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Guide for the reader

This book is subdivided into four main parts:

Prologue (Chapters 0 and 1)

Theory (Chapters 2, 3 and 4)

Practice (Chapters 5 and 6)

Epilogue (Chapters 7 and the appendices)

Depending upon your interests, background knowledge and motivation for
reading this book, you will find one of the following approaches to this book’s
contents most suitable for your purposes.

If you are a serious student of software engineering, either employed as a
software developer or studying at an academic institution, you will want to
read and study the contents of this book in the sequence presented. Section 2.2
and Chapter 4 may be skimmed on your first reading.

If you are a software developer interested primarily in applying this material
to practical programming problems, and if you are willing to accept the main
theoretical results without proof, i.e. axiomatically or by intuition, then you
will find the following sequence to be the quickest path to your goal:

skim the introductory material in Chapters 0 and 1,

read the definitions, theorems and lemmata (but not the proofs) in
Chapter 3, concentrating especially on the first definition of a precondition
and on Sections 3.0.1, 3.1.0, 3.1.1, 3.2.0, 3.3.0, 3.3.3 and 3.9,

read Chapter S and

study Chapter 6.

Afterward, if you are interested in examining and understanding the
theoretical foundation more thoroughly, you should read Chapter 2 and the
rest of Chapter 3 and skim Chapter 4. Chapter 7 will give you a preview
of the future of your chosen field.

{f you are not adequately familiar with the mathematical terms and notation
which you encounter, you should read Appendix 0, Mathematical fundamentals
before proceeding further. ’

If you are a manager of software development interested primarily in
assessing this material as a foundation for your subordinates’ work, you will
want to skim Chapter 1 and read Chapters 6 and 7.

Many readers will find Chapters 5 and 6 useful for later reference.
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Chapter 0

Komputema Simio, the computing
monkey of Moc

Monkeys ... very sensibly refrain from speech, lest they should be set
to earn their livings.
— Kenneth Grahame

Give me a place to stand and I can move the earth.
— Archimedes

Accurate reckoning of entering into things, knowledge of existing things
all, mysteries. .. secrets all.
— A’h-mose

In 2500 BC the land of the Ret Up Moc was one of the more advanced
societies in the cradle of civilization. An active foreign trade had developed
and several cities had been founded. A construction industry existed in which
professionally trained architects and civil engineers played an important role.

Between about 2500 and 2400 BC, a major technical advance was
achieved. Suddenly and unexpectedly, a group of teachers of civil engineering
developed a new technique for designing buildings. Using the new method,
buildings could be designed and constructed which were much larger than
those previously possible. Perhaps even more importantly, the new method
reduced construction costs to about a tenth of their former levels (see
Baber, 1982, Ch. 0).

As a consequence, the demand for buildings of all types increased very
rapidly — exploded is probably a more accurate term — and the construction
industry grew correspondingly. Especially the professional architects and civil
engineers had great difficulty satisfying the much increased demand for
their services.

Quite extensive calculations of a.somewhat repetitive nature had to be
made when applying the new design approach. Akado, one of the civil
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4 0 THE COMPUTING MONKEY OF MOC

engineers who contributed significantly to the advancement of the new
method, recognized that the capability to calculate faster was an essential
prerequisite for any significant increase in productivity. He thought about
several ways this might be achieved, including organizing the computation
so that a less skilled person could perform most of the calculations, thereby
freeing the designer’s time for those aspects of the task requiring his special
knowledge and skill. Because such specialized knowledge and skill was in
short supply throughout the profession, this approach held out some promise
of being useful not only to Akado himself, but also to the profession as a
whole.

Among the colleagues and friends with whom Akado discussed this
problem and his ideas was Kolab, a leading zoologist in Moc. Kolab’s
specialty was monkeys, in particular primate intelligence, communication
and behavior. Kolab found the discussion with Akado interesting and made
a few minor suggestions but had no really significant ideas on how to solve
the problem.

A short time later, Kolab led an expedition into a jungle some days’
journey from Moc. His goal was to observe primates in the wild and to
collect some specimens for a zoo in Moc. Kolab’s thoughts were far from
Akado’s calculations when suddenly he came upon a clearing in which a
monkey was sitting, manipulating pebbles and making marks in the dirt
with a stick. Kolab observed the monkey for quite some time, trying to
figure out what it was doing. Kolab could only conclude that the monkey
was counting the pebbles. This led him to wonder whether it would be
possible to train this obviously intelligent monkey to perform Akado’s
calculations. Kolab easily captured the unusually agreeable, friendly monkey
and brought him back to Moc.

In Moc, Kolab discussed his idea with Akado, who was interested in
exploring its possibilities. Kolab began to train the monkey (which they
named Komputema Simio) to perform, on command, tasks which were of
a counting and calculating nature. While Kolab trained the monkey,
Akado reorganized his calculations around particularly simple individual
‘computational steps. After some time and effort, they succeeded in-imple-
menting the following scheme.

Akado prepared a sequence of computational instructions, wrote them
on paper-like sheets and handed them to the monkey. In addition to these
prepared instruction sheets, the monkey had an adequate supply of data
sheets. Each data sheet was divided into three columns, the first labeled
‘name’, the second marked ‘set’ and the third called ‘value’. Finally, the
monkey had a supply of blank sheets (scratch paper) for making intermediate
calculations as needed, a pencil-like instrument for writing on the data
sheets and scratch paper and a few small pebbles which he used to keep
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track of his place in the list of instructions. Sometimes the monkey would
write on the dirt ground with an ordinary stick instead of using the scratch
paper.

Kolab successfully trained the monkey to act in this environment as
follows. The monkey would carry out the first command on the instruction
sheet by performing the calculation it implied. Normally, this involved
substituting certain values from the data sheet into an expression, calculating
the value of the expression and writing the result in the appropriate place
on the data sheet. The monkey would then proceed to the next command
on the instruction sheet, carry it out in the same manner and repeat this
process indefinitely. Two special commands modified the sequence of
execution of the other instructions (see below).

Performing each instruction involved following certain precise rules. If
the rules, when interpreted in a specific context, were inconsistent or
ambiguous, the monkey would signal such an erroneous condition by ringing
a bell. He would then go and play while Akado corrected the error.

The normal and most frequently occurring command was of the form

name := expression

for example,
m:=Pxa=* (1 - x/L)
If the contents of the data sheet were as follows:

name set value

m num 2500
P num 1000
a num 2
L num 6
X num 3

before the monkey started to execute the above instruction, he would
substitute the corresponding values into the expression and calculate its
value as follows:

1000 * 2 * (1 — 3/6) = 2000 * (1 — 0.5) = 2000 = 0.5 = 1000

This result is to become the new value of the variable m. The monkey
would, therefore, verify that the calculated result is consistent with the
entry opposite the name m in the column ‘set’ of the data sheet. This being
the casé in our example, Komputema would record the result calculated
above as the new value of the variable m, changing the data sheet to read
as follows:




6 0 THE COMPUTING MONKEY OF MOC

name set value

m num 2560 1000
P num 1000

a num 2

L num 6

X num 3

The monkey would then proceed to the next instruction and repeat the
process described above. . . .

Whenever a calculated result was inconsistent with the result variable’s
set or with the operations to be performed as specified in the expression,
the monkey would signal the error by ringing a bell as mentioneq above.

The monkey had been trained to work with three types of variables on
the data sheet: numbers (as in the above example), logical variables (which
could assume only the values ‘true’ and ‘false’) and sequences of individual
symbols (letters, digits and other special characters). Kolab was 1ntgrested
in extending the monkey’s repertoire to include other types of variables,
but Akado saw no real need for such improvements.

Komputema had learned to perform the following basic calcglati.ons on
these three types of variables: adding (+), subtracting (—), multiplying (*),
dividing (/), comparing for equality (=), comparing for o?der (<, >, =
and =), appending one sequence to another, i.e. concatenating (:), and thp
logical calculations not, and and or. Kolab had the impression t'h‘a.t this
collection of operations taxed the monkey’s intelligence and capabilities to
the limit. Fortunately, these operations were all that Akado needed or even
considered desirable for his purposes. .

The sequence of execution of instructions could be modified b.y. two
commands or, more properly, command structures. One was the conditional
statement, which Akado wrote in the following form:

if expression
then

else

endif

When the monkey encountered this structure, he would first evaluate thF
expression between the if and the then. If the result was the value ‘true’,
he would then carry out the instructions between the then and the else. If,
on the other hand, the value of the expression was ‘false’, he would execute
the commands between the else and the endif. In either event, he would
continue executing the instructions following the endif or as determined by

The computing monkey of Moc 7

another, higher level command structure. If the result of evaluating the
expression was neither ‘true’ nor ‘false’. Komputema would signal the error
by ringing the bell as described above.

The third type of instruction which Kolab was able to teach the monkey
had the form

while expression do

endwhile

Komputema would begin to execute this command by evaluating the
expression. If its value was ‘false’, he would skip the entire construct as if
it were not present and continue. If, on the other hand, the value of the
expression was ‘true’, he would execute the instructions between the do
and the endwhile and then execute the entire while construct again,
reevaluating the while expression, etc. If the value of the expression was
neither ‘true’ nor ‘false’, the monkey would signal the error by ringing the
bell as usual.

For computational purposes, Akado found that he needed only these
commands and structures. For preparing records of the calculations for
inclusion in his documentation on a design, however, these seemed to be
inadequate. A command something like print report data seemed to be
required. Akado also wanted to be able to write a command akin to get
data value in his lists of instructions at those points where the monkey
should obtain a new data value directly from Akado.

Akado discussed these difficulties with Kolab and together they worked
out several possible solutions. But no matter how diligently Kolab worked
with the monkey, Komputema seemed to be at his limit regarding the
command repertoire. Akado decided that he could continue using his
previous method for inserting data values into the computation: he prepared
in advance the data sheet, inserting values for those variables which
represented initial data and leaving the values of the other variables blank.
Thus he obviated the need for the command get data value.

Kolab then concentrated on teaching Komputema the last remaining
command, print report data, but to no avail. It became completely clear
the Komputema had learned about as much as he was capable of learning.
Faced with the impossibility of teaching him this last command, Akado
realized that he could circumvent this difficulty in the same way as he had
solved the get data value problem: with prepared data sheets. He would
define the entire report to be a family of array variables, with which the
monkey already knew how to work. The indices of the array variables
would indicate the page and line numbers of the data to be ‘printed’, which
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would be represented as a sequence of characters, a type of variable with
which Komputema was familiar:

name set value
report(1, 1) seq
report(1, 2) seq

report(1, 50) seq

name set value
report(2, 1) seq
report(2, 2) seq

report(2, 50) seq

When the report was complete, Akado would simply cut off the two left
columns (for the names and sets) and include the remaining third column
as the corresponding page in the documentation on his design.

Akado and Kolab tried this approach and found that it worked satisfac-
torily. The fact that Komputema now had to work with several data sheets
instead of one posed no difficulty. Akado had to take care, however, that
his instructions never caused the monkey to calculate a value for any of
these variables a second time, for in such a case Komputema would scratch
through the old value (see the example above). Akado could not, of course,
submit a report with such a messy appearance to a client. Akado decided
to write instructions for preparing the report in such a way that the data
lines would be written sequentially, from line 1 of page 1 through to the
end of the report.

Combining all of the above, Akado could write lists of instructions for
performing all sorts of structural calculations and for preparing reports of
the results of these computations. The first calculation made in this way
for an actual building project determined the maximum shear force and the
maximum moment in a beam supported at both ends and loaded at one
point off center (see Fig. 0.0). The initial data sheets for this calculation
were as follows:

name set value
s num
m num
smax num
mmax num
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1000

'
W 4

Fig. 0.0 The beam configuration first programmed by Akado

6 kulongs

P num 1000

a num 2

L num 6

X num

ix num 0.1

name set value

report(1, 1) seq
report(1, 2) seq
report(1, 3) seq
report(1, 4) seq
report(1, 5) seq
report(1, 6) seq
report(1, 7) seq
report(1, 8) seq

The list of instructions written by Akado was as follows:

smax = 0
mmax = 0
X =0
while x = L do
ifx<a
thens := P = (1 — a/L)
m:=Pxx* (1 — all)
else s := P * a/L
m:=Px*a=* (1 - x/L)
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endif
if s > smax then smax := s else endif
if m > mmax then mmax := m else endif
x:=x + ix
endwhile
report(1, 1) := “Stress calculation,”
report(1, 2) := “beam loaded at one point, supported at each end”

report(1, 3) := “Load =":P

report(1, 4) := “at”:a:“kulongs from the left end”
report(1, 5) := “Beam length =":L:“kulongs”™
report(1l, 6) := “maximum shear =":smax
report(1, 7) := “maximum moment =":mmax
report(1, 8) := “End of calculation, this is.”

Akado suspected that if he were to analyze the problem more thoroughly,
he could simplify this list of instructions. But because he intended to use
this list as a basis for developing a more extensive one for performing stress
calculations for more complex situations, involving more and different types
of loads and supports, he decided to leave his algorithm in this presumably
more general form.

Akado and Kolab were proud of the results of their efforts. Akado had
succeeded in organizing the calculations in a simpler and more systematic
form. Consequently, he was able to prepare a set of instructions for
performing the calculations so that they could be carried out by someone
with no professional knowledge. Kolab had succeeded in training the
monkey to execute such a set of instructions. The overall result was that
these previously quite problematic calculations could now be performed by
less skilled people or, even better, by especially capable, appropriately
trained monkeys.

Thus, it seemed as if it might be possible to increase sufficiently the
productivity of the Mocsian civil engineers so that they would finally be
able to satisfy the greatly increased demand for plans for new buildings.
Kolab only needed to find and train enough clever monkeys so that each
engineer could have one at his disposal — and Akado, to develop some way
to ensure the correctness of the lists of instructions given to them.

Exercises

1 What are the exact contents of the report page prepared by Komputema
when executing the above list of instructions?

2 What are the contents of the other data sheet after Komputema has
carried out the instructions in the above list in the manner described in this
chapter?

Chapter 1

Introduction

We are the hollow men

We are the stuffed men

Leaning together

Headpiece filled with straw. Alas!
Our dried voices, when

We whisper together

Are quiet and meaningless

As wind in dry grass

Shape without form, shade without colour,
Paralysed force, gesture without motion;

— Thomas Stearns Eliot*

1.0 Software development as an engineering science

Characteristic of every engineering field is the existence of a body of
fundamental, theoretical, scientific and mathematical material upon which most
of the engineer’s work is ultimately based. Such a foundation provides
guidelines for the design process and, probably more importantly, enables
the designer to verify systematically and precisely important characteristics of
his proposed design. Such a basis for the engineer’s work is a necessary
condition for achieving and maintaining the reliability and correctness of a
design to which the engineer, his clients and society have become accustomed.

Closely correlated with the existence of such a theoretical foundation is
the fact that the engineer views the object to be designed — e.g. the structure
of a building, an electrical circuit, the chassis of an automobile, the frame
of an airplane, an engine, etc. — as a mathematical object. He formulates

* Reprinted by permission of Faber and Faber from Collected Poems 1909-1962 by T. S. Eliot.
From ‘The Hollow Men’ in Collected Poems 1909-1962 by T. S. Eliot, copyright 1936 by

Harcqurt. Brace Jovanovich, Inc., copyright © 1963, 1964 by T. S. Eliot. Reprinted by
permission of the publisher.
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12 1 INTRODUCTION

mathematical theorems about the behavior or certain properties of the
object and proves them. As a result of this approach. a building does not
typically collapse during or after construction, a ship does not sink when it
is launched and an airplane does not crash during its first test flight. These
results are in sharp contrast to the typical experience with a new program:
as a rule, it does not function properly during its first test and even after
it is put into productive use, failures surprise no one. Much time and effort
are expended in identifying, locating and correcting the errors in the
program. While confidence in its correct functioning increases generally
with productive use, one is never really sure that all errors have been found
and corrected.

Examples of the theoretical foundations of engineering fields are Maxwell’s
equations, from which Kirchhoff’s, Faraday’s and Henry’s laws can be
derived (electrical engineering) and Newton’s laws, from which various
principles of statics and dynamics can be derived (civil and mechanical
engineering). When designing a circuit or building and especially when
verifying the design, the engineer considers his design to be a mathematical
object whose component parts obey these abstract fundamental laws and
equations. Considerable attention is paid to detail and the smallest basic
building block. For example, the civil engineer must calculate the stresses
(compression, tension, shear, torque) in each beam in a bridge resulting
from the loads applied to it and the forces supporting it. After performing
these calculations and verifying that the resulting stresses nowhere exceed
the breaking strengths of the materials used, he is confident that the bridge
will not collapse. Only when this level of confidence is achieved, based on
theoretical considerations, will anyone commit resources to the construction
of the bridge.

This situation did not always prevail. Especially in European art galleries
with collections of paintings dealing with the industrial revolution can one
find considerable evidence of bridges collapsing frequently under the load
of the new locomotives. Obviously, the responsible persons were not able
to calculate the stresses in the structural elements and verify that they would
not exceed the breaking strength of the material used. To cite an earlier
example, in 1628 the Vasa, a large, richly appointed and the most modern
warship in the Swedish fleet, sank on her maiden voyage shortly after
launching. Apparently, the ship’s designers were not sufficiently well versed
in the theory of hull stability.

Loss of human life and the extensive damage to property resulting from

such technical mistakes led to various forms of pressure being brought to bear
upon designers of such structures. More exacting standards for their perform-

ance were introduced. Only professionally educated designers employing
scientific principles systematically in “their work were able to satisty these
standards reliably and the particular field became an engineering science.
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The transition of electrical technology into electrical engineering, of
airplane construction into aeronautical engineering and of other technical
fields into their respective engineering sciences followed courses different
in detail but similar in general pattern. In each case, it was found that the
less scientific, less systematic approaches (‘trial and error’, ‘wing and a
prayer’) followed by the less qualified practitioners resulted in designs which
were inadequate in terms of safety, reliability, efficiency and/or cost. The
losses caused by and the effort required to correct the commonly faulty
designs were significantly greater than the costs of training new entrants to
the field sufficiently well and thoroughly that they could produce correct
designs initially. That is, the serious, professional approach was less
expensive in the long run.

Engineering practice and the preparatory study for it are also characterized
by attention to fundamental detail. The basic, simple elements and com-
ponents commonly used in the field in question are analyzed in considerable
— some might even say excruciating — detail. The civil or mechanical
engineer, for example, devotes much time to the study of stresses in a
simple, one dimensional beam, loaded and supported in different ways. As
one textbook for mechanical engineers expressed it, ‘beams are undoubtedly
the most important of all structural members, and the basic theory underlying
their design must be thoroughly understood’ (Meriam, 1951, Part 1, p. 207).
Similarly, the student of electrical engineering devotes a considerable part
of his time to the study of circuits containing only two elements, a resistor
and a capacitor or a resistor and an inductor. After analyzing their transient
as well as steady state behavior intensively, he then studies circuits containing
only three components — a resistor, a capacitor and an inductor — at even
greater length. These circuits are so fundamental, important and common
that the electrical engineer who understands their behavior thoroughly
already possesses a very substantial part of the knowledge he will need for
-his future work. Such an engineer usually finds the analysis of a seemingly
much more complex circuit containing them as substructures to be a
comparatively easy and straightforward task.’

Another characteristic of engineering practice is a very conscious attempt
to avoid mistakes in the first place (in contrast to correcting errors already
made). Considerable attention and effort is devoted to achieving the goal
of producing correct designs. In civil engineering, for example, other
gngineers usually review the designer’s calculations, which he has organized
In a standard way so that they can be easily understood by others with a
similar professional training.

Especially, these two characteristics of engineering study and practice —
acquiring and regularly applying a thorough understanding of basic funda-
mentals and a continual, conscious effort to prevent and avoid errors —
result in a reliability and level of public safety well beyond that achieved
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in software development practice today. These are perhaps the two prime
factors distinguishing a profession from other occupations.

It seems to me that software development today is in a latter phase of
its development as a non-engineering field and is beginning to enter a
preliminary phase of development as an engineering science — the much
acclaimed software engineering. The field of software development has
probably advanced about as far as is possible without taking the approach
characteristic of other, already established, engineering fields. The com-
plexity arising in software systems seems to be greater than that with
which one can successfully and reliably cope without a really thorough
understanding of underlying fundamental principles. There are signs that
society is not prepared to continue to accept the more or less common
attitude that errors in software are in principle unavoidable. Movements in
some countries to introduce legal liability in connection with software are
an example of signals of such changes. At the same time, developments in
computing science promise to provide a basis for achieving the reliability
characteristic of the designs produced by engineers in other fields. Such
developments strongly suggest, for example, that the belief of many software
practitioners cited above is incorrect and that errors in software are, in fact,
almost totally avoidable just as comparable errers in designing bridges, for
example, can be prevented.

I should emphasize at this point that by ‘software engineering’ I mean
an approach to the preparation for, and practice of, our vocation which
engineers in other fields would recognize as exhibiting basic characteristics
typical of their fields. Some of the topics subsumed today under the term
‘software engineering’ do not satisfy this criterion. Systematizing work in
a restricted technical sense, using well-honed tools, applying management
principles (e.g. relating to project management) to the organization of our
work, etc., useful as these may be, do not represent the essence of
engineering and are not sufficient to transform our occupation into a
professional engineering field. Among other things, practitioners must
acquire and apply to their work an extensive knowledge, based on a thorough
understanding of fundamental, immutable principles of a mathematical and
theoretical nature and of lasting validity, and they must be willing to accept
responsibility for the correctness of their designs. Only then will we be able
to join the ranks of the engineering professions.

Until relatively recently, the various concepts, techniques, guidelines,
rules, etc. used by software developers constituted an amorphous collection
of knowledge, experience, legends and superstitions with no really clear
structure and, particularly, with no apparent common foundation. This state
of affairs contrasts sharply with that prevailing in other professional — and
especially engineering — fields. In view of this situation, the increasing use
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of the term ‘software engineering’ in recent years led C. A. R. Hoare to
ask, ‘What is the great body of professional knowledge?’, ‘what are the
theoretical mathematical ... principles which underlie the daily practice of
the programmer?’ (Hoare, 1984, p. 8). The physicist would have formulated
the question differently: ‘If software engineering really exists, then what is
its equivalent of Newton’s laws?’ In the words of the electrical engineer,
‘What are the software engineering equivalents of Maxwell’s equations and
Kirchhoff’s laws?’

It is the thesis of this book that the fundamental principles of software
engineering in this sense have been discovered and developed during the
last one to two decades. They are presented in Chapter 3; the most
important of them are summarized in Section 3.9. Most of the rest of the
book is devoted to motivating, justifying or applying this theoretical
foundation.

The software engineer who understands these principles and is able to
apply them extensively and with ease will be able to avoid making the
logical errors commonly committed by less qualified programmers. He will
be able to verify that his proposed design (program) will function as specified
— just as the civil engineer verifies his design for a bridge or a building in
order to ascertain, before starting construction, that it will support itself
and its planned load.

1.1 Fallacies exposed: often cited objections to an engineering
approach to designing software

Whenever it is suggested that software development be practiced as an
engineering science, a general reaction of approval usually follows. When
specific measures, procedures, approaches and the like are then proposed
for software developers to employ in software engineering practice, various
objections are often raised. Usually these derive, in the final analysis, from
defensive reactions of less qualified software developers who perceive —
frequently only subconsciously — the personal threat represented by a
transition to a true engineering science. Most such objections are logically
equally applicable to well-established practices common in the traditional
engineering and other professional fields. The very existence of such fields
over an extended period of time, as well as the way in which they are
practiced, clearly contradicts the thesis represented by such objections.

In this section, the more commonly raised objections will be presented
and discussed.

Objection: 1, like every other person, am imperfect. Therefore, my software
must be imperfect.
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One must ask the person raising this objection whether he is prepared to
accept the same statement coming from a surgeon who is about to operate
upon him, the structural engineers who-designed the buildings in which he
lives and works, the pilot who will fly him on his next business trip, the
automobile mechanic who recently repaired the brakes in his car, etc. Do
not the users of his software have the same right to demand a reasonably
high level of quality of his services as he has with respect to the services
supplied to him by others?

While most members of society recognize that the people who supply
various goods and services are fallible, they are not prepared to accept a
comparably high error rate in the goods and services supplied. They simply
do not accept as valid the argument that the fallibility of people must imply
that the results of people’s work must be fraught with errors and failures.

Especially, professionals, but also non-professionals, are expected to take
measures to ensure that the results of their efforts are more reliable than
those efforts themselves. Both as individuals and as a group, professionals
view their limitations and fallibility as a challenge to be overcome, not as
a convenient excuse for indolence. The education of professionals aims to
impart to the future practitioner the knowledge and ability which will enable
him to minimize his errors and, importantly, to verify his results so that
he can detect and correct his errors before they have led to negative
consequences.

While no client expects suppliers to provide services which are always
absolutely perfect, he does expect professionals, at least, to try to do so.
The true professional does, in fact, consciously strive very seriously for
perfection. One cannot achieve an error rate identical to zero, but one can
get arbitrarily close to it.

Objection: The theoretically based approach and methods proposed by
computing scientists for designing computer software amount to nothing more
than that which good software developers have been doing subconsciously all
along.

While there is a significant element of truth in this statement, it is doubtful
whether it is completely true. In any event, it would seem to be desirable
to systematize and put the approach already taken subconsciously by the
best programmers on a firm, explicit foundation. This would enable other,
not quite so excellent programmers to learn and apply these methods also
and attain the benefits thereof. In addition, it would presumably have the
advantage that the best programmers could apply these methods consciously
and therefore more extensively and with greater ease and less effort than
before, thus increasing also their productivity and accuracy. It would probably
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also enable them to build upon this foundation more consequently and
thereby to increase their capabilities to even higher levels.

Objection: The proposed new theoretically based methods are applicable
only to small, toy programs. Real programs and systems are very much
larger, are fundamentally different in nature and do not yield to the
application of these techniques.

An approach to designing software based on a firm theoretical foundation
is, in fact, relatively new and not at all widespread among practitioners.
Before they can apply such a foundation to their work, they must spend a
significant amount of time to learn and master this body of knowledge. As
in other engineering fields, the student of this material must begin with
small problems. Only after understanding the material thoroughly will he
be able to apply it to larger, in practice more realistic, problems. Again as
in other engineering fields, those who have completed this learning phase
typically report that applying this knowledge to larger systems is less
complicated than the novice would at first think.

Structuring software systems hierarchically, with each segment being
limited in size, results in analyses and correctness proofs which increase in
length but not in basic logical complexity as the size of the system increases.
Not infrequently, in fact, one finds the greatest logical intricacy in the
lowest level program segments, i.e. the ones which the new initiate tackles
first. It is not valid to estimate the complexity of proving the entire system
correct by projecting the complexity encountered initially with ‘small’
program segments linearly to the size of the entire system.

Again, an analogy with civil engineering is reasonably valid: The designer
of a bridge with thousands of girders really must solve only two problems,
calculating the stresses in one beam and resolving the forces at one joint.
These he must do thousands of times, of course, but no increase in the
level of complexity arises. The interaction among several beams (at each
joint) must be analyzed, but each joint presents essentially the same
problem. Resolving the forces at any one joint is logically no more complex
than analyzing the stresses at each point in one beam. At hierarchically
higher levels of the analysis, entire sections of hundreds of girders will be
considered to be a single structural element with only a few points of
interaction with other substructures, so that the mass of internal detail can
be suppressed, simplifying the higher level analysis. At each level of analysis
only a limited, easily grasped amount of detail is considered.

The student of structural engineering who starts by trying to analyze the
complete bridge in its entirety as a single, indivisible unit and without first
understanding thoroughly the statics of an individual beam and of an
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individual joint will soon become very bogged down in confusing detail. He
will quickly conclude that the theory is not practically applicable to large
structures.

His conclusion is, of course, incorrect. The correct conclusion is that his
approach is wrong. One should apply the theory to smaller, isolated
subsections of the bridge, each of which is logically comparatively simple.
The results of each such analysis should be combined in steps, each of which
is also bounded in size and logical complexity. Theoretical considerations and
practical experience clearly show that such an approach is possible and
leads to practically valuable results. An essential prerequisite is that the
engineer must understand the fundamentals — analyzing the individual beam
and the individual joint — so thoroughly that performing such an analysis
is a simple, almost subconscious refiex action for him.

All of the above comments apply correspondingly to a properly structured
program system and its proof of correctness.

Objections: The proposed theoretical foundation is not really important to
the practical software developer, as is evidenced by the fact that only a
very tiny fraction of experienced software developers use it in their work.

Of course they do not use it in their everyday work. How can they, when
they do not understand it, when they have never been shown its usefulness?
Relatively few, in fact, are even aware of its existence.

This statement is not really an objection, but rather simply a comment
that the material in question is not now in common use among practitioners.
The reasons for the lack of such use are a separate issue not really addressed
in this ‘objection’ at all. One possibility in principle, of course, is that it
would not be useful to apply it, but this is only one possibility among many.

Another possibility, consistent with the thesis of this book, is that this
would-be objection is the chicken and egg dilemma in another form: this
material is not applied by practitioners because they have not learned it
and they do not learn it because practitioners do not use it. This observation
highlights a vicious circle which will certainly pose a major — perhaps the
greatest — impediment to the transition of software development to a true
engineering science: because software development has not been practiced
as an engineering field, an important prerequisite for its becoming an
engineering science (a certain body of professional knowledge shared by its
practitioners)-is not satisfied and as long as this prerequisite is not satisfied,
the field cannot become an engineering science.

Objection: Compared to the program itself, a proof of correctness is
excessively long and complex: For example, the subprogram for merging in
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Section 5.8.0 is only some ten lines long, but its analysis and proof of
correctness is some fifteen pages long. Similarly, much more time is required
to construct the proof of correctness than to write the program.

The statements are correct but the standards of comparison contained
therein are inappropriate. The goal is not a program, but a correct program,
a program in whose correctness one can have confidence. Other methods
for gaining that confidence are less effective and more costly.

With regard to the time required to prove correctness, a more appropriate
standard of comparison would be the time required to select an appropriate
set of test cases and execute the subprogram upon them. Measured against
this standard, the time a professionally educated software engineer needs
to construct the proof of correctness is not at all long. Another possible
standard would include the time required to locate the errors, correct them
and remedy their consequences. This standard certainly tips the scale in
favor of the proof of correctness.

The objection to the length of the written proof calls for several comments.
Firstly, a computer program is a notoriously terse description of a process
and represents, therefore, a rather extreme standard of comparison. More
appropriate would be the length of the complete documentation of the
subprogram. Measured against this standard, the analysis and proof of
correctness does not appear unduly lengthy, especially if one includes a
complete listing of the test cases in the documentation.

Secondly, established engineering fields offer comparable examples. A
textbook for mechanical engineering students presented an introduction to
ideal (weightless) beams with concentrated loads in ten pages. This length
is misleadingly short, however, because it contains a number of exercises
which induce the student to develop much missing detail himself. Additional
material (again, with a number of problems for the student to solve)
covering a few more general situations increased the length of the introduc-
tory material on the single beam to 27 pages (Meriam, 1951, Part I,
Chapter VI).

In a major textbook used by many electrical engineering students, a
passage 21 pages long was devoted to an analysis of a circuit containing
only two components (a resistor and an inductor). A subsequent passage
ten pages long analyzed only some aspects of a circuit containing three
components (a resistor, an inductor and a capacitor). This was followed by
additional material approximately ten pages long on circuits with one, two
or three components (Guillemin, 1953, pp. 222-62).

Compared with such material, a fifteen page analysis and proof of
correctness of a subprogram containing six assignment statements, an if
construct and a while loop with associated conditional expressions appears
relatively compact.
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Objection: The proposed theoretically based approach to software develop-
ment places considerable emphasis on mathematics and logic. While this is
all very nice, it is not really relevant to the practicing software developer.
First and foremost, his goal is to write usable programs, not to analyze
them in extreme detail and to understand every subtlety, real or imagined,
in them. He needs more a handbook of software development tools and
techniques with instructions on how to use them most effectively.

Such a ‘Software Desigher’s Handbook’, while useful, can never be
successfully employed as a substitute for a thorough understanding of the
task’at hand. It is most effectively used by someone who already understands
what he is doing.

A person with the attitude implied in the objection — that the designer
needs only to follow a recipe, not necessarily to understand what he is doing
— can never become a professional, a software engineer. He can at best
become a second rate coding technician who must turn to a professional
for guidance, especially when the going becomes tough. This has been
found to be true for other professions, including established engineering
fields, and there is no reason to believe that the situation is fundamentally
different in the case of software development.

An analogy: A youngster learned a great deal from The Radio Amateur’s
Handbook, enough to become an amateur radio operator and to design
and build transmitters and receivers. They worked, but not so well and
reliably that they could be operated and maintained easily by others. He
realized that their behavior exhibited certain idiosyncracies which he did
not adequately understand and could not completely eliminate. Only after
studying electrical engineering, during which time he learned the fundamental
principles of electricity and physics and the mathematics necessary to work
with and apply them — subjects not even mentioned in The Radio Amateur’s
Handbook — did he have the knowledge and level of competence necessary
to design such equipment of commercial quality.

A set of finely honed tools can be very valuable in the hands of someone
who knows how to use them and who understands what he is trying to
accomplish. In the hands of someone without such understanding, they can
be dangerous in the sense that he can get into more trouble faster by using
them. He will often not know what problems could arise and how to avoid
them. And once in real difficulty, he will typically not be able to get out
of it.

Objection: The theory relates to idealized statements and commands in
artificial, non-existent programming languages and is hence irrelevant to
the practitioner. Only if the theory were to deal with real programming
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languages in their entirety and in full detail might it be of some limited
use.

Most programming languages in current use were designed (‘thrown together’
is a more accurate description in some cases) before the theory of proving
programs correct was developed. It should, therefore, be no surprise that
currently used programming languages do not represent a good match with
the theory of proving programs correct.

The definitions of the several statements presented in Chapter 2 of this
book represent generalizations of corresponding statements in most common
programming languages. These definitions provide a widely usable base for
applying this theory.

Actually, most common programming languages contain unnecessary
features, extensions and also restrictions. Input/output commands constitute
a typical example. Sections 4.0, 4.1 and 4.2 contain a discussion of the most
commonly encountered logically unnecessary constructs and how they can
be reduced to the simpler fundamental statements defined in Chapter 2.
Also, certain operations are implied in other structural constructs in many
‘real’ programming languages (the release statement is a common example).

A program designed in terms of only the fundamental statements defined
in Chapter 2 is logically simpler, more readable and more easily analyzed

_ than one expressed in a typical contemporary programming language. The

software engineer who must analyze an existing program not designed in
the way proposed here will often find it most convenient to translate — at
least conceptually — the statements in the given program into the fundamental
statements defined in Chapter 2.

Again, established engineering fields offer relevant analogies. The electri-
cal engineer, for example, designs and analyzes his circuits in terms of ideal
resistors, inductors and capacitors. He does not, at that stage, think in
terms of manufacturer X’s wire wound resistors with considerable distributed
parasitic inductance, manufacturer Y’s capacitors with leakage (parasitic
resistance) or manufacturer Z’s inductors with both parasitic capacitance
and resistance, etc. To do so would complicate the design process unduly
and would lead to an unnecessarily restrictive, specific design. Comparable
examples can be found in other engineering fields.

Software design is no different in principle. The statements defined in '
Chapter 2 are the basic building blocks of any procedure oriented language
and represent general concepts of more lasting validity than the correspond-
ing statements in implemented programming languages of today, which
usually impose rather specific restrictions of various sorts. To deal with the
statements in such a language in full detail and in its entirety — as demanded

_in the objection — would distract the designer’s attention from the real
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functions of the statements in question and would lead him to concentrate
instead on the idiosyncracies of the language. He would no longer see the
forest for the trees and would, as a result, tend to lose sight of the logical
processes being performed in his program. He would become bogged down
in detail and would find it correspondingly more difficult to understand his
design — and hence to prove it correct.

Another benefit of viewing programming languages in terms of their
common features (e.g. as outlined in Chapter 2) is that it facilitates learning
new languages quickly. The software engineer who takes this approach will
also find that he will be able to use a newly learned language more
effectively because he understands and concentrates his attention on the
processes and other aspects of fundamental concern. The programmer who,
on the other hand, concentrates his attention on the idiosyncracies and
unique features of each language he learns will find that knowledge of little
value when learning a new language. In fact, he will frequently find that
the new, different detail he must memorize does not fit into his mental
models very well, causing him to become more and more confused by the
growing mass of detail he must remember.

Objection: Many software developers and students of programming are
not familiar with the mathematics required to understand and apply the
proposed theory and approach to designing software. They find it bewilder-
ingly complicated and overwhelming and will, therefore, avoid it. Experience
shows that by emphasizing principles of structured programming, for
example, one can teach them enough so that they can become reasonably
satisfactory programmers without having to learn so much mathematics and
mathematical notation.

Is a programmer who cannot determine whether or not his program is
correct a ‘reasonably satisfactory programmer’? My answer is that he is not
a reasonably satisfactory software designer. He might be a reasonably
satisfactory coding technician working under the guidance of a professional
software designer.

Many people can ‘design’ a bridge in the sense that they can sketch a
configuration of girders which spans the desired distance. But only if one
is able to calculate the stresses in each girder in order to verify that the
material’s breaking strength is not exceeded anywhere will he be able to
obtain a building permit. The ‘designers’ of the bridges which collapsed in
the last century and of the ships which sank because their hulls and weight
distributions were unstable (see Section 1.0 above) were eliminated from
the practice of the profession because they were incapable of ensuring an
accepted level of quality of their designs.

a5
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The theory and approach to designing software to which the objection
refers is the only way now known to verify analytically that a program will
satisfy its specifications under all circumstances or to determine under what
circumstances it will behave as specified. As is the case in other engineering
fields, a certain knowledge of mathematics and the ability to use it
extensively and with facility is a critical prerequisite for understanding and
applying this theory. The student of software engineering who does not
already have such a knowledge of mathematics or who cannot yet apply it
easily must acquire such knowledge and ability.

Any theory of programming which enables one to verify analytically and
exactly the behavior of a program must utilize a language suitable for
expressing intricate logical arguments precisely. Ideally, such a language
should also prevent one from formulating imprecise and vague statements.
Mathematics was developed to fulfill these goals; extensive experience
accumulated over a long period of time indicates that it satisfies these
requirements well. While another language could presumably be invented
for expressing a theory of programming, there seems to be little reason to
do so. Furthermore, there is no reason to expect that it would be significantly
simpler.

The language of mathematics has proved its usefulness in many other

technically oriented areas and has assumed a permanent place of importance
in every corresponding scientific and engineering field. It is already clear that
the language of mathematics is similarly applicable to software development.
There is considerable evidence strongly suggesting that it will assume a
correspondingly important role in software engineering. If this is true, then
those programmers who refuse to learn the language of mathematics will
be doomed to ultimate professional extinction.
) No one with the knowledge of and attitude toward mathematics expressed
n the objection above could become an engineer in any other field. There
# RO good reason to believe that he could become a successful software
engineer either. At best, he might become a coding technician, an assistant
b a software engineer. But not every professional software engineer would
care to hire him as such an assistant.

One can imagine that the above objection was raised many decades ago
}vhen the theory of complex variables was added to the required mathemat-
wal fepertoire of the electrical engineer. This area was undoubtedly
Perc?lved by some as unnecessarily complex and irrelevant as being of no ‘
physical significance (in the real world, voltages and currents are, in the
mathematical sense, real quantities, not imaginary or complex). This area
Qf mathematics proved to be of value in understanding the physical
gbenognena in question. It also turned out to simplify considerably the
analysis of circuits and the corresponding calculations. Introducing complex
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variables necessitated significant changes in the curriculum and working
electrical engineers, especially, must have found it difficult and time
consuming to learn this material while simultaneously practicing their
profession. But now every electrical engineer has learned this material and
it is taken for granted as obligatory prerequisite knowledge.

Earlier, the introduction of algebra and differential and integral calculus
into civil engineering must have met similar resistance. But this material
became recognized as essential and today’s structural engineer cannot
imagine how one could calculate the bending of a beam under a load
without applying calculus.

Objection: Software designers and programmers are already so concerned
with the various restrictions imposed by the language, operating system,
hardware, etc. which they are using that they cannot be burdened with still
another restraint: writing code which can be proved correct.

This would-be objection is a thinly disguised pauper’s oath. The software
developers to whom this statement refers are, in all likelihood, so buried
in detail and restrictions that they are unable to pay attention to other
issues because they. have not adequately mastered the language, operating
system, hardware, etc. in question. In short, they are underqualified for
the task they are attempting to accomplish.

The programmer who thoroughly understands the fundamental nature
and structure of programming languages, computing systems, etc. will find
it much easier to review and remember the idiosyncracies of any particular
one than will the programmer who has no generally valid mental skeletal
structure upon which to hang such details which must be mastered. The
latter must memorize — in contrast to learn — these details. The resulting
burden can easily become too great.

An engineer or other professional is expected to be so familiar with the
fundamentals and commonly used techniques, procedures, tools, etc. of his
field that they are second nature to him. He must be able to apply them
almost as a reflex action. The above objection is, in effect, an admission
that many software developers have not attained this level of competence
in their chosen field. This is, in turn, an admission that they are not
professionals.

1.2 Intended readership

This book is written for the serious student of software engineering. The
term ‘student’ is used here in its less restrictive sense: he may already be
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employed as a software developer (designer or programmer) or he may be
enrolled as a student in a tertiary educational institution.

The term ‘engineering’ is used here in its traditional sense, i.e. the
application of mathematical and theoretical fundamentals and principles to
the problem of designing and constructing economical and reliable systems
which fulfill some real need. The term ‘engineering’ is not used here in the
sense in which it has sometimes been used recently in the software context,
specifically, in the more restricted senses of software management, software
engineering management or even the mere use of some ‘integrated’ software
development package.

This book is aimed primarily at those who design and develop software
for practical use or who are preparing themselves to engage in such work.
While I hope that this book will be of interest to many computing scientists
and researchers also, it is not written specifically to satisfy their needs.

1.3 Prerequisites for the study of this book

It is assumed that the reader of this book is familiar with at least one
programming language. He should have some experience in using it in
practice, but need not have long, extensive experience in programming. In
fact, the reader with extensive programming experience may be at a
disadvantage, for he will probably have acquired more bad habits and false
preconceived notions which he will have to unlearn. Knowledge of several
programming languages will be helpful but is not necessary.

The reader should also be generally familiar with mathematics, especially
with the mathematical way of thinking. He must be able to follow and
understand detailed logical proofs. He must know what constitutes a
n'sathematical proof and be able to recognize gaps and flaws in at least the
simpler, more straightforward proposed proofs. Ideally, he should be able
to_formulate theorems on familiar topics and to construct proofs for them.
§ he does not already have this ability, he should concentrate on developing
& while studying this book.

Relatively little specific mathematical knowledge is assumed. The reader
Md be familiar with basic definitions in the areas of sets, sequences,
MOBS and Boolean algebra. He need not have advanced or particularly
@ialleq knowledge of these areas. He should be able to manipulate
expressions, especially Boolean expressions. The reader with gaps in
his knowledge of these areas should study Appendix 0, Mathematical
iiu.!adamentals, before proceeding with the material presented elsewhere in
this book.

The reader who has successfully completed one or two years of moderately
challenging courses in mathematics in secondary school will normally find
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his mathematical background to be sufficient for understanding the material
in this book. It is necessary, of course, that he still remember and be able
to apply that knowledge with reasonable facility.

In order to make the material in this book accessible to readers with as
wide a mathematical background as possible, only a relatively restricted set
of mathematical symbols is used in this book. This notation is more readable
than that which is more typical of, for example, the predicate calculus,
especially for those with no previous exposure to that area of mathematics.
After gaining facility in working with logical expressions, the reader may,
however, wish to employ the more concise and mathematically traditional
notation in his own work (e.g. /\ instead of and, \/ instead of or, 3/
instead of ‘for all’ etc.).

1.4 Goals and contents of this book

A major goal of this book is to advance the practical application of the
theory of proving computer programs correct by making that theory
accessible to a larger fraction of present and future software developers.
After studying the text and examples and working the exercises, the reader
will, in addition to understanding the theoretical foundation, be able to
apply the principles presented here to his own design and programming
tasks.

The goal of this book goes deeper than merely proving programs correct,
however. It also attempts to give the reader the same type of foundation
for designing software that engineers in other fields already have for
designing their mechanisms, systems, etc. It tries to give a more fundamental
understanding of the nature of software, of the issues arising in its design,
of verifying a proposed design, etc.

In effect, this book attempts to bridge the gap between theory and
practice in the field of software development. It does not purport to advance
significantly the theory itself. Nor does it provide a collection of omnipotent
methods, tools and techniques which the reader may blindly apply to tasks
he does not completely understand. In my opinion, such methods, tools,
etc. are not the solution to our problems in software development.
Knowledge and understanding are, and their prerequisite is a certain
investment of time and effort in the study of the foundations of the field.
There is no short cut.

The approach taken here is to present the practically most important
parts of the theory of proving programs correct and its application to typical
design problems in a language appropriate for the software engineer,
in contrast to the computing scientist or mathematician. The theoretical
background is presented in somewhat simpler (but still rigorous) mathemat-
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ical terms than most other books on this subject employ. This development
of the material leads up to presentations and discussions of several design
problems, thereby highlighting and emphasizing the application to practical
problems.

The primary scope of this book is limited to the case of the sequentially
executed program. The most important reason for restricting attention to
this case is that the development of the corresponding theory is fundamentally
complete, while the corresponding theory for non-sequential processes is
still under development. In any event, the correctness of a program segment
when executed sequentially is a necessary condition for its correctness when
executed concurrently with other processes. One can expect, therefore, that
the theory presented here will be included in a more extensive theory of
correctness for processes executing in parallel. Section 4.3 discusses concur-
rent and comparable processes and suggests some possibilities for extending
the material contained in the rest of this book to such situations, but does
not purport to treat that subject exhaustively.

