‘the newly calculated value is assigned to it. The latter
requirement is more restrictive.

The given algorithm does not enforce either of the above conditions
and hence will not, in general, yield correct results when executed in an
environment permitting concurrent task execution. Whether the results
are erroneous or not in any particular case depends upon the sequence in
which the various statements in the several tasks’ algorithm(s) are actu-
ally executed. The sequence in which such statements are actually ex-
ecuted in a typical real multitasking system depends upon a great many
factors, most of them beyond the control of any one task. The sequence
of execution is seldom reproducible; for all intents and purposes it can be
considered to be random.

The following examples illustrate some of the problems which can

170 Mocpendium

arise if the conditions stated above are violated. Both tasks are executing
the proposed algorithm. It is assumed that the same flight has been
selected by both tasks and that initially 5-seats are available.

Example 1:

task 1 task 2

seatsdesired < 3
IF3<5
seatsdesired < 4
IF4<5
THEN available « 5 —3=2
THEN available <2 —4= —2

In the above example, the flight has been overbooked despite the fact
that the proposed algorithm checks for and attempts to prevent over-
booking. The reservation status is correct and reflects the overbooking.

Example 2:

task 1 task 2

seatsdesired « 3
IF3<5
seatsdesired < 4
IF4<5
THEN (evaluating) 5 —3 =2
THEN (evaluating) 5 —4 =1
THEN available < 2
THEN available < 1

In each task, the assignment statement in the THEN part of the IF
statement has been interrupted after evaluating the right hand side and
before the new value has been assigned to the variable available(flight).
In this case, 7 seats have been sold but the reservation file indicates that 1
seat is still available. In effect, the sale of 3 seats in task 1 has not been
recorded.

The solution to these problems is suggested by the second criterion for
correctness given above. We must add a statement to our algorithm

Answers to the test for practitioners 171

which reserves access to the variable available(flight) for the executing
task exclusively. Any subsequence reference to this variable by another
task (including another request to reserve access) will cause the execution
of that other task to be suspended until the variable is no longer reserved.
The revised algorithm is:

flight — flight identification input from keyboard
seatsdesired — number input from keyboard
reserve(available(flight))

IF seatsdesired < available(flight)

THEN available(flight) — available(flight) — seatsdesired
ELSE display message that seats are not available
release (available(flight))

The release statement cancels the effect of the reserve statement, allowing
other tasks to reference the previously reserved variable.

In many systems, the above function “reserve” is called “lock” be-
cause it “locks out” attempts by other tasks to reference the variable.
Some systems provide a combined operation which reserves and fetches
the value of a variable (often called “read with lock”) and another
combined operation which stores a new value of and releases a variable
(often called “rewrite and unlock™).

The reader should prove that the above algorithm is partially correct
(that it meets the criteria specified above) and that it always terminates.

5.2. The use of the reserve statement (see the answer to the preceding
question) can cause the execution of other tasks to be suspended,
possibly indefinitely, as shown by the following example:

task 1 task 2
reserve(x)
reserve(y)
reserve(y) (task suspended)
reserve(x) (task suspended)

Here, task 1 is suspended because it has attempted to reference the
variable y, which has already been reserved by task 2. Task 1 will remain
suspended until task 2 releases the variable y.

172 Mocpendium

Similarly, task 2 is suspended because it has attempted to reference the
variable x, which has already been reserved by task 1. Task 2 will remain
suspended until task 1 releases the variable x.

But neither task 1 nor task 2 can proceed to a later release statement
as long as it is suspended. Thus, task 1 cannot proceed until task 2
proceeds and task 2 cannot proceed until task 1 proceeds. Therefore,
neither will ever proceed. This situation is often called a “deadlock”.

Any number of tasks can be involved in a deadlock situation. For
example, task 1 can block task 2, which in turn blocks task 3, ..., which
in turn blocks task n, which in turn blocks task 1. The reference which
causes suspension need not be a reserve statement; any “locked out”
reference will suffice.

In proving that an algorithm will always terminate when executed in a
multitasking environment, one must ensure that no reference to any
variable can result in an indefinite suspension of the referencing task. To
avoid the possibility that a task causes a deadlock by reserving access to
some variable, the programmer must be able to prove that after executing
a reserve statement, a task will proceed to the corresponding release
statement in finite time, regardless of the action and effects of other
tasks.

5.3. Deadlock can be prevented only by following a suitable convention
for reserving variables when designing algorithms to be executed concur-
rently. Any one of several conventions may be followed for reserving
common variables (variables not local to a task), for example:

Convention 1: All common variables to be referenced during and
between the execution of a reserve statement and the corresponding
release statement are reserved in a single reserve statement. (If any such
variable is already reserved by another task, the system will suspend the
reserving task until all requested variables can be reserved for it.) When
the computation is finished, one or more release statements executed by
the reserving task release all variables previously reserved. Each algo-
rithm is written in such a way that a second reserve statement will never
be executed until all reserved variables have been released. It is clear that,
if such a convention is followed, execution of an algorithm cannot be
prevented from proceeding to the release statement by reservation con-
flicts. Therefore, any task which has reserved variables will release them
in finite time; a deadlock cannot occur.