The theory of proving computer software correct is based on the notion
that programs and parts thereof can be viewed as mathematical objects
about which theorems can be formulated and proved. This theory has been
under development since approximately the late 1960s. The theory is well
— but not widely — known. Software developers in commercial practice
especially tend to have limited or no knowledge of it. This is unfortunate
because one of the major sources of problems in practical software
development — errors — can be largely eliminated by the application of this
theory.

The major part of this book is divided into two parts: Theory (Chapters 2,
3 and 4) and Practice (Chapters 5 and 6). In the theoretical part, the state
of execution of a program — its data environment — as well as the effects
of executing the fundamental programming statements are defined. From
these definitions various theorems and lemmata are derived which form the
basis for practical applications. It is also argued that only the fundamental
statements and constructs defined earlier are needed to express programs
and algorithms arising in practice. The practical chapters apply the theory
developed earlier to the design and analysis of programs.

Additional parts of this book present introductory material (the Prologue,
Chapters 0 and 1) and draw conclusions regarding the future of the
field of software development (the Epilogue, Chapter 7). The following
paragraphs briefly describe the individual chapters and appendices.

Chapter 0, Komputema Simio, the computing monkey of Moc, gives a
metaphorical example of the execution of a computer program. Several of
the most basic ideas defined or developed later are introduced here: a
variable (a line on the monkey’s data sheet), a data environment (the data
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sheets), a program statement (instruction) as a rule for transforming one
data environment into another. the definitions of the effects of executing
each type of program statement, a program or a segment thereof (a list of
instructions), etc. If one were to make a copy of the data sheets after the
monkey executes each instruction, the resulting temporally ordered sequence
of data sheets would be the computational history (sequence of data
environments) as defined in Section 2.2.

Chapter 1, Introduction, emphasizes the parallel between software devel-
opment and established engineering fields, proposing that the design and
development of correct software is not only theoretically but also practically
possible. It argues that the various reasons commonly given for not
employing a truly engineering approach are, in the final analysis and long
term, invalid. It specifies the book’s target audience, the prerequisite
knowledge the reader is assumed to have and the goals of the book. Finally,
it outlines the contents of the book.

Chapter 2, Basic semantics of computer programs and programming
constructs, presents a number of definitions which provide the basis for the
development of much of the material in the rest of the book. The data
environment of a program and the effect upon such a data environment of
executing the several types of program statements are the subjects of these
definitions.

In Chapter 3, Proof rules for the individual programming constructs, a
number of theoretical conclusions following from the definitions of Chapter 2
are stated and proved. These results are organized and presented in the
form of proof rules applicable to the several fundamental types of program
statements defined in Chapter 2. While this chapter is more theoretical than
practical in nature, it builds an important basis for the application of the
theory to the practical problems considered particularly in Chapters 5 and
6.

In Chapter 4, Transfundamental programming constructs, several more
complex programming constructs commonly occurring in contemporary
programming languages are defined in terms of the fundamental constructs
introduced and treated earlier. The main point of the generally informal
material in Sections 4.0 through 4.2 is that most of the more complicated
types of statements in higher level programming languages can be replaced
by much simpler constructs. Such substitution not only simplifies the
mathematical semantics with which we must work, but — more importantly
— it simplifies our programs’ structures, readability and proofs of correctness.
Finally, some aspects of the subject of concurrency are discussed in
Section 4.3 (see the paragraph above on parallel processes).

Chapter 5, The analysis and verification of programs: methods and
examples, illustrates the application of the previously presented material to
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individual program statements. to isolated constructs and to program
segments combining the several types of fundamental constructs. It demon-
strates how to analyze an existing program or a proposed program with the
goal of verifying its correctness.

Chapter 6, The construction of correct programs, the culmination of this
book’s presentation, begins with conclusions, drawn largely from the material
in Chapter 5, which are of relevance to the design problem. These
conclusions are in the form of guidelines for the designer. The rest of
Chapter 6 consists of sample design problems in which the reader is led
through the design process; inferences of general relevance are drawn and
discussed as they arise.

Chapter 7, The practice of software engineering tomorrow, previews the
software developer’s future. The nature of professional software develop-
ment, especially with regard to the ways in which it will differ from
programming yesterday and today, is discussed. Implications for the individ-
ual software engineer, his preparation, etc. are developed. Reviewing the
parallel between software development and established engineering fields
drawn in Chapter 1, Chapter 7 closes with the prediction that software
development will, in the foreseeable future, become an engineering science
in the true sense of the term.

Appendix 0, Mathematical fundamentals, reviews all specific mathematical
topics needed to understand the rest of this book. It is not a complete
textbook on these subjects. It is intended to (a) refresh the reader’s memory
in certain key areas and (b) permit him to extend his knowledge to a limited
extent into areas which are new to him. The main topics covered are sets,
sequences, functions and Boolean algebra.

Appendix 1, Solutions to the exercises, contains solutions or sketches of
solutions to the exercises appearing in the various sections of the book.

The Bibliography lists books, papers, etc. referenced in this book, used
in its preparation or suggested as additional reading.
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Chapter 2

Basic semantics of computer programs
and programming CONStructs

Here and elsewhere we shall not obtain the best insight into things
until we actually see them growing from the beginning.
- Aristotle

The very true beginning of wisdom is the desire of discipline.
— The Apocrypha, Wisdom of Solomon, 6:17

Begin at the beginning ... and go on till you come to the end: then
stop.
— Lewis Carroll

Section 2.0 below introduces the notion of a data environment of a program,
defining it and its component part, the program variable. The evaluation
of variables and expressions (such as propositions, conditions, assertions,
etc.) within the context of a particular data environment is discussed.

The rest of this chapter defines the effect of executing a program on a data
environment, viewing a program (and each part thereof) as a mathematical
function. Two complementary views are presented: (a) each program state-
ment transforms one data environment into another data environment
(Section 2.1) and (b) each program statement transforms a sequence of data
environments into another by appending one or more newly constructed
data environments to the original sequence (Section 2.2). The precise effects
of the execution of each primary programming construct (declaration,
release, assignment, if statement, while loop, etc.) are defined.

2.0 The data environment of a program

2.0.0 Program variables

The essence of a program variable, or simply variable, is that it associates
a name, a set and a value (an element of that set) with each other. Thus,
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a variable corresponds directly to the three entries on one line of the
monkey's working paper (see Chapter 0). These considerations suggest the
following formal definition of a variable.

Definition 2.0: A variable is a triple (sequence of three members)
consisting of a name, a set and an element of that set. The particular
element of the set is called the value of the variable in question.

In most programming systems, the name of a variable is a string (sequence)
of characters. Often, the first character in the name must be a letter. while
succeeding characters may be selected from a larger (but still precisely
restricted) set of symbols. In most systems the length of a name is limited.
Such restrictions vary considerably from one system to another. Because
the specific syntax of a name is of no consequence for our purposes, we
will not give a more detailed definition of the term ‘name’ in this book.

Example 1: (x, Q, 3.23) is a variable name x which takes on values which
are rational numbers. The (current) value of x is 3.23.

Example 2: (s, strings of finite length, X7a) is a variable named s which
takes on values which are strings of finite length. The current value is X7a.

The characters of which the strings are composed must be precisely
defined.

An array variable can be defined in at least two ways. Perhaps the simpler
is to consider it as a family of similarly named but otherwise independent
variables. For example, the integer array z, with one subscript ranging in
value from 0 to 3, would be the collection of variables

{(20), Z, 6), (z(1), Z, 3), (2(2), Z, 8), (2(3), Z, —2)}

This model of an array permits, in principle, the various elements of the
array to be associated with different sets, i.e. to be of different ‘types’.
While most implementations of programming languages require all elements
of an array to be of the same type, there is no fundamental, immutable
reason for this restriction.

A somewhat different model of an array views it as a single variable with
values in the set which is the cartesian product of the sets from which the
values of the individual elements are selected. For example, using this
model, the array z in the above example wollld be viewed as

(z, 2%, (6,3,8,—-2))

The structure of this model of an array variable must be extended to include
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the parameters specifying the number and the range(s) of the subscript(s),
for example:

(z, 2%, 1, (0, 3), (6.3.8.-2))

Because the power 4 is determined by the number and the range(s) of the
subscript(s) (4 = 3 — 0 + 1), it is redundant and can be eliminated:

(z, Z, 1, (0, 3), (6,3,8,—2))

This model is highly suggestive of the schemes typically employed for
implementing array variables in programming systems today.

Because of its structural simplicity and greater generality, the first model
of the array introduced above will normally be used in this book. In most
instances, however, the two models will be equally applicable.

2.0.1 Data environments

A data environment is a collection of variables (see Section 2.0.0 above).
In general, the collection need not have any particular structure, but for
reasons which will be discussed later, in Section 2.0.2, it is convenient to
require a data environment to be a sequence of variables. This has the
effect of imposing a linearly ordered structure on the variables constituting
a data environment. More formally:

Definition 2.1: A data environment is a sequence of variables.

Thus, a data environment corresponds directly to the contents of the
monkey’s working papers described in Chapter 0.

Example 3: [(x, Q, 3.23), (s, strings of finite length, X7a), (y, Z, —8)] is
a data environment consisting of the three variables x, s and y with values
3.23, ‘X7a’ and —8 respectively.

Example 4: [(x, Q, 3.23), (x, Z, 4), (v, Z, —8), (x, Q, 9.2), (x, Q, 3.23)]
is a data environment containing five variables, four of which have the
same name, x. Two of these variables named x have the same value.

Combining and summarizing the above definitions, a data environment d
is a sequence of variables, each of which is a triple consisting of a name
N;, a set S; and a value V;:

d = [(Nl’ Sl? Vl)y (NZ’ SZ’ V2)’ ceey (Nh Si7 Vi)’ "']
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where

V. in §; for every i.

In this book we will refer frequently to the set of all possible data
environments, for which we will use the symbol D. An element of this set,
i.e. an individual data environment, will usually be denoted by d, d0, d1,
etc. Note that a data environment may be empty, that is, contain no
variable.

To be rigorous one must ensure that the set of all possible data
environments mentioned above actually exists, i.e. that it is or can be
defined precisely. In particular, one must ensure that the classical paradoxes
in connection with defining a set are avoided and that the definition is
logically consistent (see Appendix 0, Section A0.0.0, Basic definitions). This
can be done conveniently by specifying explicitly which sets may be
associated with a variable and requiring that each be well defined without
reference (explicit or implicit) to the concept of a data environment. In
practice, this rarely if ever poses any difficulty since typical implemented
programming systems provide for only a few well-defined sets such as the
following (or finite subsets thereof): R (the real numbers), Z (the integers),
the set of strings (sequences) of characters selected from a finite set of
symbols and certain sets defined by enumerating their elements. Throughout
this book, we will assume that D is defined or definable for the target
programming system, e.g. in the way outlined above.

2.0.2 The value of a variable in a data environment

One of the most common functions performed during the execution of a
computer program determines the value of a variable, given its name, within
the context of a particular data environment. Generally, that value is defined
to be the value associated with the variable having the given name in the
data environment in question.

The evaluation of a variable can be thought of as a function which maps
a variable name and a data environment into a value:

value = valvar(name, data environment)

The value is an element of the set associated with the named variable in
the data environment in question.

A given data environment can be thought of as defining a particular
mapping from variable names to variable values:

value(name) = valvar(name, data environment)
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The result of evaluating a variable name which is not present in the data
environment in question is undefined, i.e. the domain of the function ‘value’
above is the set of all variable names appearing in the data environment
in its definition.

Example 5: If d = [(x, Q, 3.23), (v, Z, —8), (z, string, X7a)], then

the value of x in d = valvar(x, d) = 3.23 (a rational number)
the value of y in d = valvar(y, d) = —8 (an integer)

the value of z in d = valvar(z, d) = X7a (a string)

the value of ¢ in d, valvar(t, d), is undefined

Ambiguity can arise when the data environment in question contains more
than one variable with the name for which a value is to be determined. In
implemented computing systems this problem is avoided or resolved in
various different ways. In some systems, each name must be unique, so the
problem does not arise. In others, the scope of each variable’s definition
is restricted in certain ways, usually related to the program’s hierarchical
structure. In systems of the latter type, a variable may be defined (declared)
at certain points in the program only. Furthermore, in such systems the
definitional scope of the variable is often implicitly and automatically
terminated (released, deallocated), leaving the programmer with no choice.

A general and convenient way to resolve this ambiguity is to require that
variables with the same name be linearly ordered in a data environment;
by convention, the first such variable will be used in evaluating the variable
name. If all variables in the data environment are linearly ordered, i.e. if
the data environment is defined to be a sequence of variables, this effect
will be achieved in a particularly simple way. For this reason we defined a
data environment to be a sequence of variables (see Section 2.0.1 above).

Example 6: 1f d = [(y, Z, —8), (x, Q, 9.2), (x, Z, 11)], then
the value of x in d = valvar(x, d) = 9.2 (a rational number)

These considerations lead us to formally define the value of a named
variable in the context of a given data environment as follows.

Definition 2.3: The value of a variable named x in the context of the data
environment d, written valvar(x, d), is defined to be

valvar(x, d) =V,
where

j=min{i{ | N; = “x”}
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The quotation marks surrounding x in the above formula signify that the
name x itself is meant, not the value of the variable named x. N and V
refer to the names and values respectively of the variables in the data
environment d:

d = [(Ny, $;, V), (N,, S5, V3), ...]

Clearly, this definition presupposes that a variable with the name in
question (x) exists in the data environment d, i.e. that there exists an i such
that the data environment d (a sequence of variables) contains an ith
member and N; = “x”. If this condition is not met, then the value of the
variable x in d is not defined.

2.0.3 Evaluation of an expression within the context of a data
environment

In mathematics in general, an expression is evaluated by substituting values
for the names of the variables occurring in the expression and then
performing the operations specified (see Appendix 0, Section A0.1.2,
Expressions). In the case of an expression to be evaluated within the context
of a data environment of a program, values are determined for the individual
variables as described in Section 2.0.2 above.

The evaluation of an expression can be thought of as a function which
maps the expression and a data environment into a value:

value = valexp(expression, data environment)

A given expression can be thought of as a function which maps a data
environment into a value:

expression(data environment) = valexp(expression, data environment)

In general, the value of an expression is defined in this way only if the
value of every variable appearing in the expression is defined in the data
environment, i.e. only if every variable name appearing in the expression
also occurs in the data environment in question.

Furthermore, the value of the expression is generally defined only if the
values of the operands and results of all operations specified in the expression
are in the defined ranges, e.g. if no ‘overflow’ or comparable ‘run time
error’ arises. The specific restrictions depend upon the precise definitions
of the operations involved and of the sets of which the operands and results
are elements. These definitions and the restrictions and limitations resulting
therefrom vary from system to system and cannot, therefore, be considered
in detail here. Restrictions of this sort are, however, very important to the
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programmer. He is well advised to pay close attention to them at all times.
for the notation used in typical programming languages often subtly traps
him into assuming (implicitly) that the implemented operations are well
behaved, e.g. that the ranges of their intermediate and even final results
are unbounded, that addition and multiplication as implemented are associat-
ive and obey the distributive laws, etc.

Even when the value of an expression is defined, the value determined
during the execution of a program might not be the same as that expected
at first by the tasual programmer. Expressions are evaluated by performing
the operations as they are implemented in the computing system, which is
not necessarily the same as they are defined in pure mathematics. Phenomena
such as rounding, approximating real numbers by elements of a discrete
set, etc. must be carefully considered. Examples of apparent anomalies in
evaluating expressions are given in Baber (1982, test questions 6.1 and 6.2,
pp- 81, 176-7). When manipulating expressions in proofs of correctness, the
software engineer must constantly remember that each operation (e.g. +,
—, %, /, etc.) is to be interpreted as it is defined in the target computing
system, which is not necessarily the same as it is usually defined mathemat-
ically.

An expression may evaluate to an element in the set {true, false}, in
which case one speaks of a proposition, assertion, condition, relational
expression, Boolean expression, etc. The values of other expressions may
be real or rational numbers, integers, strings or elements of other sets.

Example 7: 1fd = [(v, Z, —8), (x, Q, 9.2), (x, Z, —11)], then

the value of expression (y < x) in d = valexp(y < x, d) = true

the value of expression (x = 0) in d = valexp(x = 0, d) = false

the value of expression (2 * x + y) in d = valexp(2 * x + y, d) = 10.4
the value of expression (y + z) in d, valexp(y + z, d), is undefined.

Il

Exercise

1 Specify the domain of an expression in general but precise terms.

2.0.4 The value of an array variable in a data environment

In order to determine the value of an array variable, the subscript
expression(s) are first evaluated (see Section 2.0.3 above). The resulting
values are then substituted for the subscript expressions to give the actual
(‘reduced’ or ‘evaluated’) variable name. Finally, the value associated with
this latter variable name is determined as described in Section 2.0.2 above.
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In evaluating a subscript expression, another array variable may be
encountered, and, during the evaluation of its subscript expressions, still
another array variable may be encountered, etc. Thus, the evaluation of a
subscript expression involves, in general, a recursive process. This process
will terminate if the depth of nesting in the expression is limited. If the
length of the program’s text is finite, such recursion arising from references
to array variables within subscript expressions will necessarily be of limited
depth.

The above comments on evaluating an array variable in the context of a
given data environment suggest the following more formal definition.

Definition 2.4: The value of an array variable x(s) in the context of the
data environment d, written valvar(x(s), d), is defined to be
valvar(x(s), d) = valvar(x(valexp(s, d)), d)
or, interpreting the expression s as a function (see Section 2.0.3 above),
valvar(x(s), d) = valvar(x(valexp(s, d)), d) = valvar(x(s(d)), d)

If the array x has more than one subscript, i.e. if s is an n-tuple, then the
value of the n-tuple of expressions is defined to be the n-tuple of the values
of the individual expressions. That is, if s = (s1, 52, ...), then

valexp(s, d) = valexp((s1, s2, ...), d)
(valexp(sl, d), valexp(s2, d), ...)

Il

Lemma 2.0: valvar(x(s), d) = V;,
where

j = min{i | N; = “x(valexp(s, d))”}

and N and V refer to the names and values respectively of the variables in
the data environment d:

d = [(N]a Sl’ Vl), (NZ’ SZ’ VZ)’ ]

Proof (sketch): This result follows directly from the definition immediately
above and the definition of the value of a variable given in Section 2.0.2 W

As discussed in Section 2.0.2 above for the case of a name of a simple
(non-array) variable or a name of an array variabl€e with constant subscripts,
this definition presupposes that all variable names which appear in the
various expressions encountered and which are to be evaluated in the data
environment d are contained therein. Otherwise, the value of the array
variable x(s) in d is not defined.
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2.0.5 Boolean expressions and sets of data environments

An expression E with values in {true, false} determines in a straightforward
way a subset £* of D, i.e. a set of data environments:

E* = {din D | E(d) = true}
The set E* includes every data environment d for which E(d) is defined
and is true. Also, E(d) is defined and true for every data environment d
in E*. It is meaningful, therefore, to interpret a Boolean expression e;ithgr
as a function or as a set of data environments. Where the interpretation is
clear from the context, no notational distinction will be made.

Conversely, a condition (Boolean function) can be defined in terms of a

set:

C(d) = true, if d is in C*

= false, otherwise

for all d in D. Thus each of the two mathematical structures — the Boolean
function and the set — captures the essence of the other, provided that one
does not need to distinguish between a value of false and an undefined
value of the Boolean function.

Example 8: The expression E = (x < y) defines the set of data environments
E = {d in D | valvar(x, d) < valvar(y, d)}

The set E will include only data environments containing both variables x
and y.

Definition 2.5: 1f the sets E1* and E2* are defined by the Boolean
expressions (conditions) E1 and E2 respectively and E1* is a superset of
E2*, then it is meaningful to speak of the condition E1 as less restrictive
or weaker than the condition E2. Conversely, E2 is said to be more restrictive
or stronger than E1.

Loosely speaking, the ‘smaller’ set is the ‘stronger’ condition, and the
“Yarger’ set is the ‘weaker’ condition.

Lemma 2.1: The following statements are then equivalent:

1 E1* is a superset of E2*. (E2* is a subset of E1*.)

2 E1 is weaker than E2.

3 - E2 implies E1, i.e. valexp(E2, d) = valexp(E1, d), for all d such that
these values are defined.
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Proof:  The proof is left as an exercise for the reader. B

Notice that the subjects of statement (1) above are the sets E1* and
E2*. The subjects of statements (2) and (3) are the conditions (Boolean
expressions, propositions) £1 and E2.

Exercise

2 Prove lemma 2.1.

2.1 Programming constructs as functions on D, the set of
data environments

In the following sections, each of the several types of program statements
and fundamental constructs (compound statements) will be defined as a
function which maps a data environment into a data environment:

S:D—->D

The result of applying a statement S to the argument dO (the result of
‘executing’ statement S upon the data environment d0) is a data environment
d1 which is defined in terms of certain characteristics of dO in a manner
specific to each particular type of program statement or construct.

2.1.0 The assignment statement

An assignment statement consists of the name of a variable (either a simple
or subscripted name), the assignment symbol (:=) and an expression
involving any number of variable names. Consider, for example, the
assignment statement

x:=Ex,y,...)

which we will call 4 in the paragraphs below.

The result of applying A to the argument d0 (the result of ‘executing’
statement A upon the data environment d0) is defined to be a data
environment d1 which is equal to d0 except for the value of the first variable
named x. The value of this variable in d1 is the value of the expression
E(x, y, ...) in d0. This operational definition motivates the following,
mathematically more formal definition.

Definition 2.6: The effect of applying the assignment statement A above
to the data environment
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d0 = [(NO,, S0,, V0,), (NO,, SO,, V0,), ..., (NO;,, SO;, V0,), ...]

® A(dO) = (x := E(x, y,...)) (dO) = dl

ere
wh dl = [(N1,, $1,, V1)), (N1,, S1,, V1)), ..., (N1, 81, V1), ...]
N1, = NO,, for all i
S1, = 50, for all i
Vi, = V0, foralli#j
V1, = valexp(E(x,y, ...), dO)
j = min{k | N1, = “x}

provided that V1, is in $1,. (Otherwise, the triple (N1;, S§1,, V1;) would not
satisfy the definition of a variable and, in turn, d1 would not be a data
environment.) .

If an array variable is referenced to the left of the := symbol, Fhe effectl}/e
variable name is determined by replacing the subscript expression(s) by its
(their) values in d0, i.e.

x(s) := E(x,y,...)
where s is a subscript expression, is to be interpreted as

x(valexp(s, d0)) := E(x, y, ...)

A(dO) is defined only when the variable to which a value is being assigned
is contained in d0 (and therefore also in d1) and when the value of the
expression E(x, y, ...) in dO is defined and is an element of the set
associated with the variable receiving the new value. See the comments in
Sections 2.0.2, 2.0.3 and 2.0.4 above regarding the conditions under which
the values of named variables and expressions are defined.

It is useful to generalize the assignment statement as follows to allow
several variables to be assigned various values simultaneously.

Definition 2.7: The multiple assignment statement has the form
(x1, x2,...) = (F1(x1,x2, ..., y,...), E2(x1,x2, ..., y,...),...)

When the multiple assignment statement above is applied to the initial data
environment d0, each expression E1, E2, etc. is evaluated in the same,
initial data environment d0. The value of each expression (E1, E2, etc.)
becomes the value of the corresponding variable (x1, x2, etc.) in the
resulting data environment d1 as in the case of the simple assignment
statement.
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If a variable name appears more than once as a member of the replacement
list to the left of the := symbol and if the corresponding expressions yield
different values, then the effect of executing the multiple assignment
statement is ambiguous and hence undefined. Assigning values to array
variables with equal subscripts can give rise to such a situation, e.g.

(x(i), x(j)) := ...

where i and j have the same value in the data environment in question.

Definition 2.8: The exchange statement
x:=:y

is a special form of the multiple assignment statement, being defined to
mean

(x, y) == (v, x)

Note that the above definitions require that the expressions E, E1, E2, etc.
are to be evaluated in the initial data environment d0. Furthermore, only
the values of variables named to the left of the assignment symbol (:=) are
changed. Some real systems exist which do not always satisfy these
requirements. During the evaluation of one part of an expression, a new
intermediate data environment may be generated which is subsequently
used in the evaluation of other parts of the expression. The values of
functions referenced in an expression may be calculated by procedures
which alter the values of other variables. Such ‘side effects’, as they are
often called, can and do give rise to confusion, usually make a program
less readable and complicate proving its correctness. Generally, a program-
mer using such a system should avoid writing statements which could give
rise to such side effects.

Exercise

3 Specify precisely the domain of a simple assignment statement.
4 Specify precisely the domain of a multiple assignment statement.

2.1.1 The if statement
Definition 2.9 The if statement is a compound statement of the form
if B then 51 else S2 endif

where B is a condition (a Boolean expression) and S1 and S2 are program
statements, e.g. assignment statements, nested if statements, etc. The result
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of executing this if statement, called S below. upon the data environment
do is

S(d0) = (if B then S1 else S2 endif) (d0) = dl
where

dl = $1(d0), if B(dO)
= 52(d0). if B(d0)

true
false

is defined whenever B(d0) is defined (and true or false) and either
gg‘(ig())) or 52(d0) as required above is defined. Otherwise, S(d0), and hence
the effect of executing the if statement, is undefined. . .
Either the then or the else part may be empty, that is to say, either S1
or S2 may be a null statement, in which case S1(d0) = dO or 52(d0) = d0

respectively.

Exercise
5 Specify precisely the domain of an if statement.

2.1.2 A sequence of program statements
Consider the sequence S of statements

S1, §2
Operationally, this sequence is interpreted to mean that first, S1 is executed

upon the original data environment d0. Then, S2 is executed upon the
result, i.e. upon S1(d0). The motivates the following formal definition.

Definition 2.10: The effect of executing the ‘sequence S of statements (51,
$2) upon the data environment d0 is

5(d0) = (S1, 52)(d0) = S2(S1(d0))

That is, the function S, describing the effect of the sequence of the two
statements S1 and S2 considered as a single unit or compound sta'ff{ment,
is the composition of the individual functions S1 and S2. CO?‘np’OSltIOH of
two functions is associative, therefore the operation of ‘executing’ program

statements in sequence is also associative:

((51, $2), 83) = (51, (52, S3))
and one can write without introducing semantic ambiguity simply

S1, $2, 83
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instead of either ((S1, $2), S3) or (51, (82, 53)).

Neither composition of functions nor sequencing program statements is, in
the general case, commutative.

Exercise

6 Specify precisely the domain of a sequence of statements.

2.1.3 The while loop
The while loop has the following form
while B do S endwhile

where B is a conditional expression and S is any program statement (simple
or compound). The effect of executing a while loop upon a data environment
can be defined in several different but equivalent ways.

Definition 2.11: The result of applying the while loop above to the data
environment d0 is defined recursively, i.e. in terms of the while loop itself,
as follows:

(while B do S endwhile) (d0)
= (S, while B do S endwhile) (d0), if B(d0) = true
= d0, if B(d0) = false

If B(d0) is neither true nor false, e.g. if it is undefined, then the effect of
the while loop is undefined.

The recursive iteration implied by this definition terminates if and only
if the condition B is false after applying § to d0 some number of times
(possibly 0 times, i.e. if B is false initially). More formally, this can be
stated as follows: The recursive iteration implied above terminates if and
only if there exists a non-negative integer n such that

B(87(d0)) = false

If the condition B is always true, the effect of the while loop is undefined.
Operationally, one says then that the loop ‘does not terminate’ or is an
‘infinite loop’.

Definition 2.12: Applying the definition of the sequence of program
statements given in Section 2.1.2 above, definition 2.11 can be rewritten in
the following slightly different form:
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(while B do S endwhile) (d0)
(while B do S endwhile) (5(d0)). if B(d0) = true
= d0. if B(d0) = false

The comments regarding values of the condition B and termination of the
iterative steps in definition 2.11 above apply here as well.

Definition 2.13: The construct
while B do S endwhile
is equivalent to the construct
if B then (S, while B do S endwhile) endif
Note that here-the else part of the if statement is empty, i.e. consists of

the null statement (see Section 2.1.7).

The comments regarding termination of the iterative steps in definition 2.11
above apply here as well.

Definition 2.14: The data environment resulting from executing the com-
pound statement while B do S endwhile upon the data environment d0 is

(while B do S endwhile) (d0) = $"(d0)

where .
n = min{i | { is a non-negative integer and B(S'(d0)) = false}

brovided that for all integers j in the interval 0 =< j < n
B(8(d0)) = true

If no such n exists, i.e. if there is no non-negative integer n such that
B(S7(d0)) = false, or if some previous B(S/(d0)) does not evaluate to true
or false, then the effect of the while loop is undefined (cf. the condition
for the termination for the recursive iteration in definition 2.11 above).

Exercise

7 Specify precisely the domain of a while statement. .
8 Show that the four definitions above are equivalent, that is, that any

- one of them implies the other three.
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2.1.4 The declaration statement

The simplest form of the declaration statement is
declare (x, S, E(x, y, ...))

where x i§ a variable name; S, a set and E, an expression with values in
S. Executing this statement, called D below, upon a data environment d0
has the effect of prefixing a new variable named x to the sequence of

variables constituting the data environment d0 to form the new environment
dl.

Definition 2.15: The effect of executing the declaration statement D above
upon the data environment

dO = [(NO], SO], VO]), (NOz, SOz, VOz), ]

D(d0) = (declare(x, S, E))(d0) = d1
where

dl = [(x, S, valexp(E, d0)), (NO,, SO,, V0,), (NO,, SO,, V0,), .
provided that valexp(E, d0) is in the set S.

Lemma 2.2: Given the data environment
d0 = [(NO,, S0,, V0,), (NO,, SO,, VO0,), ..., (NO,, SO, VO,), ...]
and the declaration statement D above, then
dl = D(d0) = [(N1,, §1,, V1)), (N1,, S1,, V1,), ..., (M1, S1,, V1,), ...]

where
N1, = “x” (i.e. the name x, not the value of x)
Sll = S
V1, = valexp(E, d0)
and for all { > 1,
Nl,' = N0i7|
Sl,' = SOi—l
V1, = V0,_,

Proof (sketch): This lemma follows directly from the definition above; it
amounts to a restatement of that definition in different notation. W
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The above defines a data environment dl whenever the value of the
expression E in d0 is defined and that value is an element of the set S.
Otherwise, the effect of the declaration statement is undefined.

Definition 2.16:  In order to simplify our notation, we define the operation
of concatenation of sequences, using the symbol &. By x & y we mean the
single sequence formed by appending the members of y to the members of
x without changing their order.

For example, if
x = [a, b, (]

and
y = [k, I, m]

then
x&y=1Ja b, c k, I, m]

Lemma 2.3: The effect of the statement
declare (x, S, E)
referred to as D, is
D(d0) = (declare (x, S, E))(d0) = [(x, S, valexp(E, d0))] & d0
Proof (sketch): This lemma is simply another notational form of the above
definition of the effect of the declaration statement. B
Definition 2.17: More generally, the declaration statement has the form
declare (x1, S1, E1), (x2, S2, E2), ...

The result of executing this rmultiple declaration statement D upon the data
environment d0 is defined to be

D(d0) = (declare (x1, S1, E1), (x2, S2, E2), ...)(d0)
= [(x1, S1, valexp(E1, d0)), (x2, S2, valexp(E2, d0)), ...] &
d0

H any of the variable names above (x1, x2, etc.) refer to array variables,
the effective name is determined by replacing the subscript expression(s)
by its (their) values in the data environment dO; e.g. a reference to x(s) is
interpreted as a reference to x(valexp(s, d0)).
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Notice that all expressions E£1. E2, etc. are evaluated in the same, Initial
data environment d0. Therefore, the multiple declaration statement is not,

in general, equivalent to a sequence of several declaration statements, each
referring to only one new variable.

Exercise

9 Specify precisely the domain of a declaration statement.

2.1.5 The release statement
The release statement has the form

release x
where x is a name of a variable. Executing this statement, called R below,
upon a data environment d0 has the effect of removing the variable named
x from the sequence of variables constituting the data environment d0 to

form the new data environment d1. If d0 contains more than one variable
named x, the first such variable is removed.

Definition 2.18: The effect of executing the release statement R above
upon the data environment

d0 = [(NOy, 50, V0,), (NO,, SO,, VO0.), ..., (NO,, SO,, Vo)), ...]
is

R(d0) = (release x)(d0) = d1
where

dl = [(N1,, $1,, V1)), (N1,, S1,, V1), ..., (N1, 81, V1)), ...]
N1;= NO,, for all i < j
NO,., for all i = j

$1, = S0, for all i < j
= S04y, foralli = j
Vi,= VO, for all i <

VO, , for all i = §
j = min{k | NO, = “x”}

If the release; statement references an array variable, the effective name is
determined by replacing the subscript expression(s) by its (their) values in

the data environment d0; e.g. a reference to x(s) is interpreted as a reference
to x(valexp(s, d0)).
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This defines a data environment d1 whenever the data environment dO
contains the variable to be released. Otherwise, the effect of the release
statement is undefined. Alternatively, one could define the release statement
to be equivalent to the null statement when the variable to be released is
not contained in the data environment, in which case (release x)(d0) = dO.
See Section 2.1.7 for a discussion of the null statement.

Variables of the same name existing simultaneously in a data environment
form, in effect, a ‘stack’, or last-in first-out store or list. The declaration
and release statements are used to manipulate this stack by adding a new
variable or deleting the most recently added still present variable with the
stated name. Among those variables present in a data environment which
bear a common name, only the first one (i.€. the one created by the most
recently executed declaration which is still effective) is accessible by
references in expressions, etc. A newly declared variable conceals all other
variables of the same name in the data environment in question. The values
of concealed variables may be rendered accessible again only by removing
the concealing variables by executing one or more release statements.

Note that

valvar(x, (release x)"(d))

is the value of the nth concealed variable with the name x in the data
environment d. We will make use of this fact when we wish to refer to
concealed variables in lemmata, etc.

Exercise

10 Specify precisely the domain’ of a release statement.

2.1.6 The procedure call without parameters

Often, it is convenient to label a single or compound statement and to refer
to (invoke, activate) that statement from one or more points in a program.
A statement so labeied and referenced is variously called a procedure,
program, subprogram, routine, subroutine, etc.

Definition 2.19: If a procedure named P consists of the statement S, then
the result of executing the statement
call P

upon a data environment d0 is the same as the result of executing S upon
do, i.e.
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(call P)(d0) = S(d0)

We will usually specify that a procedure named P is to consist of the
statement § by writing

procedure P: S endprocedure

In many programming languages provision is made for ‘passing’ values,
variables, expressions, etc. (‘parameters’) between the calling environment
and the called procedure. The semantics of calling procedures with such
parameters is the subject of Section 4.0, Procedure calls with parameters.

2.1.7 The null statement

Definition 2.20: The null statement is an empty statement and maps a
data environment into itself:

(null statement)(d0) = d0

The null statement is an identity function. It occurs, for example, in the if
statement when nothing is to be done in either the then or the else part.

2.1.8 Other loop constructs

Many programming languages offer other loop constructs, either instead of
or in addition to the while loop defined in Section 2.1.3. These other loop
constructs can be defined in terms of the while loop. Some of the more
frequently encountered types of loops are defined below. Because the
definitions of most of these constructs vary from one implementation to
another, the following definitions should be interpreted as examples or
typical definitions, not standardized ones.
The repeat loop

repeat S until C

where § is a statement and C is a conditional expression, is defined to be
equivalent to the sequence of statements

S
while not C do S endwhile

The for loop
for i := E1 to E2 step E3 S next i

where i is a variable name, E1, E2 and E3 are expressions and § is a
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statement, is defined in different ways in different implementations. One
definition is that the above for statement is equivalent to the sequence

i:= Fl
while (E3 = 0 and F1 < i and i = E2)
or (F3 <0and EF2 =iandi < El) do

S
i:=1i+ E3
endwhile

Because of the variations from one implementation to another, considerable
care is advised in using the for construct in any but the most straightforward
ways. Some implementations evaluate E1, E2 and E3 once only, at the
beginning of the loop, and save their values in internal variables during the
execution of the loop. If the statement S in the above while loop would,
for example, alter the values of variables referenced in these expressions,
this model would not apply.

The following loop construct contains an internal exit and is sometimes
a convenient structure for practical work:

loop
s1

if C then exit
S2
endloop

This loop construct is usually defined to be equivalent to

S1

while not C do
S2

S1

endwhile

Still other loop constructs can be found in various programming languages.
Most are quite similar to one or more of those presented above. All can
be expressed in terms of the while loop.

2.2 Programming constructs as functions on D*, the set of
sequences of data environments

In Section 2.1, each program statement was considered to be a function
which mapped a data environment into another data environment. Each
compound statement was also considered to be a single function, the value




54 2 BASIC SEMANTICS

of which was a (single) data environment. This view of the effect of
executing a program captures adequately the final result (if any) of executing
that program.

In analyzing the behavior of programs, subprograms, etc. it is often useful
to consider not only the final result, but also the ‘computational history’ or
temporal development of its execution. In order to capture this history, it
is useful to view the result of the execution of a program as a sequence of
data environments, not just a single data environment. The number of data
environments in the sequence resulting from applying the program’s function
to the initial data environment may be bounded or countably infinite. In
the first case, the program is said to terminate. If, on the other hand, there
is no end to the sequence of data environments generated (i.e. the result
is an infinite sequence), one says that the program does not terminate but
continues indefinitely in what is often called an ‘infinite loop’.

We define the set D* to be the set of all sequences of data environments
(elements of D). D* contains every sequence of specific (finite) length as
well as every unending sequence (every countably infinite sequence) of data
environments. More formally:

Definition 2.21: The set D* is defined to be
D* = ]D*inf Un in No Dtr

where D*,; is the set of unending (‘infinite’ or ‘infinitely long’) sequences
of data environments:

D*inf = {[dl, dz, ...] | dl in ]D, d2 in ID, }
and D*, is the set of sequences of exactly n data environments:
D*, = {[d\, d2, ... d,] | d,inD,d,inD, ..., d, in D}

Above, n is a non-negative integer and N, is the set of non-negative
integers.

While the above definition of D* includes the empty sequence, only non-
empty ones will be of practical interest to us.

Functions corresponding to program statements which map a sequence
of data environments to a sequence of data environments will be denoted
by an asterisk (*) following the symbol referring to the statement. That is,

S:D—>D

and
S*. D* —» D*
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An element of D*, i.e. a sequence of data environments, will usually be
denoted by d*, d0*, d1*, etc.

We will frequently need to refer to the last data environment in a
computational history (sequence of data environments). This can be facili-
tated by introducing a function which ‘extracts’ the last member from a
sequence.

Definition 2.22: The function last maps a finite, non-empty sequence to
the last member of that sequence.

For example, if

x = [a, b, (]
then
last(x) = ¢

In the following sections, a function $* will be defined for each of the
several types of program statements and constructs. In each case, $* will
have the effect of appending a sequence of data environments to its
argument d0* to form its result d1*. The sequence appended to d0* will
depend only upon the last data environment in d0*. This corresponds to
the following operational idea. The next simple program statement is
executed upon the last data environment in the already generated comput-
ational history. The resulting new data environment is appended to that
computational history. Compound statements (e.g. if and while statements)
are first decomposed into their individual constituent simple statements
before applying them in the manner described above, so that the execution
of each individual statement contributes a data environment to the comput-
ational history.

~ 2.2.0 The assignment statement

The effect of executing an assignment statement A upon a sequence d0* of
data environments is to append A(last(d0*)) to d0*, forming a new sequence
dl* of data environments. That is, the assignment statement is applied to
the last data environment in d0* as described in Section 2.1.0 above. The
resulting data environment is appended to d0* to form d1*. More formally:

Definition 2.23: ‘The result of applying an assignment statement A to a
computational history d0* is

A*(d0*) = d1*




s6 2 BASIC SEMANTICS

where
d1* = d0* & [A(d0)]
and
d0 = last(d0*)
Combining the several expressions above into one formula, we obtain the
following more compact form of the definition:

A*(d0*) = d0* & [A(last(d0*))]

Exercise

11 Specify precisely the domain of an assignment statement A* on D*.

2.2.1 The if statement
Definition 2.24: The effect of executing the if statement

if B then S1 else S2 endif

called S in the following paragraphs, upon the sequence d0* of data
environments is

$*(d0*) = ((if B then S1 else S2 endif)*)(d0*) = d1*
S1*(d0*), if B(last(d0*)) = true
$2%(d0*), if B(last(d0*)) = false

5$*(d0*) is defined whenever B(last(d0*)) is defined (and true or false) and
either S1*(d0*) or $2*(d0*) as required above is defined. Otherwise,
5*(d0*), and hence the effect of executing the if statement, is undefined.

Either the then or the else part may be empty, that is to say, either S1
or S2 may be a null statement (see Section 2.2.7).

Compare this definition of the function of the if statement on D* with
the definition given in Section 2.1.1 of its function on D.

Note that unlike the effect of the assignment statement described in
Secton 2.2.0 above, the if statement does not necessarily append exactly
one data environment (e.g. [S1(last(d0*))] or [S2(last(d0*))]) to d0* to
form d1*. S1 or S2 or both may be compound statements, in which case
several data environments will typically be appended to d0* to form d1*.

Exercise

12 Specify precisely the domain of an if statement on D*.
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2.2.2 A sequence of program statements
The operational meaning of the sequence § of statements

S1. 82
given in Section 2.1.2 suggests the following definition of the function S*.

Definition 2.25: The effect of applying the sequence S of statements (S1,
$2) to the computational history d0* is

S$*(d0*) ((81, $2)*)(d0*)

= 852%(8$17(d07)), if $1*(d0*) is of finite length
S1#(d0%), otherwise

e.g. if $1%*(d0*) is an unending sequence.

That is, the function §* is the composition of the functions S1* and $2*.
The comments in Section 2.1.2 regarding associativity and commutativity
apply here as well.

Exercise

13 Specify precisely the domain of a sequence of statements on D*.

2.2.3 The while loop

The definition given in Section 2.1.3 for the function of the while loop on
D generalizes to a definition of its function on D* with one important
difference. The while function on D was not defined if the condition B
always remained true. The while function on D*, on the other hand, is
defined in this case (assuming that the other conditions are met, e.g. that
S(d) is always defined). When the condition B always remains true, the
value of the while function on D* is an infinite sequence.

The while function on D* can be defined in several equivalent ways,
corresponding to the definitions given in Section 2.1.3. Recalling the general
form of the while loop

while B do S endwhile
we state the following four equivalent definitions.

Definition 2.26: The result of applying the while loop above to the sequence
d0* of data environments is defined recursively as follows:

((while B do S endwhile)*)(d0*) = d1*
= ((S, while B do S endwhile)*)(d0*), if B(last(d0*)) = true
((null statement)*) (d0*), if B(last(d0*)) = false
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If B(last(d0*)) is neither true nor false, e.g. if it is undefined. then the
effect of the while loop is undefined.

When B(last(d0*)) is false, the entire while construct is equivalent to the
null statement. Note that this equivalence is indicated explicitly in the above
definition. If the effect of the null statement were defined to be the identity
function on D*, it would not be necessary to include the explicit reference
to the null statement in the above definition (cf. Section 2.1.3). However,
as discussed later, in Section 2.2.7, it is usually more appropriate to define
the effect of the null statement upon a computational history differently,
necessitating in turn the above form of the definition of the while construct
as a function on D*.

Lemma 2.4: The result d1* will be an unending (infinite) sequence if and
only if either of the following situations arises:

1 One of the applications of S leads to an infinite sequence, i.e. S is
applied to a d* such that $*(d*) is an unending sequence. The definition
of the sequence of program statements given in Section 2.2.2 leads to
the termination of the iteration implied by the above recursive definition.
The remainder of the sequence ((while B do S endwhile)*)(d0*) is the
unending sequence S*(d*).

2 Each application of S to a d* leads to a finite sequence S*(d*), but
condition B is always true. The loop fails to terminate, but the result
d1* is precisely defined and is an unending sequence.

Proof: The proof of this lemma is left as an exercise for the reader. B

Both of the above two situations are probably seen more clearly in the
formulation of the following equivalent definitions.

Definition 2.27: Applying the definition of the sequence of program
statements given in Section 2.2.2 above, definition 2.26 can be rewritten in
the following form:

((while B do S endwhile)*)(d0*) = d1*
= ((while B do S endwhile)*) (5*(d0%)),
if $*(d0*) is a finite sequence and B(last(d0*)) = true
$*(d0*), if $*(d0*) is an infinite sequence and B(last(d0*)) = true
((null statement)*) (d0*),
if B(last(d0*)) = false

I

The comments following definition 2.26 above apply here as well.

Definition 2.28: Definition 2.13 of Section 2.1.3 applied to the compound
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statement itself, not to the corresponding function on D. Therefore, the

formulation of definition 2.13 remains unaltered here. The construct
while B do S endwhile

is equivalent to the construct

if B then (S, while B do endwhile) endif

Applying this definition repeatedly and simplifying in the case that condition
B always remains true yields the unending sequence of program statements

S, 8,8, ...
as the equivalent construct. See especially part 2 of lemma 2.4.

Definition 2.29: The computational history resulting from executing the
compound statement while B do S endwhile upon the computational history

do* is
((while B do S endwhile)*)(d0*) = ((S5”, null statement)*)(d0*)

where

n = min{i | i is a non-negative integer and [(5*)(d0*) is an infinite
sequence or B(last((S*)/(d0*))) = false]}

provided that for all integers j in the interval 0 = j < n
B(last((S*Y(d0*))) = true

If no such n exists but all ($*)/(d0*) are defined (and of finite length) and

all B(last((S*)'(d0*))) are defined (and true), then the effect of the while
loop is defined to be

((S, S, ...)*)(d0*)

an unending sequence of data environments. Part 2 of lemma 2.4 applies
to this case.

If no such n exists because some (§*)/(d0*) is undefined or some

B(last((S*)/(d0*))) is neither true nor false (e.g. undefined), then the effect
of the while loop is undefined.

Above, (5*)°(d0*) is to be interpreted by convention as d0* for any S and
any d0*.

Exercise

14 Specify precisely the domain of a while statement on D*.
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15 Show that the four definitions above are équivalent, that is. that any
one of them implies the other three.

16 Prove lemma 2.4.

17 Prove or disprove the following conjecture: For any statement or
construct S and for any finite, non-empty computational history d0*,

$*(d0*) = d0* & [S(last(d0¥))]

2.2.4 The declaration statement

The effect of executing a declaration statement D upon a sequence d0* of
data environments is comparable to that of the assignment statement. The
data environment D(last(d0*)) is appended to d0*, forming a new sequence
d1* of data environments. That is, the declaration statement is applied to
the last data environment in d0* as described in Section 2.1.4. The resulting
data environment is appended to d0* to form d1*. More formally:

Definition 2.30: The result of applying a declaration statement D to a
computational history d0* is
D*(d0*) = d1*
where
d1* = d0* & [D(d0)]
and
d0 = last(d0*)

Combining the several expressions above into one formula, we obtain the
following more compact form of the definition:

Exercise

18 Specify precisely the domain of a declaration statement on D*.

2.2.5 The release statement

The release function on D* is defined in terms of the release function on
D (see Section 2.1.5) in the same manner as was used in the cases of the
assignment and declaration statements above.
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Definition 2.31: The result of applying a release statement R to a
computational history d0* is

R*(d0*) = d0* & [R(last(d0*))]

Exercise

19 Specify precisely the domain of a release statement on D*.
2.2.6 The procedure call without parameters

Definition 2.32: 1f a procedure named P consists of the statement S, then
the result of executing the statement

call P

upon a computational history d0* is the same as the result of executing $
upon d0*, i.e.

((call P)*)(d0*) = S*(d0*)

See Section 2.1.6 for a brief discussion of procedures, procedure calls, etc.

2.2.7 The null statement

As in the case of the null function on D (see Section 2.1.7), the null function
an D* can be defined as the identity function.

Definition 2.33: The effect of the null statement applied to a sequence
d0* of data environments is d0*:

((null statement)*) (d0*) = d0*

Definition 2.34 (alternative): For the purposes of many analyses it is more
appropriate to define the null statement’s function on D* in such a way
that it duplicates the last data environment in its argument:

((null statement)*)(d0*) = d0* & [last(d0*)]
The alternative definition above follows the pattern of all other simple
statements S (i.e. the assignment, declaration and release statements):
§5*(d0*) = d0* & [S(last(d0*))]
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and ensures that the execution of each statement increases the length of
the computational history.

Some degenerate statements (e.g. x := x) are null statements according
to definition 2.34, but not definition 2.33.

Where not explicitly stated otherwise, definition 2.34 applies.

2.2.8 Other loop constructs

The functions on D* corresponding to the several loop constructs defined
in Section 2.1.8 can be determined by applying to the equivalent structures
given there the relevant parts of Sections 2.2.0 through 2.2.7.

Chapter 3

Proof rules for the individual
programming CONSstructs

Logic can be patient for it is eternal.
— Oliver Heaviside

For many parts of nature can neither be invented with sufficient
subtilty, nor demonstrated with sufficient perspicuity, nor
accommodated unto use with sufficient dexterity, without the aid and
intervening of the mathematics; of which sort are perspective, music,
astronomy, cosmography, architecture, enginery, and divers others.

— Francis Bacon

Science is built up with facts, as a house is with stones. But a
collection of facts is no more a science than a heap of stones is a
house.

— Jules Henri Poincaré

It is the spine that holds together the whole length of an animal and
preserves its straightness.
—Aristotle

When verifying a part of a program being designed or of an already existing
program, some specification exists for the subprogram in question, defining
the tasks it is to perform. This specification should be a precise statement,
covering all contingencies of consequence. Properly, the specification is a
theorem or a collection of theorems, each of which is normally a conditional
expression (proposition), whose value in the terminal data environment is
to be true, or some other proposition about the terminal data environment.
In some cases, the theorem may be a proposition about the computational
history of the program’s execution (i.e. about the sequence of data
environments generated by the program) rather than about the terminal
data environment alone.
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Perhaps the generally most useful proof strategy is to start with the
proposition of the theorem to be proved and, working backward through
the part of the program of interest. find a condition whose prior truth
guarantees the subsequent truth of the proposition of the theorem. Two
propositions related in this way are often called a postcondition and a
precondition. Showing the precondition to be true then proves the truth of
the postcondition and hence the theorem. Normally, the notion of the
precondition is defined in such a way that its truth does not guarantee that
the statement(s) in question terminate; therefore, termination must be
proved separately.

In implementing this proof strategy, it is especially helpful to view the
precondition (e.g. Q) and the postcondition (e.g. P) as subsets of D (more
specifically, the subsets containing all d such that Q(d) = true and P(d) =
true respectively, see Section 2.0.5). Conversely, a subset can be viewed as
a condition: the condition Q, for example, is true for d (i.e. Q(d) = true)
if and only if d is in the subset Q. (For our purposes, the value false and
an undefined value of a condition will frequently be considered to be
equivalent.) The statement S in question is interpreted as a function on D
to D (see Section 2.1). Of interest are the sets

S(Q) = {S(d) | d in the domain of S and d in Q}
the image of Q under §, and especially
S~!(P) = {d | d in the domain of S and S(d) in P}

the inverse image of P under S.

Definition 3.0: A subset Q of D is a precondition of a given postcondition
P with respect to the statement S (under the function §) if S(d) is in P for
all d which are both in Q and in the domain of S (i.e. for all d in the
intersection of Q and the domain of §). Symbolically,

{Q} S {P}

That is, if Q is true immediately before S is executed, P will be true
immediately after S has been executed (if the effect of executing S is defined
and execution terminates). In this case, one says that S is partially correct.

Note that the above definition allows elements d in D for which S(d) is
not defined to be included in the precondition (set) Q. In particular, the
data environment resulting from executing S upon the data environment d
may be undefined because either (a) execution does not terminate (i.e.
S*([d]) is an infinite sequence), (b) execution of the statement involves a
reference to a variable not contained in the data environment in question
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(i.e. $*([d]) is undefined) or (c) for some other reason, an expression cannot
be evaluated (also in this case, S*([d]) is undefined; see Section 2.0.3). In
practical work, the first of these reasons — an infinite loop — is the most
important, although all must be considered.

It is sometimes useful to consider preconditions which also guarantee a
defined result and termination of the execution of the statement in question.
We therefore introduce the following stronger notion of a strict precondition.

Definition 3.1: A subset Q of D is a strict precondition of a given
postcondition P with respect to the statement S (under the function S) if

Q is a precondition of P under §
and
Q is a subset of the domain of §

In this case, one writes
{Q} S {P} strictly

That is, if Q is true immediately before S is executed, then the result of
the execution of S is defined, execution will terminate and P will be true
immediately after S has been executed. In this case, one says that S is
totally correct.

Thus, if one proves (a) that a statement, program, etc. is partially correct
and (b) that its execution yields a result (terminates), then the statement is
totally correct.

Several facts follow directly from the above definitions. A strict precon-
dition is a precondition. The intersection of any precondition Q and the
domain of the statement S in question is a strict precondition. A subset of
a precondition is a precondition. A subset of a strict precondition is a strict
precondition.

A subset Q of D is a precondition of P with respect to (under) S if and
only if S(Q) is a subset of P. The inverse image of P under S is, of course,
the weakest strict precondition of P with respect to S and every strict
precondition of P under S is, therefore, a subset thereof.

A precondition Q, being a sufficient condition, has the property that

valexp(Q, d) = valexp(P, S(d)), for all d in the domain of §

The weakest precondition Qw, being a both necessary and sufficient
condition, has the property that

valexp(Qw, d) < valexp(P, S(d)), for all d in the domain of §
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The weakest precondition of a postcondition P with respect to a statement
S is often written wp(P, S). For the weakest strict precondition we will use
the notation wsp(P, S).

If all d in the domain of S are also in the set wp(P, S), i.e. if the
condition wp(P, S) is identically true on the domain of S, then P is always
true after executing S, regardless of the initial data environment.

If the set wp(P, S) is empty, i.e. if the condition wp(P, S) is either false
or undefined for each data environment in the domain of S, then P is never
true after executing S, regardless of the initial data environment; the
postcondition P will never be satisfied.

The relationships among a postcondition, its preimage, a precondition
and its image are shown diagrammatically in Fig. 3.0.

For any particular postcondition P and statement S it is possible and, in
fact, usual that many preconditions Q exist. In order to reduce the difficulty
of proving Q true, it is advantageous to find the weakest (least restrictive)
of all such preconditions or a precondition sufficiently akin to the weakest
precondition. In particular, this need is satisfied by any precondition which
includes the weakest strict precondition, but not necessarily all data
environments outside of the domain of the statement in question. Such a
precondition is not, precisely speaking, necessarily the weakest precondition.
Because it is weak enough, however, to include all the data environments
which the statement maps into the given postcondition, it has most of
the convenient practical properties of the weakest precondition. Such a
precondition, which is often easily constructed, represents, loosely speaking,
a fuzzy intermediate between the weakest strict precondition and the weakest

D D

SUPY=wsp(P,S) s

Fig. 3.0 The relationships among a postcondition, its preimage, a precondition and
its image
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precondition. The area of fuzziness is outside of the domain of the statement
and can usually be excluded easily in another way if necessary. We therefore
make the following definition.

Definition 3.2: A subset Q of D is a complete precondition of a given
postcondition P with respect to the statement S if
Q is a precondition of P under §

and
wsp(P, S) is a subset of Q

One writes

{Q} S {P} completely
The relationships among the concepts of a precondition, a strict precondition
and a complete precondition are illustrated in Fig. 3.1.

The following theorems provide the basis for ‘dividing and conquering’
and can often enable one to work with simpler assertions, later combining

results.

D D

The domain of S L The range of S

/

The postcondition P

I ;-\ strict precondition
A complete precondition
A precondition

. =S P)=wsp (P, S)

Fig. 3.1 The relationships among the domain of a statement, a preconditiop: a
strict precondition, a complete precondition and the preimage of the postcondition
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Theorem 3.0: 1f Q1 and Q2 are preconditions of the postconditions P1
and P2 respectively under the statement S, then

(Q1 and Q2) is a precondition of (P1 and P2) under S

and

(Q1 or Q2) is a precondition of (P1 or P2) under §

Theorem 3.1: If Q1 and Q2 are strict preconditions of the postconditions
P1 and P2 respectively under the statement S, then

(Q1 and Q2) is a strict precondition of (P1 and P2) under S

and

(Q1 or Q2) is a strict precondition of (P1 or P2) under S

Theorem 3.2: 1If Q1 and Q2 are complete preconditions of the postcon-
ditions P1 and P2 respectively under the statement S, then

(Q1 and Q2?) is a complete precondition of (P1 and P2) under S

and

(Q1 or Q2) is a complete precondition of (P1 or P2) under S

Exercise

1 Prove theorems 3.0, 3.1 and 3.2.

2 Show that the following three statements are equivalent for any statement

S and any subsets P and Q of D.

(a) {Q} S {P}

(b) S(Q), the image of Q under S, is a subset of P.

(c) The intersection of Q and the domain of S is a subset of S™!(P), the
preimage (inverse image) of P under S.

3 Show that the following three statements are equivalent.

(a) {Q} S {P} strictly and completely )

(®) Q = wsp(P, S)

() @ =587'P)

4 Show that the weakest strict precondition is the strongest complete

precondition.

In each of the following sections of this chapter, generally useful theorems,
lemmata, etc. relating to a particular type of program construct will be
presented.
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3.0 Proof rules for the assignment statement

3.0.0 Lemma for the assignment statement

Lemma 3.0: Consider the assignment statement
x:=FE

called A below, where x is the name of a variable and E is an expression.
The following equations hold for all data environments d in the domain of
A:

valvar(x, A(d)) = valexp(E, d)
and

valvar(y, A(d)) = valvar(y, d), for all other variable names y in d
Generalizing for the case of the multiple assignment statement

(x1, x2, ...) = (E1, E2, ...)
we have

valvar(x1, A(d)) = valexp(El, d)

valvar(x2, A(d)) = valexp(E2, d)

and
valvar(y, A(d)) = valvar(y, d), for all other variable names y in d

The values of all concealed variables (see Section 2.1.5) remain unchanged
by the execution of the assignment statement; i.e. for all variable names y
in d and for all integers n = 1,

valvar(y, (release y)"(A(d))) = valvar(y, (release y)"(d))

In particular, the values of concealed variables with the same name as a
variable whose value is being changed (e.g. x, x1, x2, etc. above) also
remain unaffected by the execution of the assignment statement:

valvar(x, (release x)"(A(d))) = valvar(x, (release x)"(d))
valvar(x1, (release x1)"(A(d))) = valvar(x1, (release x1)"(d))
valvar(x2, (release x2)*(A(d))) = valvar(x2, (release x2)"(d))
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Proof: The above equations follow directly from the definition of the
assignment statement (see Section 2.1.0). Note that lemma 3.0 does not,
therefore, necessarily apply to those real systems which do not satisfy the
requirements of the definition of the assignment statement. B

3.0.1 Theorem for the assignment statement

Theorem 3.3: Consider a given proposition P over variable names to be
evaluated in the context of a data environment and the assignment statement

x:=FE
as in the lemma in Section 3.0.0 above. If a proposition Q is formed by

replacing every occurrence (if any) of the variable name x in P by the
expression E enclosed in parentheses, then

{Q} x := E {P} completely

Note: The proposition Q formed as described above is often written P%.

Proof: P has, in general, the form P(x, y1, y2, ...). Then
O(x,yl,y2,...) = P(E, y1, y2,...)

For any d in the domain of the assignment statement A above,
valexp(Q, d) valexp(P(E, y1, y2, ...), d)

P(valexp(E, d), valvar(yl, d), valvar(y2, d), ...)

Equality (=) here is understood to mean that if either side of the equation
is defined, then the other side is also defined and the values are equal. If
either side is undefined, the other side is also undefined.

Applying lemma 3.0, we have

valexp(Q, d) = P(valvar(x, A(d)), valvar(yl, A(d)), valvar(y2, A(d)),

= valexp(P, A(d))

Thus, if d is in Q then A(d) is in P. Q fulfills the definition of a precondition
of P under A, proving the first part of the theorem

{Q} x := E{P}

Because valexp(Q, d) = valexp(P, A(d)) for all d in the domain of A, d
is in Q if A(d) is in P. Thus the inverse image of P — i.e. the weakest strict
precondition — is a subset of Q. Q satisfies, then, the definition of a
complete precondition. Wl
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The corresponding theorem for the multiple assignment statement can be
proved in the same manner. Q is formed by replacing x1, x2, etc. in P by
E1, E2, etc. respectively simultaneously, not one after another.

The proposition Q defined in this theorem is not necessarily a strict
precondition. The truth of Q guarantees only that the variables appearing
in Q are contained in the data environment upon which A is to be executed.
These variables are comprised of the variables other than x appearing in P
and, if x appears in P, the variables appearing in E. Neither P nor E need
refer to all variables which must be present in the data environment upon
which A is executed. For example, consider the assignment statement

x:=y

and the proposition P
z =4

Then
Q=P=(=4

A data environment satisfying this condition need not contain either variable
x or y. In particular the data environment

= [(z. Z, 4)]

is in Q but is not in the domain of A. In this case, Q is not a strict
precondition; it is, however (as it must be according to the theorem), a
precondition and a complete precondition.

The meaning of the statement in the theorem ‘a proposition P over
variable names to be evaluated in the context of a data environment’
requires some elaboration. In the final analysis, it means any proposition
P for which the steps in the proof are valid. In particular, the proposition
P must be an expression in which the variable name to be replaced
represents a value to be used in performing operations (evaluating functions)
referenced (explicitly or implicitly) in the expression. Furthermore, the
corresponding value is to be determined in the context of a specific data
environment as described in Sections 2.0.2 and 2.0.4.

Not all meaningful logical statements satisfy this requirement. For exam-
ple, the logical statement ‘the variable named x is contained in the data
environment d’ is not a statement referring finally to a value of x but to
the name itself. Substituting y for x (corresponding to the statement x :=
y) leads to a would-be precondition which is not applicable. Substituting
3% (y + z) for x (corresponding to the statement x := 3 * (y + z)) would
lead, of course, to a totally meaningless statement.
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Care should also be exercised when applying this theorem to conditional
expressions containing references to array variables. For example, consider
the statement x(¢) := 1 and the postcondition x(i) = x(j). The sequence of
symbols ‘x(i)’ is not a variable name and the theorem may not be applied
to such an identifier. The names of the variables comprising the array are
typically ‘x(1)°, ‘x(2)’, etc. In order to obtain the true variable name, the
subscript expression(s) must be replaced by its (their) value(s) in the
data environment in question. To indicate this explicitly, we rewrite the
postcondition as follows:

x(valvar(i, A(d))) = x(valvar(j, A(d)))

The values of i and j are not changed by the execution of the statement.
In other words,

valvar(i, A(d)) = valvar(i, d)

and
valvar(j, A(d)) = valvar(j, d)

The postcondition can, therefore, be rewritten as
x(valvar(i, d)) = x(valvar(j, d))

Note that this is still the postcondition, i.e. the variables x(-) are to be
evaluated in A(d), not d, even though the subscripts (i and j) are evaluated
in d.

The meaning of the assignment statement can be made more explicit by
writing it as follows:

x(valvar(i, d)) := 1

We may now apply the theorem to this form of the statement and the last
version of the postcondition above. We must, however, distinguish between
two cases: (a) valvar(i, d) = valvar(j, d) and (b) valvar(i, d) # valvar (j,
d). In the first case, both x(valvar(i, d)) and x(valvar(j, d)) — being the
same variable name — must be replaced by 1, resulting in the precondition
1 =1, which is equivalent to ‘true’. In the second case, substitution in
accordance with the theorem leads to the precondition 1 =x(valvar(j, d)).
Combining the results for these two cases, the precondition becomes

[valvar(i, d) = valvar(j, d)]
or [(valvar(i, d) # valvar(j, d)) and (x(valvar(j, d)) = 1)]

Because a precondition is to be evaluated in d, the above expression can
be simplified to

[i = jlor [( #)) and (x(j) = 1)]
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which is equivalent to

[i = jlor[x(j) =1]
This is a complete precondition of the postcondition and statement given
above. Unthinkingly (and incorrectly) applying the theorem above might
lead one to conclude that (x(j) = 1) is the complete precondition being
sought. While this expression is a precondition, it is not a complete
precondition.

3.0.2 Application of the lemma and theorem for the assignment statement

By applying lemma 3.0, one can often derive a postcondition from a given
precondition, working forward through the program. Generally, howevgr,
it is more useful and productive to work backward through a program, using
theorem 3.3 to derive a complete precondition from a given postcondition.

3.1 Proof rules for the if statement

3.1.0 The progressive theorem for the if statement

Theorem 3.4: If
{Q and B} S1 {P}
and
{Q and not B} S2 {P}
then
{Q} if B then S1 else S2 endif {P}
Note: the above if statement will be called S below.

Proof: A data environment d is in the domain of the if statement above
if and only if

1 dis in the domain of B and
2 B(d) = true = d is in the domain of S1 and
3 B(d) = false = d is in the domain of S2.

Consider any d in the set Q and in the domain of the if statement. If
' B(d) = true, then d is both in Q and in the domain of S1. By the first
hypothesis of the theorem. $1(d) is in P and, therefore, by the definition
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of the if statement (see Section 2.1.1), 8(d) is in P. If, on the other hand.
B(d) = false, then d is both in Q and in the domain of S2. By the second
hypothesis of the theorem and, again, the definition of the if statement,
$2(d) and S(d) are in P.

That is, for all 4 in Q and in the domain of the if statement, S(d) is in
P. The set Q is, therefore, a precondition of P with respect to the if
statement. B

The progressive proof rule for an if statement is shown in Fig. 3.2.

lo
true false

@and B8y 1{0 and not 8

St 52

P P

Fig. 3.2 The progressive proof rule for an if statement

3.1.1 The retrogressive theorem for the if statement

Theorem 3.5: 1f

{Q1} S1 {P} and

{Q2} s2 {P}
then

{(Q1 and B) or (Q2 and not B)} if B then S1 else S2 endif {P}
Note: We define O = ((Q1 and B) or (Q2 and not B))..

Proof: From the above definition of Q, it follows that
(Q and B) = (Q1 and B)

and
(Q and not B) = (Q2 and not B)

2 A

R
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By the first hypothesis of the theorem, Q1 is a precondition of P under
S1. Its subset (Q1 and B) is, therefore, also a precondition. But (Q1 and
B) = (Q and B), so (Q and B) is a precondition of P under S1. Similarly,
(Q and not B) is a precondition of P under S2. Applying the progressive
theorem for the if statement (see Section 3.1.0), it follows that Q is a
precondition of P under the if statement. B

If 01 and Q2 are complete preconditions, then Q is a complete precondition

of P under the if statement.
The retrogressive proof rule is shown in Fig. 3.3 and the weakest strict

precondition under an if statement is shown in Fig. 3.4.

(@1 and B) or (@2 and not B)

true l false

o J o2

St 52

P P

f

P
Fig. 3.3 The retrogressive proof rule for an if statement

D D

wsp(P,S1)

St

52

if 8
then S'1
else S2

wsp(P,S52)

endif

B=false|| :B=true
d AY

’ N
7

B undefined

L § ® =wsp (P,if B then S1 else S2 endif)

Fig. 3.4 The weakest strict precondition under an if statement
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3.1.2 Application of the theorems for the if statement

Sections 3.1.0 and 3.1.1 above present two versions of fundamentally the
same theorem. The form of the progressive theorem (Section 3.1.0) is
adapted to the problem of deriving a postcondition from a known precon-
dition. The form of the retrogressive theorem (Section 3.1.1) enables one
to determine directly a precondition from a given postcondition. This is
often the more useful procedure.

3.2 Proof rules for a sequence of program statements

3.2.0 The theorem for preconditions under a sequence of statements

Theorem 3.6: If
{0} 1 {01}

and
{01} 82 {P}

then

{Q} (81, 82) {P}

Proof: A data environment d is in the domain of the sequence of statements
(51, 82) if and only if

1 d is in the domain of S1 and
2 81(d) is in the domain of S2.

For any din Q a}nd in the domain of S1, S1(d) is in Q1. If this S1(d) is
also in thf: domain of §2, then $2(S1(d)) is in P; i.e. if d is in Q and in
the domain of ($1, $2), then $S2(S1(d)) is in P. Thus, Q is a precondition
of P under (51, S2). &

3.2.1 The theorem for complete preconditions under a sequence of
statements

Theorem 3.7: If
{Q} 51 {Q1} completely

and

{01} 82 {P} completely
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then
{Q} (81, S2) {P} completely

Proof: By the previous theorem for preconditions (see Section 3.2.0), Q
is a precondition of P under (S1, S$2); symbolically, {Q} (51, $2) {P}.
Here, we need to show only that Q is also complete, i.e. that wsp(P, (51,
$2)) is a subset of Q.

From the two hypotheses of this theorem it follows that

wsp(Q1, S1) is a subset of QO
and
wsp(P, S2) is a subset of Q1

For any d in wsp(P, (S1, 52)) (which is the inverse image of P under (S1,
$2)), d is in the domain of S1, S1(d) is in the domain of $2 and $2(S1(d))
is in P. Therefore, S1(d) is in wsp(P, S2) and hence in Q1. This implies,
in turn, that 4 is in wsp(Q1, S1) and hence in Q; i.e. for all d in wsp(P,
(51, 82)), d is in Q. Thus, wsp(P, (51, $2)) is a subset of 0. B

3.2.2 Application of the theorems for a sequence of program statements

The above theorems can be generalized and easily proved for a sequence
of any number of program statements. Probably the most important
implication' thereof is that one can find a precondition with respect to a
sequence of statements by working backward, statement by statement, from
the desired postcondition. First, one finds a precondition under the last
statement, which is then used as the postcondition for the next to the last
statement, etc. The above theorems guarantee that a precondition with
respect to the first statement found in this way is also a precondition with
respect to the entire sequence of statements:.

If each precondition found in the above process is a complete precondition,
then the precondition under the first statement in the sequence found in
the way described above is a complete precondition of the given postcon-
dition with respect to the entire sequence of statements.

3.3 Proof rules for the while loop

3.3.0 The loop theorem

. Theorem 3.8: 1If
{I and B} S {I}
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then
{1} while B do S endwhile {/ and not B}

Note: Below we will call the statement while B do S endwhile simply W.

1 IOOf. Iol ally 1T m N
data environment d m the dOlllaln Of u thele exists an

W(d) = $"(d), (i.e. for the particular d, W is equivalent to S")
B(S"(d)) = false

and

B(S(d)) = true, for all i such that 0 < i < n—1

(see definitions 2.14 and 2.29 in Chapter 2).

By Fhe last equation above, the condition B is satisfied before the
execution of each S in the sequence of n S’s. Initially, the condition [/ is
also true by hypothesis. Thus, the precondition of the first S is satisfied
gnd therefore the condition / will be true after the execution of the first S
in the sequence. The condition (/ and B) will be true before the execution
of the second S, condition / will, therefore, be true thereafter and so on

After the execution of the final S in the sequence, condition [ will t;e
true. By the next to last equation above, condition B will be false, i.e
co;xdmon (I and not B) will be true. B T

ntuitively and operationally, the flow chart in Fi i
idea of the proof particularlyylucidly. arein Fig. 3. dllustrates the key

The fzondition I in this proof is called the loop invariant, because its value
(true) is constant throughout the execution of the loop. It may, and often
QOes, l?ecome false at intermediate points within S, but it is a’llways true
immediately before and after each execution of S.

7 |«
Y ;
5 rue s
I and £ I
false
I and not A

Fig. 3.5 The proof rule for a while loop

\
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The loop invariant and this theorem are certainly among the most
important concepts for designing and constructing computer programs and
for proving them correct.

3.3.1 The theorem for the weakest strict precondition of a loop

In this section we will consider the question of the weakest strict precondition
of a postcondition P with respect to the while statement

while B do S endwhile

which will often be abbreviated W below. Closely related is the problem
of determining the weakest loop invariant.

We begin by noting that if the loop terminates, the value of the
expression B in the resulting data environment W(d) will be defined and
false (see the loop theorem in Section 3.3.0 above). If W(d) satisfies the
postcondition P, then it will be in the intersection of the sets P, the
domain of B and D — B. We can restrict our consideration, therefore, to
postconditions P which are subsets of the domain of B and of D — B
without detracting from the generality of our results.

If a postcondition P’ is given which does not fulfill the above requirement,
then one should work with the new postcondition (Boolean expression)
P = (P’ and not B). This postcondition will necessarily be a subset of the
domain of B and of D — B.

It is helpful to consider the preconditions under which the loop terminates
after exactly n executions of S with the resulting data environment dl in
P. The precondition that it terminates at all with W(d) in P is then the
union of the preconditions for all n. We begin the formal analysis of this
section, therefore, by stating the following lemma.

Lemma 3.1: Consider a given condition B, statement S, non-negative
integer n and proposition P, which is a subset of the domain of B and of
D — B. Then the while statement (see above), when executed upon any
data environment d in D, terminates after exactly n executions of S with
W(d) in P, i.e.

Al: 87(d) is defined and in P
and

A2: B(S"(d)) = false
and

A3: B(S{(d)) = true, for all i such that 0 =i = n—1
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if and only if
d is in Y"(P)

where Y is defined as the function
Y(M) = (Band S7' (M))

for all subsets M of D.

Proof (preliminary comments): The subset Y"(P) of D is the set of data
environments upon which the while statement terminates after exactly n
iterations with W(d) in P. If executed upon a data environment d, the while
statement will terminate after exactly n+1 iterations with W(d) in P if
(a) B(d) is true (otherwise it would terminate immediately) and (b) when
executed upon S$(d), the while statement terminates after exactly n iterations
with W(d) in P. The latter condition is equivalent to the condition

d in S~/(Y"(P))

Combining with the first condition stated above (B(d) = true) leads to the
definition of Y given in the statement of the lemma. The detailed proof
below essentially traces this logical argument in reverse.

Fig. 3.6 illustrates the sets Y*(P) and facilitates following the proof.

Proof (detailed): We begin by noting that the propositions A1, A2 and

A3 together repeat in more formal notation the proposition stated in words
in the first clause of the second sentence of the lemma (see definition 2.14).

D

S s ey sT'orey s r%e)) 8= undefined

P) y(P) y2(P) y' (P G =true

Fig. 3.6 The weakest strict precondition under a while loop
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Also, we note that A1 = A2, because P is a subset of not B. Therefore,
we need only prove that

(Al and A3) < d in Y"(P)

We will prove this lemma by induction on n. If n = 0, the proposition of
the lemma reduces to a tautology, so is true. . '

We assume that the lemma is true for n and will prove it to hold for
n+1 also.

y"+\(P) = Y(Y*(P)) = B and S~' (Y"(P))

Therefore, d is in Y7*1(P) if and only if d is in B and in $~'(Y"(P)), i.e.
if and only if

B(d) = true
and
S(d) is defined and in Y"(P)

Under the assumption that the lemma is true for n, the last proposition
above is equivalent to

B(d) = true
and

S$"(S(d)) is defined and in P
and

B(S'(S(d)) = true, for all i such that 0 =i = n—1
Simplifying, this is equivalent to

S"+1(d) is defined and in P
and

B(Si(d)) = true, for all isuch that 0 =i =n
That is, d is in Y**(P) if and only if A1 and A3 hold for n+1. B

Theorem 3.9: If the given proposition P is a subset of the domai.n'of B
and of D — B, then the weakest strict precondition ‘of the proposition P
with respect to the statement while B do S endwhile is

wsp(P, W) = P or Y(P) or Y*(P)or ... Y(P)or ...

where Y is as defined in the lemma above.
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Proof: We define Q as
Q=PorY(P)or Y2(P)or ... Y(P)or ...

For any d in Q, d is in Y"(P) for some n = 0. By the lemma above and
definition 2.14 W(d) is defined and is in P. Therefore, Q is a strict
precondition of P under W.

Consider any d in D. If W(d) is defined, that is, if the while statement
terminates, then by definition 2.14, it terminates after some specific number
n of executions of S. If W(d) is in P, then, by the lemma above, d is in
Y”(P) and hence in Q; i.e. if W(d) is defined and in P, d is in Q. Therefore,
the inverse image of P under W, which is wsp(P, W), is a subset of Q.

But Q is a strict precondition. Therefore, Q must be wsp(P, W), the
weakest strict precondition of P under W. B

The weakest strict precondition of P under W is also the weakest strict loop
invariant.

3.3.2 The corollary for complete preconditions of a loop
The following corollary is less sharp than the theorem presented in
Section 3.3.1 above, but it is often of greater practical use.
Corollary: If the given proposition P is a subset of the domain of B and
of D — B, then
Q=Zyor Z,or Z,or ... Z;or ...
is a complete precondition of P with respect to the statement
while B do S endwhile
where
Z() =P
Z, = (Band C,_)),fori=1,2, ...
and C,_, is any complete precondition of Z,_, with respect to S.
Proof:  As in previous sections, we will refer below to the statement while
B do S endwhile as W.
First, we will prove that Q as defined above is a precondition of P under
W. Then, we will show that the weakest strict precondition of P under W

is a subset of Q. Thus, Q satisfies the requirements imposed by the definition
of a complete precondition.

2
&
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:
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In order to demonstrate that Q is a precondition of P under W, we
consider any data environment d in Q and in the domain of W. From the
above definition of Q it follows that d must be in one of the sets Z;
(i=0,1,2,...). Thatis, there exists an i such that d is in Z,.

Ifi = 0, then d is in Z, = P. It follows that B(d) = false, W(d) = d
and, therefore, W(d) is in P. Thus, Q satisfies the definition of a precondition

~ of P under W in this case.

Otherwise, i > 0. The fact that d is in Z, = (B and C,_,) implies that
B(d) = true, d is in C;_, and, therefore, S(d)isin Z,_,
B(S(d)) = true, S(d) is in C,_, and, therefore, S§*(d) isin Z,_,

B(S572(d)) = true, S~2(d) is in C, and, therefore, $'~'(d) is in Z,
B(S7"'(d)) = true, S7'(d) is in C, and, therefore, $(d) is in Z, = P
B(Si(d)) = false.

Thus, W(d) = Si(d), W(d) is in P and, therefore, Q is a precondition of P

under W.
In order to show that wsp(P, W) is a subset of O, we next prove by

induction on i that

Yi(P) is a subset of Z,, fori = 0,1, 2, ...
We begin with the iterative step. If

Y(P) is a subset of Z;

then the inverse images of these sets under any function, in particular S,
are in the same relation to each other:

S~(Y{(P)) is a subset of S7'(Z))

But S~1(Z,) is the weakest strict precondition of Z; under S, whi.cl'i is a
subset of any complete precondition C; of Z; under S (see the definition of
a complete precondition). Therefore,

STI(Y{(P)) is a subset of C;
and
(B and S~'(Y/(P))) is a subset of (B and C))

Referring to the definitions of Y(-) (see lemma 3.1) and of Z,, it follows
_that

Yi*1(P) is a subset of Z;,,
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completing the iterative step in the proof by induction. We obtain the
starting point for the inductive proof by noting that

Y(P) = P = 2Z,
from which it follows that
Y°(P) is a subset of Z,
Thus,
Y/(P) is a subset of Z,, fori = 0, 1, 2, ...
and
(P or Y(P) or Y>(P) or ...) is a subset of (Z,or Z, or Z, or ...)

From the theorem for the weakest strict precondition of a loop (see
Section 3.3.1) and the definition of Q as given in the statement of this
corollary, it follows that

wsp(P, W) is a subset of Q

Summarizing, Q is a precondition of P under W and includes the weakest
strict precondition of P under W as a subset, thereby satisfying the definition
of a complete precondition of P under W. B

A complete precondition of P under W is also a loop invariant.

If the above corollary is modified by deleting the word ‘complete’ in both
places, the resulting statement is also true. That is, if every C,_, is a
precondition of Z;_, (but not necessarily a complete precondition), Q will
be a precondition of P under W. Q will also be a loop invariant.

The precondition Q delivered by the above corollary guarantees further
that the loop will not execute endlessly. This is shown formally in the
following lemma and theorem.

Lemma 3.2: Let Z; be defined as in the corollary above except that we
require only that each C be a precondition of the corresponding Z, not
necessarily a complete one. Then

{Z;} S' {not B}

for every non-negative integer i.

Proof: When i = 0, the thesis of this lemma reduces to
{Z,} S° {not B}
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Because S is a null statement and Z, is a subset of (not B), this statement

is clearly true. . N
We begin the proof of this lemma for i > 0 by noting that by definition

of the sets C,
{Cion} S{Zi-1}
Furthermore,
Z; = (Band C,_))
Thus, Z; is a subset of C;_,. Therefore
{Z} S{Zi-1}
Similarly,
{Zi-1} ${Z: >}
{Z,-2} S{Zi-5}

{Z:} S {Zo}
Applying theorem 3.6 (see also Section 3.2.2), we have
{Zl} Si {Z()}
Z, is a subset of (not B). It follows that
{Z;} S {not B}. H
The fact that the precondition Q is a loop invariant can be seen particularly

clearly from part of the above proof. Applying theorem 3.0 from the
introductory part of this chapter to the sequence of statements

{Z,} § {Zo}
{Z,} S {Z)}

{Z} S {Z:i-1}

one obtains

{Zyor Zyor ... Z;or ...} S{Zoor Z,or ... Z;or ...}.
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The above precondition is equal to (Q and B): the postcondition, to Q.
Thus, the body of the while loop preserves the truth of O and Q is a loop
invariant.

We now formulate the termination theorem. Generally speaking, it states
that the precondition Q of the corollary above guarantees that a loop will
not execute endlessly if no subsidiary loop executes endlessly.

Theorem 3.10: Let Q be as defined in the corollary above except that we
do not require the preconditions to be complete (see the lemma above).
Furthermore, let the statement W

while B do S endwhile

be given, whereby S, when applied to any data environment in the
intersection of Q and B, does not execute endlessly. That is, there exists
no data environment d1 in (Q and B) such that S$*([d1]) is an infinite
sequence.

If these hypotheses are fulfilled, then the result of applying W to any
data environment dO in Q is not an infinite loop, that is, W*([d0]) is not
an infinite sequence.

Proof: We will prove this theorem by contradiction. Assume that a data
environment d0 exists in Q such that W*([d0]) is defined and is an infinite
sequence. Then either

1 in the course of executing the loop, the statement § is applied to a d1
such that $*([d1]) is an infinite sequence or

2 each §*([d1]) is a finite sequence (i.e. S(d1) is defined) and the condition
B is always true.

(See Section 2.2.3, especially lemma 2.4.) Since Q is a loop invariant, every
dl to which S is applied is an element of (Q and B). By hypothesis, the
application of S to such a dl cannot result in an infinitely long sequence
S*([d1]). Thus, case 1 above cannot apply. From the remaining possibility
it follows that for all non-negative integers n

$7(d0) is defined
and
B(8"(d0)) = true

By assumption, d0 is in Q. Therefore, it must be in some set Z;, that is
there exists a non-negative integer i such that dO is in Z;. Since
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{Z;} § {not B}

and 5'(d0) is defined, B(S5'(d0)) = false, in contradiction to the last sentence
in the preceding paragraph. Hence, W*([d0]) cannot be an infinite sequence;
it must be either undefined or a finite sequence. W

3.3.3 Application of the loop theorems

It is an old, implicitly accepted rule of thumb among programmers that

every loop should be preceded by one or more statements, commonly called

the ‘initialization’. The loop theorem (theorem 3.8) reveals the real — and

only — reason for the initialization statements preceding a loop: to establish

the truth of the loop invariant, one of the postulates of the loop theorem.
To prove the correctness of a given loop, one proceeds as follows:

1 Determine the loop invariant, either by inspection or by applying the

results of theorem 3.9 or the corollary in Section 3.3.2 above.

Prove that the initialization establishes the truth of the loop invariant.

Prove that the body of the loop (S in the while statements above)

preserves the truth of the loop invariant; i.e. prove that the truth of

the loop invariant and the truth of the loop condition (B above) before
execution of the loop body S together imply the truth of the loop

invariant after execution of S.

4 Prove that the truth of the loop invariant and the termination condition
(the negation of the loop condition B) together imply the correctness
of the final result.

5 Prove that the termination condition will be fulfilled in a finite number
of executions of the loop body, i.e. that the loop will terminate in finite
time. One must also prove that the result of each execution of the loop
body is defined, i.e. that each referenced variable is present in the
corresponding data environment, that the result of each evaluation of
an expression is within the defined range, etc.

w N

To design and construct a loop, the software developer proceeds as follows:

1 Define the loop invariant. This involves, explicitly or implicitly, express-
ing the correctness criterion in the form (/ and E). The proposition /
becomes the loop invariant. The condition E becomes the termination
condition, that is (not E) becomes the loop condition (B in the while
statements above). The loop invariant is a generalization of the initial
and final conditions, i.e. of the precondition and the postcondition
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of the loop. Expressed conversely, both the precondition and the
postcondition are special cases of the loop invariant.

2 The body S of the loop is constructed so that it preserves the truth of
the loop invariant, i.e. so that {/ and not £} S {/}.

3 The initialization A is constructed so that after it is executed, the loop
invariant / is true.

4 Show that the newly constructed loop below will terminate (see step 5
of the procedure above for proving correctness).

Then the result of executing the loop
A, while (not E) do S endwhile

will be a data environment satisfying the correctness criterion.

3.4 Proof rules for the declaration statement

The declaration statement has nearly the same effect as the assignment
statement (see Sections 2.1.0 and 2.1.4). The only difference is that in the
case of the declaration statement, a new variable is created to which the
value of the expression is assigned and, accordingly, the stack (sequence)
of variables with the same name is shifted by one position. Consequently,
the previous value of the variable affected is not lost, but instead becomes
concealed (see Section 2.1.5). In the case of the assignment statement, on
the other hand, the previous value of the variable affected is lost. The
positions of concealed variables remain unchanged.

The lemma for the assignment statement applies with only one modification
resulting from the creation of the new variable and the corresponding shift
of concealed variables (if any) in the stack.

Lemma 3.3: Consider the declaration statement

declare (x1, S1, E1), (x2, 82, E2), ...

called D below, in which the variable names x1, x2, etc. are all different.
For all data environments d in the domain of D, the following equations

apply.
For accessible (not concealed) variables, we have

valvar(x1, D(d)) = valexp(El, d)
valvar(x2, D(d)) = valexp(E2, d)

and
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valvar(y, D(d)) = valvar(y, d), for all other variable names y in d

For concealed (stacked) variables, the following equations apply. For all
integers n = 0,

valvar(x1, (release x1)"*! (D(d))) = valvar(x1, (release x1)"(d))
valvar(x2, (release x2)"*'(D(d))) = valvar(x2, (release x2)"(d))

and for all other variable names y in d,

valvar(y, (release y)"(D(d))) = valvar(y, (release y)"(d))

Proof: This lemma follows directly from the definition of the effect of
executing the declaration statement given in Section 2.1.4 B

The theorem for the assignment statement deals only with accessible (not
concealed) variables and their values. Those parts of the lemmata for the
declaration and assignment statements dealing with accessible variables
are identical. Therefore, the theorem for the assignment statement (see
theorem 3.3, Section 3.0.1) applies also to the declaration statement.

Exercise

5 The above lemma applies only to declaration statements in which all
variables being newly declared have different names. Investigate how the
above equations must be modified if this restriction is not met. Hint:
Consider the effect of executing the declaration statement

declare (x, S1, E1), (x, $2, E2), (w, S3, E3)
upon the data environment
d0 = [(z, $4, v4), (x, S5, v5)]

6 What is the precondition of the postcondition Pl(x, z) under the
above declaration statement? of the postcondition P2(w, x, z)? (In each
postcondition, every variable name represents a value to be determined in
the context of the resulting data environment.)

3.5 Proof rules for the release statement

The release statement eliminates the accessible variable with the stated
name. Accordingly, the stack (sequence) of concealed variables with the
same name is shifted by one position. The first such concealed variable (if
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any) becomes accessible again. Variables with other names remain unaltered.
Reformulating this in more formal terms. we obtain the following lemma
for the release statement.

Lemma 3.4: After executing the release statement

release x

called R below, the following equations apply for all data environments d
in the domain of R.
For all integers n = 0,

valvar(x, (release x)"(R(d))) = valvar(x, (release x)""'(d))
and for all other variable names y in d,
valvar(y, (release y)"(R(d))) = valvar(y, (release y)"(d))

Any proposition P not referring to the variable x is equally valid (or invalid,
as the case may be) before and after execution of the release statement R
above.

Proof: This lemma follows directly from the definition of the effect of
executing the release statement given in Section 2.1.5 B

3.6 Proof rules for the procedure call without parameters

The procedure call without parameters is semantically equivalent to the
body of the procedure (see Sections 2.1.6 and 2.2.6). Therefore, the proof
rules for the statement(s) constituting the body of the procedure apply.

3.7 Proof rules for the null statement

The null statement, being the identity function on D, has only a degenerate
proof rule: the precondition and postcondition are identical. If any precon-
dition P is satisfied before execution of the null statement, P will be satisfied
thereafter. Similarly, for any given postcondition P, P itself is a precondition.

3.8 Proof rules for other loop constructs

When proving programs involving loop constructs other than the while
statement, substitute for the loop in question the equivalent while construct
(see Section 2.1.8). Then apply the proof rules for the while loop (see
Section 3.3).

o
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3.9 Summary of the most important proof rules

The meaning and interpretation of each of the three types of preconditions
can be summarized as follows. Given a statement S, a postcondition P,

a precondition Q of P under S, written *{Q} S {P}",

a strict precondition Qs of P under S, written ‘{Qs} S {P} strictly’,
a complete precondition Qc of P under S, written ‘{Qc} S {P}
completely’

and any initial data environment d, then

?f d is in Q (or Qs or Qc) and if S(d) is defined, then S(d) is in P,
if d is in Qs, then S(d) is defined and is in P and
if S(d) is defined and is in P, then d is in Qc.

Of the proof rules presented in the preceding sections of this chapter, the
following are of the greatest practical significance. They represent the most
important ‘vertebrae of the spine of software’. Every true software engineer
must have a thorough knowledge of them and must be able to apply them
correctly with facility and ease.

1 {Px} x := E {P} completely
2 {P%} declare (x, S, E) {P} completely
3(a) {Q1} S1 {P} and {Q2} S2 {P}
= {(Q1 and B) or (Q2 and not B)} if B then S1 else S2 endif {P}
3(b) {Q1} S1 {P} completely and {Q2} S2 {P} completely
= {(Q1 and B) or (Q2 and not B)}
if B then S1 else S2 endif { P} completely
4(a) {Q} S1 {Q1} and {Q1} 52 {P}
= {Q} (51, 82) {P}
4(b) {Q} S1 {Q1} completely and {Q1} S2 {P} completely
= {Q} (81, $2) {P} completely
S(a) {I and B} S {I}
= {I} while B do S endwhile {/ and not B}
5(b) {Por Y(P)or YX(P)or ...}
while B do S endwhile {P} strictly and completely
(i.e. the above precondition is the weakest strict' precondition.)
5(c) {Por Z, or Z, or ...} while B do S endwhile { P} completely




Chapter 4

Transfundamental programming
CONStructs

Although to penetrate into the intimate mysteries of nature and
thence to learn the true causes of phenomena is not allowed to us,
nevertheless it can happen that a certain fictive hypothesis may suffice
for explaining many phenomena.

— Leonhard Euler

Willst du immer weiter schweifen?
Sieh, das Gute liegt so nah.
Lerne nur das Gliick ergreifen,
Denn das Glick ist immer da.
— Johann Wolfgang von Goethe

In addition to the fundamental programming constructs presented in
Chapter 2, a variety of extended constructs and features exists in popular
programming languages. While few, if any, of these extensions and features
are really essential, many are considered to be of significant practical
convenience and in any event are in common and widespread use. This
chapter deals with the most important and frequently encountered groups
of these extensions, typically defining them in terms of the fundamental
programming constructs introduced earlier in Chapter 2.