Answers to the test for practitioners 173

Convention 2: An ordering of all common variables is defined. All
common variables accessed by a task are reserved individually in the
defined order. When access is no longer required, each reserved variable
is released by the task which reserved it. More precisely, common
variables are reserved and released in such a way that whenever a
variable x is to be reserved by task t,

1. every lower variable which will be referenced in the subsequent
sequence of executed statements ending with the release of x is already
reserved by the task which will reference it and

2. no higher variable is reserved by task t.

This implies that no deadlocked situation can occur. (The reader should
work out a detailed proof of this proposition, identifying clearly all
assumptions which must be made. Hint: Prove by contradiction. Assume
that a set of tasks suspended because of attempts to reserve variables
forms a deadlocked situation. Show that one of these tasks is not blocked
by any other task in the deadlocked set, in contradiction of the assump-
tion.)

One must ensure that the rules of the selected convention are not
violated by execution paths involving more than one task. Consider, for
example, the following algorithms following convention 2 with the order-
ing (a, b, c,d):

Algorithm A:

reserve a

reserve ¢

activate task using algorithm B,
suspending self until termination

release ¢

release a

terminate task;

Algorithm B:
reserve b
reserve d
release d
release b
terminate task;

174 Mocpendium
The sequence of execution is:

Task 1 Task 2

reserve a
reserve ¢

reserve b
reserve d
release d
release b

release ¢
release a

This sequence of reserving the variables (a, c, b, d) violates the convention
(the variable b has not been reserved by task 2 when the variable c is
reserved by task 1). Mutual blocking with another task which reserves the
variables in the order (a, b, ¢, d) is possible. A comparable example can
be constructed for convention 1.

If algorithm A above is modified to:

Algorithm A’:

reserve a

reserve ¢

activate task using algorithm B,

not suspending self until termination

release ¢

release a

terminate task;

then the execution of the activating task continues concurrently with that

Answers to the test for practitioners 175

of the activated task and the sequence of execution is:

reserve a
reserve ¢

release ¢ reserve b
release a reserve d
release d
release b

In this case, convention 2 is not violated and no deadlock can occur with
other tasks also following the convention. After reserving variables a and
¢, algorithm A’ will always release them. Similarly, once variables b and d
are reserved, algorithm B will proceed to the corresponding release
statements. With regard to reservation of variables, we have two indepen-
dent tasks, in contrast to the first example above in which the two tasks
were sequentially linked.

One must distinguish between deadlock and the more general situation
in which some task is indefinitely suspended. By deadlock, we mean a
situation in which two or more tasks mutually prevent each other from
proceeding because of the manner in which they have reserved common
variables or other system resources (such as input/output devices, mem-
ory, etc.). A task can remain suspended for an indefinite length of time
for other reasons as well.

No matter what convention is followed, certain prerequisites must be
fulfilled in order to guarantee that deadlock cannot occur and that any
suspended task will eventually proceed. Perhaps most importantly, any
task which reserves a variable must proceed to the corresponding release
statement if given access to all variables as required. (Otherwise, it could
reserve a variable and then go into an infinite loop, perhaps blocking
other tasks indefinitely.) If the task’s algorithm terminates, then this
condition is obviously fulfilled.

In general, it is possible that new tasks can be continually activated
(created) and executed in such a way that they keep certain variables
continuously reserved, thereby preventing indefinitely a suspended task
from proceeding. Such possibilities can be eliminated by suitable priority
schemes in the multitasking operating system or by limiting the rate at

176 Mocpendium

which new tasks may be activated to something less than the capacity of
the actual system to execute them. Results of queuing theory are of
relevance to these considerations.

Computer arithmetic

6.1. No. The field axioms require, among other things, that both opera-
tions are associative and commutative and that the distributive laws hold.
Floating point addition as normally implemented is not associative. For
example, if a floating point scheme represents numbers with 6 decimal
digits of accuracy and rounds, then evaluating (1234560 + 4) + 4 will
yield 1234560 but 1234560 + (4 + 4) will result in 1234570. If the system
truncates instead of rounding, then evaluating (1234560 + 5)+ 5 will
yield 1234560 but 1234560 + (5 + 5) will result in 1234570.

Many other properties of a field do not apply in floating point
arithmetic systems. For example, (x + y =x)=(y =0) in a field, but for
many values of x and any y in a certain neighborhood of 0, x + y =x in
floating point arithmetic systems. Similarly, there exist values of x and y
with y not equal to 1 but with x*y =x.

A floating point system as usually implemented consists, in effect, of a
function f from a bounded subset B of the real numbers onto a finite
subset F of the intersection of B and the rational numbers. For every x in
F, the function maps a neighborhood of x (in B) into x. The operations
floatadd and floatmul are usually defined as follows:

floatadd(x, y) : =f(x +y)
floatmul(x, y) : = f(x*y)

for all x and y in F. The function f would be a homomorphism of (B, +,
+) onto (F, floadadd, floatmul) if and only if for all x and y in B

floatadd(f(x), f(y)) = f(x +y) and
floatmul (f(x), f(y)) = f(x*y).