4.0 Procedure calls with parameters

The procedure call without parameters was defined in Sections 2.1.6 and
2.2.6. Using it, values of variables are, in effect, transferred implicitly to
and from the subsidiary procedure via predefined variable names contained
in the commonly accessible data environment. This method of ‘passing’
parameters and results between the calling and called subprograms (pro-
cedures) is structurally simple and is often used in practice. The variables
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accessed by both the calling and called subprogram are often called ‘global’
variables.

This implicit method of passing parameters and results gives rise to a
minor inconvenience in practice. Often, one wishes to call a procedure
many times in a program, sometimes with certain variables as parameters,
sometimes with other variables as parameters. Values of the actual par-
ameters must, therefore, sometimes be ‘moved’ to those variables referenced
by the called procedure. For example, consider a program in which the
function 2 * x + 3 is to be evaluated for various previously calculated
arguments, e.g. a, b and ¢, and the results are to become the values of
different variables, e.g. fa, fb and fc respectively:

calling environment  called procedure

declare (x, Q, a) procedure P:

call P declare (y, Q, 2 * x + 3)
declare (fa, Q, y) endprocedure

release x, y

declare (x, Q, b)
call P

declare (fb, Q, y)
release x, y

declare (x, Q, ¢)
call P

declare (fc, Q, y)
release x, y

The following sequence of calls to P is easier to write and results in a more
readable program:

calling environment called procedure

call P(a, fa) procedure P(x, y):
declare (y, Q, 2 = x + 3)
call P(b, fb) endprocedure

call P(c, fc)

Here the variables a, b, ¢, fa, fb and fc in the calling program are called
‘actual parameters’. The variables x and y, which are referenced only in
the called procedure, are called ‘formal parameters’. Many implementations
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permit any expression to be used as an actual parameter except, of course,
where doing so would give rise to an implicit syntactical inconsistency (e.g.
where the actual parameter receives a calculated result from the called
procedure). Formal parameters are invariably variables.

Another form for invoking the above procedure is often even more
convenient and descriptive of the computational effect:

calling environment called procedure

fa := P(a) function procedure P(x):
P:=2=+x+3

fb = P(b) endprocedure

fc := P(c)

Such a procedure P, which calculates a single value and which can be
referenced within an expression in this way, is usually called a function
procedure.

Most programming languages provide such procedure calls with par-
ameters. The mechanisms used for passing parameters vary from one
implementation to another. In fact, many programming languages provide
more than one mechanism for passing parameters; the programmer must
select one or another depending upon the effect he wishes to achieve. Often
this design decision involves striking a compromise between logical simplicity
and computational efficiency (speed and/or memory requirements). In some
programming languages, this choice is expressed explicitly; in others,
implicitly.

The semantic meaning of the program depends — often in subtle and
intricate ways — upon the particular mechanism used for passing parameters.
The effects of this dependence can and do result in confusion and can
complicate the task of proving the correctness of a program. Such difficulties
are particularly pronounced when the programmer is only superficially aware
of the effect of the particular mechanism employed for passing parameters.
While it is perfectly proper for a programmer to take advantage of such
features in the system with which he is working, it is very important that
he be fully aware of the precise mechanisms invoked and, in particular, of
their exact effects. Availing himself of the convenience provided by these
features does not relieve him of responsibility for the semantic meaning
and the correctness of his programs.

Two mechanisms for passing parameters — call by value and call by name
— are described in the following sections. Most mechanisms for passing
parameters employed by actual systems either fit or closely resemble one

N
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of these two models. even though different names may be used. Actual
systems which provide such mechanisms for calling procedures place an
important restriction on declaring and releasing variables: variables declare.d
within the procedure must also be released therein and vice versa. This
restriction will often be implicitly assumed in the sections below, in which
the mechanisms of calling procedures with parameters are defined in terms
of the fundamental constructs presented earlier.

4.0.0 Call by value

The basic form of the call by value views the values of the actual parameters
at the point in time when the procedure is called as the only ‘input’ data
of interest. When the procedure is called, each actual parameter is evaluated
and the value assigned to the local variable representing the formal
parameter. This variable is accessible only by statements within the called
procedure (or procedures subsidiary to it). The value of this variable may
be altered during the execution of the procedure, but such alteration does
not affect the value of any variable associated with the actual parameter in
the context of the calling environment.

Consider the following general example. The actual parameter a may be
a constant, variable name or expression. The formal parameter f must be
a variable name.

calling environment  called procedure

call P(a) procedure P(f):
parameter (f, Sf) value
S

endprocedure

In this case, the statement call P(a) is defined to be equivalent to the
following sequence:

declare (f, Sf, a)
S

release f

The variable used as the formal parameter is to be declared in this fashion
even if the same variable name is used as both actual and formal parameters.
In such a case, the declaration causes the variable used as the actual
parameter to become concealed, thus ensuring that it cannot be altered by
a reference (e.g. in an assignment statement) to the formal parameter in
the procedure.
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It is clear that this concept of call by value applies only to ‘input’ data,
i.e. to data being transferred from the calling environment to the called
procedure. In some systems, the call by value has been generalized somewhat
to permit results to be communicated back to the calling environment. This
is done by assigning the final value of the local variable representing the
formal parameter to the actual parameter (which in this case must be a
variable name). The assignment is performed only once, after execution of
the procedure is complete. In the example below

calling environment called procedure

call P(a) procedure P(f):
parameter (f, Sf) value result
S
endprocedure

the statement ‘call P(a)’ is defined to be equivalent to the following sequence

declare (f, Sf, a)

M
a:=f
release f

if a and f are different variable names. If the actual and formal parameters
have the same name, the naming conflict is resolved by renaming the formal
parameter f throughout the procedure P.

4.0.1 Call by name

The call by name views the parameter being passed as a variable name or
a rule (expression) for determining a value, rather than a value itself as in
the case of the call by value. When the procedure is called, the formal
parameter becomes associated with the variable name or expression compris-
ing the actual parameter. The actual parameter is evaluated whenever the
corresponding formal parameter is referenced in an expression being
evaluated during execution. If the value of the formal parameter is changed
(e.g. by the execution of an assignment statement in which its name appears
in the replacement list to the left of the assignment symbol (:=)), the
value of the corresponding actual parameter in the context of the calling
environment is changed. In this latter case, the actual parameter must, of
course, be a variable name.

The effect of calling a procedure passing parameters by name can probably
be defined most simply in the following way. The procedure is considered
not to be a group of statements to be executed in their original form, but
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rather as a template for generating the statements to be executed. The
formal parameter (a variable name) is replaced throughout the procedure
by the corresponding actual parameter (a constant, variable name or
expression). Where syntactically possible, the actual parameter is enclosed
in parentheses in order to ensure that the resulting expressions are evaluated
as intended. If such substitution would give rise to conflicts between the
names of variables local to the procedure (i.e. other formal parameters or
variables declared and released within the procedure) and the names of
variables appearing within the actual parameter, the conflict is resolved by
changing the names of the local variables involved before performing the
substitution (Naur, 1962, Section 4.7.3.2). If procedure names may be passed
as parameters, the preceding statements must be generalized accordingly.
In the example below

calling environment  called procedure

call P(a) procedure P(f):
parameter f name
S
endprocedure

the statement call P(a) is defined to be equivalent to
A

the statement formed by replacing the formal by the actual parameter in
the procedure body S as described above.

4.0.2 Recursive procedures

A recursive procedure is one which calls itself, either directly or indirectly
through other procedures. The main part of a recursive procedure typically
consists of three sections. Using the value of the parameter passed from
the calling environment, the first section calculates the parameter to be
passed to the subsidiary invocation of the procedure. The second section
invokes (calls) the procedure, i.e. itself. The third section combines the
value of the parameter originally passed to the currently active invocation
of the procedure and the value of the result from the subsidiary call to
obtain the result of the current invocation, which is passed back to the
calling environment. When the procedure has more than one input or
output parameter, the preceding description must be modified accordingly.

The procedure must be constructed in such a way that the parameter
passed to the procedure is not altered by the action of the subsidiary
invocation of the procedure. Similarly, it may be necessary to preserve the




98 4 TRANSFUNDAMENTAL PROGRAMMING CONSTRUCTS

values of variables internal to the procedure across the subsidiary call. Both
requirements can be conveniently met by declaring and releasing variables
accordingly, thereby ‘stacking’ the values to be preserved (see Sections 2.1.4
and 2.1.5).

The following example illustrates these principles. This procedure calcu-
lates the factorial of a non-negative integer. The input parameter is the
value of the variable n. The value of the variable resulr after the procedure
has terminated is the desired result.

procedure factorial:
ifn=20
then declare (result, Z, 1)
else declare (n, Z, n—1)
call factorial
release n
result := n * result
endif
endprocedure

The declaration statement in the else part calculates the value for the
parameter for the subsidiary call by subtracting 1 from the input parameter
to the current invocation of the procedure. At the same time, the current
input parameter is stacked, thereby concealing it from the subsidiary
invocation of the procedure ‘factorial’. After the subsidiary invocation has
terminated, the variable containing its input parameter is eliminated by the
release statement. As a result of this action, the input parameter to the
current invocation of the procedure becomes accessible again.

The reader should verify that both the call by value and the call by name,
as defined in Sections 4.0.0 and 4.0.1 above, achieve these effects.

As mentioned in Section 4.0, some implementations require that a variable
declared in one procedure also be released in that same procedure. The
procedure ‘factorial’ as defined above violates this restriction by declaring
the variable ‘result’. If the above procedure is to be executed by such a
real system, the declare statement may be replaced by the statement

result = 1

The variable result must then be declared before the initial call to the
procedure ‘factorial’ — not before the recursive call in the procedure itself.

4.0.3 Function procedures

As mentioned in Section 4.0, many real systems support function procedures.
The main differences between function and ordinary procedures are (a) a
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function procedure is ‘called’ by referencing it in an expression to be
evaluated instead of in a call statement and (b) the value of an (or the)
output parameter is passed back to the calling environment implicitly, rather
than as the value of a variable in a data environment.

In the following example, E is any expression containing references to a
function procedure ‘func’ and any combination of variables x, y, etc. S is
a (typically compound) statement in which the result variable func is
declared and assigned some value. The effect of executing the statement in
the calling environment below

calling environment

x := E(func(a), x, y, ...)

called procedure

function procedure func(f):
parameter f ...
S

endprocedure

is, in most real systems, typically defined to be something akin to the effect
of executing the following:

call func(a)
x := E(func, x, y,...)
release func

Subject to the restriction stated above, S may be any statement, in particular,
a sequence of statements which alter the values of various variables. As a
consequence of such ‘side effects’, the definition of the assignment statement
(Section 2.1.0) and, therefore, also the lemma and theorem for the assign-
ment statement (Sections 3.0.0 and 3.0.1 respectively) do not in general
apply to the ‘assignment’ statement in the calling environment above. They
do, of course, apply to the assignment statement in the equivalent sequence
of statements.

If the expression contains references to two or more function procedures,
an additional source of difficulty and possible confusion arises from the fact
that the effect produced can depend upon the sequence in which the
function procedures are called. In such systems, the sequence of execution
of the several function procedures must, therefore, be defined precisely if
the result is to be uniquely determined.

An alternative definition of the effect of executing such a statement
containing a reference to a function procedure, which eliminates the
possibility of side effects, is as follows. The value of the function is obtained
by executing the function procedure upon the original data environment.
All other variables appearing in the expression are evaluated in the original
data environment — not in the data environment resulting from the execution
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of the function procedure. In this way, all parts of the expression are
evaluated in the original data environment. More formally, if ‘func’ is the
name of a function procedure, then the effect of executing the statement

x := E(func(a), x, y, ...)
upon the data environment dO is defined to be
dl = (x := E(func(a), x, y, ...)) (d0)
E(valvar(func, (call func(a))(d0)), x, y, ...))(d0)
That is, the equivalent statement is obtained by substituting
valvar(func, (call func(a))(d0))

for ‘func(a)’ in the original statement.

When this definition is generalized for more than one reference to function
procedures, the result is independent of the order in which the function
procedures are executed, because each function procedure is applied to the
original data environment.

Except where explicitly stated otherwise, this latter definition will be used
throughout this book.

= (x:

4.0.4 Programming conventions and style

When calling a procedure (in the form without explicit parameters), each
variable serving as a parameter may be declared in either the calling
environment (i.e. outside of the current invocation of the called procedure)
or within the called procedure. Similarly, each such variable may be released
in either environment. Thus, the programmer must select from among four
conventions for declaring and releasing variables:

Environment in which Comments
Convention declared released
1 calling calling input and output
2 calling called input only
3 called calling output only
4 called called variables local to procedure only

It is clear that in the case of an input variable, i.e. a parameter being
passed from the calling environment to the called procedure, its value must
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be assigned before the call statement is executed. It follows that the variable
must be declared before the call statement, i.e. in the calling environment.
An input variable may be released either within the called procedure or in
the calling environment after the call statement.

The value of an output (result) variable must be available in the calling
environment after the call statement. It must, therefore, be released after
the procedure has terminated and, therefore, in the calling environment
after the call statement. It may be declared either in the calling environment
prior to the call statement or in the called procedure.

When convention 1 is followed, the variable in question is declared in
the calling environment before the call statement is executed and is released
in the calling environment after the call statement. This permits the value
of an input parameter to the procedure to be retained for subsequent use
in the calling environment (e.g. for passing to another procedure called
later). In the case of an output parameter, the variable in question is
prematurely declared and set initially to a ‘dummy’ - i.e. a meaningless
and superfluous — value. If the system on which the program is to be run
does not permit convention 3 (the only other method for passing an output
parameter) to be used, then the programmer has no alternative but to use
convention 1 despite this inelegant aspect of its application, which tends to
make a program less readable and more difficult to understand.

Convention 1 must be used for passing a parameter which is to be
‘updated’, that is, whose initial value may affect the result produced by the
procedure and whose final value is such a result. Such a parameter is both
an input and an output variable.

When convention 2 is employed, the variable is declared in the calling
environment before the call statement and is released within the called
procedure. Consequently, the value of the input variable is not available in
the calling environment after the call statement. This convention is the
natural and logical choice for an input parameter whose value is not required
subsequently in the calling environment. It has the disadvantage that a
procedure based on this convention is not suitable for later use in a new
environment in which the value of the input variable is subsequently
required.

With convention 3, the variable in question is declared in the called
procedure and is released in the calling environment after the call statement.
In the case of a pure output variable, i.e. a variable whose initial value (if
any) has no effect upon the action or result of the called procedure, this
convention is the natural and obvious choice.

Applying convention 4, a variable is both declared and released in the
called procedure. Being unavailable in the calling environment, it may serve
neither as an input nor as an output parameter. It can be only an internal
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variable, local to the procedure. Convention 4 should be used resolutely
and consistently to isolate a procedure’s internal variables from the outer
environment. Such a programming style improves the readability and
understandability of programs because the reader can clearly see that certain
types of interactions cannot occur. For the same reason, it tends to reduce
the effort required to design and verify the correctness of the interfaces
between procedures and their calling environments.

The following example shows all four conventions applied to a single
procedure. The variable v1 is declared and released according to conven-
tion 1; v2, convention 2; v3, convention 3 and v4, convention 4. Variable
vl can be used as input and/or output. Variable v2 is an input variable
only; v3, output only. Variable v4 is a local variable, internal to the
procedure P.

calling environment called procedure

declare (v1, S1, ...) procedure P:
declare (v2, S2,...) declare (v4, 5S4, ...)
call P

declare (v3, S3,...)
release v3, vl release v4, v2

endprocedure

As mentioned in Section 4.0, many actual programming languages and
systems require that a variable be both declared and released in the
same environment. This restriction effectively prohibits the explicit use of
conventions 2 and 3. Therefore, in such systems convention 1 is used for
passing all parameters and convention 4 is used for the procedure’s local
(internal) variables. Convention 3 is used implicitly and only for passing the
formal result of a function procedure to the calling environment, but this
is not normally visible to or under the control of the programmer.
Convention 2 is not common in practice.

Dogmatic principles aside, it does not matter greatly which conventions
a programmer uses, but he should have a sound, logical reason for his
choice in every single instance. Logical simplicity, clarity, consistency and,
of course, correctness are the most important principles upon which
programming style should be based, both in general and with respect to
passing parameters to and from called procedures.

4.1 Input/output

In most actual computing systems the programmer must use quite different
constructs to refer to program variables stored in the computer’s central
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memory and those stored in so-called peripheral or external storage devices.
The reasons for this requirement are historical. While those reasons probably
cannot be rationally justified today, this distinction has become so deeply
ingrained in programming languages and tradition that it is now accepted
unquestioningly as a basic tenet of computing.

At least one implementation of the Basic programming language permitted
the programmer to specify that an array should be stored in a peripheral
storage file, but otherwise the array variables in question were referenced
in exactly the same manner as any other ‘internal’ variable. Although this
convention simplifies the programming task and the program, sometimes to
a very considerable extent, this approach has not become generally accepted.
Despite its advantages, there are currently no signs that it will gain in
popularity in the foreseeable future.

Especially when proving programs correct, it is convenient to consider
variables stored in peripheral files in the same manner as internal variables.
One can then apply the proof rules developed in Chapter 3 for the
fundamental constructs; one need not derive a large collection of special
proof rules applicable only to the input/output constructs. Such a simplified
and simplifying approach to the problem of proving the correctness of
programs containing input/output statements will be taken in this book.

Although the basic concept applies to all ‘external’ variables, it is useful
to discuss certain types of them separately. Auxiliary functions specific to
each type of external variable are common and are often built into the
corresponding input/output statement.

4.1.0 Backing storage

Typical backing storage devices are magnetic disks, diskettes and tapes.
These devices are used because they are less expensive, usually much less
expensive, than central memory devices. The disadvantage of backing

* storage is that it is slower than central memory. Furthermore, the time to

locate and transfer data to and from backing storage may vary depending
upon which data was accessed in the previously executed operation.

Data stored on backing storage devices are typically processed by programs
in essentially the same manner as data stored in central memory. Values
of variables stored in backing storage are used in computations and the
results of computations become the new values of such variables. Probably
the only logical distinction between data stored in backing storage and data
stored in the computer’s central memory is that the former are often
retained between executions of a program or programs, whereas the latter
are usually discarded when the program which created them terminates.
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Data stored in backing storage are usually organized in files. A number
of different types of files are found in actual computing systems. The
most commonly encountered are the sequential file, the direct access file
(sometimes called ‘random access file’) and the indexed file. Most other
types, including many structures implemented in data base systems, are
variants (often only minor variants) of one of these three types for which
special processing functions (procedures) are provided for use by the
programmer. '

When the programmer wants to use the value of a variable stored in a
file in a computation, he must typically ‘read’ the desired value and transfer
it to an internal variable. Depending upon the file type, he must in one
way or another indicate to the system’s reading procedure which data
element in the file is desired. He must also indicate to which internal
variable the value in question is to be transferred. Such operations are
equivalent to simple references to the corresponding array variables in an
assignment statement as discussed in earlier sections of this book.

When the programmer wants to transfer the result of a computation to
a variable stored in a file, he must write statements similar to those outlined
in the above paragraph, the main difference being that the computed value
is ‘written’ to the variable stored in the file. The ‘write’ operation corresponds
to an ordinary assignment statement, where the variable to which a value
is being assigned is the array variable corresponding to the data element in
question in the file.

In addition, the programmer using such a file oriented system must
normally be concerned with other technical details such as ‘opening’ and
‘closing’ the file, indicating via which ‘channel number’ the file is to be
accessed and data transferred, etc. When the programmer views files as
collections of ordinary arrays, such concerns do not arise.

Any of the three common types of files mentioned above and discussed
in more detail in the following sections can be viewed as an appropriate
collection of arrays as defined in Section 2.0.0. Doing so usually simplifies
greatly the proof of correctness of program segments involving variables
stored in backing storage. This approach is, therefore, generally to be
recommended.

4.1.0.0 Sequential files

A sequential file is typically a sequence of strings, i.e. a sequential file is
an array. Each array variable assumes a value which is a string, i.e. a
sequence of characters, often thought of as a ‘line’. In some systems all
strings in a sequential file must be of the same length. In other systems,
the lengths of such strings may vary but a maximum length is imposed. In
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still other systems, no restriction on the lengths applies, other than, of
course, that set by the physical size of the system’s memory.

Example 1: Consider a sequential file named ‘sfile’ which is read and
processed by a program segment with the following structure. It is assumed
that the variable ‘channel’ has been declared to be an integer variable and
x, a string variable.

open channel, “sfile”

while not eof(channel) do
read channel, x
(process x)

endwhile

close channel

The file can be thought of as an array named ‘sfile’ together with a variable
‘sfilelength’ which indicates the length of the file. More specifically, the
sequential file ‘sfile’ is considered to consist of the non-negative integer
variable

sfilelength
and the string variables
sfile(i), i = 1, 2, ..., sfilelength
The above program segment is then equivalent to the following:

i:=0

while i < sfilelength do
=i+ 1
x := sfile(i)
(process x)

endwhile

In this program segment the variable x is logically superfluous and can be
eliminated to yield

i:=0

while i < sfilelength do
i=i+1
(process sfile(i))

endwhile

This program captures the logic of the computational process inherent in
the original program above. Only technicalities specific to accessing data
values stored in a peripheral file have been suppressed — technicalities which




106 4 TRANSFUNDAMENTAL PROGRAMMING CONSTRUCTS

should be considered in a completely different stage of the design process
and which should not be intermixed with considerations related to the
logical structure of the algorithm. Rewriting the program segment in this
way separates technical, system oriented considerations from the logical
aspects of the application and the requirements it poses. Separating these
quite different aspects of the design problem simplifies the designer’s task
— both in the creative phase of synthesizing the system’s structure and in
the more systematic, mechanistic phase of analyzing and verifying the
proposed design.

Example 2: Consider the following program segment, which creates a
sequential file as described in example 1 above.

open channel, “sfile”
while (processing incomplete) do
X = ...
write channel, x
endwhile
close channel
The above program segment is equivalent to:
1:=0
while (processing incomplete) do
X = ...
=i+ 1
declare (sfile(i), set of strings, x)
endwhile
sfilelength := i
As in example 1 above, the variable x is superfluous here and can be
eliminated to yield
i:=0
while (processing incomplete) do
i:=i+1
declare (sfile(i), set of strings, ...)
endwhile
sfilelength = i

If the array variables sfile(i) are already declared, the declare statements
above should be replaced by the corresponding assignment statement

sfile(i) := ...

In this case, the file is being rewritten, not created anew.
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4.1.0.1 Direct access files

A direct access file is usually defined as a sequence of records. Each record
is identified by a number. Normally, the integers beginning with 0 or 1 are
used as record numbers. Each record contains the values of several variables.
For example, a record might consist of a name field (a string of 40
characters), a five digit integer (indicating the named person’s employee
number) and a four digit integer (the year of his birth). Such a file may
be defined mathematically as a collection of three arrays: name, employee
number and year of birth. The number of the record in the file is the value
of the subscript of each array variable; i.e. any direct access file can be
viewed as a collection of arrays with subscripts in a common set.

Example 3: To read record number recn from an already opened direct
access file, statements such as the following must typically be executed.

seek channel, recn
read channel, x, y, z
(process x, y and z)

where x, y and z are internal variables corresponding to the data fields in
each record in the file.

As outlined before, the file is, in effect, a collection of arrays. If the file
name is ‘dfile’, the arrays might be named ‘dfile.x’, ‘dfile.y’ and ‘dfile.z’.
Then the above program segment is equivalent to

x := dfile.x(recn)

y = dfile.y(recn)

z = dfile.z(recn)

(process x, y and z)
In a program segment, these assignment statements will usually be superficial.
As in the examples for the sequential file, the variables, x, y and z can be
eliminated by replacing them by dfile.x(recn), dfile.y(recn) and dfile.z(recn)
respectively in the succeeding statements in the program segment in question
to yield simply

(process dfile.x(recn), dfile.y(recn) and dfile.z(recn))
Example 4: To write new values into the direct access file described in
example 3, statements such as the following must be executed.

X = ...

yi= ...

z = ...

seek channel, recn
write channel, x, y, z
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If a new record is being created, the above statements are equivalent to
the following:

declare (dfile.x(recn) . . . .)
declare (dfile.y(recn) , . . .)
declare (dfile.z(recn), . . .)

If an existing record is being rewritten with new values, the first program
segment above is equivalent to the following assignment statements:

dfile.x(recn) := ...
dfile.y(recn) := ...
dfile.z(recn) := ...

4.1.0.2 Indexed files

An indexed file, as typically implemented, consists of a direct access file
and one or more indices. An index is a table of record numbers (subscript
values) which serves logically to order (‘sort’ in commercial data processing
terminology) the main file. The index is, in effect, also an array, each
variable of which assumes a value which is a subscript of the arrays
constituting the main file. Mathematically speaking, the index is a permu-
tation of those arrays. In some real systems the index also contains the
values of the variables of one of the arrays, but such information is
redundant and can be omitted. If it is present, searches can often be
performed faster.

An indexed file, then, is a collection of arrays related structurally to one
another in a specific way.

Example 5: Consider an indexed file in which each record contains a
name, employee number and address. The name and the employee number
are specified as key fields, that is, the programmer may access a record by
specifying either the name or the employee number. The‘system will
maintain automatically an index for each of these fields.

We will view this indexed file as a collection of the following variable
and arrays. The value of the variable ifilelength is a non-negative integer
which indicates how many records are present in the file. The array variables
comprising the file are as follows:

name(i),
empnumber(i),
address(i),
index.name(i) and
index.empnumber(i),
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where i = 1, 2, ..., ifilelength. The sequences
[index.name(1), index.name(2), ..., index.name(ifilelength)]
and
[index.empnumber(1), index.empnumber(2), ..., index.empnumber(-
ifilelength) )

are permutations of the integers 1 through ifilelength inclusive. Tt}ese two
indexes order, or sort, the file into two sequences, one ascending with
name, the other ascending with empnumber. More precisely, for every pair
of integers m and n such that

1 = m < n =< lfilelength
it is true that

name(index.name(m)) = name(index.name(n)) and '
empnumber(index.empnumber(m)) = empnumber(index.empnum-
ber(n))

The program segment
read channel, key(name) = kname, rname, rempnumber, raddr
if (record found) then (process rname, rempnumber, raddr) endif

is equivalent to

call locatename
if recn > 0
then rname := name(recn)
rempnumber := empnumber(recn)
raddr := address(recn)
(process rname, rempnumber, raddr)
endif

which can be simplified to

call locatename

if recn > 0

then (process name(recn), empnumber(recn), address(recn))
endif

The procedure locatename is a system routine which assigns a value to the
variable recn as follows. The value of the variable kname (an input variable
to the procedure) is sought among the values of name(-). If this value exists
in the file, i.e. if there exists an i with name(i) = kname, then the value
of recn is the record number (subscript value) of the first such entry in the
file. Otherwise, i.e. if the name being sought is not present in the file, the
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resulting value of recn is 0. Expressed in more mathematical language, the
postcondition of the procedure locatename is

[recn = index.name(min{i | name(index.name(i)) = kname} )]
or [(recn = 0) and (there exists no.i such that name(i) = kname))|

Similarly, a procedure locateempnumber would also exist which would
perform the analogous function for the data field employee number. Such
an indexed file system would also include procedures for writing a new
record to the file, rewriting over an existing record, deleting a record, etc.
In particular, such procedures would maintain the indexes so that the
corresponding conditions specified above are maintained. Such conditions
are invariants and represent the specifications which the file management
system must meet.

4.1.1 Display output

Display output can be thought of as a sequence of strings, i.e. an array.
Structurally, it is much like a sequential file (see Section 4.1.0.0).

If the display in question has a particular structure, this can be reflected
in the structure of the equivalent array, if desired. For example, a printed
report might consist of a sequence of pages, each page consisting of a
sequence of lines (strings). The length of each line and the length of each
page are limited but, in general, no limit is imposed on the number of
pages in a report. The report, then, would be equivalent to a two dimensional
array, one dimension (subscript) indicating the page in the report and the
other dimension, the line on a page.

A comparable structure could be used for output to a video display unit.
Alternatively, the display output could be viewed more simply as a sequence
of lines, corresponding to a one dimensional array.

Example 6: A report is printed by executing a statement of the following
form
print channel, x, y, z

appropriately.
If one views the printed report as the family of array variables

reportline(pagenumber, linenumber)

where

1 = pagenumber

%.
7
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and
1 = linenumber < pagelength
the print statement above is equivalent to the program segment

call incrementlinenumber

declare (reportline(pagenumber, linenumber),
strings of maximum length linelength,
x&y & 2)

where the procedure incrementlinenumber is as follows.

procedure incrementlinenumber:

linenumber := linenumber + 1

if linenumber > pagelength

then pagenumber := pagenumber + 1
linenumber := 1

endif

endprocedure

In the above program segment, ‘&’ is the concatenation operator.

At first glance, this may appear more complex than the single print
statement above. However, the explicit presence of variables for the page
and line numbers has an advantage: it enables one to state, and to prove
more easily, conditions on the positions of variables on the printed page.
This, in turn, facilitates proving formally that the desired format of the
report will actually be maintained under all conditions. It also eliminates
the need to establish and apply proof rules for another construct, in this
case, the print statement. Furthermore, if the program provides for
.additional format features such as a header (title block) and/or a footer,
variables for the page and line numbers must normally appear explicitly
anyway.

4.1.2 Input from the external environment

Input from the external environment, e.g. keyboard input, can be viewed
in a similar way as a sequential file. In most applications, it is probably
most convenient to view keyboard input as a sequence of strings, each
string being terminated by the character corresponding to the carriage return
key (on many keyboards this key is marked ‘enter’, ‘transmit’ or ‘end of
line’, etc.) The statement

input x

is then equivalent to
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inputline := inputline + 1
x := keyboardinput(inputline)

where the array keyboardinput is deemed to exist and contain the data
entered (and, possibly, still to be entered in the ‘future’) via the keyboard.
As in previous examples, the variable x in the above program segment will
often be superfluous and can be eliminated by substituting subsequent
references to it by keyboardinput(inputline).

In some applications, it may be desirable to view keyboard input as a
sequence of individual characters. In input procedures in the system software
will this approach be especially appropriate. One important routine in
typical computer systems, in fact, converts between these two views; its
input is the direct keyboard in the form of a string of individual characters
and its output is a sequence of strings, each of which is terminated by a
particular end of line character.

4.1.3 Interactive communication

Interactive communication, such as a man-machine dialog conducted via a
keyboard and a video display, a two-way communication line, two-way
pipelines between computational tasks, etc., can generally be modelled as
a combination of two single direction input/output channels or devices as
described above. While the interaction between the two one-way channels
may be meaningful to the human sitting at a terminal consisting of a
keyboard and a video display unit, to the machine, the program or the
computational task, such a logical interaction is irrelevant and not meaning-
ful. As far as the mechanistic execution of the program segment is concerned,
the two-way interactive communication channel might just as well be
independent data streams.

System software, for example, rarely, if ever, processes the data flowing
in the two directions jointly. When, as in the case of some communication
devices, hardware considerations dictate that the data flow in the two
directions be coordinated in some way, the system software designer’s task
often involves logically separating these two communication channels.

4.2 Data structures

A number of programming languages provide for naming a structured group
of variables. The programmer can subsequently refer in expressions to the
entire group as a single entity. Such features can sometimes reduce
considerably the clerical effort involved in writing programs and can
contribute to their readability. Handy as they are, these facilities amount,
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in the final analysis, to a type of shorthand; they add no fundamental, new
capability to a language.

When such compound variables are encountered in a program to be
proved correct, they can be replaced by reference‘s to the mfjlwdual
component variables of which they are composed. Typically, an assignment
statement must be replaced by a multiple assignment statement or broken
down into a series of assignment statements.

Example 7: Consider the variable gr, defined to consist of a structured
group of variables as follows:

gr
gra
gral
gra2
grb
grbl
grb2
grb2a
grb2b
gre
That is, the compound variable gr is the triple of variables gra, grb and
grc. The compound variable gra is, in turn, the pair of var.iables grql and
gra2, which are not subdivided further. The compound varlablf; grb is also
a pair of variables (grbl and grb2), one of which is not subdivided further
and one of which is a compound variable, consisting of grb2a and grb2b.
The variable grc is an elemental (not compound) variable. '
Tracing the hierarchical structure of the variable gr downward to l'tS end
points, i.e. to the variables which are not themselves compound variables,
we see that gr consists ultimately of the elemental variables ’gral, gra2,
grbl, grb2a, grb2b and grc. A reference to the variable gr is, in reality, a
reference to the n-tuple of variables (gral, gra2, grbl, grb2a, grb2b, grc)
and may be replaced accordingly. The assignment statement

gr:= ...
is, therefore, equivalent to the multiple assignment statement

(gral, gra2, grbl, grb2a, grb2b, grc) := ...

4.3 Non-sequentially executed program statements

When designing programs to be executed on certain actual computing
systems, it is often useful to identify parts of programs which can be

s
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executed ‘concurrently’ or ‘in parallel’. As a result. the efficiency (usually
speed) of execution can often be improved. In order to model program
structures which cater for the concurrent execution of parts of programs,
the concepts introduced earlier must be extended. When doing so, it is
important to remember that it is not so much the temporal relationship
between the execution of the program segments involved which is of interest,
but rather the functional relationship between them. That is, the question
of interest is not so much ‘when is which program segment executed?’ but
instead ‘which data environments are derived from which other data
environments by the application of which program segments?’

Much theoretical work has been done — and is currently still in progress
— in the area of non-sequential processes. Much of this work deals with
synchronizing concurrently executing processes at selected points. Typically,
such processes operate on the single data environment, that is, they modify
the values of variables in one data environment. They share data not only
in the form of a common initial data environment, but also continually
while they are executing. Frequently, the goal of such synchronization is to
ensure that the results obtained are identical to those which would be
obtained by executing the program segments in some (often an arbitrary)
sequence. Viewed in this way, such an executional process is not really
characterized by true concurrence, but rather is fundamentally a sequential
process characterized by some degree of arbitrariness in the order in
which the various parts of the program may be executed. Restricting this
arbitrariness in such a way that the desired results are obtained is often the
subject of concern.

In Sections 4.3.0 through 4.3.2 below, we distinguish between the above
mentioned two aspects of this subject: (a) situations in which the order of
execution of program segments is of no consequence and (b) concurrently
executing programs and the collections of data environments generated
thereby.

In the following sections, some extensions of concepts presented earlier
are outlined briefly. A more thorough treatment of the subject of non-
sequential processes is beyond the scope of this book. For more information,
the reader is referred to the professional literature (for example, Dijkstra,
1968, appendix on semaphores; Herzog, 1984; Dal Cin, 1984; Filman, 1984;
Gries, 1978, Part III; Hoare, 1985; Milner, 1986; the references contained
therein, more recently published papers and manuals on programming
languages supporting concurrent execution).

4.3.0 Sequential interchangeability

Often statements appearing in sequence in a program may be interchanged
without altering the results they produce when executed. That is, it often

¥
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occurs that statements S1 and S2, for example. have the property that
(S1, $2)(d) = (S2. S1)(d), for all d in D
Similarly, a collection of more than two statements can exhibit the property

that all permutations, when executed, give rise to the same data environment.
This motivates the following definition.

Definition 4.0: A collection of statements
S, Sa, ou S,

is sequentially interchangeable if for every permutation p of the integers 1
through 7 inclusive and for every din D .

(Spcirs Sp2rs -+ Spem) (@) = (S1, Sz, -, S,)(d)

Equality here is meant in the usual sense that if either term is defined,
they are both defined and equal; if either term is undefined, both are
undefined.

It should be noted that the sequences of data environments generated by
executing the various permutations of sequentially interchangeable state-
ments are not, in general, equal. That is, it is not generally true that for
every permutation p and every d* in D*.

(Sp(l)v Sp(Z) LRI Sp(n))”< (d*) = (SI’ S2s~ B Snyk (d*)
even when the statements S,, S,,..., S, are sequentially interchangeable.

The following theorem often reduces the effort required to show that a
given collection of statements is sequentially interchangeable.

Theorem 4.0: 1If every pair of statements selected from the collection of
statements

$1,8, ..., 8,

is sequentially interchangeable, then the entire collection is also sequentially
interchangeable.

Proof: (sketch) Any permutation of the collection of statements can 'be
formed from any other permutation by a sequence of steps, each of which
interchanges two adjacent statements. Each step results in a new sequence
of statements which yields the same result as the previous sequence when
executed. W

The converse of this theorem is not always true; i.e. the condition in this
theorem (the statements are pairwise interchangeable) is a sufficient, but
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not a necessary condition. Degenerate situations exist in which a certain
pair of statements is not sequentially interchangeable but the collection is.
For example, the pair of statements

X:=x*y
y:=0
is clearly not sequentially interchangeable, but the following collection is:
xX:=x=*y
y: =0
x:=0

Two assignment statements in which different variables receive new values
are sequentially interchangeable when the variable referenced on the left
side of one statement is not referenced (explicitly or implicitly) in the
expression on the right side of the other statement. For example, the two
statements

x:= E1
y:= E2

are sequentially interchangeable if x does not appear in the expression E2
and y does not appear in E1. Otherwise, e.g. if x appears in E2 or if y
appears in E1, the statements are sequentially interchangeable only in
special cases which are not of general interest.

The variables on the left sides of the statements may, of course, be array
variables. In this case, an additional, related restriction applies: x may not
appear in the subscript expression for y and vice versa. That is, the result
of executing each statement should be independent of the value of the other
variable being modified.

Generalizing to situations involving more than two assignment statements,
a collection of assignment statements is sequentially interchangeable if the
variables whose values are being modified are all different and if the value
of a variable being modified in any one statement has no influence on the
value of any expression appearing in any other statement.

It should be noted that these conditions for sequential interchangeability
are sufficient, but not necessary conditions. Typically, however, if they are
not met, the statements in question are sequentially interchangeable only
in special, often degenerate situations, if at all.

The effects of declaration statements are similar to those of assignment
statements. Therefore, a collection of declaration statements or of assignment
and declaration statements intermixed is sequentially interchangeable under
corresponding conditions.

In practice, situations arise in which a certain condition is fulfilled prior
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to the execution of a given sequence of statements. Furthermore, that
condition is a precondition of the specified postcondition with respect to
every permutation of the given statements. It is clear that, in such a
situation, the statements may be executed in any sequence, even if they
are not sequentially interchangeable. In such a case, the different results
obtained will all satisfy the postcondition, i.e. will be correct. The statements
are, in a certain restricted sense, interchangeable with respect to the specific
precondition and postcondition. This motivates the following two definitions.

Definition 4.1: A collection of statements
S1, 8, ..., 8,

is sequentially interchangeable with respect to the condition Q (a subset of
D), if for every permutation p of the integers 1 through » inclusive and for
every d in Q

(Spc1ys Sp2ys -5 Spim)(d) = (81, Sz, -+, Sp) (D)

Equality here is meant in the same sense as in definition 4.0 above.

Definition 4.2: A collection of statements
S5, S, ., S,

is sequentially interchangeable with respect to the precondition Q and the
postcondition P (both subsets of D), if for each d in Q either of the following
two conditions is met:
1 For every permutation p of the integers 1 through n inclusive

(Sptys Sp2ys - » Spem) () is defined and in P.
2 For every permutation p of the integers 1 through n inclusive

(Spctys Sp2ys - - - » Speny) (d) is undefined.

Note that this definition is more restrictive than merely requiring that Q
be a precondition of P under the sequence

(Sp1)s Sp@ys -+ Spemy)

for every permutation p. For example, a data environment d may exist such
that

o> Sp@> -+ > Spem ) (D)
is defined and in P for some permutations p and is undefined for all others.
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Such a d may be in a precondition of P under the above sequence of
statements for every permutation p, but it is excluded as an element of a
precondition Q by definition 4.2.

It is true. however, that a Q which satisfies definition 4.2 above is a
precondition of P under the sequence

(SP(U’ SP(Z)’ A Sp(n))

for every permutation p. This fact follows directly from definition 4.2 and
the definition of a precondition (see Chapter 3).

In the following section, situations involving statements which are sequenti-
ally interchangeable in the senses of definitions 4.1 and 4.2 are examined
from a somewhat different standpoint.

4.3.1 Pseudoconcurrent execution of program statements

As mentioned in Sections 4.3 and 4.3.0, it is, in some situations, permissible
for a collection of statements to be executed in any sequence, even if the
results obtained may vary depending upon the actual order of execution.
Such a collection of statements represents an obvious candidate for ‘parallel’
or ‘concurrent’ execution. This motivates the following definition, whereby
we will use the term ‘pseudoconcurrent’ in order to distinguish between
such a situation and the quite different structure for non-sequential execution
outlined in Section 4.3.2 below.

Definition 4.3: The result of executing the statements

Sl» SZ,""Sn

pseudoconcurrently upon a data environment d is defined to be an arbitrarily
selected member of the set

|[S], Sz, ey S,,]I (d) = {(Sp(l)s Sp(2)» .
of the integers 1 through n inclusive}

, Spon) (d) | p is a permutation

provided that
) Sp(n) ) (d)

is defined for every permutation p.

(Sp1y> Spys - - -

By ‘an arbitrarily selected member’ above we mean that the selection is
not under the control or influence of the programmer. The particular
member (resulting data environment) is selected by the ‘system’ in an
undefined way, e.g. randomly, and can vary from one pseudoconcurrent
execution of these statements to another in any manner. All that can be
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said about the data environment d1 resulting from executing the above
statements pseudoconcurrently upon the data environment d0 is that d1 is
a member of the above set, i.e. that there exists a permutation p such that

dl = (Sp(l)7 Sp(z), ey Sp(n))(d())

The operational notion underlying this definition is that a permutation of
the given statements is selected at random; that sequence of statements is
then executed. Murphy’s law implies that if the effect of executing any one
of the possible permutations is undefined, that permutation will be selected.
This suggests that if the effect of executing any permutation is undefined,
then the effect of pseudoconcurrently executing the collection of statements
should also be undefined, hence the requirement that the effect of every
permutation of the statements be defined.

This requirement implies that the domain of the pseudoconcurrent
construct

I[S:, S, ..., Sal

is the intersection of the domains of the sequences

(Sp(l) > SP(2)’ AR Sp(n))

over all permutations p.
Note also that the function corresponding to the pseudoconcurrent
construct

|[S]’ SZ’ Sn]\

does not, as the other programming constructs introduced before, map a
data environment into a data environment, but rather it maps a data
environment into a set of data environments, i.e. into a subset of D.

It is clear that the data environment resulting from executing a collection
of statements pseudoconcurrently is uniquely determined if the collection
is sequentially interchangeable, because then the set of possible results
contains only one member. If the statements in the pseudoconcurrent
construct are not sequentially interchangeable, the set of possible results
will, at least for some initial data environment d0, contain more than one
member. In this case, the result of executing the collection of statements
pseudoconcurrently will not be uniquely determined.

A classical example of the ‘concurrent’ execution of programs which
requires synchronization so that execution is pseudoconcurrent in the above
sense is the airline seat reservation problem (Baber, 1982, p. 169 ff.) The
functions ‘reserve’ (also called ‘lock’) and ‘release’ (or ‘unlock’) serve to
coordinate different, concurrently executing tasks (program executions).
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Without such synchronization, reservations can be effectively lost» or over-
booking can occur, even if the program is written to prevent it. When
synchronized properly, some sections of the ‘concurrent’ ta§ks may execute
temporally independently, but certain sections are restnctedv to strictly
sequential execution. That is, the critical section of one task is executed
completely, then the critical section of another task is executed completely;
the execution of these sections of the programs may not be overlapped or
interleaved. The final result of the ‘concurrent’ execution of the seve.ral
tasks is the same as that which would have been produced by executing
the tasks strictly sequentially, that is, one after the other in some order. .

A collection of statements may be executed in any order, that is
pseudoconcurrently, if the required postcondition is fulfilled regardless of
the order of execution. Whether the result of such a pseudoconcurrent
execution of the statements is uniquely determined or not is of no
consequence in such a situation. The fact that s.uch situationg .arise .in
programming practice leads to the need to determine a precondition with
respect to a collection of pseudoconcurrently executed st_a.tements. The
following theorems provide a way to derive such a precondition.

Theorem 4.1: If, for each permutation p of the integers 1 through n
inclusive, Q, is a precondition of the postcondition P under the sequence
of statements

(Sﬁ(l)’ SP(Z)* ce SII("))

then
Q = and, Q,

is a precondition of P under the pseudoconcurrent construct
I[S1, S, -5 Sl

Symbolically,
{Q,) (Spirys Sp2ys -+ » Speny) {P) for every permutation p

= {andp Q,,} |[S|, SZ’ R Sn]l {P}

Proof: Let d0 be an element of the domain of the pseudoconcurrent
construct

I[S1, Sz, ... Sall
and of Q. For any element d1 of the set
ISy, Sa -, S,]I (d0)
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there exists a permutation p such that
dl = (Sp(l)- S/J(Z)- e S/)(n))(do)

Q is a subset of Q,. It follows that d0 is an element of Q,,, a precondition
of P under the above sequence of statements. Therefore. dl is in P.
Thus, Q fulfills the definition of a precondition of P under the given
pseudoconcurrent construct. l

The above proof assumes a natural generalization of the definition of a
precondition for the case of a pseudoconcurrent programming construct.
Specifically, we require that all possible results of pseudoconcurrently
executing the statements in question satisfy the specified postcondition. If
some, but not all, possible results of executing a pseudoconcurrent program-
ming construct upon a data environment d0 are in the specified postcondition,
then no set which includes d0 can be a precondition. In other words, we

require that the set of possible results be a subset of the specified
postcondition.

Theorem 4.2: If all the Q, in theorem 4.1 are complete preconditions,
then also Q is a complete precondition.

Proof: The fact that Q is a precondition follows directly from theorem 4.1.
We will show here that the precondition Q is complete.

Consider any d in the domain of the pseudoconcurrent construct such
that

I[Sh SZ’ BRI Sn]l (d)
is a subset of P. This implies that
(Spiys Spays -5 Speny) (d) is defined and in P

for all permutations p. This, in turn, implies that d is in the complete
precondition Q, for every p. Therefore, d is also in Q, the intersection of
these sets. Therefore, Q must be a complete precondition. H

There is clearly a connection between
the sequential interchangeability of a collection of statements with

respect to a precondition and a postcondition (see definition 4.2) and
a precondition under a pseudoconcurrent construct.

This connection is clarified in the following paragraphs, in which the logical
relationships between the following three statements are examined.
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1 The collection of statements
S, S, ..., 8,

is sequentially interchangeable with respect to the precondition Q and
the postcondition P.
2 Qis a precondition of the postcondition P under the sequence

(Sp(l)’ SP(Z)’ R SI’("))

for every permutation p of the integers 1 through n inclusive.
3 Qis a precondition of the postcondition P under the pseudoconcurrent
construct

I[Si, Sas --u S,

Theorem 4.3: The first statement above implies the second.

Proof: (sketch) This fact, which was stated following definition 4.2 above,
follows directly from that definition and the definition of a precondition
(see Chapter 3). B

Theorem 4.4: The second statement above implies the third.

Proof: This theorem is a special case of theorem 4.1, in which Q, = Q
for every permutation p. B

The converse of this theorem is not, in general, true. There exist data
environments which, being outside the domain of the pseudoconcurrent
construct, may be included in its precondition Q but which cannot be
included in a precondition Q satisfying the second statement. An example
is any data environment d for which

(Sp(l)’ SI)(2)’ Tt SP(")) (d)

is undefined for some permutation p and is outside the postcondition P for
another. N

However, if such data environments are excluded from the precondition Q,
the converse of theorem 4.4 is true, as the following theorem states.

Theorem 4.5: If Q is a subset of the domain of the pseudoconcurrent
construct

I[Si, S5, - S
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then the third statement above implies the second. Furthermore, Q is a
strict precondition of each permuted sequence of the given statements.
Proof: Consider any data environment d0 in Q. Because Q is a subset of
the domain of the pseudoconcurrent construct,

dl = (Sp(l)~ Sp(Z)? R} S/)(n)) (dO)

is defined for every permutation p. Because Q is a precondition of P under
the pseudoconcurrent construct, d1 is in P. Thus, Q satisfies the definition
of a strict precondition of P under every permuted sequence of the given
statements. Wl

Theorem 4.6: If Q is a subset of the domain of the sequence

(Spc1ys Spys -5 Spimy)

for every permutation p, then the second statement above implies the first.

Proof: Consider any data environment d in Q. Then, for every permutation
p, the data enviornment

(Sp1ys Sp@ys -+ 5 Spim ) (d)
is defined and in P. Thus, definition 4.2 for the sequential interchangeability
with respect to a precondition and a postcondition is fulfilled. B
Summarizing theorems 4.3 through 4.6, it is always true that

statement 1 = statement 2 = statement 3

If Q is a subset of the domain of the pseudoconcurrent construct, then the
three statements are equivalent:

statement 1 < statement 2 <> statement 3

4.3.2 The computational history of contemporaneously executed
statements

In Section 2.2, the computational history of the execution of a program
was viewed as a sequence of data environments:

[d0, d1, d2, d3, ...]

or, in diagrammatical form:

d0 > dl - d2— d3 — ...
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The statements (functions) transforming each data environment into its
successor can be added to the diagram:

S1 YA S3 S4
do — dl — a2 — d3 —

Such a structure, which reflects the notion of the temporal development of
the execution of a program, has the important property that each data
environment has exactly one predecessor and one successor, except the first
(if any) which has no predecessor and the last (if any) which has no
successor. Such a sequence reflects the fundamental notion that program
statements (mathematical functions) are applied to their data environments
(arguments) one after another, in a specified order.

Generalizing to allow contemporaneous execution of program statements
(non-sequential application of functions) requires that the above restriction
— one predecessor, one successor — be relaxed. At least branching (more
than one successor) must be allowed. Allowing joining (more than one
predecessor of a single data environment) is a logical next step and is
necessary if the results of the contemporaneously executed program segments
are to be combined and used in a subsequent execution of some program
segment. If the concept of the computational history of the execution of a
progam is generalized in this way, structures such as that shown in Fig. 4.0
may arise:

St s2 53 54
do -1 a2 d3 —> g4
S10

S

dO=—m gt

520 0
21 730 a3 d50

d20 —=d21 540

ad40

Fig. 4.0 A non-sequential computational history

In functional terms, this computational history may be described as
follows:

d50 = S50(d4, d31, d40),

where

d4 = S4(d3)
d3 = S3(d2)
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d2 = 852(dl)
dl = 51(d0)

d31 = $31(d30)
d30 = S30(d11. d21)
dl1 = S11(d10)
d10 = 510(d1)
d21 = $21(d20)
d20 = S20(d1)

and
d40 = $40(d21)
Combining into one expression yields

ds0 = S50(54(S3(52(51(d0)))).
$31(S30(511(S10(51(d0))).521(S20(51(d0))) )),
$40(521(520(S1(d0)))) )

The concept of branching is natural and its definition obvious enough;
several different statements are applied to (executed upon) the same data
environment to form as many different data environments. In more
mathematical terms, several different functions are applied to the same
argument, yielding as many values (results).

Not so obvious is the action of joining as shown above. A program
construct is needed which has not just one, but in general many data
environments as arguments. No such construct has yet emerged as a general
consensus in programming practice, although in some specific situations,
the one or other particular mechanism may appear to be a natural choice.
Several possibilities exist for such a general program construct, such as
concatenation of the arguments (data environments) in a predetermined
order, transferring the values of variables in one or more arguments (data
environments) to variables of the same name in another argument, which
becomes the resulting data environment, etc.

A contemporaneous computational history such as the one illustrated
above may contain sequential substructures. In the above diagram, the
sequences (S2, S3, $4), (510, S11) and (520, $21) are examples of such
sequential substructures of the computational history. In such cases, the
computational history can be reduced by combining such sequences of
statements into a single compound statement and considering only the initial
and final data environments of the sequence. The resulting reduced
contemporaneous computational history illustrates only the branching and
joining structure.

More formally, if in a contemporaneous computational history a data
environment d exists such that
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1 d has exactly one predecessor,
2 d has exactly one successor and

3 d's successor has only one predecessor (i.e. d is its successor’s only
predecessor),

then the data environment d can be eliminated by combining the statement
giving rise to it and the statement which is applied to (executed upon) it
into a single compound statement. If a contemporaneous computational
history contains no such data environment d, it is said to be reduced.

If the example above is reduced in this way, the result is as shown in
Fig. 4.1.

In functional terms, this computational history may be described as
follows:

d50 = SS0(S4'(S1(d0)),
$31(530(S11(S1(d0))., $21'(S1(d0)) )),
540(521'(51(d0))) )

where
sS4 =(82, 83, S4)
S11' = (810, S11)
and
S$21" = (820, S21)

The various proof rules, concepts of preconditions and postconditions, etc.
covered elsewhere in this book can be applied straightforwardly to the

S1 (52,53,54)
ado ai aa

(510,511)

dn
(5‘20,52\)\ 530 531 550

/ d30 a3l a50

adai

\5’42
d40

Fig. 4.1 A reduced non-sequential computational history
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individual program segments and sequences in contemporaneous program
structures of the types discussed in this section.

4.3.3 The interleaved execution of sequential programs upon a common
sequence of data environments

A typical mechanism for executing several sequential processes ‘in parallel’
in effect interleaves (merges) the several sequences of statements to be
executed into a single sequence. The resulting single sequence is then
executed as defined in Chapter 2. The several distinct program segments
operate upon a shared data environment or, more precisely, a common
sequence of data environments. Thus, a single sequence of data environments
constitutes the computational history of such a mechanism for executing
program segments in parallel.

The several program segments are combined so that the original relative
order of statements in each is preserved. Otherwise, no restrictions on the
interleaving mechanism are imposed. It is, in general, not reproducible and
may be viewed as a random process.

Usually, the several individual sequential processes being executed in
parallel in this manner interact through shared variables. Other variables
are referenced only by one process. In some schemes, the shared variables
constitute a common pool referenced by any number of such computational
processes. In others, variables are shared by only two processes.

The interaction among processes being executed upon a shared data
environment in an interleaved way can give rise to major problems. Even
if each individual program segment, when executed independently, yields
correct results, it may no longer do so when executed interleaved with other
programs. Some of the difficulties which can arise and some approaches to
avoiding or solving them are outlined below.

In order to discuss these phenomena mathematically precisely, one must
define the mechanism for the interleaved execution of separate programs
accordingly. In practice, such mechanisms differ in important details such
as the smallest interleavable piece of code. For example, in some systems,
the smallest executional unit might be an assignment, declaration or release
statement. In others, such a statement might be subdivided into still smaller
pieces (e.g. machine language instructions) before interleaving these pieces
with comparable units of other processes for execution. Still others might
execute an entire if construct, for example, without interruption. Such
differences can be of consequence to the software designer.

For the sake of simplicity, we will assume in the following examples that
the indivisible unit of execution is the elementary statement (assignment,
declaration or release statement). Furthermore, we will consider specific
situations involving only sequences of assignment statements.
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Example 8: Consider the following two program segments. each consisting
of a sequence of three statements.

Program segment 1: (S11. $12, 513)
Program segment 2: (521, $22, §23)

If these program segments are executed in sequence (i.e. not in parallel),
the first segment followed by the second, the statements would be executed
in the order

(S11, S12, S13, S21. 522, §23)

If interleaved, the following executional sequences would be among the 20
((3+3)!/(3!3!)) possible ones:

(S11, S12, S21, S13, 522, 523)
(S11, S21, S12, S13, 522, 523)
(511, $21, S12, $22, S13, 523)
(S11, $21, 522, S12, S13, 523)
(511, S12, S21, S22, S13, $23)

Note that any such sequence can be derived from any other by a sequence
of steps, each of which interchanges adjacent statements from different
program segments. The non-interleaved sequence (S11, $12, S13, S21, S22,
§23) provides a convenient starting point.

From the observation in the last paragraph above, the following generally
valid conclusion can be deduced. If each pair of statements from different
program segments is sequentially interchangeable (see Section 4.3.0,
especially definition 4.0), then every interleaved executional sequence has
the same effect and the program segments may be executed in an interleaved
manner. This requirement is a rather restrictive one, however, and is
generally satisfied only by program segments which do not interact at all
(i.e. which refer to no common variables) or in rather special, often
uninteresting, cases.

This difficulty can be circumvented effectively by (a) considering pairs of
statements which are sequentially interchangeable with respect to a suitable
precondition and postcondition, i.e. in the weaker sense of definition 4.2,
and (b) permitting the programmer to restrain the interleaving mechanism.
Some systems allow him, for example, to specify that certain groups of
statements are not to be subdivided by the interleaving mechanism. A
variety of constructs exist in programming languages for this purpose, for
example, data locking, semaphores, synchronization or rendezvous points,
waiting mechanisms (implicit or explicit, applied to the exchange of messages
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between communicating sequential processes or in more general situations),
etc.

Such mechanisms, while in common use, are often unnecessarily restrictive.
It is sufficient to prevent the interleaving mechanism from subdividing a
group of statements by interleaving a statement which is not sequentially
interchangeable with the appropriate component of the group. Interleaving
other statements with components of the said group can be permitted. The
following example illustrates this situation.

Example 9: Consider the following instance of the structure considered in
example 8. Each program segment represents a simplified form of part of
a program for recording airline seat reservations. Initially, the values of the
variables dem1 and dem?2 indicate the number of seats requested by the
customers being processed by terminals 1 and 2 respectively.

program segment 1 program segment 2

S11: templ := avail S21: temp?2 := avail
S$12: avail := templ — deml $22: avail := temp2 — dem?2
S$13: resl := resl + deml $23: res2 := res2 + dem?2

The value of the shared variable avail gives the number of seats available
on the flight in question. The variables res1 and res2 accumulate the number
of seats reserved via terminals 1 and 2 respectively.

If the postcondition P is

avail + resl + res2 = cap

where cap is the capacity of the flight in question, it can be easily shown
that this same condition is a complete precondition under either program
segment 1 or 2. This condition can be viewed as a program invariant or,
probably more appropriately, a data invariant.

Consider the interleaved sequence (S11, $21, $22, S12, S13, $23). We
derive the complete preconditions at the various points in the interleaved
execution as follows:

program segment 1 program segment 2

{avail + resl + res2 + dem2 = cap}

S11: templ = avail
{templ + resl + res2 + dem2
= cap}
S21: temp?2 := avail
{templ + resl + res2 + dem?2
= cap}
$§22: avail := temp2 — dem?
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{templ + resl + res2 + dem2 = cap}
$12: avail := templ — dem]
{avail + resl + res2 + deml + dem?2
= cap}
$13: resl := resl + deml
{avail + resl + res2 + dem2 =

cap}
8§23: res2 := res2 + dem?2

{avail + resl + res2 = cap}

Similarly, the complete precondition under the sequence (S11, $21, S12,
8§22, S13, 823) is {avail + resl + res2 + deml = cap}. Summarizing, we
have

{avail + resl + res2 = cap} (S11, S12, S13, S21, $22, 523) {P} completely

{avail + resl + res2 + dem2 = cap} (S11, S21, $22, S12, S13, $23) {P}
completely

and

{avail + resl + res2 + deml
completely

cap} (S11, 521, S12, 522, S13, $23) {P}

If the interleaved execution is to yield a data environment in P regardless
of which of the above three sequences is actually executed, the initial data
environment must be in the intersection of the three preconditions above.
Their intersection is a subset of {dem1l = dem2 = 0}. Thus the interleaved
execution of program segments 1 and 2 is correct only for this uninteresting
special case.

One source of the problem is clearly the fact that the execution of §12
negates the effect of $22. This is, in turn, due to the fact that S12 and $22
are not sequentially interchangeable. A similar difficulty arises because $12
and S$21 are not sequentially interchangeable.

If one attempts to interchange adjacent statements from different program
segments in the sequence

(S11, $12, S13, $21, 822, §23)
in order to obtain
(S11, 821, 822, S12, $13, S23),

one must at some point interchange S12 and $21, e.g. transform (S11, $12,
S$21, S13, $22, $23) into (S11, S21, $12, $13, 822, §23)

Because the functions (512, $21) and (521, S12) are not equal, the functions
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corresponding to the above two longer sequences will not, in general, be
equal.

It is true, however, that the sequence (S11, S12), viewed as a single
construct, is sequentially interchangeable with the sequence ($21, $22) with
respect to any precondition and any postcondition involving neither templ
nor temp2. Thus, if the sequence (S11, $12) is not interrupted to execute
either $21 or 522, and, correspondingly, if the sequence (521, $22) is not
interrupted to execute either S11 or 512, no difficulty will arise. Subject to
this restriction, which is typically implemented by ‘locking’ the variable avail
(temporarily reserving it for one process), the interleaved execution of
program segments 1 and 2 will always yield correct results.

Note that the sequence (S11, S12) may be interrupted by 523 without
giving rise to an incorrect result. Correspondingly, the sequence (S21, $22)
may be interrupted by S13, e.g. in the sequence (811, S12, S$21, S13, S22,
$23).

Inserting the locking and unlocking commands to achieve the effect
described above, the program segments 1 and 2 become:

program segment 1 program segment 2

lock avail lock avail

S11: templ := avail S21: temp2 := avail

S$12: avail := templ — deml $§22: avail := temp2 — dem?2
unlock avail unlock avail

S$13: resl := resl + deml S23: res2 := res2 + dem?2

Locking a single shared variable does not, however, guarantee correct
results if another variable is shared with another process — not even if only
one process modifies the shared variable. The following example illustrates
such a situation.

Example 10: Consider a situation in which a third program is added to
the system in example 9. The third program contains a segment which
‘inputs’ or ‘reads’ the values of avail, resl and res2 and displays this
information.

program segment 3

S31: report(page, linea) := avail
S$32: report(page, linel) := resl
$33: report(page, line2) := res2

If no restraint is imposed on the relationship among the values displayed
on the three lines of the report, this program segment will function correctly




132 4 TRANSFUNDAMENTAL PROGRAMMING CONSTRUCTS

when its execution is interleaved with the execution of program segments 1
and 2 in example 9.

If, however, it is required that the sum of the numbers displayed on the
three lines be cap (the capacity of the flight), i.e. if

report(page, linea) + report(page, linel) + report(page. line2) = cap

is a postcondition under program segment 3, the interleaved execution of
program segments 1, 2 and 3 will not, in general, yield correct results. As
in example 9, the problem arises because certain pairs of statements are
not sequentially interchangeable — neither in the strict sense of definition
4.0 nor in the weaker sense of definition 4.2 with respect to the appropriate
conditions.

In particular, the following pairs of statements are not sequentially
interchangeable: (S31, S12), (S31, $22), (532, S13) and (833, 523). The
following groups including these statements are, however, sequentially
interchangeable with respect to the appropriate preconditions and postcon-
ditions:

(512, S13) and (531, $32)
(522, 523) and (S31, $32, §33)

One can show in several different ways that each above pair of groups of
statements is sequentially interchangeable. Most simply, it follows from the
sequential interchangeability of the entire program segments (511, S12, S13)
and (831, $32, $33) in the case of the first pair above and, correspondingly,
from the sequential interchangeability of the program segments (521, S22,
$23) and (S31, $32, S33) in the case of the second pair.

Adding appropriate locking statements to the final versions of program
segments 1 and 2 in example 9 and to program segment 3, we obtain the
following versions of the three program segments:

program segment 1 program segment 2

lock avail lock avail .

S11: templ := avail S$21: temp?2 := avail

S$12: avail := templ — deml $22: avail := temp2 — dem?2
lock resl lock res2

unlock avail unlock avail

S$13: resl := resl + deml $23: res2 := res2 + dem?2
unlock resl unlock res2

program segment 3

lock avail
S31: report(page, linea) := avail
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lock resl

lock res2

unlock avail

S$32: report(page, linel) := resl
unlock resl

S33: report(page, line2) :
unlock res?2

res2

This locking scheme is minimally restrictive in the sense that it permits
execution of every sequence of the statements which always yields a correct
result while it prevents the execution of every sequence which could yield
an incorrect result. Other locking schemes exist which guarantee correct
results but which are unnecessarily restrictive, i.e. they prevent the execution
of certain sequences which would always yield correct results.

Note that the addition of the new program segment 3 to the system
necessitated modifications to the already existing programs. Such interactions
among programs to be executed interleaved are not unusual in program
development.

The problem in example 10 arose not from the precise form of the third
program segment, but from its postcondition, i.e. from its criterion of
correctness. Thus, in order to design a system of programs which are.to
give correct results when executed interleaved, the designer of any one
program must consider every other program with which variables are shared
as well as its precondition, its various intermediate conditions and its
postcondition. In general, this constitutes a very serious practical constraint
on the design process and considerably complicates adding a new program
to the system at a later time.

If such a system of programs is structured so that no variable is referenced
by more than two programs, the complexity of interaction can be reduced
considerably. This consideration argues for a system structure in which any
particular shared variable or group of such variables is maintained and
referenced by one data management program only. Any other program
wishing to access the shared data does so by exchanging appropriate
messages with the corresponding data management program. The messages
are exchanged via variables, each of which is referenced by only two
programs, the data management one and the one requesting (indirect)
access to the shared data. Via such message variables, each individual
program sends its requests to the data management program, which returns
acknowledgements and the values of shared data elements as requested.
Maintaining the truth of conditions imposed on the variables in the common
data pool is the responsibility of the data management program. A data
base system is one example of such a program.
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In this section, we have considered certain specific situations involving
only sequences of assignment statements. The conclusions drawn are more
generally valid, however. The theory of interleaved execution outlined here

can be extended to include all of the fundamental constructs defined in
Chapter 2.
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Chapter 5

The analysis and verification of
programs: methods and examples

It would be a serious error to think that one can find certainty only in
geometrical demonstrations or in the testimony of the senses.
— Augustin Louis Cauchy
It should always be required that a mathematical subject not be
considered exhausted until it has become intuitively evident.
— Felix Klein
Nature is not embarrassed by difficuities of analysis.
— Augustin Fresnel

Mathematical Analysis is as extensive as nature herself.
— Joseph Fourier

Characteristic of every engineering discipline are two quite distinct aspects
of the design activity: creativity and systematic verification. When deciding
upon the general structure and form of the object to be designed, the
engineer exercises creative skills in a non-mechanistic process. General
principles based on theoretical considerations are of some value, but
guidelines based on practice and experience are heavily employed. The
process is neither precisely determined nor systematic nor reproducible.
After making preliminary design decisions, the engineer then analyzes his
proposed design systematically, precisely and in detail to verify that the
object will fulfill the specifications, e.g. that stresses will not exceed the
breaking strengths of the materials to be used, etc. This phase of the
design effort is predominantly mechanistic and systematic in nature; it is
reproducible by other engineers who have received a similar education and
who share a common body of knowledge.

In practice, the creative, non-systematic work is usually performed first.
When studying the engineering field in question, however, it is advantageous
to examine the systematic, more mechanical aspects of the design process

137
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first. Only afterward, the less systematic, more creative processes are
considered.

There are several reasons for this approach. The requirements of the
verification process tend to restrain in certain fundamental ways the freedom
of choice in the creative phase. The prerequisites for the systematic analysis
give rise to important and useful principles for conducting and recording
the results of the creative phase. The underlying theory and the way in
which it is applied in the analytical process gives insight into the fundamental
nature of the design problem; this insight is of value when making the
preliminary, more subjective design decisions.

We begin our examination of the engineering design of computer
programs, therefore, with the analysis of given programs or program
segments. We assume that the segments in question represent tentative,
proposed designs. Our goal is to verify their validity, correctness and
appropriateness for the specified task and to identify any possible short-
comings or restrictions which must be imposed upon their application.

For each of the constructs used in the program segment, we will apply
the corresponding results of the theory presented in Chapters 2, 3 and 4.
As the word ‘analysis’ implies, we will take the program apart and
verify each part individually. Our analysis will exhibit a structure (usually
hierarchical) corresponding to that of the program itself.

5.0 The assignment statement

5.0.0 Assignment to an ordinary variable

The correctness of an ordinary assignment statement is verified by straightfor-
wardly applying either lemma 3.0 for the assignment statement (see Sec-
tion 3.0.0) or theorem 3.3 (see Section 3.0.1). In either case, one must also
demonstrate that the initial data environment is in the domain of the given
assignment statement (see Section 2.1.0). This is done by showing that the
variables referenced in the statement are contained in the initial data
environment, that the value of the expression on the right side of the
assignment symbol (:=) is defined and that it is an element of the set
associated with the variable to which the value is being assigned.

If the postcondition is given, it is usually preferable to derive a complete
precondition by applying the theorem. The given precondition (if stated)
must imply the derived complete precondition, i.e. the given precondition
must be a subset of the derived precondition.

Example 1: Consider the assignment statement

z: =z +x

%ﬂﬁ%ﬁg‘*”ﬂr” Al

5.0 The assignment statement 139

and the postcondition
z = max
Symbolically, this verification problem can be written as follows:
{(?} z := z + x {z = max}
Applying theorem 3.3 for the assignment statement (see Section 3.0.1), we
obtain
zZ =max — X

as a complete precondition. If this condition is met, .if variables named x
and z are present in the initial data environment and if the values of x and
z are such that the value of (z + x) is defined (is in the range of the
operation ‘+’ as implemented) and if that value is a membgr of the set
associated with the variable z, then this part of the program in question 1s

correct.

Alternatively, one can often apply lemma 3.0 to a givep precondition to
derive a postcondition. The derived postcondition must imply (be a subset
of) the stated postcondition (if one is given).
Example 2: Consider the statement

x:=y—3*x
and the precondition

x=0

Call the initial data environment d0 and the final data environment d1.
Then applying lemma 3.0, we ‘have

x(d1) = y(d0) — 3 * x(d0)
and
y(d1) = y(d0)
Rewriting the precondition gives
x(d0) = 0
which is equivalent to
3% x(d0) =0
Combining the above, we derive
3 * x(d0) = y(d0) — x(d1) = y(dl) — x(d1) = 0
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or, more simply,
y—x=0

as the postcondition.

One must also show that d0 is in the domain of the statement. as
described in example 1 above.

5.0.1 Assignment to an array variable

In principle, an assignment statement in which an array variable receives a
new value is verified in the same way as described in Section 5.0.0. However,
as stated earlier in Section 3.0.1, extreme care should be exercised when
the subscript expression involves one or more variables. This point deserves
particular attention, as it gives rise to probably the most subtle trap in
proving programs correct. When in doubt or if confusion arises, it is
advisable to rewrite the given condition in a form which explicitly indicates
in which data environment each variable is to be evaluated. The resulting
expression should then be manipulated in a way corresponding to the proof
of theorem 3.3 in Section 3.0.1. Whenever a variable belonging to the array
receiving a new value is referenced in a condition, one must distinguish
between two cases depending upon whether or not the referenced variable
is the one receiving a new value.

At this point the reader should review the example given in Section 3.0.1.

Example 3: The following statement appears in a program which merges
two arrays of sorted values.
c(ic) := a(ia)
The required postcondition is that the resulting array is in sequence, i.e.
c(l) = c(2) = ... c(ic)

with the convention that this condition is considered to be true if ic < 1.
This postcondition can be written in various equivalent ways, e.g.

lic = 1]

or [(ic > 1) andi! ¢(i) = c(i + 1)]
We are to derive a complete precondition. In order to simplify the analysis
by case, distinguishing between subscript values equal to and not equal to

the value of ic in the initial data environment, we rewrite the above
postcondition so that these two subscript values appear in separate terms:

[ic = 1]
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or [(ic > 1) and (andi<* ¢(i) = c(i + 1)) and c(ic — 1) = c(ic)]

In this form, the last reference to c is the only reference to an element of
the array ¢ with a subscript value equal to ic. Thus. we can app!y theorc-‘:m 3.3
for the assignment statement (see Section 3.0.1) and. §ubst1tute a(ia) for
c(ic) in the above postcondition to obtain the precondition:

[ic = 1]

or [(ic > 1) and (andi< 2 c(i) = c(i + 1)) and c(ic — 1) = a(ia)]

It is not always possible to separate references to array variables so direqtly
and straightforwardly as illustrated above. In such situations, an exhaustive

analysis by case must be performed. _ o

In the following example, we will employ an abbrevnated potatloq in
order to improve the readability of the various expressxons.’A single prime
symbol (') will indicate evaluation in the initial dgta env1ronm§nt and a
double prime symbol ("), evaluation in the resul’gr}g. data env19rnment.
That is, if an assignment statement A is applied to an initial dgta environment
d, then the meanings of y’, y”, E’ and E”, where y is a variable name and
E is an expression, are as follows:

y'  =valvar(y, d)
y" = valvar(y, A(d))
E' = valexp(E, d)
E" = valexp(E, A(d))

If x is an array name and i is the name of an ordinary variabl.e, theril,.f.or
example, x"(i’) indicates that the subscript i is to be evaluated in the }nltlal
data environment and that the array variable x(i') is to be evaluated in the
resulting data environment:

x"(i") = valvar(x(valvar(i, d)), A(d))

Example 4: Consider the postcondition
x(x(2)) =y

and the assignment statement
x(i):=E

where x is an array name, y is the name of an ordinary va.ri.able a.nd’E is
an expression involving any variables. Rewriting the postcgndltxon to indicate
explicitly the data environment in which each variable is to be evaluated,
we obtain
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X)) = ¥
Applying lemma 3.0 for the assignment statement (see Section 3.0.0) yields
x'l(i/) — El
x"(j) = x'(j) for all subscript values j # i’
and
yl/ . yl
The postcondition is, therefore, equivalent to
X(&(2)) =y

We wish to proceed by substituting expressions involving singly primed
variables for doubly primed ones, thereby deriving a precondition. In taking
the next step, we must distinguish between the two mutually exclusive and
exhaustive cases:

Case 1: i’ # 2
and
Case 2: i' =2

In case 1, we can rewrite our intermediate postcondition above into the
following form:

x"(x'(2)) = y’ (case 1 only)

To proceed further, we must again distinguish between two mutually
exclusive and exhaustive cases:

Case 1(a): i' # x'(2)
and
Case 1(b): i’ = x'(2)
In case 1(a), our condition becomes
x'(x'(2)) = y' (case 1(a) only)
In case 1(b), we obtain
(i) =
and finally,
E' =y’ (case 1(b))

In case 2, we rewrite the equivalent postcondition
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X)) =y

(see above) to
X)) =y

and finally,
x"(E') = y' (case 2 only)

Again, we must distinguish between two mutually exclusive and exhaustive
cases:

Case 2(a): E" # 1’

and

Case 2(b): E' =1’
In case 2(a), we can write our condition as
x'(E'") = y' (case 2(a) only)
In case 2(b), we have
(i) =y’
and finally,
E' = y' (case 2(b))
Combining the above four cases, we have for our precondition

x'(x'(2)) =y, if (i" # 2) and (i’ # x'(2)), i.e. in case 1(a)

E =1y, if (i' # 2) and (i’ = x'(2)), i.e. in case 1(b)

x'(E") =y’ if (' = 2) and (E' # '), i.e. in case 2(a)
and

E =y, if (i’ = 2) and (E' = i), i.e. in case 2(b)

This can be written in the following equivalent form:
(' #2)and (' # x'(2)) and (x'(x'(2)) = y")
or ('’ # 2) and (' = x'(2)) and (E' = y’)
or ('’ =2)and (E' #i') and (x'(E') = y')
or (' =2)and (E' =i')and (E' =y’)

Note that, by definition, the logical and function takes precedence over the
logical or function, i.e. (a or b and c) means (a or (b and ¢)).
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The above expression involves only variables to be evaluated in the initial
data environment. It is, therefore. the precondition which we sought. Being
logically equivalent to the given postcondition, it is a complete precondition.
Because it is understood that a precondition is to be evaluated in the initial
data environment, we can eliminate ‘the prime symbols to obtain our
precondition in conventional notation:

(i # 2) and (i # x(2)) and (x(x(2)) = y)
or (i #2) and (i = x(2)) and (E = y)
2) and (E # i) and (x(E) = y)
2) and (E = i) and (E = y)

or (i

I

or (i

This expression can be rewritten in several different equivalent ways, which
may be convenient for certain purposes, e.g.

(i # 2) and (i # x(2)) and (x(x(2)) = y)
or (i #2)and (i = x(2)) and (E = y)
2) and (E # 2) and (x(E) = y)
2) and (E = 2) and (y = 2)

or (i

or (i

In the above derivation, we have implicitly assumed that subscript expressions
are evaluated just as any other expressions. In many actual systems, subscript
values must be integers. After evaluating a subscript expression in the
normal way, such systems usually round a non-integral result to an integer.
Such rounding, if performed automatically by the system of interest, should
be explicitly considered in our analysis. If the automatic rounding is
expressed by the function ‘round’ and the above analysis is adjusted
according, our precondition becomes:

(round(i) # 2) and (round(i) # round(x(2))) and (x(x(2)) = y)
or (round(i) # 2) and (round(i/) = round(x(2))) and (E = y)
or (round(i) = 2) and (round(E) # round(i)) and (x(E) = y)
or (round(/) = 2) and (round(E) = round(i)) and (E = y)

Note that the condition (E = y) in cases 1(b) and 2(b) remains unchanged,
i.e. the subscript rounding function is not applied to E in this expression.
In the specification of the four cases, on the other hand, the rounding
function is applied to all expressions, whereby we assume that round(2) = 2.
The rounding function is, of course, understood to be implicitly applied to
the subscript expressions in the references to the array variables x(x(2))
and x(E) above.

5.0 The assignment statement 145

Summarizing the conclusions to be drawn from the above examples. two
different. alternative strategies are useful for deriving a precondition from
a given postcondition for an assignment statement in which an array
variable receives a new value:

1 Separate terms in the postcondition involving variables belonging to the
array in question so that references to the array variable receiving a
new value are isolated from references to array variables not receiving
a new value. Then apply theorem 3.3 for the assignment statement (see
Section 3.0.1).

2 Rewrite the given condition so that the data environment in which each
variable is to be evaluated is explicitly indicated. Using lemma 3.0 for the
assignment statement (see Section 3.0.0), substitute equal expressions for
the various variables so that all variables are evaluated in the same
data environment. If the goal is to derive a precondition, all variables
should be evaluated in the initial data environment; if a postcondition
is sought, all variables should be evaluated in the resulting data
environment. Using the '/” notation has the advantage that the
expressions being manipulated have a particularly simple form.

When the first strategy above can be applied, if often leads more quickly
to the desired solution. The second strategy, being applicable in all situations,
represents a general method for solving the problem. Furthermore, it can
be used not only for deriving a precondition from a given postcondition,
but also vice versa.

5.1 The if statement

The correctness of an if construct is verified by applying the progressive
theorem for the if statement (theorem 3.4, Section 3.1.0) or the retrogressive
theorem for the if statement (theorem 3.5, Section 3.1.1). If a postcondition
is to be derived from a precondition, the progressive theorem is applicable.
In the more usual situation, in which a precondition is to be derived from
a given postcondition, the retrogressive theorem is used.

Example 5: We wish to determine a precondition of the postcondition
x=0
under the statement

if x < O then x := —x endif

In this case, the statement S1 of the retrogressive theorem (theorem 3.5)
is the statement ‘x := —x’; the statement S2 is the null statement.
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A precondition under S1 is
-x=0
which is equivalent to
x=0

A precondition under S2 is the postcondition itself.
Applying the retrogressive theorem for the if statement, we obtain

((x = 0) and (x < 0)) or ((x = 0) and not (x < 0))
as the precondition. Simplifying yields
(x<0)or (x =0)

which is always true. Thus, the precondition is simply the logical constant
‘true’ and the postcondition is always satisfied, provided, of course, that
the result of executing the above if statement on the given initial data
environment is defined at all.

The domain of an if statement, in general, is the intersection of the
domain of its condition and, if this condition is true, the domain of the
statement in the then part or, if the if condition is false, the domain of the
statement in the else part. That is,

domain(if B then S1 else S2 endif)
= domain(B) and ((B and domain(S51)) or ((not B) and domain(S2)))

Because the set B and the set (not B) are both subsets of the domain of
B, the above condition (set) is equal to the following;:

(B and domain(S1)) or ((not B) and domain (S2))

The if statement in this example is defined for all data environments which
contain a numerical variable named x, provided that whenever the value
of x is negative and in the implemented range, then the (positive) value of
—x is also in the implemented range. This requirement is not fulfilled by
all real systems.
Example 6: Consider the following if statement

if x < 0 then x := —x else x := 2 * x — 80 endif
and the postcondition

x>0
The precondition under the then part

X = —Xx
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is
x>0
or, equivalently,
x <0
The precondition under the else part
x:=2x*x— 80
is
2+xx—80>0

or, in an equivalent, simpler form
x > 40

Applying the retrogressive theorem for the if statement (theorem 3.5), we
obtain

((x < 0) and (x < 0)) or ((x > 40) and (x = 0))
or, simplifying,

(x < 0) or (x > 40)
as the precondition of the if statement given above.

The preconditions of the then and else parts of the if statement as derived
above are complete preconditions. Therefore,

{(x <0)or (x > 40)}
if x < O then x := —x else x := 2 = x — 80 endif {x > 0} completely

(see Section 3.1.1).

5.2 A sequence of program statements

The correctness of a sequence of statements is verified by applying either
theorem 3.6 or theorem 3.7 (Sections 3.2.0, 3.2.1), depending upon whether
an ordinary or a complete precondition is involved.

The following example is taken from the body of a while loop which
calculates the sum of the values stored in an array.

Example 7: Determine a complete precondition of the given postcondition
i

(s = > x(j)) and (i = n)

j=1
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under the sequence of statements

I =i+ 1

s =5+ x(i)
A complete precondition under the last statement can be found by applying
theorem 3.3 for the assignment statement (see Section 3.0.1):

i

(s + x(i) = 2, x(j)) and (i < n)

j=1
or, simplifying,

i—1

(s = z x(j)) and (i = n)

j=1
This complete precondition under the last statement becomes the postcon-
dition with respect to the first statement. Applying the theorem for the
assignment statement again, we obtain for a complete precondition under
the first statement
i
(s = Z x(j))and (i =n — 1)

j=1
This is the desired complete precondition under the given sequence of
statements.

The next example, which involves array variables, is taken from a program
which permutes (rearranges) the values in an array so that they are partially
sorted.
Example 8: Given the postcondition

(gl < gr) and for every integer i such that gl < i = gr, x(i) = x(gr)
or, equivalently,

(8! < gr) and§Z . x(i) = x(gr)
and the sequence of statements

x(gl) :=: x(gr)

gr:=gr—1

gl:=gl -1

find a complete precondition. The values of the variables g/ and gr may be
assumed to be integers, e.g. because g/ and gr were declared integer
variables.
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Applying theorem 3.3 for the assignment statement (Section 3.0.1) to the
last two statements above, we obtain as the precondition of the second
(and the postcondition for the first) statement

(gl — 1 <gr—1)andsZ,}) x(i) = x(gr — 1)

Before applying theorem 3.3 to the first statement in the given sequence,
we rewrite the above condition so that subscript values equal to those
appearing in the exchange statement are isolated (see Section 5.0.1,
especially example 3). The first step results in the expression

(g/ < gr) and [and$” /., x(i) = x(gr — 1)] and x(gl) = x(gr — 1)

Clearly, none of the references to x(i) above can refer to either x(g/) or
x(gr). The two references to x(gr — 1) cannot refer to x(gr), but they may
refer to x(gl) if gl = gr — 1. The reference to x(g/) must, of course, refer
to x(g/) but cannot refer to x(gr). Thus, we must distinguish between the
two situations (g/ = gr — 1) and (g/ # gr — 1) only. Rewriting the above
postcondition for the first statement accordingly and simplifying leads to

(gl =gr—1)
or
(gl < gr — 1) and [and¢”,/,, x(i) = x(gr — 1)] and x(gl) = x(gr — 1)
as the postcondition of interest for the first statement in the sequence.
The exchange statement
x(gl) :=: x(gr)

was defined in Section 2.1.0 to be equivalent to the multiple assignment
statement

(x(gD), x(gr)) := (x(gr), x(g))
Applying theorem 3.3 for the assignment statement in its generalized form
to this multiple assignment statement and to the last expression above for
the postcondition of the exchange statement, we obtain

(gl =gr—1

or

(g/ < gr — 1) and [and¢” /), , x(i) = x(gr — 1)] and x(gr) = x(gr — 1)
which reduces to

(87 < gr) and$Z ., x(i) = x(gr)

a complete precondition under the given sequence of statements. Note that
the precondition is identical in form to the postcondition. It is part of the
invariant of the loop from which this sequence of statements was taken.
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5.3 The while loop

It is generally easy to prove a while loop correct — provided the designer
has specified the loop invariant as well as the postcondition. Since deciding
upon the loop invariant constitutes the major design decision in the
construction of a loop, as we will see in Chapter 6, a loop invariant will be
available for every properly designed and documented loop. The post-
condition must, in any event, be specified, for without it, the very notion
of ‘correctness’ has no meaning and hence it cannot be verified.

To verify the correctness of the loop, one applies the loop theorem
(theorem 3.8, Section 3.3.0). This requires showing that

the initialization establishes the truth of the loop invariant,

the body of the loop preserves it and

the loop invariant and the negation of the loop condition together imply
the postcondition.

Finally, in common with proving all other constructs correct, one must show
that the initial data environment is in the domain of the while loop.
In particular, this involves demonstrating that the loop terminates (see
Section 3.3.3).

Of the several steps in verifying the correctness of a loop, proving that
the body of the loop preserves the truth of the loop invariant usually
requires the greatest effort. Frequently, moderately complicated logical
expressions arise. Appropriate, convenient notation can often help consider-
ably to reduce the clerical effort.

Example 9: Consider the program segment

while i < n do
i:=1+1
s:=s5 + x(i)

endwhile

where 7 is an integer variable. The required postcondition is

n

s =2 x(j)

j=1

and the loop invariant specified by the loop’s designer is
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(s = Z x(j)) and (i is an integer) and (/ = n)
j=1
We begin by noting that the initialization establishes the truth of the loop
invariant provided that in the initial data environment

n=20

This is, therefore, a precondition which must be satisfied by the prior
segment of the program.

We now prove that the body of the loop preserves the truth of the loop
invariant. Referring to the loop theorem (theorem 3.8) this necessitates
showing that

{I and B} S {1}

where I is the above loop invariant, B is the while condition (i < n) and S
is the sequence of two statements comprising the body of the loop.
We note that the condition (/ and B) is equal to
(s = Z x(j)) and (i is an integer) and (i < n)
j=1
Because n is an integer, this condition can be rewritten as follows:
(s = 2 x(j)) and (i is an integer) and (i = n — 1)
j=1
By applying theorem 3.3 for the assignment statement (Section 3.0.1) and
simplifying, it is easily shown that

{i is an integer} S {i is an integer}

In Section 5.2, example 7, it was shown that
(G :2 x(j)) and (i = n = 1)} S {(s =2 x(j)) and (i = n)}
= =
Applying theorem 3.0, we can combine the last two statements above to
obtain
{(s = le x(j)) and (i is an integer) and (i = n — 1)}
=
S{(s = i x{j)) and (i is an integer) and (i = n)}

j=1

thereby verifying that {/ and B} S {I}, i.e. that the body of the loop
preserves the loop invariant.
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The loop theorem states that when (and if) the loop terminates. the
condition (/ and not B) will be satisfied, i.e. that
(s = E x(j)) and (i is an integer) and (i = n) and (not (i < n))
j=1
will be true. This condition simplifies to
(s = D, x(j)) and (i is an integer) and (i = n)
j=1
which implies
s =2 x())
j=1
the specified postcondition. We conclude, therefore, that the loop is partially
correct provided that n = 0.

Termination can be shown easily. Initially, the value of i is 0. It is
increased by one each time the body of the loop is executed. Therefore,
after the body of the loop has been executed n times, i = n, and the loop
will terminate.

One must also show that the effect of executing each statement is defined.
This will be the case if the initial data environment contains all referenced
variables (appropriately declared), if the array x exists with subscripts
ranging from 1 to » inclusive (at least) and if each intermediate sum of the
x(i) and the final value are within the range of the numerical set specified
in the declaration of s.

The above method can be used only when the loop invariant is known. In
general, it will yield an ordinary, but not a complete precondition. If the
loop invariant is not known or if a complete precondition is required, we
must employ a different approach based on the corollary for complete
preconditions of a loop (see Section 3.3.2).

Example 10: Consider the program segment and postcondition as in
example 9. Here, we assume that a complete precondition is desired and
that a corresponding loop invariant is not available. We will, therefore,
apply the corollary of Section 3.3.2 and derive both a complete precondition
and a loop invariant.

We begin by restating the postcondition:

5= lx(j)

j:
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This postcondition is not a subset of (not B), so we must construct the
effective postcondition (see Section 3.3.1) by forming the intersection of
the above postcondition and (not B). The resulting condition will be the P
and Z, of the corollary:
Zy=[(s =2 x(j)) and (i = n)]
j1

Applying the definitions of C and Z stated in the corollary in Section 3.3.2,
we obtain

n

Co = [(s+x(i+1)=2 x(j))and (i + 1 = n)]

j=1

i

Zi = [ = 2 x(j)) and (i = n — 1)]
Z, = [(s=2x(j))and (i = n — 2)]
Zy = [(s=2x(j)) and (i = n — k)]

=1

The complete precondition Q of the loop and the loop invariant is, therefore,

n i

Q =[(=2x(j))and(i=n)]or[(s= x(j))and (i <n)]

j=1 j=1

n i

= [(s=2 x(j))and (i >n)]or [(s = x(j)) and (i = n)]

j=1 j=1

Applying the theorem for the assignment statement to each of the two
initializing statements, we obtain

n

[(0 =2 x(j)) and (n < 0)] or [n = 0]

Jj=1

as a complete precondition under the entire program segment. Compare
this with the precondition derived in example 9.

The method used in example 10 can, in principle, be applied to every loop.
In practice, however, the complexity of the expressions which can arise
sometimes precludes its application.
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5.4 The declaration statement

As pointed out in Section 3.4, the declaration statement has a very similar
effect as the assignment statement. As far as non-concealed variables are
concerned, the effect is, in fact, identical. Thus, the same analytical
techniques as those used for the assignment statement are often applied to
the declaration statement.

The declaration statement is frequently used to preserve the values of
variables which, while not required in the immediate program segment,
may be required later in hierarchically superior program segments. Before
returning control to such a superior segment, a release statement is executed,
making the concealed value accessible again.

In order to prove the correctness of the superior segment, the special
effects of declare statements must, in general, be considered explicitly. This
can often be done conveniently by noting that if, for example, the declare
statement D

declare (x, Z, E)

is applied to a data environment d0, the resulting data environment d1 is
given by the equation

dl = D(d0) = [(x, Z, valexp(E, d0))] & dO

This notational form will often facilitate proving that part or all of the
initial data environment is left undisturbed by the action of a particular
program segment.

Most frequently a progressive approach will be found appropriate when
analyzing a section of a program consisting of one or more declare
statements. That is, one will typically derive a postcondition from a given
precondition. The postcondition will usually involve statements about the
structure of the resulting data environment, as illustrated by the above
example; the postcondition will not be simply a conditional expression over
variable names. Section 5.5 and the example of a recursive procedure in
Section 5.8.1 below treat this subject further.

5.5 The release statement

The release statement is used to undo the effect of a previously executed
declare statement. The goal is typically to restore the data environment to
a previous state or to an approximation thereto. For example, if the data
environment d1 has the structure

dl = [(x, Z, valexp(E, d0))] & dO

i
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and the release statement R
release x

is applied to dl, then the resulting data environment d2 is given by the
equation

d2 = R(dl) = dO

Equations and conditions in this and similar form will be used in the proof
of correctness of the recursive procedure in Section 5.8.1 below.