But by definition of floatadd and floatmul
floatadd(f(x), f(y)) = f(f(x) + f(y)) and
floatmul(f(x), f(y)) = f(f(x) *f(y)).

Answers to the test for practitioners 177

It does not follow from the definitions above (and it is not generally true)
that f(f(x) + f(y)) = f(x + y) and f(f(x) * f(y)) = f(x *y). L.e., (F, floatadd) is
not a group, (F, floatadd, floatmul) is not a field and the function f does
not exhibit the main characteristic of a homomorphism. Therefore, it is
not surprising that floating point arithmetic operations fail to exhibit
many of the “nice” properties of normal arithmetic. Floating point
arithmetic on typical computer systems is very useful, but one must be
careful not to expect too much from it.

For further information on floating point arithmetic, see [Knuth, Vol.
2, section 4.2].

6.2. This behaviour is not surprising. The system undoubtedly involves
approximate arithmetic, as a result of which the associative law does not
hold. (See the answer to question 6.1.)

Probably, non-decimal (e.g. binary) representation is employed by the
machine. The binary representation of .01 (decimal) is a repeating
fraction. When truncated or rounded, precision and accuracy of decimal
fractions may be lost.

Computational complexity

7.1. By the complexity of an algorithm we mean the way in which the
amount of time, memory space or some other computational resource
required during the execution of the algorithm grows as the size of the
problem to be solved increases. Depending upon the resource of interest
we speak of time complexity, space complexity, etc. If, for example, an
algorithm sorts n items in ¢ *n? seconds, where ¢ is some positive number,
then we say that the time complexity of the sorting algorithm is O(n?)
(“the order of n squared”). The asymptotic behaviour of the relationship
between time and size of problem (the number of items to be sorted) is
usually of paramount interest, not the exact amount of time required to
execute the algorithm for a particular set of input data. See [Aho],
[Brady] and [Schnorr].

The order of a function is defined mathematically as follows. A
function f(n) is said to be of the order of g(n), written f(n) = O(g(n)), if
there exist numbers h and m such that |f(n)/g(n)|<h for all n >m.

178 Mocpendium

7.2. If the a priori probability that key(i) = searchkey is the same for all
values of i, the time complexity of this linear search algorithm is O(n),
where n = end — start + 1, the number of items to be sorted. For many
other probability distributions, including the worst possible case, the time
complexity is also O(n).

This can be shown by considering L, the number of times the loop is
executed before the algorithm terminates. If p is the probability that
searchkey appears in the table, the expected value of L is given by

E(L) =p*(n+ 1)/2+ (1—p)*n
=n*(1—-p/2)+p/2
=0(n)

Each execution of the loop takes, we will assume, approximately the same
amount of time. The total time required is then cl + c2*L, where cl and
c2 are some positive numbers. The expected time is therefore cl +
c2xE(L) = O(n).

The searching time is longest when key(end) = searchkey or when
searchkey is not in the table at all. In these cases, the expected execution
time is also O(n).

7.3. Proposition: The time complexity of the binary search is O(log(n)),
where n=end — start + 1, the number of items in the table to be
searched.

Proof: Let il{i} and ih{i}, i=1, 2, ..., represent the values of the
variables il and ih respectively at the beginning of the i-th execution of
the loop. The initialization sets il{1} = start and ih{1} = end. We further
define s{i} : =ih{i} —il{i} + 1, the number of items still to be searched.
Note that s{1} =n.

Each execution of the body of the loop either locates searchkey (in
which case the algorithm terminates) or reduces the value of s{.} to half
of its previous value or less as we will show below. After calculating a
new value for ip in the i-th execution of the loop,

ip = integer((il{i} +ih{i})/2) =
ip< (il{i} +ih{i})/2<ip+ 1.
If, after the body of the loop has been executed the i-th time, searchkey

Answers to the test for practitioners 179

has not been located, then either
a. il{i+1}=ip+1 and
ih{i + 1} = ih{i}
or
b. il{i+ 1} =il{i} and
ih{i+1}=ip—1
Case a leads to
s{i+1}=ih{i+1}—il{i+1}+1
=ih{i} —ip
< (ih{i} —il{i} +1)/2=s{i} /2.
Case b leads to
s{i+1}=ih{i+1} —il{i+1}+1
=ip —il{i}
<(ih{i} —il{i} +1)/2=s{i} /2.

Therefore, s{i+ 1} /s{i} <1/2 and s{m} /s{1}<(1/2)™~ D, In particu-
lar, if m = integer(log(n) + 2), where log means the logarithm to the base
2, we have

s{m} <s{1}/n=1.

But s{.} is an integer, therefore s{m} < 0. This implies that ih{m} <il{m},
which in turn implies that the loop terminates. Therefore, the loop will be
executed at most integer(log(n) + 1) times and the algorithm is of time
complexity O(log(n)). QED

7.4. The time required to perform a binary search increases as log(n),
while the time required to perform a linear search increases linearly with
n, i.e. much faster than log(n). Therefore, if very large tables are to be
searched, the binary search will be completed sooner than the linear
search, no matter how slow the computer used for the binary search and
no matter how fast the computer used for the linear search.