5.6 The procedure call

The procedure call without parameters was defined in Sections 2.1.6 and
2.2.6 to be semantically equivalent to the body of the procedure. Therefore,
the analytical techniques appropriate for the constructs appearing in the
body of the procedure should be applied.

Procedure calls with parameters may be replaced by the equivalent
procedure calls without parameters (see Section 4.0). The equivalent pro-
gram can then be verified by the methods described above.

Normally, a procedure is designed to perform one particular function,
whereby a specific precondition and a specific postcondition are presumed.
A theorem about the precondition and the postcondition can be formulated
and proved. Such a theorem constitutes a proof rule for a call to the
procedure in question and can be used in the proofs of the correctness of
the program segments which call the procedure. In fact, one can argue that
such an approach to proving the correctness of a program is the most
important — or even the only real — reason for subdividing the program into
individual procedures. This approach will be used in examples in Section 5.8
and in Chapter 6.

5.7 Other loop constructs

To prove a loop other than a while loop correct, replace it by the equivalent
while loop and prove the latter correct as described in Section 5.3 above.
Section 2.1.8 gives definitions for several other loop constructs in terms of
the while loop.

5.8 Examples of the analysis of entire program segments

The following examples illustrate how the proof techniques described in
earlier sections may be combined to prove the correctness of a program
segment consisting of a combination of assignment statements, if statements,
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loops. sequences thereof, etc. They illustrate the level of complexity which
can arise in such proofs as well as ways of limiting and dealing with it.
While some of the conditional expressions in the following examples may
appear complicated to the novice, one should keep in mind that (a) skill in
interpreting and manipulating such expressions can be acquired quickly by
appropriate study and exercise, (b) it is quite possible to cope with even
the very complicated expressions by ‘dividing and conquering’ them in
suitable ways and (c) other engineers must deal with problems at least as
complex (e.g. the civil engineer when calculating the statics of a proposed
design for a bridge or a skyscraper, the aeronautical engineer when analyzing
the characteristics of an airplane at both subsonic and supersonic speeds,
the electrical engineer when calculating the response function of an intricate
circuit performing both band-pass and impedance matching functions, etc.).

5.8.0 Merging two sorted arrays

The following program merges the values in two sorted arrays a and b. The
values are copied into the resulting array ¢ so that c is in sequence when
the program terminates.

(ia, ib, ic) := (1, 1, 1)
while (ia = na) or (ib = nb) do

if (ib > nb) or ((ia = na) and (a(ia) = b(ib)))
then c(ic) := a(ia)

ia:=ia + 1
else c(ic) := b(ib)

ib:=1ib+1
endif
ic:=1ic+1

endwhile

Formally, we state the precondition as follows. Given are two families of
array variables, a(ia) and b(ib), where ia = 1,2, ..., naandib = 1,2, ...,
nb. The values of the variables na and nb are non-negative integers. The
two arrays are sorted in ascending sequence, i.e.

for all integers i such that 1 =i < na, a(i) = a(i + 1)
and for all integers i such that 1 = i < nb, b(i) < b(i + 1)

The postcondition can be formally stated as follows:

the sequence [c(1), ¢(2), ..., c(na + nb)] is a permutation (rearrange-
ment of the terms) of the sequence [a(1), a(2), ... a(na), b(1), b(2),...,
b(nb)]
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and for all integers i such that 1 =i < na + nb, c(i) = c(i + 1)

whereby we also require that the merging program not modify either array
aor b.

The general idea behind the program’s variables and statements is that
a(ia) is the next element of array a which should be copied to the array c;
in other words, ia ‘points’ to the next element of the array a to be copied.
Similarly, ib points to the next element of array b to be copied to array c.
The variable ic points to the element of array ¢ which is to receive the next
value from either array a or array b. The lesser of the next elements from
a or b is copied to c¢ as long as an uncopied element remains in the array
in question. Whenever an element of a or b is copied to ¢, the pointers
are updated accordingly.

The designer specified that the loop invariant consist of the following
terms combined with the logical and operator:

nN: 1 =ia <na+1

2: 1=ib=nb+1
I3: (ic—1)=(@a—- 1)+ (b —-1)
I4: the sequence [c(1), ¢(2), ..., c(ic — 1)] is a permutation of the

sequence [a(1), a(2), ..., a(ia — 1), b(1), b(2) ..., b(ib — 1)]
I5: (1 < ic) and (ia = na) = c(ic — 1) =< a(ia)
16: (1 < ic) and (ib = nb) = c(ic — 1) = b(ib)

I7: for all integers i such that 1 =i <ic — 1, c(i) =c(i + 1)

The individual terms or groups thereof are intended to express in mathemat-
ically precise language the following notions. /1 states that the value of the
pointer ia is either in the defined range of subscripts for array a or, if all
elements of array a have already been copied to array c, the value of ia is
1 greater than the greatest allowed subscript value. /2 is the corresponding
statement for the pointer ib. I3 defines ic in terms of ia and ib. (Since ic
is a function of ia and ib, it is redundant and could be eliminated from the
program.) I4 states that the values in array ¢ must have come from arrays a
and b, i.e. that they were not generated in some other way. I5 and /6 state
that the next values to be copied from arrays a and b (if any) are greater
than or equal to the last value copied to array c (if any). I7 states that the
values already in array c are in ascending sequence.

Note that each of the above terms in the loop invariant depends as
follows upon program variables whose values are changed by the merging
program:
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I1(ia)

12(ib)

[3(ia, ib, ic)
14(ia, ib, ic, c)
I5(ia, ic, c)
16(ib, ic, c)
I7(ic, )

Thus, the loop invariant is
I1(ia) and 12(ib) and [3(ia, ib, ic) and [4(ia, ib, ic, c)
and I5(ia, ic, ¢) and 16(ib, ic, c¢) and I7(ic, c)

The loop invariant can be represented diagrammatically as follows:

i |ia na| .
already copied toc  still to be copied to ¢ rraya
1 7 |ib nb| b
already copiedtoc  still to be copied to ¢ array
11 lic na + nb|

array ¢ already copied from a and b  still to be copied from a and b

To simplify the expressions which arise and especially to prevent losing
sight of the structure of our correctness proof, we label the several conditions
and statements which appear in the program as follows:

Bl: (ia = na) or (ib = nb)

B2:  (ib > nb) or ((ia =< na) and (a(ia) = b(ib)))
S1: (c(ic) := a(ia), ia := ia + 1)

S$2: (c(ic) := b(ib), ib := ib + 1)

S$3: if B2 then S1 else S2 endif

S4: dc:=ic + 1

S5: (83, $4)

Using this notation, the merge program then becomes:
(ia, ib, ic) := (1, 1, 1)
while B1 do
S5

endwhile
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To demonstrate that the loop is correct. we must show that (see
Sections 3.3.0 and 5.3)

1 the initialization establishes the truth of the loop invariant,

2 the loop invariant and the negation of the loop condition Bl together
imply the postcondition,

3 the body S5 of the loop preserves the truth of the loop invariant and

4 the initial data environment is in the domain of the loop, in particular,
the loop terminates in finite time.

By substituting 1 for ia, ib and ic in each of the terms /1, 12, ...., I7 of
the loop invariant and noting that the precondition requires that na,
nb = 0, one can verify directly that the initialization establishes the truth
of the loop invariant.

The second step above can also be verified easily. The negation of the
loop condition Bl is

not ((ia = na) or (ib = nb))
which is equivalent to
(ia > na) and (ib > nb)
This condition and the several terms of the loop invariant imply that
ia =na + 1
ib=nb+1
and

ic =na+ nb+1

Substituting these values into the terms /4 and /7 of the loop invariant leads
directly to the postcondition.

Proving that the body S5 of the loop preserves the truth of the loop
invariant involves a large number of individual steps, each of which is,
however, relatively simple. We will use several different theorems stated
and proved in earlier sections. They all serve to ‘divide and conquer’. Our
strategy is to consider the loop invariant as the given postcondition of the
body of the loop and, working backward by applying the retrogressive proof
rules, derive preconditions at the various intermediate points in the loop,
ending with the precondition at the beginning of the body of the loop.
Finally, we will show that the loop invariant together with the while
condition implies that precondition. The general structure of this process is
illustrated in Fig. 5.0.
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?
Loop invariant and 81 —__>
Precondition of $5:
{ [(52) and (precondition of $1) ]or [ (not £2) and (precondition of 52)] }

true #

BT false
Z<c J

P— Precondition of S1 Precondition of $2—%

[5e] E3

—— Precondition of S1b Precondition of S2b —

53

55
Sib 52b

Precondition of $4

The postcondition is the loop invariant

Fig. 5.0 The structure of the proof of correctness of the subprogram for merging
two sorted arrays

Lemma 5.0: {[1(ia) and I2(ib)} S4 {I1(ia) and 12(ib)}

Proof: The condition [[1(ia) and [2(ib)] does not refer to the variable ic,
whose value is modified by statement S4. Therefore, by the theorem for
the assignment statement, [/1(ia) and [2(ib)] is a precondition of itself
under S4. B

Lemma 5.1: {I1(ia) and I2(ib) and B1 and B2} S1 {/1(ia) and I2(ib)}

Proof: Applying the theorem for the assignment statement to the sequence
S1 of statements with [/1(ia) and I2(ib)] as the postcondition, we obtain as
a precondition

I1(ia + 1) and 12(ib)
which is, by definition of /1 and /2,
O=ia=na)and (1 =ib=nb + 1)

Expanding (B1 and B2) and simplifying yields
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(ia = na) and (ib > nb)
or (ia < na) and (a(ia) = b(ib))
Thus,
(B1 and B2) = (ia =< na)
and therefore
[71(ia) and I2(ib) and B1 and B2]

= [(1 = ia < na) and (1 < ib = nb + 1)]

. Because this latter condition is stronger than (is a subset of) the precondition

derived in the first step of this proof above, it follows that also [/1(ia) and
12(ib) and B1 and B2] is a, precondition of [/1(ia) and /2(ib)] under S1. B

Lemma 5.2: {Il(ia) and 12(ib) and B1 and not B2} S2 {/1(ia) and I2(ib) }

Proof: The proof of this lemma is analogous to that of the preceding
lemma 5.1. Applying the theorem for the assignment statement to the
sequence S2 of statements with [/1(ia) and [2(ib)] as the postcondition, we
obtain

(1 =ia=na+ 1) and (0 = ib = nb)
as a precondition of [/1(ia) and I2(ib)] under S2.
Expanding (B1 and not B2) and simplifying yields
(ib = nb) and (ia > na)
or (ib = nb) and (a(ia) > b(ib))
Thus,
(B1 and not B2) = (ib = nb)
and therefore
[I1(ia) and [2(ib) and Bl and not B2]
= [(1 =ia=na+1)and (1 =ib = nb)]

Because this latter condition is stronger than (is a subset of) the precondition
derived in the first step of this proof above, it follows that also [/1(ia) and
I2(ib) and B1 and not B2] is a precondition of [/1(ia) and I2(ib)] under
S2. n

Lemma 5.3: {I1(ia) and 12(ib) and B1} S3 {/1(ia) and 12(ib) }
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Proof: By lemma 5.1,

{11(ia) and 12(ib) and B1 and B2} S1 {/1(ia) and I2(ib)}
and by lemma 5.2,

{/1(ia) and 12(ib) and B1 and not B2} S2 {[I1(ia) and I2(ib)}
It follows by theorem 3.4 for the if statement that

{I1(ia) and 12(ib) and B1}

if B2 then S1 else S2 endif {/1(ia) and I2(ib)}
But by definition, S3 is the above if statement.

Lemma 5.4: The condition [/1(ia) and /2(ib)] is a loop invariant. i.e.

{11(ia) and I2(ib) and B1} S5 {/I1(ia) and 12(ib)}

Proof: By lemma 5.3,
{11(ia) and 12(ib) and B1} S3 {/I1(ia) and 12(ib) }
and by lemma 5.0,
{11(ia) and 12(ib) } S4 {I1(ia) and I12(ib)}
It follows by theorem 3.6 for a sequence of statements that
{11(ia) and 12(ib) and B1} (53, S4) {I1(ia) and I2(ib)}
But by definition, S5 is the sequence (S3, $4). B

The reader should pay particular attention to the structure of the proof
above. Starting with the postcondition of the body S5 of the loop, we
worked backward through the sequence of statements (3, $4) comprising
$5. We derived a precondition under the statement S4, which became the
postcondition for the statement $3. Because S1 and S2 are the components
of the if statement S3, we derived preconditions under S1 and S2 and
combined them to form a precondition of $3 and of the entire body S5 of
the loop.

We will use the same strategy for verifying the other terms of the loop
invariant. The structure of the entire proof systematically repeats the pattern
in the first five lemmata above. The following table shows for each term
or group of terms of the loop invariant and for each program construct
which lemma deals with the corresponding precondition and postcondition:
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S4 S1 52 S3 S5
(11 and 12) 5.0 5.1 5.2 5.3 5.4
J&; 5.5 5.6 5.7 5.8 5.9
14 5.10 5.11 5.12 5.13 5.14
(15 and I6) 5.15 5.16 5.17 5.18 5.19
(17 and I5 and I6) 5.20 5.21 5.22 5.23 5.24

Lemma 5.5: {I3(ia, ib, ic + 1)} S4 {I3(ia, ib, ic)}

Proof: This lemma follows directly from the application of the theorem
for the assignment statement. W

Lemma 5.6: {I3(ia, ib. ic) and Bl and B2} S1 {I3(ia. ib, ic + 1)}

Proof: Applying the theorem for the assignment statement to S1, we

obtain .
{B3(ia + 1, ib, ic + 1)} S1 {I3(ia, ib, ic + 1)}

From the definition of I3, it follows that

Bia + 1,ib,ic + 1) = [ic = ia + (ib — 1)]
But

lic = ia + (ib — 1)] = [(ic = 1) = (ia — 1) + (ib — 1)] = I3(ia, ib, ic)
i.e. '

B3(ia + 1, ib, ic + 1) = I3(ia, ib, ic)
Thus,

{I3(ia, ib, ic)} S1 {I3(ia, ib, ic + 1)}
The condition (3(ia, ib, ic) and B1 and B2) is a subset of /3(ia, ib, ic) and
is, therefore, also a precondition under S1. B

Lemma 5.7: {I3(ia, ib, ic) and Bl and not B2} 52 {I3(ia, ib, ic + 1)}

Proof (sketch): The proof of this lemma is analogous to that of lemma
5.6. 10

Lemma 5.8: {I3(ia, ib, ic) and B1} S3 {I3(ia, ib, ic + 1)}

Proof (sketch): Analogously to the proof of lemma 5.3, this lemma follows
from the above two lemmata and theorem 3.4 for the if statement. B
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Lemma 5.9: The condition [3(ia. ib, ic) is a loop invariant. i.e.
{13(ia. ib, ic) and B1} S5 {I3(ia, ib, ic)}
Proof (sketch):  Analogously to the proof of lemma 5.4, this lemma follows

from the lemmata 5.5 and 5.8 and theorem 3.6 for a sequence of statements.
n

Lemma 5.10:  {I4(ia, ib, ic + 1, ¢)} S4 {[l4(ia, ib, ic, )}

Proof: This lemma follows directly from the application of the theorem
for the assignment statement. B

Lemma 5.11:  [4(ia, ib, ic, c) and Bl and B2} S1 {/4(ia, ib, ic + 1, ¢)}

Proof: Applying the theorem for the assignment statement, we obtain
{{4(ia + 1,ib, ic + 1, ¢} ia := ia + 1 {[4(ia, ib, ic + 1, )}

By the definition of /4,
14(ia + 1, ib, ic + 1, ¢)

= (the sequence [c(1), c(2), ..., c(ic)] is a permutation of the sequence
[a(1), a(2), ..., a(ia), b(1), b(2), ..., b(ib — 1)])

Applying the theorem for the assignment statement again, we obtain

{the sequence [c(1), ¢(2), ..., c(ic — 1), a(ia)] is a permutation of the
sequence [a(1), a(2), ..., a(ia), b(1), b(2), ..., b(ib — 1)]}

c(ic) := a(ia) {I4(ia + 1, ib, ic + 1, ¢)}
The above precondition is equivalent to

(the sequence [c(1), ¢(2), ..., c(ic — 1)] is a permutation of the
sequence [a(1), a(2), ..., a(ia — 1), b(1), b(2), ..., b(ib - 1)])

which is I4(ia, ib, ic, c). Referring to the definition of S1 and theorem 3.6
for a sequence of statements and combining terms, we have
{14(ia, ib, ic, ¢)} S1 {l4(ia, ib, ic + 1, ¢)}

The condition (/4(ia, ib, ic, ¢) and Bl and B2) is a subset of I4(ia, ib, ic,
c) and is, therefore, also a precondition under S1. B

Lemma 5.12: A precondition of /4 under S2 is as follows:
{14(ia, ib, ic, c) and B1 and .not B2} S2 {[4(ia, ib, ic + 1, ¢)}
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Proof (sketch): The proof of this lemma is analogous to that of lemma 5.11.
|

Lemma 5.13: {l4(ia, ib, ic, c) and B1} S3 {[4(ia, ib. ic + 1, c)}

Proof (sketch): Analogously to the proof of lemma 5.3, this lemma follows

from the above two lemmata and theorem 3.4 for the if statement. B

Lemma 5.14: The condition [4(ia, ib, ic, c¢) is a loop invariant, i.e.
{I4(ia, ib, ic, ¢) and B1} S5 {l4(ia, ib, ic, ¢)}

Proof (sketch):  Analogously to the proof of lemma 5.4, this lemma follows

from the lemmata 5.10 and 5.13 and theorem 3.6 for a sequence of

statements. W

Lemma 5.15: A precondition of (IS5 and /6) under 54 is as follows:
{I5(ia, ic + 1, ¢) and 16(ib, ic + 1, ¢)} S4 {I5(ia, ic, c) and [6(ib, ic, c)}

Proof: This lemma follows directly from the application of the theorem
for the assignment statement. l

Lemma 5.16: If the array a is in ascending sequence (see the precondition
of the entire program segment given in the beginning of this Section 5.8.0),
then a precondition of (I5 and /6) under S1 is as follows:

{I5(ia, ic, c) and I6(ib, ic, c) and Bl and B2}
S1 {I5(ia, ic + 1, ¢) and [6(ib, ic + 1, ¢)}

Proof: Applying the theorem for the assignment statement, we obtain
{I5(ia + 1, ic + 1, ¢) and I6(ib, ic + 1, ¢)}
ia := ia + 1 {I5(ia, ic + 1, ¢) and [6(ib, ic + 1, ¢)}
By the definition of IS5,
IS(ia + 1, ic + 1, ¢)
=[(1 <ic+ 1)and (ia + 1 = na) = c(ic) = a(ia + 1)]
Applying the theorem for the assignment statement again, we obtain
{Q<ic+1) and (ia + 1 =< na) = a(ia) < a(ia + 1)}
c(ic) := a(ia) {I5(a + 1,ic + 1, ¢)}
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Because the array a is in ascending sequence. the precondition above is
always true, i.e.

{true} c(ic) := a(ia) I5{ia + 1. ic + 1.¢)}
and, therefore, trivially

{I5(ia, ic, c) and Bl and B2} c(ic) := a(ia) {I5(ia + 1.ic + 1, ¢)}
Similarly, by the definition of /6,

16(ib, ic + 1, ¢)

=[(1 <ic + 1) and (ib = nb) = c(ic) = b(ib)]
Applying the theorem for the assignment statement again, we obtain

{(1 <ic + 1)and (ib = nb) = a(ia) = b(ib)}

c(ic) := a(ia) {16(ib, ic + 1, ¢)}

By applying the definition of the implication function (=), the precondition
above can be simplified and we have

{(ic = 0) or (ib > nb) or (a(ia) = b(ib))}
c(ic) := a(ia) {16(ib, ic + 1, ¢)}

Because a subset of a precondition is a precondition, we can simplify the
above to

{(ib > nb) or (a(ia) = b(ib))} c(ic) := a(ia) {16(ib, ic + 1, ¢)}

Examining the expansion and simplification of (Bl and B2) given in the
proof of lemma 5.1, we see that

(B1 and B2) = [(ib > nb) or (a(ia) = b(ib))]
so that
{B1 and B2} c(ic) := a(ia) {16(ib, ic + 1, ¢)}
and
{16(ib, ic, c) and Bl and B2} c(ic) := a(ia) {16(ib, ic + 1, ¢)}
By applying theorem 3.0, we can combine this with
{I5(ia, ic, c) and B1 and B2} c(ic) := a(ia) {I5(ia + 1, ic + 1, ¢)}
which was shown above to be true, to obtain
{I5(ia, ic, c) and 16(ib, ic, ¢) and Bl and B2}
c(ic) :=‘a(ia) {I5(ia + 1, ic + 1, ¢) and I6(ib, ic + 1, ¢)}
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By applying theorem 3.6 for a sequence of statements. we can combine the
above with

{I5(ia + 1, ic + 1. ¢) and 16(ib. ic + 1. ¢)}

ia := ia + 1 {I5@a, ic + 1. c) and 16(ib, ic + 1. ¢)}
(see the first step in the proof of this lemma) to obtain

{I5(ia, ic, c) and I6(ib, ic, c¢) and Bl and B2}

S1 {I5(ia, ic + 1, c) and [6(ib, ic + 1,¢c)} W
Lemma 5.17: If the array b is in ascending sequence (see the precondition

of the entire program segment given in the beginning of this Section 5.8.0),
then a precondition under $2 is as follows:

{I5(ia, ic, c) and 16(ib, ic, ¢) and Bl and not B2}
S2 {I5(ia, ic + 1, ¢) and 16(ib, ic + 1, ¢)}
Proof (sketch): This lemma is proved in the same manner as lemma 5.16

above. Additionally, the obvious fact that [b(ib) < a(ia)] = [b(ib) < a(ia)]
is used. W

Lemma 5.18: If the arrays a and b are in ascending sequence (see the
precondition of the entire program segment given in the beginning of this
Section 5.8.0), then a precondition of (/5 and-16) under $3 is as follows:

{I5(ia, ic, c) and [6(ib, ic, c) and Bl}
S3 {I5(ia, ic + 1, ¢) and 16(ib, ic + 1, ¢)}

Proof (sketch):  Analogously to the proof of lemma 5.3, this lemma follows

from the above two lemmata and theorem 3.4 for the if statement. B

Lemma 5.19: 1If the arrays a and b are in ascending sequence (see the
precondition of the entire program segment given in the beginning of this
Section 5.8.0), then the condition [I5(ia, ic, ¢) and [6(ib, ic, c¢)] is a loop
invariant, i.e.

{15(ia, ic, ¢) and [6(ib, ic, c) and B1}
S5 {I5(ia, ic, ¢) and 16(ib, ic, ¢)}

Proof (sketch): Analogously to the proof of lemma 5.4, this lemma follows
from the lemmata 5.15 and 5.18 and theorem 3.6 for a sequence of
statements. W
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Lemma 5.20: {I7(ic + 1. ¢)} $4 {I7(ic, ¢)}

Proof: This lemma follows directly from the application of the theorem
for the assignment statement. W
Lemma 5.21: A precondition of /7 under S1 is as follows:

{I7(ic, c) and I5(ia, ic, ¢) and B1 and B2} S1 {[7(ic + 1.¢)}

Proof: Applying the theorem for the assignment statement, we obtain
{IT(ic + 1,¢)}ia:=ia + 1{[1(ic + 1, ¢)}
By the definition of 17,
I(ic + 1, ¢)
= [for all integers i such that 1 =i < ic, c(i) = c(i + 1)]
Rewriting to isolate the reference to c(ic), we have
I(ic + 1, ¢)

= [((1 <ic) = (c(ic — 1) = c(ic)))
and (for all integers i such that 1 =i <ic — 1, c(i) = c(i + 1))]

Applying the theorem for the assignment statement again, we obtain
{((1 <ic) = (c(ic = 1) = a(ia)))
and (for all integers i such thatl =/ <ic— 1, ¢(i) = c(i + 1))}
c(ic) := a(ia) {I7(ic + 1, ¢)}

Because a subset of a precondition is a precondition, we may modify the
above to become

{((1 <ic) = (c(ic = 1) = a(ia)))

and (for all integers i such that 1 =/ < ic — 1, ¢(i) = ¢(i + 1))

and Bl and B2}

c(ic) := a(ia) {I7(ic + 1, ¢)}
In the proof of lemma 5.1 it was shown that

(B1 and B2) = (ia = na)
Thus, we can rewrite the precondition under the statement (c(ic) := a(ia))
above to obtain

{((1 < ic) and (ia = na) = (c(ic — 1) = a(ia)))
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and (for all integers i such that 1 =i <ic — 1, c(i) = c(i + 1))
and B1 and B2}
c(icy := a(ia) {[1(ic + 1, ¢)}
which is
{I(ic, ¢) and I5(ia, ic, c) and Bl and B2} c(ic) := a(ia) {I7(ic + 1, ¢)}

Referring to the definition of S1 and theorem 3.6 for a sequence of
statements, we can combine the above with

{I7(ic + 1, ¢)} ia :=ia + 1 {[7(ic + 1,¢)}
(see the first step in the proof of this lemma) to obtain

{I(ic, c) and I5(ia, ic, ¢) and Bl and B2} S1 {I7(ic + 1,¢c)} W

Lemma 5.22: A precondition under 52 is as follows:

{I7(ic, c) and 16(ib, ic, ¢) and B1 and not B2} S2 {[7(ic + 1, ¢)}

Proof (sketch): This lemma is proved in the same manner as lemma 5.21.
u

Lemma 5.23: A precondition under $3 is as follows:

{I7(ic, c) and I5(ia, ic, ¢} and I6(ib, ic, ¢) and B1} S3 {I7(ic + 1, ¢)}

Proof (sketch): First, strengthen the preconditions proved in lemmas 5.21
and 5.22 by anding them with the terms /6 and IS respectively. Analogously
to the proof of lemma 5.3, this lemma then follows from theorem 3.4 for
the if statement. W

Lemma 5.24: The condition [I7(ic, ¢) and I5(ia, ic, ¢) and 16(ib, ic, c)] is
a loop invariant, i.e.
{I(ic, ¢) and I5(ia, ic, c) and 16(ib, ic, c) and Bl}
S5 {17(ic, c¢) and I5(ia, ic, ¢) and [6(ib, ic, c)]
Proof: Analogously to the proof of lemma 5.4, it follows from the lemmata
5.20 and 5.23 and the theorem 3.6 for a sequence of statements that
{I'(ic, ¢) and I5(ia, ic, ¢) and 16(ib, ic, c¢) and B1} S5 {[7(ic, c)}

Applying theorem 3.0 for the intersection of preconditions and postconditions
to the above and the result of lemma 5.19, we obtain the thesis of this
lemma. B
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Theorem 5.0: The condition
1(ia) and /2(ib) and I3(ia. ib. ic) and [4(ia. ib. ic. c)

and /5(ia. ic. c) and 16(ib. ic. ¢) and [7(ic. c)

is a loop invariant, that is,
{I1(ia) and 12(ib) and [3(ia, ib. ic) and [4(ia. ib. ic. c)
and /5(ia. ic, c¢) and [6(ib, ic. ¢) and [7(ic, ¢) and B1}
S5
{I1(ia) and 12(ib) and [3(ia, ib, ic) and [4(ia, ib, ic, c)
and /5(ia, ic, c¢) and 16(ib, ic, ¢) and [7(ic, ¢)}

Proof (sketch): Apply theorem 3.0 for the intersection of preconditions
and postconditions to the results of lemmata 5.4, 5.9, 5.14 and 5.24. B

This completes the proof that the program segment is partially correct, i.e.
that if it yields a result, that result fulfills the stipulated postcondition. To
prove this, we have shown that the initialization establishes the truth of the
loop invariant, that the loop invariant and the termination condition (the
negation of the loop condition) together imply the postcondition and that
the body of the loop preserves the truth of the loop invariant.

The last step mentioned — showing that the body of the loop preserves
the truth of the loop invariant — was the most complex step. In practice, it
is almost always the longest part of the proof of correctness of a loop.
Therefore, the reader should at this point review the structure of this proof.
Refer especially to the diagram immediately preceding lemma 5.0.

Fig. 5.1 reviews and summarizes the structure of the above proof. In
particular, it highlights the functional forms of the pre- and postconditions
encountered at key points in the body of the loop. The condition P[ia, ib,
ic, (c(1),... c(ic=1))] represents the loop invariant being considered. In
lemmata 5.0-5.4, P represents (/1 and 12); in lemmata 5.5-5.9, P represents
13, etc. (see the table following lemma 5.4). Notice how each precondition
is derived from the corresponding postcondition by the application of the
appropriate retrogressive proof rule for each assignment and if statement.

Finally, we must show that the initial data environment is in the domain
of the program segment. An important part of such a demonstration is a
proof that the loop terminates. This can be shown in several essentially
equivalent ways. Perhaps the simplest is to note that the terms /1, I2 and
13 of the loop invariant imply that

l=ic=na+ nb+1
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Loop invariant and while condition: P [ /a, /b, ic, (c(1),....clic-1))] and 81 (/a, /b)

Precondition of the body of the loop: ) )
B2(ia,ib) and PLia+1,ib,ic+1, (c(1),... ,c(/c-1).a((a))] ‘
or (not B2(/a,/b)) and Plia,ib+1,ic+1,(c(1),....,clic-1),6(ib6)]

false
v Z2(ia.7)

PLia+t,ib,ic+1,(c(1),..., Plia,ib+1,ic+1,(c(1),...,

c(ic-1),a(ia))] ’ wc(/c-l).b(/’b))]
c(ic)=alia) c(ic):=b6(ib)
/a:=7ijag+1 ib:=7b+1

| |

Plia,ib,ic+1,(c(1),....c (/'c))I]
L

Loop invariant and postcondition: P [ /a, /b, ic, (¢ (1),...,c(/c-1 N7]

Fig. 5.1 Functional forms in the proof of correctness of the subprogram for merging
two sorted arrays

Each execution of the body of the loop increases the value of ic by 1. The
initial value of ic is 1. Thus the loop must terminate after its body has been
executed at most (na + nb) times. In fact, it will be executed exactly (na
+ nb) times. N

This argument can be expressed more formally by applying the deﬁmt10n§
of Section 2.2 and considering the length of the computational history d*
(a sequence of data environments) at each point in the executional process.
Each time the body of the loop is executed, ic is incremented by one and
three individual statements are executed which contribute to the com-
putational history. It follows, therefore, that the condition

length(d*) = length(d0*) + 1 + 3 * (ic — 1)

is a loop invariant, that is, is satisfied before and after each ‘execution of
the body of the loop. The function length(-) by definition maps its argument,
a sequence of data environments, into an integer, the num'ber of dat'a
environments in that sequence. The sequence d* of data environments 1s
the computational history developed up to the point in question in the
execution of our subprogram. When evaluating the above condition, the
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value of ic in the data environment last(d*) is to be used. The sequence
d0* of data environments is the previously developed computational history
to which our subprogram is applied.

Combining this equation with the upper bound on ic above and taking
into consideration the data environment appended to the computational
history upon termination of the loop (see Definitions 2.26 and 2.34). we
obtain

length(d*) — length(d0*) = 2 + 3 * (na + nb)

Noting that the length of our subprogram’s contribution to the computational
history is length(d*) — length(d0*), we see that this length — and hence the
execution time of the subprogram - is bounded (finite). Furthermore, it
increases at most linearly with (na + nb). One says that the time complexity
of the subprogram is ‘of the order of (na + nb)’, written O(na + nb)
(Baber, 1982, pp. 81-2, 177-80).

In addition, one must, strictly speaking, show that each execution of each
statement yields a defined result. If ia, ib and ic are declared to be numerical
variables with a sufficiently large range, the corresponding assignment
statements will always yield a defined result. Similarly, the arrays a, b and
¢ must be suitably declared, with sufficiently large ranges for their subscripts.

The condition B2 in the if statement can, depending upon conventions
of the implementation of the actual system used, be quite problematic.
Consider the situations in which ia = na + 1 orib = nb + 1. In these cases,
the if condition refers to the array variables a(na + 1) and b(nb + 1)
respectively, variables which may not exist and whose values are, in any
event, irrelevant.

Some real systems will, when evaluating (ib > nb) or (ia = na), recognize
that the value of the subexpression (a(ia) = b(ib)) has no effect on the
value of the if condition in the special situations identified above. These
systems will bypass the process of evaluating the potentially problematic
subexpression and no difficulty will arise. The given program segment will
yield a defined result when executed on such a system. These systems, in
effect, evaluate a logical expression such as (true or undefined) as true and
(false and undefined) as false.

Other real systems exist, however, which evaluate each term of the if
condition, including the potentially problematic one, before combining the
intermediate results to determine the value of the entire expression. These
systems will typically abort execution of the program when an array variable
is referenced and the value of the subscript expression is ‘out of range’.
These systems, in effect, evaluate a logical expression such as (true or
undefined) as undefined and (false and undefined) as undefined. Conse-
quently, the result of executing this program on such a system is not defined.
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The if statement must be rewritten so that the subexpression (a(ia) = b(i{)))
is not evaluated in the problematic special cases. This can be done easily,
but results in an if construction with a somewhat cumbersome appearance.

Note that the complexity (amount of detail) in this proof arose not just
from the length or intricacy of the program segment being analyzed. The
table after lemma 5.4 suggests that the amount of detail in such a Proof is
proportional to the product of the complexity of the specification (in
particular, of the number of terms in the loop invariant) and the structural
complexity of the program segment (in particular, the number of fundamental
constructs constituting it).

Interaction between terms of the loop invariant increases further the
logical complexity of a proof, in particular of the individual lemmata. This
type of interaction arose in the above example in the case of the‘ term /7.
The invariance of both terms I5 and /6 was a hypothesis essential to the
proof of the invariance of /7.

This is a general result: the complexity of a proof of correctness depgnds
not only, not even primarily, upon the length or complexity of the algorithm
or program performing the task in question. It strongly Fiepends also upon
the complexity of the specification of the task the algorithm performs and
the interrelationships among the parts of that specification as well as between
them and the components of the algorithm. - .

After the programmer has specified the pre- and postcon.dmons of this
subprogram and has proved it correct, others.may use th1§ subprogram
without having to reprove its correctness each time the){ use it. They need
only ensure that its precondition is satisfied before calling it and that the
subsequent parts of the calling program assume only that the called
subprogram’s postcondition is fulfilled. The proof of correctness of the
calling program will refer to the already proved theorem of correctness of
the called subprogram — represented by its pre- and postconditions.

5.8.1 A recursive procedure

Consider a procedure named ‘factorialprocedure’ defined as follows:

procedure factorialprocedure:
itn =20
then declare (factorialvalue, Z, 1)
else declare (n, Z, n — 1)
call factorialprocedure
release n
factorialvalue := n = factorialvalue
endif
endprocedure
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The function of this procedure is formulated in the form of a mathematical
proposition or theorem.

Theorem 5.1: If a data environment d0 contains a numerical variable n
whose value n(d0) (= valvar(n, d0)) is a non-negative integer, then the
result of applying the above procedure ‘factorialprocedure’ to d0 is the data
environment d1, where

dl = (call factorialprocedure)(d0) = [(factorialvalue, Z, n(d0)!)] & d0O

Proof: We prove this theorem by induction on n(d0). If n(d0) = 0, then
the conclusion of the theorem follows directly from the definitions of the
if and declare statements.

We now assume that the theorem is true for n(d0) = k and show that it
is true for n(d0) = k+1. When n(d0) = k+1 # 0, the statement ‘call
factorialprocedure’ is equivalent to the else part of the if statement above.
The result of executing the declare statement is the data environment

da = [(n, 2, k)] & dO

By the inductive assumption, the proposition of this theorem applies when
n(d0) = k. The result of executing the call statement upon da is, therefore,
the data environment

db = [(factorialvalue, Z, n(da)!)] & da
= [(factorialvalue, Z, k'), (n, Z, k)] & dO

The result of executing the release statement is the data environment
dc = [(factorialvalue, Z, k!)] & dO
After executing the assignment statement, the final data environment is

(call factorialprocedure)(d0) = [(factorialvalue, Z, n(d0)=k!)] & d0
= [(factorialvalue, Z, n(d0)!] & d0

Thus, the conclusion of the theorem holds provided that the value of the
variable # in the initial data environment d0 is 0 or 1 or 2, etc., i.e. provided
that it is a non-negative integer. W

“This example illustrates how declare and release statements can be used to
pass a parameter to a procedure without causing the loss of the values of
parameters from prior calls. It also demonstrates a common and generally
useful way of handling declare and release statements in a proof of
correctness.

Chapter 6

The construction of correct programs

Weil ein Vers dir gelingt in einer gebildeten Sprache,
Die fiir dich dichtet und denkt, glaubst du schon Dichter zu sein.
— Friedrich Schiller

Science surpasses the old miracles of mythology.
— Ralph Waldo Emerson

God made the integers; all else is the work of man.
— Leopold Kronecker

In Chapter 5, we analyzed short program segments and proved that they
fulfilled certain specifications and exhibited certain characteristics. While
such analytical steps are an important part of the engineering design process,
they are not really representative of it for the following reasons. Firstly,
the examples in Chapter 5 are relatively short; they were isolated and
extracted from a larger real environment in order to introduce and illustrate
‘the applicable analytical procedures. Secondly, and more importantly, in
the proper practice of software engineering, one does not typically develop
a proof of correctness for an already existing, finished program. Instead,
the software engineer develops the program and its proof of correctness
together, adding detail to each concurrently and step by step.

The examples in Sections 6.1 through 6.10 below are more typical of
actual design tasks arising in the development of computer programs. While
they are not large, they do illustrate the construction of both subsidiary
procedures and high level control programs. These examples are not artificial
— all are typical of practically useful programs. Most, in fact, are extracts
from application software written for and used in productive commercial
systems.

The examples in this chapter cover a variety of design problems and
application areas. Sections 6.1 through 6.5 illustrate the design of low
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level subprograms and their interfaces with the procedures calling them.
These subprograms perform specific tasks of limited scope and of a somewhat
technical nature. In Sections 6.6 through 6.10. on the other hand. we design
an entire small program and higher level control procedures and structures
for larger systems. Here, the emphasis is on the coordination of many lower
level subprograms which perform quite different individual tasks.

The example in Section 6.1 deals with designing the subprogram already
analyzed in Section 5.8.0 and thus serves as a bridge between the topics of
Chapter 5 (analysis) and Chapter 6 (design). The subjects of Sections 6.2
and 6.3 are similar types of subprograms involving searching and rearranging
an array. In Section 6.4 a recursive procedure is designed which uses (calls)
an already defined subprogram. The interface between the two subprograms
and how it is considered and handled in the proof of correctness of the
calling subprogram are illustrated. Section 6.5 deals with searching and
updating a linked linear list and involves the interaction of three closely
related procedures and their common data structure.

In Section 6.6, the application of ideas presented in earlier chapters to
the problem of coordinating several different subprograms within the scope
of part of one application program is illustrated. In Sections 6.7 and 6.8
we derive a simple, flexible and general solution to the problem of
coordinating several subprograms in order to print a report correctly — an
old, often encountered task for which many an erroneous program has been
written and is still in use. In Section 6.9 a small program is designed in its
entirety. In Section 6.10, the last in the chapter, we design the main control
program for a moderately large system consisting of a number of different
types of subprograms and data files.

Before discussing the examples in detail, it is advantageous to summarize
a number of useful guidelines for the software designer. They derive from
the theoretical results presented in the previous chapters as well as from
design experience. These guidelines are presented in Section 6.0 below.

6.0 Guidelines for the designer

Both theory and practical experience suggest that it is desirable to observe
the following guidelines when designing software, programs and segments
thereof. These guidelines should not be viewed as absolute, inviolable laws
of software development, but rather as strong suggestions. The designer
should deviate from them only with compelling reason and after careful
consideration.

0 Identify restrictions imposed by the target programming language.
1 Subdivide the system’s functions into small, hierarchically organized
units.
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2 Define the postcondition and the precondition of each program segment
before starting to design its code.

3 Specify the loop invariant before starting to write the body of any loop.

4 Write general pseudocode. then develop it into precise. unamblgugus
pseudocode and finally translate the latter into the target programming
language. .

5 Develop precise pseudocode and its correctness proof hand in hand.

6 When developing a detailed proof of correctness, work from the
postcondition backwards to the precondition. .

7 Design and prove the correctness of each subprogram as an isolated
entity.

8 Use a small number of simple but general purpose constructs.

These guidelines are discussed individually and in more detail below.

6.0.0 Identify restrictions imposed by the target programming language

The target programming language selected will usually impose certain
restrictions on the structure of the program or software system to .be
designed. By taking such restrictions into account early in the pl’anmqg
phase, one can avoid considerable effort and difficulty later, especially in
the coding phase. . '
Typically, such restrictions pertain to declaring and releasing vanab{es,
to the multiple use of variable names, to calling prpcedures, to passing
parameters to and from procedures and to file operations (I/O).

6.0.1 Subdivide the system’s functions into small, hierarchically organized
units

In any area of endeavour, not just software development,.co.mplexity is
most effectively mastered by pursuing the simple and simphfyl‘ng strategy
of ‘divide and conquer’. The task or system should be subdivided in a
manner which facilitates understanding the entire system, permits differ.ent
people to develop the different parts more or less independently, minimizes
the effects of design changes to one part on other parts and eases the task
of proving the system’s programs correct. o

These goals can usually be best achieved by subdividing the system
hierarchically into modules, subprograms, procedures, etc. The function of
each unit is subdivided into a small number of subfunctions which interact
in simple ways and which exchange relatively little data with one another.
The subfunctions within one subdivision should be logically closely related
while the subfunctions of different subdivisions should be logically relatively
independent of one another. The interfaces should involve as few variables
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as possible. The specification of each subdivision should consist of a logically
simple precondition, a logically simple postcondition and a rule for mapping
the initial data environment into the final data environment. Often this rule
is implied by the precondition and the postcondition, in which case the rule
need not be stated separately and explicitly.

6.0.2 Define the postcondition and the precondition of each program
segment before starting to design its code

The postcondition defines the set of final data environments, i.e. the range
of the program segment in question. The postcondition also defines, at least
partially, the task which the program segment is to accomplish (its output).
The precondition defines the set of valid initial data environments, i.e. the
domain of the program segment in question (its input). The designer cannot
meaningfully begin to design the program segment, write its code, etc.,
until both of these points have been clarified.

Most frequently, the designer will begin by stating the postconditions and
preconditions of interacting program segments in rather general terms. He
will then refine them, adding detail and making them more precise.

The final version of the postcondition and the precondition must be
unambiguous and mathematically precise. As long as this requirement is
satisfied, they may be written in any suitable form and in any suitable
language, although they will normally be expressed in mathematical terms
or in a very similar form. Only after reaching this point will the designer
start to code the program segment in question.

Often, one program or subprogram will reference data (variables) which
other program segments also reference. Typically, such data can be
guaranteed to be correct and consistent only if certain conditions are met.
Because these conditions relate to the data and are not specific to any
particular programs or subprograms, it is meaningful to think of them as
‘data invariants’. The data invariants must be explicitly considered when
designing any program or part thereof which can modify the subject data.
The data invariants will become pre- and postconditions of most subprograms
which reference the subject data.

Frequently the designer of a program will find it useful to specify that a
certain condition be met at many points in the program. Such a condition,
which may be thought of as a ‘program invariant’, will be both a precondition
and a postcondition of many parts of the program in question — in particular,
of procedures.

The various postconditions and preconditions constitute an important part
of the documentation on each program segment. Together, they represent
a theorem which the program segment satisfies. This theorem will be used
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(referenced) in the proof of correctness of any other program using (e.g.
calling) the subject program segment or procedure.

Postconditions and preconditions are to the software engineer much as
voltages and currents are to the electrical engineer, as fOI’(;e.S anc} stresses
are to the structural engineer. These represent the key entities with which
the engineer is concerned when designing his program, electrical system,
structure of a building or bridge, etc.

6.0.3 Specify the loop invariant before starting to write the body of any
loop

This guideline is essentially the same as ‘that in Section 6.0.2 .above,
reformulated for the loop. It is so important, however, that repeating and
emphasizing it is warranted. . N ‘

The loop invariant expresses the most important design decnsgon regarc.lmg
a loop. It is the key to understanding the loop, its function apd its operation.
It is the key to proving the correctness of the loop. It is, thereforg, an
indispensable part of the documentation of a program segment containing
a loop. N

The loop invariant is a generalization of the precondmon' fmd .the
postcondition of the loop. In other words, the loopfs prgcondmon is a
special case of the loop invariant. The loop’s postcondition is also a special
case of the loop invariant. N

The software engineer uses the loop invariant as a guide to writing the
code for the loop. He cannot, therefore, begin to write that code until he
has specified the loop invariant unambiguously, precisely and completely.

6.0.4 Write general pseudocode, then develop it into precise,
unambiguous pseudocode and finally translate the latter into the target
programming language

The process of designing and coding a program segment consists of three
steps:

1 Write an outline of the program segment in a general form Qf
‘pseudocode’. At this stage, the program is specified only coarsely. This
version of the program may be very condensed and much detail may
be missing. It is in general incomplete, imprecise and ambiguous. This
version of the program is only of temporary value to the designer.

2 Refine the first, general version of the program segment into detail;d,
complete, precise and unambiguous pseudocode. The programming
constructs presented in Sections 2.1.0 through 2.1.6 inclusive (assign-
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ment, if, sequence, while, declaration and release constructs and the
procedure call without parameters) constitute a suitable pseudocode
language for this purpose. Avoid constructions and combinations of
statements which cannot be translated easily and directly into the target
programming language.

3 Translate the second version of the program segment into the target
programming language.

In step 1, a combination of imprecise natural language and more systematic
terminology may be used for writing the general pseudocode as the designer
deems most appropriate for his purpose. References to already defined
preconditions, postconditions and invariants often facilitate the subsequent
refinement of the pseudocode (e.g. ‘assuming that condition Q is true,
establish the truth of P’, ‘decrease the size of the unprocessed data region
while maintaining the truth of condition P’, etc.).

Because the result of step 1 above is incomplete and ambiguous, steps 1
and 2 should be performed by the same person, who should be a qualified
software engineer. Step 3 is a relatively straightforward, more mechanistic
process and can, therefore, be performed by a less qualified coding
technician. Step 3 is analogous to the work of a technician in an engineering
design team or even of a draftsman in an architectural or structural
engineering project.

The detailed proof of correctness should be prepared for the second
version of the program (i.e. for the result of step 2 above). By doing so,
one avoids complications resulting from technicalities and idiosyncracies of
the target language which are logically irrelevant to the algorithm. Input/
output is a common example, see Section 4.1.

The entire programming process involves two very different levels of
abstraction: one relating to the algorithmic solution to the application
problem at hand and the second relating to the specific technicalities of the
target programming language, its restrictions, idiosyncracies, etc. The main
goal of the approach outlined above is to separate these two areas of
concern. Steps 1 and 2 are concerned with the logic of the algorithm being
programmed but not with the specific technicalities of the target language.
Step 3 begins with a complete solution at the algorithmic level and translates
that into an operational program. The person performing step 3 is concerned
almost exclusively with the technicalities of the target language and not
with logical aspects of the algorithm.

The person performing step 3 need only ensure that the results of steps
2 and 3 are logically equivalent. He need not concern himself explicitly
with proving the correctness of the final program in terms of the original
specifications.
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6.0.5 Develop precise pseudocode and its correctness proof hand in hand

When the general form of the program is developed (see step 1 in Section
6.0.4 above), the designer should have a rough sketch of the proof of
correctness in mind. The general pseudocode and the sketch of the
correctness proof should be refined, detailed and developed into precise
pseudocode and a logically complete proof together, step by step.

The proof should be structured and subdivided in the same way that the
program segment itself is structured and subdivided.

A logically complex or extensive proof should be broken down into a
number of simple, structurally identical or similar steps (see e.g. Section
5.8.0). Usually, a proof involving even a large number of simple lemmata
exhibiting a repetitive pattern is to be preferred over a proof involving
many structurally unique steps with logically complex interactions.

6.0.6 When developing a detailed proof of correctness, work from the
postcondition backwards to the precondition

For each fundamental construct, a retrogressive proof rule exists which can
be applied conveniently in practice to yield meaningful results. These proof
rules may be applied in a largely straightforward manner to a given
postcondition to derive a precondition, even a complete precondition when
required. See Chapter 3, especially Section 3.9, Summary of the most
important proof rules.

An important exception to this guideline arises in the case of a release
statement and a postcondition referring (explicitly or implicitly) to the
variable name appearing in the release statement. Such a postcondition
typically states essentially that a previous data environment (e.g. one existing
before the corresponding declaration statement was executed) has been
restored. In such cases, it is usually more convenient to start from the initial
data environment and, working forward through the code, prove that the
postcondition follows. Section 5.8.1 contains a good example of this
approach. .

When developing the proof of correctness of a program segment, the role
of each statement in the proof and each statement’s contribution to
establishing the truth of the postcondition should be evident. If it is not,
the designer should ask himself (a) if the statement is necessary at all, (b)
if the postcondition is complete and (c) if the precondition is more restrictive
than intended. If the statement is necessary or really desired, then it may
be contributing to a hitherto unexpressed part of the postcondition (which
should be explicitly added to the postcondition). Alternatively, the statement
may deal with a situation which is excluded by the explicitly stated
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precondition but which the designer intended to allow. In this case, the
precondition should be explicitly relaxed (weakened) to include such
situations which the program segment handles correctly. If the statement is
not needed, it should, of course, be eliminated.

6.0.7 Design and prove the correctness of each subprogram as an isolated
entity

Typically, the statement of a theorem is significantly simpler logically than
its complete proof. One should take advantage of this fact by proving the
correctness of a program segment once and using (referencing) the correct-
ness theorem in the proofs of all other programs which use the program
segment in question (e.g. by calling it as a procedure).

The postcondition and the precondition constitute a theorem which the
program segment satisfies, i.e. its correctness theorem. The postcondition
is the thesis of the theorem and the precondition is its hypothesis.

In effect, the correctness theorem for a program segment, once proved,
becomes a proof rule for that program segment or a call to it.

6.0.8 Use a small number of simple but general purpose constructs

The difficulty of writing a program segment, the difficulty of understanding
it and the intricacy and logical complexity of its correctness proof are related
and typically roughly equal. All can be reduced by restricting oneself to a
small number of simple but generally applicable and universally combinable
constructs.

When complexity arises, the designer should limit it by isolating its source,
by restricting it to closed, narrowly bounded regions and/or by subdividing
the function giving rise to it.

In the design phase, avoid logically unnecessary constructs. Generalize
or combine constructs which, although different, perform essentially the
same logical function (e.g. the assignment statement and I/O statements,
see Section 4.1).

6.1 Merging two sorted arrays (example)

We begin our examination of examples of program construction by consider-
ing the design phase of the problem analyzed in detail in Section 5.8.0,
merging two sorted arrays.

Initially, two arrays a and b are given, with subscripts ranging from 1 to
na and nb respectively. The values of na and nb are non-negative integers.
Each array is already sorted, i.e.
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for all integers i such that 1 = i < na, a(i) < a(i + 1)
and for all integers i such that 1 =i < nb, b(i) < b(i + 1)

This constitutes the precondition. It may be expressed in various equivalent
ways, for example

and,_ "' a(i) = a(i + 1)
and,_ \"*" ! b(i) = b(i + 1)

The goal of the program segment to be written is to merge the values from
the two arrays a and b, forming an array ¢ whose values are copied from

a and b in such a way that c is in sequence. More precisely, the postcondition
is:

the sequence [c(1), ¢(2), ..., c(na + nb)] is a permutation (rearrange-
ment of the terms) of the sequence [a(1), a(2), ..., a(na), b(1), ...,
b(nb)]

and for all integers i such that 1 =i < na + nb, c(i) = c(i + 1)

whereby the program segment to be written is not permitted to modify any
value in either array a or b.

The precondition can be represented diagrammatically as follows:

11 na|
to be copied to ¢ array a
I nb| b
to be copied to ¢ array
B na + nb|

array ¢

to be copied from a and b

The corresponding diagram for the postcondition is:

11 nal
already copied to ¢ arraya
1 nb| b
already copied to ¢ array
1 na + nb|

array ¢ already copied from a and b

We require that the values in the array c¢ be in sequence.

It seems natural to copy the values from arrays a and b one by one to
array c. This suggests a loop as the basic structure in our program segment.
Generalizing the precondition and the postcondition above leads to the
following diagramimatical representation of the loop invariant:
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Il—-, o |ia na|
already copied toc  still to be copied to ¢ array a
: dy Iib bl array b
already copied to ¢ still to be copied to ¢ y
B lic na + nb|
array ¢

'already copied from @ and b still to be copied from a and b

At such an intermediate stage of the merge, (ia — 1) values have been
copied from array a and (ib — 1) values have been copied from array b.
The sum,

(ia — 1) + (ib - 1)

must be equal to the number of values copied to array c, which is (ic —
1). This requirement is term /3 of the complete loop invariant (see Section
5.8.0).

At an intermediate stage of the merge, the values already copied to array
¢ must be in sequence. In order to ensure that the next element copied
from a or b to ¢ will not destroy the sequence of the array ¢, we must also
require that

c(ic — 1) = a(ia)
and that
c(ic — 1) = b(ib)

Adding the appropriate conditions to cover the cases in which ia, ib or ic
is beyond the range of the subscripts of the corresponding array (representing
the cases that all values have been copied from a or b or that no value has
yet been copied to ¢) leads to the terms IS and /6 in the formal statement
of the complete loop invariant (see Section 5.8.0).

The other terms of the loop invariant as given in Section 5.8.0 follow
directly from the diagrammatical definitions of ia and ib above (e.g. I1 and
I2) or from the postcondition applied to that portion of array ¢ to which
values have already been copied (e.g. /4 and 7).

We write the first version of our program segment in rather general terms
as follows:

Establish the truth of the loop invariant; i.e. initialize ia, ib and ic so
that the loop invariant reflects the precondition.
while uncopied values remain in a or b do
Reduce the number of uncopied values in the arrays a and b while
maintaining the truth of the loop invariant.
endwhile
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Refining this very coarse pseudocode one step. we write:

Establish the truth of the loop invariant; i.e. initialize ia, ib and ic so
that the loop invariant reflects the precondition.
while uncopied values remain in @ or b do
if value from a should be copied next
then copy value from a
else copy value from b
endif
endwhile

The initialization follows directly from the diagrams above:
(ia, ib, ic) := (1, 1, 1)

The while condition also follows from the diagrams above:
(ia = na) or (ib = nb)

If we had originally stated the while condition as ‘values remain to be
copied to ¢’, we would have written the while condition precisely as

ic = na + nb

These two forms of the while condition are, under the conditions guaranteed
by the loop invariant, logically equivalent, that is, one is true if and only
if the other is true. Either is correct; they simply represent different views
of one and the same terminal condition.

The initial part of the segment ‘copy value from a’ is obvious: c(ic) :=
a(ia). After executing this statement, the values of ia and ic no longer
satisfy the definitions implied in the diagram representing the loop invariant.
This can be set right again by increasing ia and ic by one. The program
segment ‘copy value from a’ then becomes

c(ic) := a(ia)
ia :=ia + 1
ic:=ic+1

By symmetry, we write the corresponding program segment for ‘copy value
from b’:

c(ic) := b(ib)
ib:=ib+1
ic:=ic+1

Using less intuition and more formalism, one can obtain this result in
another way. The objective of the program is to increase ia, ib and ic so
that ia = na + 1, ib = nb + 1 and ic = na + nb + 1, in which case the
loop invariant implies the postcondition. We begin by writing
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ic:=1ic+1

This invalidates the loop invariant, in particular term I3 (see Section 5.8.0).
The validity of the loop invariant can be reestablished in one of only three
ways, e.g. by executing either

ic:=ic—1

ia ;= ia + 1
or

ib:=ib +1

We reject the first possibility because it exactly reverses the effect of our
original statement, ic := ic + 1. Thus we are left with two possibilities for
the latter part of our program segment:

ia ;= ia + 1 ib:=1ib + 1
ic:=ic+1 ic:=ic +1

Consider term /4 of the loop invariant (see Section 5.8.0):

the sequence [¢(1), ¢(2), ..., c(ic — 1) is a permutation of the sequence
[a(1), a(2), ..., a(ia — 1), b(1), b(2), ..., b(ib — 1)]

Deriving the precondition of /4 with respect to the pair of statements on
the left above, we obtain

the sequence [c(1), ¢(2), ..., c(ic)] is a permutation of the sequence
[a(1), a(2), ..., a(ia), b(1), b(2), ..., b(ib — 1)]

Our immediate goal is to reduce this to term /4 of the loop invariant. If
c(ic) were replaced by a(ia) or vice versa, we could eliminate these terms
to obtain an equivalent proposition, which would be identical in form with
14 above. This suggests prefixing either

c(ic) := a(ia)
or
a(ia) := c(ic)

to the pair of statements above. The statement of the postcondition forbids
us to alter the value of any element of the array a, leaving us with only
the first possibility above.

The same approach applied to the other pair of statements leads to the
third, initial statement c(ic) := b(ib).

The two possible segments are, therefore:
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c(ic) := a(ia) c(ic) := b(ib)
ia:=ia+1 ib:=ib+1
ic:=ic+1 ic:=ic+ 1

Combining the above, our complete program segment becomes

(ia, ib, ic) := (1, 1, 1)
while (ia = na) or (ib = nb) do
if value from a should be copied next
then c(ic) := a(ia)
ia 1= ia + 1
ic:=1ic + 1
else c(ic) := b(ib)
ib:=1ib + 1
ic:=1ic + 1
endif
endwhile

Only the if condition remains to be made more explicit. Intuitively, it is
clear that the lesser of the two values a(ia) or b(ib) should be copied to
the array c, provided, of course, that ia or ib respectively is in the
appropriate range. Formally, this can be seen reasonably easily. If the
greater of the two values were copied first, then this last value copied to
¢ would be greater than the other value remaining in either a(ia) or b(ib).
As a consequence, IS or [6 would be violated. The lesser value would be
copied to the array c later, i.e. an element of the array ¢ with a greater
subscript. Such action would clearly destroy the desired order of the values
of the elements of the array c.

If the two values a(ia) and b(ib) are equal, it makes no difference which
is copied to the array c.

Listing all possibilities in detail, we have:

(ia > na) and (ib > nb) all values from a and b already copied to ¢
(ia = na) and (ib > nb) only a contains values to be copied

(ia > na) and (ib = nb) only b contains values to be copied

(ia = na) and (ib < nb) both a and b contain values to be copied

S W=

Condition 1 above is the negation of the while condition, so cannot apply
when the if condition is evaluated. We can, therefore, exclude it from
further consideration.

In case 2, values to be copied to ¢ remain only in a. This situation can
be distinguished from the others (3 and 4) by the condition (ib > nb).

In case 3, no values remain in a to be copied to c.

In case 4, the lesser of the two values a(ia) and b(ib) should be copied
to array c. If they are equal, either may be copied next.
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Thus, the value from a should be copied next if either
(ib > nb) (no values remain in array b)
or
(ia = na) and (ib = nb) and a(ia) = b(ib)

Simplifying the above by applying one of the rules of Boolean algebra (in
particular, (X or ((not X) and Y)) = (X or Y)), we obtain

(ib > nb) or ((ia = na) and (a(ia) = b(ib)))
for the if condition and our final program segment becomes

(ia, ib, ic) := (1, 1, 1)
while (ia < na) or (ib < nb) do
if (ib > nb) or ((ia = na) and (a(ia) = b(ib)))
then c(ic) := a(ia)
ia :=ia + 1
ic:=1ic + 1
else c(ic) := b(ib)

ib:=1ib + 1
ic:=ic+1
endif
endwhile
The two statements ic := ic + 1 can be brought outside the if statement

to obtain the version of this program which was analyzed in Section 5.8.0.

At this point the designer would perform the analysis contained in Section
5.8.0 in order to verify rigorously and formally the correctness of the final
version of the program designed above.

6.2 Searching a sorted array (example)

Let k(i), for i = first, first + 1, ..., last, be a given array whose values are
in ascending (more accurately, non-descending) order, i.e.

k(first) = k(first + 1) ... = k(last)

The values of first and last are integers with first — 1 < last. (If first — 1
= last, the given array is empty.)

Our task is to design a program segment which locates all values in k
which are equal to the value of the given variable skey.

More precisely, the postcondition is

for all j such that first = j < last, k(j) = skey < il = j = ih
and first =< il
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and il — 1 = ih
and ih = last

where il and ih are calculated by the program segment to be designed. If
first = il, il — 1 = ih or ih = last, the corresponding range of subscript
values is empty.

The first part of the postcondition above can be expressed in other
equivalent forms, for example

and, g/~ k(j) # skey
and, ;" k(j) = skey
and,_;,, ,"“" k(j) # skey
or, in view of the fact that the values of k(.) are in sequence,
and,_j,,""! k(j) < skey
and; ;" k(j) = skey
and,_,, . /" k(j) > skey
The following diagram illustrates the postcondition:

| first |il ih| last |
k(i)<skey k(i)=skey k(i)>skey

Similarly, the precondition can be represented diagrammatically:

!,,ﬁ,r,s,t - - last |
k(i)?

It seems natural to locate the array values which are equal to skey by
repeatedly comparing various individual array values with it and recording
the results in a suitable way. This suggests a loop as the fundamental
structure in our program segment. Generalizing the precondition and the
postcondition above, we obtain the following diagram to represent the loop
invariant.

We must distinguish between case 1

| first |a il ih| b last |
k()<skey 2=) k(i) =skey 2(=) k(i)>skey Q
and case 2, when.the central interval of value§<equal to skey is empty: ’( o be
| first ih|a blil last |
k(i)<skey ? k(i)>skey

In either case, b marks the lower boundary of the region in which k(i) >
skey (the ‘greater’ region). Similarly, in either case, a marks the upper
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boundary of the ‘less’ region. The variable i/ marks the lower boundary
of the equal region while ih marks the upper boundary of the equal region.
The unknown region consists of those subscript values i/ for which

(@a=i<il)or (ih <i=b)

In case 2, these two subregions are the same. This is one of the reasons
for selecting the above form for case 2 among the various possibilities.

The program to be written will increase, never decrease, the values of a
and ih. Correspondingly, it will decrease, never increase, the values of b
and i/. Thus, the unknown regions always decrease in size.

The fact that this form for case 2 never requires ik to be decreased or i/
to be increased is another important reason for selecting it.

Our first version of the searching loop is

Establish the truth of the loop invariant; i.e. initialize a, b, il and ih
so that the loop invariant reflects the precondition.
while the unknown region is not empty do
Reduce the size of the unknown region while maintaining the
truth of the loop invariant.
endwhile

which we refine to

Establish the truth of the loop invariant; i.e. initialize a, b, il and ih

so that the loop invariant reflects the precondition.

while the unknown region is not empty do
Select some subscript value in the unknown region.
Compare the value of the selected array element with skey.
Modify a, b, il and/or ik to reflect the information gained from
the above comparison, i.e. in order to reestablish the truth of the
loop invariant.

endwhile

Initially, the region known to contain values equal to skey is empty, so case
2 of the loop invariant applies. The initialization is then:

a := first
b := last
il:=b+1
th:=a-1

or, if these variables have not been declared or are to be declared anew
within our program segment, we must write:

declare (a, Z, first)
declare (b, Z, last)
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declare (il. Z. b + 1)
declare (th, Z,a — 1)

In the above, Z represents the set of integers.

The selection of one of the above two forms of the initialization is a
design decision relating not just to this program segment, but also to its
interaction with its caller. It should be clarified with those responsible for
the specification of the module we are designing, as the specification stated
above is unambiguous in this respect.

The unknown region is not empty if and only if

(a < il) or (ih < b)

(see above). This is, then, our while condition.

The comparison step is simple; we merely compare k(j) with skey in one
or more if statements, where j is any subscript value selected from the
unknown region, i.e. a < j < il or ih < j = b. Three situations can arise,

k(j) < skey
k(j) = skey

or
k(j) > skey

.In each situation, we must consider both the case 1 and case 2 forms of
the loop invariant.

If k(j) < skey and case 1 of the loop invariant applies, the value of j
must lie in the ‘? (=)’ region (see diagram above). We must increase the
value of a to mark the newly determined upper boundary of the ‘<’ region:

a:=j+1
If k(j) < skey and case 2 of the loop invariant applies, we must increase
the values of both a and ih:

a:=j+1

ih :=j
It would be convenient if both of these program segments were identical.

A first step in this direction can be made if we rewrite the code for case
1 to be:

a:=j+1
ith .= ih

We stated above that the value of ik is increased, never decreased. This
suggests rewriting the code for case 2 to be:
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a:=j+1
th := max(ih, j)

(Note that in case 2, j > ih, so that max(ih, j) = j.)
In case 1, j < ih, max(ih, j) = ih. so that we may rewrite the code for
case 1 to be:

a:=j+1
th := max(ih, j)

Our program segments for cases 1 and 2 are now identical for the situation
in which k(j) < skey.
If k(j) > skey, symmetry leads us to write

for both cases 1 and 2. The reader should verify this code by repeating the
above argument, applying it to this situation.

If k(j) = skey, only the values of i/ and/or ik need be adjusted. The facts
that the value of i/ may only be decreased and the value of iA may only
be increased suggest the code

il := min(il, j)
th := max(ih, j)

for any and all cases. The reader should verify that this is correct for each
of the three situations:

case 1: ‘? (=) region (@ = j < il)
case 1: ‘7 (=)’ region (ih < j =< b)

and
case 2: (th+1=a=j=sb=1i-1)

Combining the above, we refine our previous version of the program to be
designed to become:

declare (a, Z, first)
declare (b, Z, last)
declare (il, Z, b + 1)
declare (ih, Z, a — 1)
while (a < il) or (ih < b) do
Select a value for j such that (a = j < il) or (ih < j = b).
if k(j) < skey
thenag :=j + 1
ih := max(ih, j)
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else

if k(j) = skey

then i/ := min(il, j)
ih := max(ih, j)

else

if k(j) > skey

then b 1= j — 1
il := min(il, j)

endif

endif

endif

endwhile

We must refine the statement selecting a value of j, in particular, we must
decide whether it should be an assignment or declaration statement. The
variable j is used only within the body of the while loop, so it is logical to
declare it at the beginning and release it at the end of the body of the
loop.

The result (‘output’) variables of our program are il and ih; they are
mentioned in the postcondition. Therefore, we may not release them at the
end of our program.

The variables a and b are not mentioned in the postcondition, but are
used only internally. We may release them at the end of our program. If
we declare them in the initialization, as we have done above, we should in
fact, release them. »

The third if condition will, of course, always be true at that point.
Therefore, it and the following ‘then’ can be omitted if desired.

Our program then becomes:

declare (a, Z, first)
declare (b, Z, last)
declare (il, Z, b + 1)
declare (ih, Z,a — 1)
while (¢ < il) or (th < b) do
declare (j, Z, any value such that (a = j < il) or (ih < j = b))
if k(j) < skey
thena :=j + 1
ith := max(ih, j)
else
if k(j) = skey
then i/ := min(il, j)
ih := max(ih, j)
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else {k(j) > skey}
b:=j—-1
il := min(il, j)
endif
endif
release j
endwhile
release b
release a

The relation in braces ({}) above is a comment.

Exercise

1 State the loop invariant formally.

2 Prove formally that the body of the loop preserves the loop invariant.
3 Prove the correctness of the while loop with its initialization.

4  State completely and prove the theorem which describes the effect of

executing the final version of the subprogram above.

6.3 Partitioning an array (example)

An array x(i), i = 1, 2, ..., n, is given. Our task is to design a subprogram
which will rearrange (mathematically, permute) the values of the array
variables x(i) so that (a) those values which are less than some initially
selected value are in the lower part of the array, (b) those values which
are equal to the selected value are in the middle of the array and (c) those
values which are greater than the selected value are in the upper part of
the array. The middle part of the array may not be empty upon termination.
We begin by generalizing the specification of the given array so that both
the initial and final subscripts are given by variables, i/ and ig. The
postcondition can then be represented by the following diagram:

|il eq| g’ ig|
x(i) < key x(i) = key x(i) > key

More formally, we require that our subprogram declare and calculate values
for the variables eq and gr such that

1 il-1=eq<gr=ig
2 and for all i such that il =i < ig
(@) il =i =eq = x(i) < x(gr)
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(b) and eq < i = gr = x(i) = x(gr)
(c) and gr < i = ig = x(i) > x(gr)

3 and the sequence of values [x(il), x(il + 1), ..., x(ig)] after termination
of the subprogram is a permutation of the values of the same array
elements before execution of the subprogram.

This postcondition can be expressed in other forms, e.g.

il —1=eq<gr=ig

and,_ 7 x(i) < x(gr)

and, ., x(i) = x(gr)

and;_,, . " x(i) > x(gr)

and [x"(il), x"(il + 1), ..., x"(ig)] is a permutation
of [x'(il), x'(il + 1), ... x'(ig)]

where x'(il) stands for the value of x(il) before execution of the subprogram
and x"(il), for the value thereafter, etc.
The precondition can be represented by the diagram

|l ig]
x(0)?

The postcondition requires that the central region not be empty. This
condition can, of course, be satisfied only if the given array is not empty.
More formally, the postcondition implies, i.e. can be satisfied only if il =
ig. This condition is, therefore, a necessary part of the precondition.

The goal of our subprogram is to permute the values of the given array
so that it is coarsely sorted. Probably the simplest way to permute the
values is by repeatedly exchanging pairs of values, successively moving
individual values into the regions in which they must be in the final state.
Such a strategy suggests a loop as the fundamental structure of the
subprogram.

There are several ways to generalize the precondition and the postcon-
dition to obtain the loop invariant. The major design decisions concern the
number of unknown regions to form and their location(s) relative to the
three known regions (‘less’, ‘equal’ and ‘greater’). Efficiency considerations
suggest that once a value is placed in a known region, it should never be
moved again if one can avoid doing so. This, in turn, suggests that the
‘less’ region should be at the lower end of the subscript range and the
‘greater’ region, at its upper end.

Intuitively, it seems simpler to have only one unknown region rather than
two. Then, the only decision left is whether to place the unknown region
between the ‘less’ and ‘equal’ regions or between the ‘equal’ and ‘greater’
regions. These two possibilities are symmetric with respect to each other
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and are structurally equivalent. The choice between them is, therefore,
arbitrary. These considerations lead to the following diagrammatic form for
our loop invariant:

il L3 eq| grl ig|
x(i) < key x()? x(i) = key x(i) > key

Initially, the equal interval contains one arbitrarily selected element and
the unknown interval contains all others. In the final state, the unknown
interval is empty.

The formal form of the loop invariant is:

il =k

and k — 1 =eq<gr=ig

and,_,/* "' x(i) < x(gr)

andi=eq+lg’ X(l) = x(gr)

andi=gr+lig x(l) > x(gr)

and [x(il), x(il + 1), ..., x(ig)] is a permutation of
[x'@), x' (il + 1), ..., x'(ig)]

The goal of the loop is to reduce the size of the unknown region until it
is empty, in which case, the loop invariant reduces to the postcondition.
The body of the loop should, therefore, assign some array element in the
unknown region to the appropriate known region. These considerations
lead to the following first version of our subprogram:

Establish the truth of the loop invariant; i.e. initialize k, eq and gr so
that the loop invariant reflects the initial condition (the precondition).
while unknown region not empty do

1 Select some subscript value in the unknown region. .

2 Compare the value of the selected array element with the value
of some element in the ‘equal’ region.

3 Exchange the value of the selected and some other array
elements as appropriate to move the former into the region in
which it belongs.

4 Update the regional pointers (k, eq and gr) appropriately in
order to reestablish the truth of the loop invariant.

endwhile

The only real design decision to be made in writing the initialization regards
the selection of the value defining the ‘equal’ region. The specification and
the postcondition say nothing about how this is to be done. If we arbitrarily
choose it to be the value x(ig), the initialization is particularly simple:

declare (k, Z, il) {‘less’ region empty}
declare (gr, Z, ig) {‘greater’ region empty}

6.3 Partitioning an array 197

declare (eq, Z, gr — 1) {‘equal’ region contains one element, x(ig)}

Passages enclosed in braces ({}) above are comments. They are not part
of the program statements.

We might make explicit the fact that the choice of the value defining the
‘equal’ region is arbitrary by adding the statement

x(i) :=: x(gr), il =i = ig, i otherwise an arbitrary integer

to the initialization.
The while condition ‘unknown region not empty’ translates directly into

k = eq

Next, we must decide how to select a subscript value in the unknown
region, i.e. how to select an array element to be moved into the region in
which it belongs. We have three fundamentally different choices: k, eq and
some intermediate value. In each case, the value of the selected array
element will have to be moved into one of the three regions ‘less’, ‘equal’
or ‘greater’.

If we select k as the subscript value and x(k) belongs in the ‘less’ regiofi,
no exchanging is necessary; we need only to increase the value of k. If x(k)
belongs in the ‘equal’ region, the values of x(k) and x(eq) must be
exchanged. If x(k) belongs in the ‘greater’ region, x(k) must be moved to
position gr, x(gr) must be moved to position eq and x(eq) must be moved
to position k. Two exchanges will be necessary to achieve this.

If we select a value i between k and eq as the subscript value (k < i <
eq), the number of exchanges required is always at least as great as in the
case above. The reader should identify the exchanges required in each
possible situation.

If we select eq as the subscript value, the situation is somewhat simpler.
In two cases (‘less’ or ‘greater’), one exchange is required. In one case
(‘equal’), no exchange is required.

We will, therefore, choose x(eq) as the array element to move into the
region in which it belongs. First, we must determine into which region it
must be assigned. This we do by comparing x(eq) with some array element
in the equal region. The element x(gr) is always in this region; it is, in fact,
the only one which is always in this region. We will, therefore, choose it
as the basis for comparison.

We must distinguish between three possible, mutually exclusive cases:
x(eq) < x(gr), x(eq) = x(gr), and x(eq) > x(gr).

The simplest situation arises when x(eq) = x(gr). We need only decrease
eq to insert x(eq) into the equal region:

eq :=eq — 1
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If x(eq) < x(gr). then exchanging the values of x(eq) and x(k) will place
the tested value into position for insertion into the ‘less’ region:

x(eq) :=: x(k)
k:=k+1

If x(eq) > x(gr), then the original value of x(eq) must be brought into
position gr, so that it can be put into the ‘greater’ region by decreasing gr.
Before doing so, however, the entire ‘equal’ region must effectively be
shifted downward by one position. This effect can be achieved most
simply by exchanging x(eq) and x(gr) and adjusting the regional pointers
appropriately:

x(eq) :=: x(gr)
gr:=gr — 1
eq :=eq — 1

Combining the above, we transform our first version of the subprogram
into the following:

declare (k, Z, il) {‘less’ region empty}
declare (gr, Z, ig) {‘greater’ region empty}
declare (eq, Z, gr — 1) {‘equal’ region contains one element, x(ig)}
x(i) :=: x(gr), il =i =< ig, i otherwise an arbitrary integer
while kK =< eq do

if x(eq) < x(gr)

then x(eq) :=: x(k)

k:=k+1

else

if x(eq) = x(gr)

then eq := eq — 1

else

if x(eq) > x(gr)

then x(eq) :=: x(gr)

gr:=gr—1

eq :=eq — 1
endif
endif
endif
endwhile

The third if condition will, of course, always be true at that point. Therefore,
it and the following ‘then’ can be omitted if desired.

The variable k is an internal variable; its final value is of no interest to
the calling program. We should, therefore, release it at the end of our
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subprogram. The variables eq and gr appear in the postcondition; their
values are results of this subprogram, so they may not be released here.

These considerations lead to the final form of our subprogram for
partitioning an array into three subsections:

procedure partition:
declare (k, Z, il) {‘less’ region empty}
declare (gr, Z, ig) {‘greater’ region empty}
declare (eq, Z, gr — 1) {‘equal’ region contains one element. x(ig)}
x(i) :=: x(gr), il =i =< ig, i otherwise an arbitrary integer
while k =< eq do
if x(eq) < x(gr)
then x(eq) :=: x(k)
k:=k+1
else
if x(eq) = x(gr)
then eq := eq — 1
else {x(eq) > x(gr)}
x(eq) :=: x(gr)
gr:=gr—1
eq :=eq — 1
endif
endif
endwhile
release k
endprocedure

In the original statement of the problem, the range of subscripts was
specified to be 1 to n, not il to ig. We can partition the array as originally
given by calling the above form of the subprogram partition appropriately:

declare (i, Z, 1)
declare (ig, Z, n)
call partition
release ig

release i/

The subject of this design exercise is a slight modification of “The Problem
of the Dutch National Flag’ (Dijkstra, 1976, Ch. 14), in which a collection
of red, white and blue pebbles is to be separated by color.

Exercise

5 Draw a diagram representing the conditions satisfied at each intermediate
point in the above subprogram ‘partition’. Your diagrams should be of the
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type used above to illustrate the postcondition, the precondition and the
loop invariant.

6 Identify the exchanges which would be necessary if an intermediate
subscript value i (k < i < eq) were selected instead of eq as the subscript
of the next array element to be placed in its proper region.

7 State completely and prove the theorem which describes the effect of
executing the final version of the subprogram ‘partition’ above.

6.4 Quicksort, a recursive sorting algorithm (example)

The subprogram ‘partition’ developed in Section 6.3 above subdivides one
unsorted array into two smaller unsorted subarrays and a third subarray
which, because it contains only elements equal to each other, is effectively
sorted. If each of the two unsorted subarrays were to be sorted in place,
then the entire original array would be sorted.

This suggests a recursive procedure for sorting an array: By calling the
subprogram ‘partition’, subdivide the array to be sorted. Then the sorting
procedure calls itself recursively to sort each of the two unsorted subarrays:

procedure sort:

call partition for the entire array

call sort for one of the two unsorted subarrays
call sort for the other unsorted subarray
endprocedure

We specify this design task, therefore, as follows. Design a recursive
program which will sort the values in a given array, using the subprogram
‘partition’ (see Section 6.3 above).

The correctness of such a recursive procedure is most naturally and
conveniently proved by induction. Because the subprogram ‘partition’ returns
a non-empty ‘equal’ region (which does not need to be sorted), the total
size of the two unsorted subarrays is truly less than the size of the original
array. Each subarray must, therefore, be truly smaller than the original
array. This suggests a proof by induction on the number of elements in the
array to be sorted.

If the procedure ‘sort’ sorts any input array containing fewer than n
elements, then the above version will clearly also sort an input array with
n elements. Thus, the requirements of the inductive step in the proof are
satisfied.

In an inductive proof, one must also prove the thesis of the theorem for
some particular value of the variable of induction, here, the number of
elements in the array to be sorted. A particulary simple starting point is
provided by noting that an -array containing 0 or 1 element is already
sorted. We refine somewhat our initial coarse design above and write:
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procedure sort:

if the array to be sorted contains 2 or more elements

then call partition for the entire array
call sort for one of the two unsorted subarrays
call sort for the other unsorted subarray

else The array contains 0 or 1 element and is, therefore, already
sorted, so do nothing.

endif

endprocedure

Before making our code more precise., we must define the interface between
it and its caller precisely. The notation and conventions used in Section 6.3
are convenient: Design a procedure which will sort a given array x(i),
i =il il +1,...,ig, where il and ig are two given integers with i/ — 1 =
ig. (If il — 1 = ig, then the array is empty; if i/ = ig, the array contains
one element.)

This enables us to refine our pseudocode above one step further to
obtain:

procedure sort:
if il <ig
then call partition (entire array, subscript values il to ig inclusive)
call sort (‘less’ subarray, subscript values il to eq inclusive)
call sort (‘greater’ subarray, subscript values gr + 1 to ig inclusive)
endif
endprocedure

The parameters of our procedure ‘sort’ are il and ig. We must set them up
appropriately in our pseudocode for each recursive call. The parameters for
partition and sort are the same, so no adjustment is needed for the call to
partition. Our final pseudocode then becomes:

procedure sort:
if il <ig
then call partition
declare (ig, Z, eq) {original ig becomes concealed}
call sort {il = original il; ig = eq from partition)
release ig {restore original ig}
declare (il, Z, gr + 1) {original i/ becomes concealed}
call sort {il = gr + 1 irom partition; ig = original ig}
release il {restore original il}
release eq {release result from partition}
release gr {release result from partition}
endif
endprocedure
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The recursive sorting algorithm "Quicksort™ is due to C. A. R. Hoare. Its
original form uses a different partitioning algorithm.

Exercise

8 State and prove the correctness theorem for the above procedure “sort.
Hint: Use the correctness theorem for the subprogram ‘partition’ (see
Exercise 7).

6.5 Searching and updating a linked list (example)

Our task is to design subprograms which will

1 locate an element equal to a given search key skey.
2 delete an element whose value is equal to skey and
3 insert a new element

in a given ordered linked linear list.

We begin by defining two types of linked linear lists and specifying
conditions which they must satisfy. The condition for an ordered linked
linear list — which may perhaps be most meaningfully thought of as a data
invariant — will be a precondition and a postcondition of each of our three
subprograms.

6.5.0 Linked linear lists

Consider a pair of arrays e(i) and p(i). where the values of i are in some
set S of subscripts, e.g. i = 1, 2, .... The value of p(i) is the subscript of
the successor of e(i), i.e. p(i) is the ‘pointer’ to the successor of e(i). The
sequence of values

(), e(p(N). elp(p(N)- -

is called a linked linear list if the sequence does not contain a loop, i.e. if
no two terms appearing in the sequence have equal subscript values. The
value of the variable f is the subscript of (the pointer to) the first element
in the list. If the value of p(i) is a special value not in S, then e(i) has no
successor and is the last element in the list. We will call that special value
‘endvalue’ below. If f = endvalue, then the list is empty.

For convenience, we will employ the following notation:

p*(f) means p(p(f)),
p*(f) means p(p(p(f))). etc. and
p'(f) means f.
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Note that

p"(f) points to (is the subscript of) the first term in the list,
p'(f) points to the second term in the list, etc. and
p'~'(f) points to the ith term in the list.

If the number of elements e(i) is limited, e.g. if the set S of subscript values
is a finite set. then the requirement that no loop be present implies that
the list has an end (a last element). Because memory is limited in any real
computing system, this situation always applies in such systems.

If the sequence of terms in the list is in a specific order (e.g. non-
descending), the list is called ‘ordered’.

If a linked linear list contains exactly n elements, then p”(f) = endvalue.
Every previous pointer in the sequence must be a valid subscript, i.e. must
be in S. Finally, some non-negative integer n must exist which fulfills these
conditions. This condition, which must be satisfied by any finite linked
linear list, can be written more formally as follows:

There exists a non-negative integer n (the number of elements in the
list) such that

1 p"(f) = endvalue and

2 for every integer j in the interval 0 = j < n, p/(f) isin §

If the list is also ordered in ascending sequence with equal elements
permitted, then we must require that every pair of consecutive elements be
in order, i.e.

e(k) = e(p(k))

for every k which is the subscript of an element in the list other than the
last. This requirement can be rewritten in the following form and added
(logically ‘anded’) to the criterion for the unordered linked linear list above:

3 for every integer j in the interval 0 = j <n — 1
e(p'(f) = e(p’"'(f))
The above condition can be written in different, equivalent forms, e.g.
or,_," [p"(f) = endvalue

and,_,"" ' p/(f) in S
and/:()n_z e(p/(f)) = e(p’ ' (N

6.5.1 Searching an ordered linked linear list

We begin with the subprogram for locating the element in the list with a
given value, whereby the possibility must be considered that the value being
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sought is not present in the list. Therefore. after our subprogram has been
execgted, its result variable(s) should identify two successive elements in
the list which bracket the value being sought, i.e.

e(i) < skey = e(p(i))

or, alternatively,
e(i) = skey < e(p(i))

d@:pending upon whether we want to find the first or last element in the
list which is equal to the given search key in the event that there are more
than one. In this regard, the specification is ambiguous. We will choose the
first alternative above to be our design goal.

The above tentative version of the postcondition is inadequate. There
may be; no e(i) which is less than skey. Similarly, there may be no e(p(i))
whlch is greater than or equal to skey. Such elements of the list may not
exist either because the list is empty, because the element being sought is
!ess than or equal to the first element or because the element being sought
1s greater than the last element. Thus, our postcondition must encompass
the following four mutually exclusive and exhaustive possibilities: \

1 The list is empty (so the value being sought cannot appear in it).

2 The value being sought is less than or equal to the first element of the
list (which is not empty).

3 The value being sought is greater than the last element of the list (which
1S not empty).

4 Two successive elements of the list exist which bound the value being
sought, i.e.

e(i) < skey = e(p(i))

If we adopt the convention that the result variable pred will point to the

predegessor of the element equal to skey, if any, we can refine the above
tentative postcondition to become:

1 f = endvalue or

2 f # endvalue and skey = e(f) or

3 f # endvalue and pred # endvalue and p(pred) = endvalue and e(pred)
< skey or

4 f # endvalue and pred # endvalue and p(pred) # endvalue and e(pred)
< skey = e(p(pred))

The main factor distinguishing between subconditions 1 and 2 above on the
one hand and subconditions 3 and 4 on the other hand is the existence of
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an element in the list preceding skey in order, i.e. an element such that
e(pred) < skey. Under conditions 1 and 2, no such predecessor exists. If
our subprogram would set pred equal to endvalue in such cases, the calling
program’s test to distinguish between subconditions 1 and 2 versus 3 and 4
would be particularly simple.

The main factor distinguishing between subcondition 3 on the one hand
and subcondition 4 on the other is the existence of an element in the list
succeeding skey in order, i.e. an element such that skey = e(p(pred)). The
calling program can distinguish between these two situations most easily by
testing whether p(pred) = endvalue or not. In a generalized sense, the
calling program can distinguish between subconditions 1 and 2 in the same
way, where p(pred) corresponds to f.

These considerations suggest revising the postcondition above so that our
subprogram returns two results: pred, a pointer to the predecessor of skey,
and succ, a pointer to the successor of skey. The variable succ would
represent — i.e. be equal to — f in subconditions 1 and 2 and p(pred) in
subconditions 3 and 4. The final version of the postcondition is then:

1 pred = endvalue and succ = endvalue and f = endvalue or

2 pred = endvalue and succ # endvalue and f = succ and skey = e(succ)
or

3 pred #+ endvalue and succ = endvalue and p(pred) = endvalue and
e(pred) < skey or

4 pred # endvalue and succ # endvalue and p(pred) = succ and e(pred)
< skey = e(succ)

Now the calling program can easily distinguish among these four cases by
comparing pred and succ with endvalue.

A general strategy for our subprogram’s operation follows naturally from
the structure of a linked list: successively test pairs of adjacent elements in
the list to determine whether the postcondition is satisfied. If the pair does
not satisfy it, step to the next pair. This implies a loop as the fundamental
structure of our subprogram and suggests the following general form for it.

Initialize the loop variable(s) to point to the first pair of elements n
the list which could bracket the position being sought.
while postcondition not satisfied do
Step the loop variable(s) to point to the next pair of elements in
the list.
endwhile

Next, we must decide upon a loop invariant. In order to do this, it is useful
first to ponder the initial situation and second to generalize the initial
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situation and the postcondition. Leaving aside for the moment the possibility
of an empty list (subcondition 1 above); the first possible ‘pair’ of elements
which could satisfy the postcondition corresponds to subcondition 2. This
suggests as the initialization

pred := endvalue
succ 1= f

(or the equivalent declaration statements), which is also appropriate for
subcondition 1. After this initialization, either subcondition 1 or 2, depending
upon whether f is equal to endvalue or not, would be true if subcondition
2 did not contain the term ‘skey =< e(succ)’. This suggests generalizing
(relaxing) the postcondition to obtain a loop invariant by deleting this term.
It appears not only in subcondition 2, but also in subcondition 4 and should
be deleted from both. This leads to the following tentative loop invariant:

1 pred = endvalue and succ = endvalue and f = endvalue or
pred = endvalue and succ # endvalue and f = succ or

3 pred # endvalue and succ = endvalue and p(pred) = endvalue and
e(pred) < skey or

4 pred # endvalue and succ # endvalue and p(pred) = succ and e(pred)
< skey

Noting that the conditions

(succ = endvalue and f = endvalue)

and

(succ = endvalue and f = succ)
(see subcondition 1) are logically equivalent, as are
(succ = endvalue and p(pred) =.endvalue)
and
(succ = endvalue and p(pred) = succ)

(see subcondition 3), we can simplify the above tentative loop invariant to
obtain the loop invariant /:

pred = endvalue and f = succ or
pred # endvalue and p(pred) = succ and e(pred) < skey

We determined this loop invariant by removing the condition

skey = e(succ)
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from the postcondition, subconditions 2 and 4, i.e. when succ # end‘ia'lue.
When succ = endvalue, the loop invariant [ is equal to the postcondition.

This suggests the condition

succ = endvalue or [succ # endvalue and skey = e(succ)]

which is equivalent to
succ = endvalue or skey = e(succ)

as the termination condition E (the ‘end’ condition, cf. the latter half of

Section 3.3.3). . .
At this point, the reader should verify that (I and E) equals (i.e. is
logically equivalent to) the postcondition. Having done so, we can complgte
the design of our subprogram as described in the latter half of Section
3.3.3. o N
The while condition is (not E), the negation of the termination condition,
i.e.
succ # endvalue and e(succ) < skey

Combining all of the above, we write the final version of our subprogram,
which we will call ‘locate’ in Sections 6.5.2 and 6.5.3 below:

procedure locate:

declare (pred, subscripts, endvalue)

declare (succ, subscripts, f)

while succ # endvalue and e(succ) < skey do
pred = succ
succ := p(pred)

endwhile

endprocedure

Exercise

9 Show that (I and E) is equal to the postcondition. N
10 One programmer’s initial design specified the postcondition as

l=m=n+1
and ._ """ e(p™'(f)) < skey
and;_,," skey = e(p” '(f))

and the program as

m:=1

while ? do
m:=m+1

endwhile
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(a) What is the meaning of the variable m?

(b) Show that this postcondition corresponds to the one given earlier in
this section.

(c) Complete the design of this program by determining the loop invariant
and the while condition.

(d) Transform the resulting version of the program into the one given
earlier in this section.

6.5.2 Deleting an element from an ordered linked linear list

The subprogram ‘locate’ (see Section 6.5.1 above) can be used to find the
element in the list which is to be deleted. Then, pointers must be modified
appropriately.

If neither pred nor succ is equal to endvalue and p(pred) = succ, then
the element to which succ points can be deleted from the list by executing
the statement

p(pred) := p(succ)
(see Fig. 6.0).

—t >
p p/
pred succ

Fig. 6.0 Deleting an element other than the first from a linked list

If pred = endvalue, succ # endvalue and succ = f, then the element to
which succ points is the first element in the list. It can be deleted by
executing the statement

f = p(succ)
(see Fig. 6.1).
If succ = endvalue, then succ does not point to any element which can
be deleted.
Combining the above and utilizing the subprogram ‘locate’ of Section
6.5.1 above, we write the following subprogram for deleting an element
which has the same value as skey, if one is present in the list:
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=" - L e \
4 )
succ

Fig. 6.1 Deleting the first element of a linked list

procedure delete:
call locate
if succ # endvalue
then if e(succ) = skey
then if pred # endvalue
then p(pred) := p(succ)
else f := p(succ)
endif
endif
endif
release pred
release succ
endprocedure

Refer especially to the postcondition of the subprogram ‘locatej’ (see Section
6.5.1) and to the condition which an ordered linked linear list must fulfill
(see Section 6.5.0).