More precisely, for any given slow computer executing the binary
search algorithm and any given fast computer executing the linear search

180 Mocpendium

algorithm, there exists a critical table size (number of table entries). The
slow computer executing the binary search will search any larger table
faster than the fast computer executing the linear search will search that
same table.

7.5. Each entry in the stack represents an interval of at least two items to
be sorted; the intervals do not overlap. Therefore, the number of entries
in the stack is at most n/2, where n is the number of items to be sorted.
The space complexity is, therefore, O(n).

The maximum possible number of entries will be stored in the stack if
the algorithm subdivide always splits the collection of key values such
that one subcollection contains exactly two items and the other, the rest.
In the great majority of cases, the expected number of entries in the stack
will be less. The expected space complexity depends upon the method
used to select pivotindex but is typically O(log(n)).

Data structure

8.1. A sequential file is a sequence of data elements or groups of data
elements. Each term in the sequence is called a record. During the
execution of an algorithm, the records in the file must be accessed in the
order in which they appear in the sequence. Skipping forward or back-
ward is not permitted. Usually, additional restrictions are placed on
changing the value of a data element in a sequential file.

8.2. A relative file is an array or a group of arrays. One dimension of the
subscript of every array in the relative file takes on values in a common
set I, the set of “record numbers”. Usually I is a finite set of consecutive
integers beginning with 0 or 1.

8.3. An index for an array x is a table. Each entry in the table contains a
data value d and a subscript value s such that x(s) =d. For every
subscript i, the value of x(i) appears in the table.

An index is usually stored in the form of one or more arrays.
Typically, the entries in the index are stored in an order which facilitates
searching the index, for example, using the binary search algorithm (see
question 7.3).

Answers to the test for practitioners 181

More precisely, an ordered index for the array x with subscripts in I is
the pair of arrays (key, loc) with subscripts in a common, linearly ordered
set S, with

key(r) <key(s) forallr<sin S,
key(s) = x(loc(s)) for all s in S and
for every i in I there exists an s in S with loc(s) =i.

The value of loc(s) is a “pointer” to the value of key(s) in the array x.

While not strictly necessary, it is usual to require, in addition to the
above, that no duplicate entries appear in the index, i.e., that loc(r) = loc(s)
only if r =s. Then the index is, in effect, a permutation of the values of
the subscripted variables x(.). It sorts the array x.

From the standpoint of informational content, the array key in the
above definition is redundant and may be omitted. Only if key(s) can be
accessed significantly faster than x(loc(s)) is it advantageous to maintain
the array key.

8.4. An indexed file, as usually implemented, is a relative file for which
one or more indices are available. Included in an indexed file system are
algorithms which, given the value and the array name of a data element,
use the appropriate index to determine the value(s) of the subscript and
the values of the other array variables with the same subscript. Also
included are algorithms for adding entries to and deleting entries from
the file and its indices.

8.5. An inverted file is an indexed file for which an index exists for every
array in the file.

8.6. A hierarchical index is a multilevel index. The table constituting the
complete index (see the answer to question 8.3 above) is split into
sections of convenient size. An index to these sections is prepared; this
second level index contains one entry for each section of the complete,
lower level index. The second level index is, in turn, split into sections
and a (third) index to these sections is constructed in the same manner.
Higher level indices are constructed repeatedly until the highest level
index is no larger than one section in size.

182 Mocpendium

8.7. Indices are structured hierarchically for reasons of efficiency of
searching, inserting new entries and deleting entries.

If the entries of an index are ordered and stored in consecutive
locations of a memory space, the index can be searched in O(log(n)) time,
e.g. using the binary search algorithm (see question 7.3). But each
insertion and each deletion requires moving, on average, half of the
index. This requires O(n) time. Various tricks may be used to postpone
the need to move part of the index, e.g. placing new entries intc
“overflow” areas, “deleting” entries by marking them but leaving them in
place, etc. But sooner or later, either such an index must be “reorganized”,
which causes the insertion and deletion time to increase as O(n), or else
the searching time ultimately requires O(n) time.

If an index is structured hierarchically and a suitable algorithm is used
for placing a new record in the relative file (i.e., for assigning values to a
group of array variables with a previously unused value for the common
subscript), the times required for searching, inserting and deleting in-
crease only as O(log(n)). Detailed analyses of hierarchical indices (also
called trees), their use and maintenance can be found in [Knuth, Vol. 3,
sections 6.2.2-6.2.4].

Program structure

9.1. The terms modular programming, structured programming, top-down
programming and hierarchical programming refer, in their narrow sense,
to an approach to designing, structuring and writing programs. More
generally, the approach is equally applicable to the design of algorithms
for software systems of any size — consisting of many programs or of
only a part of a program.

No one universally accepted definition of any of these terms exists,
but generally, they refer to a design approach or philosophy based on the
following guidelines [Brooks, pp. 143-144], [McGowan]. A software
system should be subdivided into a relatively small number of subsys-
tems, each of which is also subdivided into a small number of subdivi-
sions, etc., until the level of individual program statements is reached.
Each subunit, or module, should be small enough that it can be under-
stood easily by a human reader. It should be small enough that the
interrelationships among its individual parts (program statements, calls

Answers to the test for practitioners 183

to subsidiary modules, etc.) can be clearly seen. It should be large enough
to perform a significant function. It should perform only one or a small
number of closely related functions. The interactions between any one
module and other modules should be simple and well defined. Each
module should have only one entry point and should return control only
to the point in the superior module from which it was called. In some
situations in a multitasking environment, a return may not be ap-
propriate at all, in which case the algorithm should simply terminate.
Only one exception to this guideline is often condoned: if an error
condition arises which precludes the module from performing its function
(a “fatal” or “catastrophic” error), the module may transfer control to
another module which abnormally terminates the program run.

These guidelines imply that GO TO statements, if present at all,
should transfer control only to statements within the module in which
they appear. They also imply that related routines should not be in one
module, but should form separate modules which call each other as
necessary.

The term structured programming is also used by some people in a
more restricted sense: a structured program is a program in which only
the IF ... THEN ... ELSE ... and the WHILE ... DO ... structures are used
to modify the normal sequence of execution of program statements. In
this sense, the term structured programming is often considered to be
synonymous with “GO TO-less programming”. Purists argue that the GO
TO should be prohibited completely, while others relax this requirement
and propose that the GO TO statement should be used only to form
clearly and simply structured loops. In any event, all professional pro-
grammers agree that the GO TO should be used carefully, discriminately,
within a short range and only with good reason.

9.2. The greatest advantage claimed for this approach is that it leads to a
software system exhibiting an increased simplicity of organizational
structure, control structure and internal communication. As a result, the
process of designing the system can be carried out more easily. The
system design will, it is claimed, contain fewer errors than when a more
traditional approach is employed. Furthermore, errors can be detected
and corrected more easily, either by human review of the program listing
or by testing (to the extent possible — see the questions on testing below).
Perhaps most importantly, the correctness of each module can be more

184 Mocpendium

easily proved formally using appropriate mathematical methods. By

restricting the size of the module as outlined in the answer to question 9.1

above, one restricts in turn

— the complexity of the procedure the human is expected to review and
comprehend,

— the number of combinations of input values, and hence the number of
test cases, which must be run during the test and

— the complexity of the correctness proof.

The separation of the quicksort algorithm into the main control module

(quicksort) and the module for rearranging the values to be sorted

(subdivide) is a good example of this (see the answers to questions

4.6-4.14).

The hierarchical organization of units of limited size is a technique
which has been in widespread use by mankind for many purposes over a
time span of many thousands of years. Almost all social, political and
economic organizations are so structured. Physical structures, machines,
etc., are similarly structured. An automobile, for example, is not designed
as a conglomerate of several thousand parts; it is designed as a combina-
tion of a few major subassemblies (engine, chassis, body, etc.), each of
which is made up of a few subunits, etc. A building, a bridge, an airplane,
computer hardware — all have always been designed and structured in
this same way. Mathematical proofs are similarly structured: a complex
proof of a theorem is typically subdivided into simpler proofs of sub-
sidiary theorems, lemmata, etc. It is surprising that some two decades
passed before a major fraction of software system designers and pro-
grammers recognized that this approach is also applicable to the struc-
tures they build.

9.3. Various rules of thumb have been proposed for the size of a module,
such as one half to one page, between five and fifty program statements,
no more than n IF statements, no more than one loop, etc. While these
rules of thumb are sometimes useful in specific contexts, the general
guidelines stated in the answer to question 9.1 above should take prece-
dence. Comprehensibility and reduction of logical complexity, both within
the module and in its interfaces with other modules, are the main goals.

9.4. The specification and documentation of a single module must
identify the input data variables used and must contain a definition of

Answers to the test for practitioners 185

the module’s output. Any assumptions about relationships among the
values of the input variables (input assertions or propositions) should be
explicitly stated. The definition of the module’s output will usually take
the same form (output assertions or propositions). Finally, the functional
relationship between the module’s inputs and its outputs must be ex-
plicitly defined, unless, of course, it is implied by the output assertions.

Mathematically, a module’s algorithm maps the data environment as it
exists at the point in time when the module is invoked (called, activated)
into another data environment. The module’s function must, therefore,
be specified completely and unambiguously just as any other mathemati-
cal function. Its domain and range must be specified as well as the way in
which the value of the function is to be determined from the value of its
argument. Part of the specification of the domain and the range are the
input and output assertions, which serve to restrict the defined domain
and range to subsets of the set of all possible data environments
involving the input and output variables.

The specification should include a reference to subsidiary modules and
their input and output assertions as appropriate.

The proof of correctness of the module’s algorithm should also be
included in its documentation. If the proof is relatively simple, an outline
of it may suffice; otherwise, it should appear in full. The proof can be of
considerable value to another programmer who, sometime in the future,
will be called upon to add features to the module.

Because many data elements are referenced, in general, by more than
one module, it is usually best to define the data elements in a separate
document. The specification and documentation of any one module will
refer to the relevant sections of the documentation of the data.

The use of higher level programming languages and of hierarchical
structures in programs has rendered the flow chart largely unnecessary
for documentation purposes. Only occasionally will it be appropriate to
include one in the documentation of a module. If a flow chart seems to
be required, the designer should review his work carefully; in all likeli-
hood, the module in question is logically too complex and should,
therefore, be further subdivided.

The above comments apply only to the documentation of a single
module intended to be read by members of the development and mainte-
nance teams. Other important documentation must be prepared for the
system as a whole and for other readers, of course. For further informa-

186 Mocpendium

tion on the types of documentation required, see [Brooks, chapter 15] and
[Kimm, chapter 4].

Testing

10.1. Two purposes exist for testing software. Frequently, the author of
the program wants, subconsciously at least, to demonstrate that his
program is correct, i.e. that it contains no errors (“bugs”). While this is
an understandable goal, it is an improper reason for conducting a test.

Experience shows that almost all pieces of software contain errors.
Usually, non-trivial software of any size initially contains many errors.
The proper purpose of testing is to demonstrate the presence of errors
and, hopefully, to localize or even identify them.

10.2. Employing the method of “black-box” testing, the tester constructs
test cases based on the specifications of the module to be tested and runs
the module with them as input. He is not permitted to look at the
program code, i.e. he is not permitted to consider how the module
operates internally [Myers].

10.3. Employing the method of “white-box” testing, the tester constructs
test cases based on the specifications and the program code of the
module. Le., he is allowed to “look inside” the module when deciding
what test cases should be run [Myers].

10.4. The correctness of a module can be demonstrated by black-box
testing only by executing the module with every possible combination of
values of the input variables. For all but the most trivial modules, this is
totally impractical because the number of possible combinations is so
large. For many modules, it is in fact impossible because the number of
possible combinations is infinite. Of relevance in this connection is E. W.
Dijkstra’s famous comment that testing can show the presence, but never
the absence, of errors in software [Buxton, p. 21, p. 85].

10.5. In general, the correctness of a module cannot be demonstrated by
white-box testing any more than by black-box testing. Using the method
of white-box testing, the tester usually attempts to construct a set of test

Answers to the test for practitioners 187

cases which will cause all paths through the module to be executed. For a
limited number of test cases, this approach is usually more likely to
uncover an error in the module than black-box testing. It cannot be
guaranteed, however, that a white-box test will uncover all errors (unless,
of course, all possible combinations of inputs are tried).

In connection with white-box testing an interesting question arises: If
the tester is to take the time to analyze the module’s code in order to
specify a large number of test cases, why doesn’t he apply correctness
proof methods to the code at the same time? If he were to do so, he
would, in all likelihood, be able to prove the absence of errors or to
identify some — probably in less time than it takes him to test the module
and achieve less conclusive results.

Some project managers use a variation of this idea for its psychologi-
cal and, hopefully, educational effect upon the programmer. After a
module is programmed, they ostensibly construct test cases using the
white-box approach. Actually, they try to construct a correctness proof;
in the process, obstacles to the proof are found which represent errors in
the code. Having identified the error(s), they construct test cases which
will demonstrate the presence of those error(s). The programmer is then
asked to run the test cases and to correct any errors which may turn up.
To the extent that the programmer learns more by finding his errors
himself, rather than by having them pointed out to him by the project
manager, this approach has some merit. It is not, of course, the most
efficient way of correcting the errors found by the project manager.

10.6. Practical guidelines for deciding when to stop testing depend upon
the goals of the particular development project. Assuming that minimi-
zation of overall costs is the goal, testing should be stopped when the
effort required to find succeeding errors is more costly than the expected
consequences of leaving them undetected. Such a decision depends
strongly, of course, on how serious the consequences of a software failure
are likely to be and on the probability that another error will, in fact,
ever turn up. In some cases, these decision parameters may be estimated
reasonably accurately, but more often they can only be estimated subjec-
tively. A variety of more specific rules for implementing the above
general guideline have been proposed. See, for example, [Myers, pp.
122-128].

Some purists would propose that testing be stopped before it is started

188 Mocpendium

and that other methods be used for convincing oneself that the software
is correct (or still contains errors). While there is much to be said for this
suggestion, some minimum amount of testing will undoubtedly always be
necessary.

One should distinguish between two very different aspects of “testing”
as it is typically practiced in software construction today: trial and error
design (a la Moc) vs. verifying that a completed piece of work meets
specifications. Testing of the first type, while quite common today, is
rarely, if ever, appropriate or necessary. Testing of the second type is
appropriate and has its place in software engineering, just as it does in
other engineering fields. But in the case of this type of testing, the object
to be tested is expected, more often than not, to meet specifications when
testing begins. Today, in the software field, this expectation is seldom
fulfilled.

Project management

11.1. This project manager has an uncontrollable project. The only thing
he can control is the expenditure of programmer resources. He cannot
monitor progress sufficiently precisely to enable himself to recognize the
need for corrective measures in time. The planning unit — all programs
assigned to one programmer — is much too coarse.

The proposed method for estimating progress typically leads to esti-
mates of the fraction of work completed which increase as originally
planned until a level of about 80%-90% is reached. The programmers’
individual estimates then increase only very slowly until the task is
actually completed. Delays do not become evident, therefore, until the
planned completion date is very near. Then, there is not enough time to
take corrective action.

It is essentially impossible for the programmer to estimate the fraction
of the program completed. What is 45% of a program? Worse yet, what is
45% of three programs? How is he to guess whether a program is 40% or
50% complete? The easiest way for the programmer to estimate such a
figure is to divide the amount of time actually spent on the task to date
by the time budgeted for that task. Only when the program is almost
finished or when the allocated time budget is almost used up will he be
able to recognize that the calculated figure is wrong. Thus, for much of

Answers to the test for practitioners 189

the project’s planned duration, the biweekly reports will be nothing more
than an echo of the original plan. They will not reflect actual progress.

Thus, this project manager cannot control the results achieved during
the project, but only at its end, when it is too late to take corrective
action. He intends to and can verify that time is booked to the project as
planned. There is, therefore, a significant danger that time actually spent
on other work will be booked to this project, especially if other project
managers control the value received more closely.

11.2. The basic planning unit (“activity” in project management jargon)
should be smaller. Each activity should be an identifiable piece of work,
defined in such a way that at any time it is obvious whether it has not yet
been started, started but not yet completed or completed. No activity
should require a large fraction of any resource for its execution; if a
proposed activity does, it should be further subdivided.

The project manager should begin by subdividing the project into
activities — individual programs, groups of modules or individual mod-
ules, each of which can be completed by one programmer in no more
than a few weeks. Designing each program should probably be an
activity separate from the coding of the individual modules, at least for
the more complex programs. Testing each larger program should also be
a separate activity, as should testing the system as a whole. Preparation
of some parts of the documentation will constitute one or more activities.
Other sections of the documentation will be produced within other
activities as appropriate.

At the end of each reporting period (one week would probably be
better than two weeks), each programmer should report the amount of
time he has spent on each activity during the period. He should estimate
how much more time he will need to complete each activity on which he
worked during the period. If appropriate, in his opinion, he should also
reestimate the time required to complete any other activity.

Shortly after the project has started, some activities should be com-
pleted. If they are not, the project manager should find out why and take
appropriate action. Based on a comparison of estimated and actual times
required to complete the first activities, he may find it desirable to revise
the project plan and recalculate completion dates. Such review of the
progress of the project should be an ongoing effort for which the project
manager must reserve an appropriate amount of his time. This time

190 Mocpendium

should also appear in the project plan.

Good project management cannot guarantee that there will not be
deviations from the plan, of course, but it will ensure that the project
manager will recognize such deviations as soon as possible. He will be
able to identify their probable effects on target dates, milestones, etc.
long before any of these have been missed.

11.3. The first thing that such a project manager should do is to realize
that the desired completion date may be unrealistic. Then, he should
consider alternatives to his plan; perhaps he can find a realistic one
which will enable him to complete the project earlier.

If he has not already done so, he should construct a PERT plan for
the project as currently planned. After determining the critical path, he
should consider alternative sequences of activities which move activities
from the critical path to paths with slack.

He can also, of course, consider assigning more resources to activities
on the critical path, thereby reducing the elapsed time required to
complete the activities in question. His estimates of the resources re-
quired should take realistic account of communication and coordination
overhead and similar effects. (If two men can do a job in two months, it
is not necessarily true that four can do the same job in one month,
particularly if it takes the two newcomers three months to learn what has
to be done. The reader is referred to [Brooks, chapter 2] for a particularly
elucidating and interesting exposition of such effects.)

Other important aspects of managing a group of programmers are
discussed in [Weinberg].

In closing

12.1. In your view, the detailed specification, design and development of
computer software is

a. a science or an engineering discipline

b. an art

c. a craft

d. a trade

e. a racket.

Bibliography

[1] ACM Ad Hoc Committee on Self-Assessment, “A Self-Assessment Procedure”, Com-
munications of the ACM, Vol. 19, No. 5, May 1976, pp. 229-235.

[2] ACM Committee on Self-Assessment, “Self-Assessment Procedure II”, Communica-
tions of the ACM, Vol. 20, No. 5, May 1977, pp. 297-300.

[3] ACM Committee on Self-Assessment, “Self-Assessment Procedure III”, Communica-
tions of the ACM, Vol. 20, No. 9, September 1977, pp. 621-624.

[4] Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D., “The Design and Analysis of
Computer Algorithms”, Addison-Wesley Publishing Co., Reading, Massachusetts,
1974.

[5] Arbib, Michael A., “Theories of Abstract Automata”, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1969.

[6] Brady, .M., “The Theory of Computer Science: A Programming Approach”, Chap-
man and Hall, London, 1977.

[7] Brooks, Frederick P. Jr., “The Mythical Man-Month”, Addison-Wesley Publishing
Co., Reading, Massachusetts, 1979.

[8] Buxton, J.N.; Randell, B. (editors), “Software Engineering Techniques, Report on a
conference sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st
October 1969, NATO Science Committee, Brussels, 1970.

[9] Dahl, O.-].; Dijkstra, EW.; Hoare, C.A.R., “Structured Programming”, Academic
Press, London, 1972.

[10] Dreyfus, Hubert L., “What Computers Can’t Do; The Limits of Artificial Intelligence”,
Harper & Row, New York, 1979.

[11] Evans, Christopher, “The Micro Millennium”, Washington Square Press Pocket Books,
New York, 1981.

[12] Fairley, Richard E., “Software Engineering Education: Status and Prospects”, Proceed-
ings of the Twelfth Hawaii International Conference on System Sciences, Pt. 1, pp.
140-146, Western Periodicals Ltd., North Hollywood, California, U.S.A., 1979.

[13] Foley, M.; Hoare, C.A.R., “Proof of a recursive program: Quicksort”, The Computer
Journal, Vol. 14, No. 4, November 1971, pp. 391-395.

[14] Harrison, Michael A., “Introduction to Switching and Automata Theory”, McGraw-Hill
Book Company, New York, 1965.

191

192 Bibliography

[15] Kimm, Reinhold; Koch, Wilfried; Simonsmeier, Werner; Tontsch, Friedrich,
“Einfuehrung in Software Engineering”, Walter de Gruyter & Co., Berlin, 1979.

[16] Knuth, Donald E., “The Art of Computer Programming, Volume 1, Fundamental
Algorithms”, Addison-Wesley Publishing Co., Reading, Massachusetts, second edition,
1978.

[17] Knuth, Donald E., “The Art of Computer Programming, Volume 2, Seminumerical
Algorithms”, Addison-Wesley Publishing Co., Reading, Massachusetts, 1969.

[18] Knuth, Donald E., “The Art of Computer Programming, Volume 3, Sorting and
Searching”, Addison-Wesley Publishing Co., Reading, Massachusetts, 1973.

[19] Manna, Zohar, “Mathematical Theory of Computation”, McGraw-Hill Kogakusha,
Ltd., Tokyo, 1974.

[20] McGowan, Clement L.; Kelly, John R., “Top-Down Structured Programming Tech-
niques”, Petrocelli /Charter, New York, 1975.

[21] Minsky, Marvin L., “Computation: Finite and Infinite Machines”, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1967.

[22] Myers, Glenford J., “The Art of Software Testing”, John Wiley & Sons, New York,
1979.

[23] Naur, Peter (editor), “Revised Report on the Algorithmic Language Algol 60”,
Regnecentralen, Copenhagen, 1962.

[24] Naur, Peter; Randell, Brian (editors), “Software Engineering, Report on a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 October
1968, NATO Scientific Affairs Division, Brussels, 1969.

[25] Royden, H. L., “Real Analysis”, The Macmillan Company, Collier-Macmillan Limited,
London, second edition, 1970.

[26] Schnorr, C.P., “Rekursive Funktionen und ihre Komplexitaet”, B.G. Teubner, Stutt-
gart, 1974.

[27] Schulz, Arno, “Methoden des Softwareentwurfs und Strukturierte Programmierung”,
Walter de Gruyter, Berlin und New York, 1978.

[28] Statistisches Bundesamt, “Statistisches Jahrbuch 1980 fuer die Bundesrepublik De-
utschland”, W. Kohlhammer GmbH, Stuttgart und Mainz, 1980.

[29] U.S. Bureau of the Census, “Statistical Abstract of the United States: 1979” (100th
edition), Washington, D.C., 1979.

[30] Weinberg, Gerald M., “The Psychology of Computer Programming”, Van Nostrand
Reinhold Company, New York, 1971. .

[3}] Weizenbaum, Joseph, “Computer Power and Human Reason; from Judgment to
Calculation”, W.H. Freeman and Co., San Francisco, 1976.

[32] Wiener, Norbert, “The Human Use of Human Beings; Cybernetics and Society”,
Doubleday and Co., Inc., Garden City, N.Y., 1954.

[33] Wirth, Niklaus, “Algorithms + Data Structures = Programs”, Prentice-Hall, Inc.,
Englewoods Cliffs, N.J., 1976.

[34] Zinsser, H., “Rats, Lice and History™, Little, Brown & Company, Boston, Massachu-
setts, 1935.

Colophon

The manuscript of this book
was transferred to the publisher
by the Author
in the form of a machine-readable copy
prepared with a Tandy TRS 80 system
and transmitted via a dial-up telephone line to
a DECSYSTEM 2060 and subsequently converted to
a Harris 7400 photocomposer,
both of these at
Northprint, Meppel, the Netherlands,where also the desk-editorial
corrections were implemented,
as made from Amsterdam in remote-control mode
by Arie Jongejan.
The book is type-set in
Times New Roman 10 /12
and was produced by Geoffrey Andrew.
Its cover is the work of the publisher’s resident artist,
Jan de Boer,
using a Han Kruyswijk photograph
of Miss Jenske Dijkhuis.
Published by
the North-Holland Publishing Company
March MCMLXXXII.

	Copyright header: Copyright notice
	Copyright notice: Copyright Robert Laurence Baber. This document may be copied, printed and distributed for educational or personal use under the condition that no charge whatsoever is made for such copying, printing, distributing, etc. For any other use permission must be obtained from the copyright owner, Robert Laurence Baber. 2001 July.