Exercise

11 Why is the condition ‘if e(succ) = skey’ required?

6.5.3 Inserting an element into an ordered linked linear list

The subprogram ‘locate’ (see Section 6.5.1 above) can be. used to locate
the place in the list where the new element should be inserted. Then,
pointers must be modified appropriately.

If neither pred nor succ is equal to endvalue and p(pred) = succ, then a
new element to which the variable pnew points may be inserted into the
list between the elements to which pred and succ point by executing the

statements
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p(pnew) := succ
p(pred) := pnew

(see Fig. 6.2).

pnew

Q ——

pred succ

Fig. 6.2 Inserting a new element into a linked list other than at the beginning

If pred # endvalue and p(pred) = succ = endvalue, then executing the
above statements would insert the new element at the end of an existing
non-empty list. ’

If pred = endvalue, succ # endvalue and succ = f, then the following,
corr.espondmg sequence of statements would insert the new element at the
beginning of a previously non-empty list:

p(pnew) := succ
f = pnew
(see Fig. 6.3).
If pred = endvalue, succ = endvalue and succ = f, then the above

statements would insert the new element into a previously empty list.

' The s.ubprogram for inserting the new element e(pnew) into an ordered
linked linear list is thus:

procedure insert:

declare (skey, list elements, e(pnew))
call locate

p(pnew) := succ

if pred # endvalue
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Fig. 6.3 Inserting a new element at the beginning of a linked list

then p(pred) := pnew
else f := pnew

endif

release pred

release succ

release skey
endprocedure

Refer especially to the postcondition of the subprogram ‘locate’ (see Section
6.5.1) and to the condition which an ordered linked linear list must fulfill
(see Section 6.5.0).

Exercise:

12 Prove that if the condition for an ordered linked linear list (see the end
of Section 6.5.0) is satisfied before the above subprogram is executed, then
it will be satisfied afterward as well.

6.6 File positioning (example)

The contents of a file in a medical laboratory’s computing system indicate
which analyses should be performed on each blood sample. The file consists
of a sequence of lines, each of which contains a number. Each blood sample
and each possible analysis is identified by a positive integer (>0). The
number O indicates the end of a sequence of analysis numbers for one
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sample or the end of a sequence of sample groups (and hence the end of
the file).

For each blood sample the sequential file contains a line with the sample
number, then one or more lines, each with an analysis number, and finally
a line containing the number O (indicating the end of the sequence of
analysis numbers for the sample). The analyses indicated in the group are
to be performed on the sample indicated in the first line. The end of the
file is indicated by a line containing 0 instead of a sample number:

Sample number
Analysis number

Analysis number
0 (End of the sample group)

Sample number
Analysis number

Analysis number
0 (End of the sample group)
0 (End of the file)

In this application system a central computer is connected directly with an
automatic analyzer, which contains its own small computer. From time to
time the analyzer sends to the central computer a request for instructions.
The request indicates the position of the sample in the sample tray, which
is the same as the position of the sample’s data group in the file. The
central computer responds by sending to the analyzer the list of numbers
identifying the analyses to be performed.

The sample’s position in the file is not necessarily the same as the sample
number, which is of no consequence in this part of the program.

Normally the analyzer requests instructions for the samples in the order
in which they appear in the file. Exceptions can, however, occur, e.g. in
the event of an operational disturbance, an error on the part of the operator
of the analyzer, repeating an analysis, etc.

Our task is to design subroutines for the central computer which read
the data from this file and transmit the requested instructions to the
analyzer. Probably the most important design decision in this connection
concerns the interrelationship between the several subroutines.

In order to simplify logically the interaction among the several subroutines,
we define conditions which are to be fulfilled whenever any of these
subprograms is called or returns control to its caller:
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1 The file is positioned immediately after a sample number.
2 The value of the variable snr is that sample number.
3 The variable pos indicates the sample’s position in the file.

The ‘sample number’ after which the file is positioned may be the zero
marking the end of the file.

The three conditions above are pre- and postconditions for each procedure
to be designed except one (for opening the file), for which they are only
postconditions. Such an interface condition is comparable to a loop invariant.
It can be thought of as a ‘program invariant’.

The subprograms for processing this file follow straightforwardly from
this specification and the description of their functions given above:

procedure open file:
open file

read snr

pos =1
endprocedure

procedure position file to the sample group indicated by posreq:
precondition: posreq is an integer, posreq = 1.
if pos > posreq
then rewind file
read snr
pos =1
endif
Prop:: pos =< posreq (invariant of the following while loop)
while pos < posreq and snr > 0 do
repeat
read analysisnumber
until analysisnumber = 0
Prop: The file is positioned before a sample number.
réad snr
pos := pos + 1
endwhile
endprocedure
Theorem: At the end of this subprogram either
1. snr > 0 and pos = posreq (The desired sample has been found.)
or
2. snr = 0 (The desired sample is not in the file.).




214 6 CONSTRUCTION OF CORRECT PROGRAMS

procedure answer request for the sample position posreq:
Precondition: posreq is an integer. posreq = 1.
call position file (see above)
Send message to analyzer: “Analysis numbers follow™
if snr > 0
then loop
read analysisnumber
if analysisnumber = 0 then exit endif
Send analysisnumber to analyzer.
endloop
Prop.: The file is positioned before a sample number.
read snr
pos 1= pos + 1
endif .
Prop.: All analysis numbers (if any) for the sample in the position
posreq of the file have been transmitted to the analyzer.
Send message to the analyzer: “End of the analysis numbers”
endprocedure

This application represents a relatively simple example of data processing.
Nevertheless errors are often made when designing and constructing such
programs. Those errors cause unnecessary costs for ‘testing’ (finding and
correcting the errors), relieving the effects of the errors, etc.

Exercise

13 Prove each proposition and theorem stated in the above subprograms.
14 Why did the designer select the particular file position (see condition
1 above) as the standard one? What would be the effect upon the
subprograms of a different choice for the standard file position?

6.7 Control logic for printing a report (example)

It is interesting to ponder how many times this ‘wheel has been reinvented’
— and erroneously — in the last several decades of computing. In the program
libraries of computer installations throughout the world programs for printing
reports abound, many of which still contain errors which occasionally
manifest themselves. The last page of a report may contain a header but
no data; the footer may or may not be printed. Or the header is printed
on the first page of an otherwise empty report, leaving the paper positioned

S
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in the middle of the page instead of at the top. As a result, the next report
is not positioned properly on the page; etc. ad taedium.

In this section, we will design a set of short subprograms which correctly
control printing data, headers and footers. We will begin by stating more
precisely what we mean by ‘correct’. From our criteria for correctness — in
effect, the postcondition — we will deduce invariant conditions which must
be satisfied at particular points in the execution of the program. These
conditions represent pre- and postconditions for the several subprograms,
which we will more or less straightforwardly derive from those pre- and
postconditions.

We will design the printing subprograms to be used (called) by a program
which generates a sequence of data groups. Each data group contains a
number of lines of data which are to be printed on one page, i.e. which
may not be split and printed on two or more pages. The using program
will call an initializing subprogram in the printing subsystem before the first
data group is to be printed. It will then call the main printing subprogram
repeatedly, once for each group of lines to be printed. After calling this
subprogram for the last data group to be printed, the main program will
call a subprogram for terminating (closing) the printing operation.

We will define a report to be correct when each page is printed correctly,
when its pages are numbered in sequence beginning with a certain initial
page number (usually 1) and when no data group is split onto two or more
pages. A page is printed correctly when it contains

the header in a predefined format and with the correct page number,
at least one line of data,

at most a certain maximum number of lines of data and

a footer in a predefined format and with the correct page number

and when the header, data and the footer are printed in the predefined
positions (lines) on the page. Note that the above definition of correctness
implies that if a report contains no data, neither a header nor a footer may
be printed.

Subject to the above restrictions, as much data as possible should be
printed on.each page. This goal can be achieved, of course, by skipping to
a new page only when absolutely necessary to do so in order to avoid
violating the conditions stated above, i.e. when the next data group to be
printed will not fit in the space remaining in the data area of the current
page.

The format of a page can be described in the following, more detailed
manner:
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Report page Line number Description

1 first line on page
Header ..
lth last line in header
llh + 1 first line of data
Data
lld last line of data
lld + 1 first line in footer
Footer
lip last line on page (and in footer)

The values of the above parameters delimiting the three regions must satisfy
the following conditions:

0=<Ilh<lds=lp

The header, including blank lines for spacing, is to be printed on lines 1
through Ik inclusive. If [[n = 0, then the header is empty. Data is to be
printed on lines llh + 1 through /ld inclusive. This region may not be
empty. The footer, including blank lines for spacing, is to be printed on
lines lld + 1 through lp inclusive. If llp = lld, then the footer is empty.

Pages are to be numbered beginning with the value of the parameter
firstpage.

We will assume that the target computer system has a printer which is
capable of printing line by line in a forward direction only. Thus, if the
last line was printed on line L of page P, the next line must be printed on
line L + 1 of page P, unless L is the last line on a physical page, in which
case the next line must be printed on line 1 of page P + 1. We assume
that the printer is not capable of other movements, such as skipping a
number of lines in a single operation, advancing the paper to a particular
line, feeding the paper backwards, etc.

Our printing subsystem will consist of three higher level subprograms,
for initialization, printing a group of data lines and termination. These will
call additional subprograms for controlling page overflow, printing a header,
printing a footer, etc.

We further define two control variables:

pageno  the current page number
lineno the number of lines already printed on the current page

We define an invariant which is to be true whenever statements outside
the printing subsystem are being executed after initialization and before
termination of printing. In other words, the invariant is a postcondition of
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the initialization subprogram, both a pre- and a postcondition of the
subprogram for printing a group of data lines and a precondition of the
termination subprogram. The first term in the invariant reflects the above
definition of the control variables pageno and lineno:

I1: The report has been completely printed to and including line
number lineno on page number pageno. Subsequent lines have not
been printed.

This term in the invariant suggests that the initialization subprogram should
consist of the following statements:

procedure initialize printing:

pageno := firstpage — 1

lineno := llp

Ensure that the printing mechanism is positioned so that the next line
transmitted to the printer will be printed on the first line of a new page
(e.g. by asking the operator to adjust the paper feeding mechanism, if
necessary).

endprocedure

One of the conditions of correctness specified above requires that each page
contain at least one line of data. This requirement can be incorporated into
our invariant by anding the following to term /1 above:

I2: 1If any lines have been printed in the current report, then Ilh <
lineno.

This term precludes the possibility that a header has been printed with no
data following it on the page. This term can be rewritten in several different,
equivalent forms, e.g.

12: lines have been printed in the current report = llh < lineno,
I2: no lines have been printed in the current report or llh < lineno

or
12: (pageno = firstpage — 1 and llp = lineno) or llh < lineno.

The requirement that data not be printed beyond line //d can be incorporated
into the invariant in a similar manner:

(pageno = firstpage — 1 and llp = lineno) or lineno < Illd
Combining the above, we obtain the complete invariants:

I1: The report has been completely printed to and including line

number /ineno on page number pageno. Subsequent lines have not
been printed.
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and
12: [(pageno = firstpage — 1 and llp = lineno) or llh < lineno = lld]

The subprogram for printing a group of data lines must, of course, contain
the following statements or the equivalent thereof:

i:= first — 1
while i < last do

i=i+1

lineno := lineno + 1

print dataline(i) on page pageno, line lineno
endwhile

The data lines constituting the group to be printed must be contained in
the array variables dataline(first), dataline(first + 1), ..., dataline(last). The
calling program must assign appropriate values to these array variables and
to the variables first and last before calling this printing subprogram. Note
that the number of lines to be printed is given by the value of the expression

last — first + 1

We require that the calling program ensure that the values of first and last
are such that the value of this expression is non-negative. We explicitly
permit it to be zero, in which case the data group to be printed is empty.

The body of the above loop will be executed exactly last — first + 1
times. The precondition of term [2 of the invariant under this loop is,
therefore,

(pageno = firstpage — 1 and llp = lineno + last — first + 1)
or llh < lineno + last — first + 1 < lld

If last — first + 1, the number of lines in the data group to be printed, is
zero, this precondition is the same as term /2 of the invariant (corresponding
to the fact that the body of the loop will not be executed). The subprogram
as written above is complete for this case.

Consider the case that last — first + 1 > 0. The first of the two terms
connected by the or will be satisfied only if pageno = firstpage — 1 and
lineno < llp. This would correspond to an internal point within the preceding
report, a situation which we will not permit to arise in our program. We
require, therefore, that this term be false. Then the precondition above
reduces to

llh < lineno + last — first + 1 = lld

The invariant (as a precondition) implies the first part of this condition.

The second part of the above condition will not necessarily be satisfied. If

it is not satisfied, i.e. if
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lineno + last — first + 1 > lld

then the next data group to be printed will not fit on the current page.
The current page must be terminated and the next one started. This suggests
prefixing our tentative subprogram above by

if lineno + last — first + 1 > lld then call new page endif

The subprogram ‘new page’ should print the footer and header, increment
pageno accordingly and set lineno to Illh. In this case, the precondition
derived above implies

llh + last — first + 1 < lld
or, equivalently,
last — first + 1 = lld — llh

This condition expresses the fact that it is possible to print a data group
on one page only if the page’s data region is large enough. While
clearly essential, such a requirement is easily overlooked if one does not
systematically analyze a proposed design. The calling program which
generates the data groups to be printed must ensure that this condition is
satisfied. This condition will, therefore, be part of the precondition of our
subprogram for printing a data group.

A short analysis of our tentative subprogram above extended to check
for page overflow leads to the conclusion that it is still incomplete. As
shown above, a precondition of term /2 of the invariant with respect to the
loop is

(pageno = firstpage — 1 and llp = lineno + last — first + 1)
or llh < lineno + last — first + 1 < lld

This condition is the postcondition of the subprogram ‘new page’. The only
variables (as opposed to constant parameters) in this postcondition are
pageno and lineno; the statements in the subprogram ‘new page’ affecting
these variables will be

pageno := pageno + 1

lineno := llh

so that the precondition with respect to the subprogram ‘new page’ is

(pageno = firstpage — 2 and llp = llh + last — first + 1)
or llh < llh + last — first + 1 < lld

The value of pageno will never be firstpage — 2, so this precondition reduces
to

0 <last — first + 1 = lld — llh
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The truth of the first part of this condition cannot be guaranteed in our
subprogram in its present tentative form. In particular, lineno = llp initially.
If /ld < llp, then the subprogram ‘new page’ will be called the first time
the if statement is executed. If last — first + 1 = 0, the precondition of
the subprogram ‘new page’ is not met and its postcondition will not be met.
The body of the subprogram we are designing for printing a data group
can be embedded in an appropriate if statement to prevent calling the
subprogram ‘new page’ in this case. Our complete subprogram then becomes:

procedure print a data group:
if last — first + 1 >0
then if lineno + last — first + 1 > Ild then call new page endif

i:= first — 1
while i < last do
=1+ 1

lineno := lineno + 1
print dataline(i) on page pageno, line lineno
endwhile
endif
endprocedure

Next, we must design the subprogram ‘new page’. Basically, it consists of
a call to a subprogram to print the footer followed by a call to a subprogram
to print the header. However, the footer should be printed only when data
has already been printed in the report, i.e. not initially (when pageno <
firstpage). The subprogram is, then:

procedure new page:

if pageno = firstpage then call print footer endif
call print header

endprocedure

The subprogram ‘print footer’ has a relatively simple structure. It must skip
lines in the data region and print the lines in the footer:

procedure print footer:
while lineno < lld do
lineno := lineno + 1
print a blank line on page pageno, line lineno
endwhile
Print the individual lines in the footer (llp — lid lines).

lineno := llp

endprocedure
The subprogram ‘print header’ also follows straightforwardly from its
assigned task:
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procedure print header:

pageno := pageno + 1

Print the individual lines in the header (//A lines).
lineno := llh

endprocedure

After the main program has called the subprogram ‘print a data group’ for
the last data group, it must call the subprogram ‘terminate printing’ to
ensure that the report is properly completed. This subprogram has the
function of printing the footer on the last page, but only, of course, if there
is a last page, i.e. only if one or more lines have been printed in the current
report:

procedure terminate printing:
if pageno = firstpage then call print footer endif
endprocedure

Exercise

15 Show that lineno = lld must be true immediately before calling the
subprogram ‘print footer’. Show further that this condition is not always
met if pageno < firstpage, thus necessitating the if condition in the
subprogram ‘new page’.

16 What is the precondition of the subprogram ‘print footer’? of the
subprogram ‘print header’? What are their postconditions?

17 Show formally the need for the if condition in the subprogram ‘terminate
printing’. Deduce the precise form of this condition. Which other condition
would also be correct? Why would a designer choose the one condition
instead of the other?

18 What is the loop invariant of the while loop in the subprogram ‘print
a data group’?

19 Prove rigorously the correctness of this system of subprograms for
controlling the printing of a report. Pay particular attention to each
requirement in the specifications (postconditions). Show that each print
statement causes the data in question to be printed on the correct line.
Hint: Replace each print statement by an equivalent assignment statement
of the form

report(pageno, lineno) := ...

20 Which statement in the subprograms designed in this section is redun-
dant? What indications are there of its redundancy?

21 What is the postcondition of the subprogram ‘terminate printing’? What
can be said about the position of the paper in the printer after this
subprogram has executed?
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6.8 Printing several data elements on one line (example)

In this example, the main program generates a sequence of data elements
or groups. Several such data elements or groups are printed on each line.
Our task is to construct the program and appropriate subprograms so that
printing is controlled correctly. By ‘correct’ we mean that — in addition to
the criteria specified in the preceding example (see section 6.7) — each
printed line contains at least 1 and at most N (a constant) data groups.

We assume that the programming language being used contains commands
for (a) printing data on the current line (without terminating the line) and
for (b) terminating the current line (e.g. Basic). Subprograms from the
example in Section 6.7 above will be used here.

The primary design decision involves specifying the interface between the
main program generating the data groups and our subprograms for control-
ling their printing. A convenient form for the specification of this inter-
relationship is a condition restricting the number of data groups on the
current line and a definition of one or more variables which deéscribe
completely the state of the line currently being built. We choose these such
that outside of the subprograms to be designed for printing the data, the
following conditions are met:

1 The variable online indicates how many data groups have been printed
on the line currently being prepared but not yet terminated.
2 The printed line currently being prepared contains fewer than the
maximum allowed number N of data groups, i.e.
0 = online < N

The variable lineno (see Section 6.7 above) will indicate here the number
of complete (i.e. already terminated) lines which have been printed on the
current page.

The relevant parts of the main program then become:

call initialize printing
online := 0
while ... do
Generate a data group.
call output a data group
endwhile
if online > 0 then call close current line endif
call terminate printing

The subprograms for building and printing the current line follow from the
conditions set down above:
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procedure output a data group:

if online = 0 and lineno = lld then call new page endif
Print the data group without terminating the line.
online := online + 1

Prop.: 0 < online = N

if online = N then call close current line endif
endprocedure

procedure close current line:
Terminate the current printed line.
lineno := lineno + 1

online := 0
endprocedure
Exercise

22 Prove rigorously that the two interface conditions defined above are
both pre- and postconditions of the subprogram ‘output a data group’.

23 Prove that the proposition in the subprogram ‘output a data group’ is
always true at that point in the execution of the program.

24 Prove that a blank (an empty) line will never be printed by the above

program, i.e. that the statement ‘terminate the current printed line’ will
never be executed with no data groups on the line.

25 Prove that a line will never be printed with more than N data groups.
26 Under which circumstances, if any, will a line be printed with fewer
than N data groups?

27 What is the postcondition of the subprogram ‘close current line’? What,
therefore, must its precondition be? Is its precondition always satisfied? If
so, prove; if not, give a counterexample.

28 Is the condition ‘online = 0’ in the first if statement in the subprogram
‘output a data group’ necessary? If it is, why? If not, prove that it is not
required and explain why the designer included it.

6.9 The game of thirteen matchsticks (example)

A correct program is to be written which guides two persons playing the
game of ‘Thirteen Matchsticks’. Initially, 13 matches are placed on a table.
Two players alternately remove one, two or three matches at a time. The
player who removes the last match loses.

A general structure for a program to guide two players through any game
in which they alternate turns is:
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Initialization

while Game not yet ended do
Process one player’s turn.
Switch to the other player’s turn.

endwhile

Display result (winner, loser).

We define the two control variables

N: the number of matchsticks still in play (on the table) and
S: the identification of the player whose turn it is (1 or 2)

From the definitions of the game and the variables the loop invariant follows
directly:

(N = 0) and (N is an integer) and (S = 1 or § = 2)
and (It is player S’s turn.)

The initialization must establish the truth of the loop invariant. By the
definition of the game, 13 matches are initially in play. It was not specified
which player starts. In the initialization one can, therefore, write either §

=1, § := 2, § := a random selection of 1 or 2 or § := the players’
selection of 1 or 2. For the sake of simplicity we will write S := 1. Thus
the initialization is:

N := 13

S:=1

The while condition, “Game not yet ended”, is, expressed differently, ‘there
are still matches in play™ or, more simply, N > 0.
The change of players’ turns can be written in various ways:

ifS 1 then S := 2 else S := 1 endif or
if S =2then S := 1 else S := 2 endif or
§:=3-3S5

Notice that:

{S=1or S=2} if S = 1 then S := 2 else S := 1 endif {S=1 or S=2}
{S=1or S=2} if S = 2 then S := 1 else S := 2 endif {S=1 or $=2}
{S=lor $=2} §:=3 — § {S=1or §=2}

Il

i.e. executing any of these statements preserves the loop invariant.

When the loop ends, it would be player §’s turn to remove a match if
any were left. The other player must, therefore, have taken the last match,
thereby losing, i.e. upon termination of the loop, player S is the winner.

The above considerations lead to the following more detailed version of
the program:
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N :=13
§S:=1
while N > 0 do
Process player S’s turn.
§:=3-S
endwhile
Display a message indicating that player S won.

The processing of one player’s turn must still be described in more detail.
It is reasonable to structure it as follows:

1 Display the state of the game (the number of matches in play and
whose turn it is).

2 Ask player S how many matches he wishes to remove. His decision
becomes the value of the variable W.

3 N:=N-W

It is necessary that the execution of these three steps preserves the loop
invariant. Step 1 does not change the value of any variable and can therefore
be neglected.

After executing step 3 it should be true that

(N = 0) and (N is an integer)

If we replace N — W for N in this proposition, we obtain the following
condition, which must be satisfied before step 3 is executed:

(N — W = 0) and (N — W is an integer)

Before the execution of step 3, N is an integer. Therefore, W must be an
integer. W must, therefore, fulfill the following condition:

(W = N) and (W is an integer)

The rules of the game require that each player remove 1, 2 or 3 matches
in turn. The complete condition which W must satisfy is, therefore,

(W=1orW=20r W=3)and (W = N)
and (W is an integer)

Because

W=1lorW=20rW

3) = (W is an integer)
the condition

W=1lorW=2o0r W

3) and (W = N)

suffices as a precondition with respect to the statement N := N — W.
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The program segment which asks the player for his decision must ensure
that this condition is satisfied. This suggests the following pseudocode:

loop
Ask player S how many matches he wishes to remove (W).
if((W=1lorW=2o0or W = 3)and (W = N) then exit endif
Inform player S of his error and the allowed choices.
endloop

Does this loop terminate? In general one cannot answer this question
positively, because in principle the player can repeatedly enter an invalid
choice. More important in this practical situation is the question, can this
loop terminate, i.e. is there always some value of W which satisfies the
termination condition? It is obvious that W = 1 satisfies the termination
condition if the integer N > 0. This is guaranteed by the while condition
(see above).

Our program has now taken on the following form, from which it need
only be translated into the desired programming language:

N =13
S:=1
while N > 0 do
Display the state of the game (N matches remain and it is player
S’s turn).
loop
Ask player S how many matches he wishes to remove (W).
if(W=1o0orW=2o0r W = 3)and (W =< N) then exit endif
Inform player S of his error and the allowed choices.

endloop
N:=N-W
§:=3-S
endwhile

Display a message indicating that player S won.

Does the while loop terminate? Since W = 1, N will be reduced by at least
1 during each execution of the body of the while loop. After at most 13
(the initial value of N) passes through the loop, N = 0 and the termination
condition of the while loop will be satisfied. The while loop will, therefore,
always terminate.

Provided that no player prevents the progress of the game by repeatedly
entering an invalid choice, the program will always terminate. If this
possibility is to be excluded, corresponding statements must be added to
the program. Such a program segment might generate a valid choice (e.g.
W = 1) after a player has entered invalid decisions a certain number of
times consecutively.
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An additional ‘cosmetic improvement’ to this program would be to
suppress the request for the player’s choice when N = 1. In this case the
player whose turn it is has only one valid choice: he must remove the one
remaining matchstick. The program could set W equal to 1 and inform the
player of his only allowed choice.

The reader should pay particular attention to the way in which the proof
of correctness (which was only sketched here) and the program were
developed hand in hand. From specific requirements of the proof, certain
program statements and conditions were derived. In this manner one can
construct a program with a relatively simple proof and with a logically clean
structure. Perhaps more importantly, all eventualities are covered. Often,
appropriate extensions and improvements are identified while designing the
program.

Exercise

29 What is the loop invariant of the inner loop (loop/endloop)? Hint:
Transform this loop into a while loop.

30 Extend the program as suggested above so that (a) a player is prevented
from entering invalid choices endlessly and (b) the player’s decision is
preempted when N = 1.

6.10 Control program for a management game (example)

In this section we will consider the problem of designing a control program
for a management game and, of course, proving it correct. Our design for
the control program must be unambiguous and sufficiently detailed that it
can be directly translated into a particular programming language.

6.10.0 Statement of the problem: design requirements

The management game for which the control program is to be constructed
simulates the development of several competing companies over time. At
the beginning of each round of play (which represents one period of time)
each company’s management team makes a series of decisions (e.g.
production volume, advertising budget, prices, etc.) which are entered into
the computer system. After the decisions for all companies for the coming
time period have been entered, the system calculates and prints the results
(sales, costs, profit, etc.) for each company. On the basis of this information,
the management teams make their decisions for the succeeding time period
and the cycle is repeated.

The management game is intended to be used in a seminar environment.
Each round of play may last several hours. Lectures, discussions, exercises
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on related topics, etc. may be interspersed between rounds of play. A single
game may extend over several days and may even be continued weeks or
months later.

Between the rounds of play the trainer also enters decisions (e.g. gross
national product, total market demand, etc.). This enables him to exercise
a certain amount of influence on the management game and the companies’
performance.

The number of companies remains constant throughout the entire game.

The control program is to be designed and constructed in such a way
that

1 the several management teams and the trainer can enter their decisions
in any sequence,

2 the decisions of the individual management teams and of the trainer
can be revised as desired as long as the calculations for the affected
time period have not been initiated,

3 the management game can be reset to a previous time period (e.g. in
order to investigate the effects of alternative decisions) and

4 the management game can be interrupted and restarted any time later
at the same point in the game.

In addition, the control program and its several subprograms are to be
written so that they offer the most appropriate default values available
whenever decisions or other input from the operator is requested.

Results for one time period can be calculated only if the decisions for
the time period in question have been made and entered by all management
teams and by the trainer. The results of the previous time period are also
required by the algorithm for the computation. (Status information carried
over from one time period to the next includes the opening balance sheets,
factory capacities, numbers of employees, etc.) )
~ Seen from the standpoint of the trainer, who will operate the computer,
the management game should run in a cycle consisting of the following
steps:

1 Information on the state of the game is displayed.

2 The functions permitted at the current point in the game are displayed.
The system suggests one function to the operator.

3 The system asks the trainer to select a function. Only a valid choice is
accepted by the machine.

4 The selected function is executed.

The functions required are:
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enter the decisions of one management team for one time period,
enter the trainer’s decisions for one time period,

calculate and print the results for the coming time period,

reset the game to a previous time period,

interrupt the management game.

6.10.1 Files

- The various pre- and postconditions and the loop invariant will refer mainly

to the values of variables. It is, therefore, appropriate to give some thought
to the program’s variables (data) and the structure thereof before specifying
the conditions and loop invariants in detail.

The description of the management game (see Section 6.10.0) above
states that each of the following groups of data (variables) is generated in
a single logical step:

the decisions of the trainer for one time period,

the decisions of one management team for one time period and .
the results of the game calculations for one time period (but for all
companies).

At any point in the game, it must be possible to interrupt the program,
switch off the computer, switch it back on later and restart the game
program at the point at which the game was interrupted. The first function
selected may be to reset the game to an earlier time period. This can be
done only if the above data groups are still available for the corresponding
time periods. Because the game may be reset to any previous time period,
all data groups for all previous time periods must still be available.

Thus, all of these data groups for all time periods must be stored
on non-volatile memory devices such as disk. Using currently common
terminology in connection with such ‘peripheral’ equipment, we will refer
to each logical data group defined above as a ‘file’. For example, one file
will contain all decisions for one management team for one time period;
another file, the decisions for the same management team for another time

period, etc.

Also the status of the game must, of course, be maintained by the system.
The values of the status (‘control’) variables must also be stored in non-
volatile memory, at least between an interruption of the game and the
subsequent restart. We will, therefore, specify that the values of such control
variables be maintained in one control file.

Our system’s collection of non-volatile data consists, then, of the following
files:
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one trainer decision file for each time period,

one management decision file for each company and for each time
period,

one result file for each time period and

one control file.

It should be reiterated that the term ‘file’ here refers to a single logical
group of data which is, from the viewpoint of the control program at least,
an indivisible unit. The values of variables stored in a file are maintained
even though the computer is switched off, i.e. these variables are not in
effect released upon interrupting the game, switching off the computer, etc.
These are, for our purposes, the relevant characteristics of a file, not the
details of its storage format, access paths, etc.

6.10.2 Functional subprograms

The subdivision of the entire management game program into the
subfunctions (subprograms) below follows naturally from the description of
the desired operational cycle and the functions required (cf. guideline in
Section 6.0.1). Each subprogram below performs a logically complete and
relatively isolated (closed) function. The control logic required within each
subprogram is independent of the overall control logic chosen for the
operation of the system as a whole.

These subprograms will be called by the control program which we are
designing. Note that certain prerequisites are assumed; each subprogram
can be assumed to function properly only when those preconditions are
satisfied. When they are met, the subprogram in question is to deliver
results in accordance with the stated postconditions. These pre- and
postconditions, which constitute the specifications of the respective subpro-
gram, represent design decisions which attempt (a) to simplify each subpro-
gram and their interaction and (b) to separate distinct operations (e.g. file
I/O, dialog with the operator, etc.).

The subprograms which we will use are as follows:

1  Enter the decisions of one management team. This subprogram conducts
a dialog in which the operator enters the decisions of one management
team for one time period. Before this subprogram is called, a complete
set of decisions made by this team must already be stored in main
memory. These decisions will be used as default values. They may be
either decisions for the previous time period or previously entered
decisions for the current time period which are to be revised.
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2 Enter the trainer’s decisions. This subprogram conducts a dialog in
which the operator enters the trainer’s decisions for one time period.
Before this subprogram is called, a complete set of trainer’s decisions
must already be stored in main memory. These decisions will be used
as default values. They may be either decisions for the previous time
period or previously entered decisions for the coming time period which
are to be revised.

3 Read the decisions of one management team from a file into main
memory. This subprogram reads the decision file for the management
team team and for the time period rdtime. The subprogram assumes
that the file exists and contains valid data.

4 Read the trainer’s decisions from a file into main memory. This
subprogram reads the trainer decision file for the time period rdtime.
The subprogram assumes that the file exists and contains valid data.

5 Write decisions of one management team from main memory into a
file. This subprogram writes the decisions of the management team
team for the time period wrtime into the appropriate file. If this file
does not already exist, this subprogram will create it (i.e. in effect
declare the corresponding variables).

6 Write the trainer’s decisions from main memory into a file. This
subprogram writes the trainer’s decisions for the time period wrtime
into the appropriate file. If this file does not already exist, this
subprogram will create it (i.e. in effect declare the corresponding
variables).

7 Calculate and print one time period. This subprogram and its subsidiary
routines (a) perform the calculations for the time period calctime, (b)
store the results into the appropriate file and (c) print the reports for
the trainer and the management teams. This subprogram assumes that
all required files exist and contain valid data. This subprogram requires
the decisions of the trainer and of all management teams for the time
period to be processed (calctime) as well as the results from the
preceding time period (calctime — 1). This subprogram will create a file
for the newly calculated results (i.e. in effect declare the corresponding
variables) if necessary.

Note that the subprograms which write files (as specified in items 5, 6 and
7 above) are more conveniently programmed for operation on a system
whose file management system contains open for write commands with
automatic file creation (cf. guideline in Section 6.0.0 regarding identifying
restrictions imposed by the target programming language). If the target
system does not offer such a form of open statement, the designer should,
at this stage of the design process, specify how this function should be
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implemented. If additional control variables are required (e.g. indicating
which files physically exist, regardless of the validity of their contents), they
should be explicitly included in the pre- and postconditions above and in
the loop invariant for the control program below.

6.10.3 Control variables and the loop invariant

Generally speaking, the files described in Section 6.10.1 above reflect the
state of the game. More precisely, a complete specification of the state of
the game would indicate exactly which files exist and contain valid data.
Because files of any one type must exist for all prior time periods (see the
argument in Section 6.10.1 above), it suffices to maintain information
indicating the last time period for which

a trainer decision file exists,

a management decision file for company 1 exists,

a management decision file for company 2 exists,

a management decision file for company ... exists and
a result file exists.

Therefore, we define the following control variables:

ncomp Number of companies (management teams)

Itpmd(c) Last time period for which valid decisions of the
management team of company ¢ (¢ = 1, 2, ..., ncomp)
are present and stored in the appropriate file

ltptd Last time period for which valid trainer’s decisions are
present and stored in the appropriate file

Itpres Last time period for which valid computed results are

present and stored in the appropriate file. ‘Valid’ here
is construed to mean that the values of the variables
in the result file for a time period were calculated
from the values of the variables in all decision files
for the same time period and in the result file for the
previous time period.
Strictly speaking, ncomp is not a control variable but rather a fixed
parameter. Because its value indicates the number of variables ltpmd(c)
which are present, it is convenient to store it in the control file.
The values of these control variables are maintained both in a file (the
‘control file’) and in main memory.
The time period /tpres is the last one which has been completely processed.
The time period of current interest is, therefore, ltpres + 1. We will
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presumably refer frequently to this time period in the control program. The

program will be more readable if we introduce a variable with this value.

This redundant variable will be maintained only in main memory, i.e. it is,

in effect, released when the game is interrupted and is declared anew when

the game is restarted:

curtime The current time period, i.e. the time period for which results are
to be calculated and printed next and for which decisions must be
entered (if not already present).

The loop invariant is:

Itpres = ltpmd(c), for all ¢, and

Itpres < ltptd and

Itpres = 0 and

the values of the control variables (see above) in main memory and in

the control file are equal and

for every company ¢ and for every time period from 0 to ltpmd(c)

inclusive a management decision file with valid contents exists and

6 for every time period from 0 to ltptd inclusive a trainer decision file
with valid contents exists and

7 for every time period from 0 to ltpres inclusive a result file with valid
contents exists (see the definition of the variable /tpres above) and

8 curtime = ltpres + 1.

LN =

W

Terms 1 and 2 above reflect the requirement that all decision files must be
present before the result file for any particular time period can be calculated.

Term 3 amounts to nothing more than a definition of the initial point in
time.

Term 4 specifies that the control file will be maintained in every pass
through the loop, not only when the operator chooses to interrupt the
game. This adds a certain degree of robustness to the operation of the
system. If the control file is updated as the last step in the execution of
the loop, an equipment or power failure at most points within the loop will
still leave the system’s files in a consistent state and at most the results of
the last function selected will be lost.

Terms 5, 6 and 7 state simply that the values of the control variables
fulfill the definitions of these variables.

Term 8 follows from the definition of the variable curtime above. The
equality highlights the fact that this variable is redundant.

Alternatively, terms 1 and 2 above may be replaced by:

1(a) ltpres = ltpmd(c) < ltpres + 1, for all ¢, and
2(a) ltpres = liptd = ltpres + 1 and
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The alternative forms of these two terms in the loop invariant represent
different answers to the question whether valid decisions may exist for
future time periods. Such decisions could, in principle, exist either (a)
because the game has been reset to a previous period or (b) because teams
were allowed to enter decisions for periods beyond the next one to be
calculated. The specifications given in Section 6.10.0 do not explicitly
indicate whether or not decisions applicable to future periods are to be
considered valid or permitted. Decisions for future periods might be
desirable if, for example, the results computed for a particular time period
include forecasts of future trends, where such forecasts are based on
companies’ strategies for the future. In an actual software design project,
this question should be discussed with the user or other responsible persons
for whom the system is being developed.

In our design, we will consider the more general situation in which
decisions may be entered for future periods. The reader should note which
parts of the resulting program would be affected by specifying the more
restrictive alternate terms 1(a) and 2(a) in the loop invariant.

6.10.4 Initial conditions

The first time period for which decisions are to be entered and calculations
performed is time period 1. The specifications of the calculation process
and the decision entry functions imply that both result and decision files
for the preceding time period must be present. Therefore, at the beginning
of the management game, a complete set of files for the time period ‘0’
must exist: a decision file for each company, a trainer decision file, a result
file and a control file.

The decision and result files for time period ‘0’ must contain valid data
as required for the proper functioning of the subprograms which access
these files. That is, the contents of these files must satisfy any conditions
(e.g. data invariants) imposed upon the corresponding files for later time
periods. In the initial control file all control variables ‘last time period ...’
will have the value 0. Note that these values satisfy the loop invariant.

6.10.5 The control program

The structure of the control program follows relatively straightforwardly
from the specification of the operational cycle (see Section 6.10.0) and, of
course, the need to establish the truth of the loop invariant by initializing
variables before executing the main loop:

Read control file (control variables ncomp, ltpmd(c) (for all ¢),
ltptd and ltpres)
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curtime := ltpres + 1

loop
Display the state of the game (see Section 6.10.5.0 below).
Display valid functions (see Section 6.10.5.1 below).
Suggest a function to the operator (see Section 6.10.5.2 below).
Request choice of function (see Section 6.10.5.3 below).

if selected function = interrupt management game then exit endif
Perform selected function (see Section 6.10.5.4 below).

endloop

6.10.5.0 Display the State of the Game
The values of the following variables are displayed in a suitable format:

curtime

Itpmd(c), for c = 1,2, ..., ncomp
Itptd

ltpres

6.10.5.1 Display Valid Functions

The following functions are valid choices at the current state of the game:

1 Enter the decisions of one management team or of the trainer for any
time period from curtime to ltpmd(c) + 1 or ltptd + 1 respectively and
inclusive (for the time period curtime only if the alternative terms 1(a)
and 2(a) are specified in the loop invariant, see Section 6.10.3 above).
2 Calculate and print the results for the time period curtime if and only if
curtime = ltpmd(c), for all ¢ and
curtime = liptd

3 Reset the game to a previous time period if and only if
curtime > 1

4 Interrupt the management game.

6.10.5.2 Suggest a Function to the Operator

The calculations for the current time period (curtime) may be started only
when all required decisions have been entered (see point 2 above). The
program should suggest entering the set of decisions which is still needed.
If two or more sets of decisions are missing, the program should suggest
entering the decisions for the company with the lowest identification number.
If no decisions are missing, the program should suggest calculating and
printing the results for the time period curtime.
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6.10.5.3 Request Choice of Function

This subprogram asks the operator to indicate which function should be
executed next. The selected function must be permitted at the current state
of the game (see ‘Display Valid Functions’ above). If an invalid choice is
entered, this subprogram displays an appropriate error message and asks
again for the operator’s selection.

6.10.5.4 Perform Selected Function

If the function ‘Enter the decisions of one management team’ was selected,
this subprogram asks the operator for which company. If the response is
invalid, an appropriate error message is displayed and the request is
repeated.

If the entry of decisions (either of a management team or of the trainer)
was selected, then

the time period dtime for which the decisions are to be entered is
requested (see Section 6.10.5.1, item 1 for bounds on dtime) or set
equal to curtime if the alternative terms 1(a) and 2(a) are specified in
the loop invariant (see Section 6.10.3),
the decision file for the selected company or for the trainer for the
time period min(dtime, ltpmd(c)) or min(dtime, liptd) respectively is
read into main memory,
the subprogram ‘enter the decisions of one management team’ or ‘enter
the trainer’s decisions’ is called,
the decision file for the selected company or for the trainer for the
time period dtime is written,
ltpmd(c) or ltptd respectively is set to the value of dtime

and the control file is rewritten.

If the function ‘calculate and print’ was selected, then

calctime is set to the value of curtime,

the subprogram ‘calculate and print one time period’ is called,
Iltpres is set to the value of curtime,

curtime is set to the value of lipres + 1 and

the control file is rewritten.

If the function ‘reset the game to a previous time period’ was selected, the
program asks to which time period the game should be reset. The new time
period must be an integer between 1 and curtime — 1 inclusive. If the
operator chooses a valid new time period, then
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ltpres is set to the new time period — 1,

curtime is set to the value of ltpres + 1,

Itpmd(c), for all ¢, and liptd are set to the value of curtime ’(optional.
see the previous remark regarding the alternative loop invariant) and
the control file is rewritten.

If the operator chooses an invalid new time period, an appropriate error
message is displayed; no further function is performed.

Exercise

31 Show that the initialization section of the control program establishes
the truth of the loop invariant. What preconditions must be satisfied, if
any? How is the truth of such preconditions guaranteed? ‘
32 Derive the bounds stated in Section 6.10.5.1, item 1, on the time period
dtime for which decisions are to be entered.

33 Show that at least one time period satisfies these bounds, i.e. that

curtime = ltpmd(c) + 1, for all ¢ and
curtime < ltptd + 1

34 Show that dtime must be equal to curtime if the alternative form of
the loop invariant is chosen. .

35 Show that requiring dfime to be equal to curtime is consistent with the
less restrictive form of the loop invariant (terms 1 and 2).

36 Explain the reason for the precondition curtime > 1 for resetting the
game to an earlier time period (see Section 6.10.5.1, item 3).

37 Verify formally that the loop of the control program preserves the loop
invariant. Determine the post- and precondition of each statement in the
control program. Perform this analysis for both alternative forms of the
loop invariant.
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Chapter 7

The practice of software engineering
tomorrow

So that we may say the door is now opened, for the first time, to a
new method fraught with numerous and wonderful results which in
future years will command the attention of other minds.

’ — Galileo Galilei

The empiric school produces dogmas of a more deformed and
monstrous nature than the sophistic or theoretic school; not being
founded in the light of common notions ..., but in the confined
obscurity of a few experiments. ... We could not, however, neglect to
caution others against this school, because we already foresee and
argue, that if men be hereafter induced ... to apply seriously to
experiments ..., there will then be imminent danger from empirics;
owing to the premature and forward haste of the understanding, and
its jumping or flying to generalities and the principles of things.

- Francis Bacon

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.
— John Dryden

Thought without learning is dangerous.
— Confucius

Give me ... the engineer; and take your ... relics and miracles.
— Charles Kingsley

7.0 Our point of departure

Correct, error free software — in which one can have confidence from the
very outset — has, in practice, remained until today a dream. In other
technical and engineering fields such a professional state of affairs is not a
dream, but has, in fact, been a reality for quite a long time, e.g.
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civil engineering,
mechanical engineering,
aircraft construction,
shipbuilding. etc.

These fields were not always professions; earlier, bridges collapsed, ships
sank much more frequently-than they do now. But in the meantime, the
practitioners of these fields have successfully accomplished the transition
from a trade or craft to an engineering science. Today, software still fails
often; software development has not yet undergone its metamorphosis to
software engineering.

Those of us who live and work in buildings, who travel in automobiles
and airplanes, who ride over bridges, etc. should be thankful that the
designers of those structures verified their designs thoroughly before building
them and releasing them for our use. Correspondingly, the users of our
software have the right to expect us to verify our designs thoroughly before
releasing them for their use. But are we software developers fulfilling these
expectations? Are we capable of doing so? '

‘We build (software) systems like the Wright brothers built airplanes —
build the whole thing, push it off the cliff, let it crash, and start all over
again.” With these words R. M. Graham described the state of the art of
software development in 1968, when the term ‘software engineering’ first
entered into our vocabulary (Naur and Randell. 1969, p. 17). The situation
is not very different today, as many users of new software packages for
microcomputer systems will attest.

More recently C. A. R. Hoare compared software development with
recognized engineering disciplines. He pointed out that most setbacks can
be attributed to the programmer’s mistakes and oversights and that the
programmer — unlike the engineer — has no generally applicable mathematical
or theoretical foundation for his work (Hoare, 1984). But if, as many
believe, programming is ‘a tough engineering discipline with a strongly
mathematical flavour’ (Dijkstra, 1982, p. 273), a foundation comparable to
those of other engineering fields is sorely needed for software engineering.

For some years now such a foundation has been under development, but
it is being transplanted into practice only slowly. Until now, only a small
minority of software developers has mastered this material and applied it
in their daily work. There are many reasons for the passive and active
resistance to the widespread introduction of such a theoretical foundation
for practical work in software development. Lack of awareness of the
existence of this body of knowledge, prejudiced attitudes regarding its
applicability, inability to understand it, lack of the time needed to learn it,
fear of inability to learn it and inadequate prerequisite knowledge all play

7.0 Our point of departure 243

a role. In addition, much of the literature on this mathematical and
theoretical foundation for software engineering is written in a language and
uses terminology more oriented to the scientist advancing the theory than
to the engineer interested in applying it. These barriers to placing software
development on a sound engineering basis must be overcome in the long run
— by supporting and/or threatening present and future software developers in
various ways.

7.1 Our goal

Nothing is really changed when we simply attach new terms — such as
‘software engineering’ — to our old ways of doing things. There are some
indications that this approach is already being taken by some, perhaps
subconsciously. It is important to realize that renaming alone will not bring
about a fundamental improvement. Neither will incremental modifications
to current methods. The content and substance of our way of designing
software must be changed fundamentally. Our current approach to software
development, which is characterized by patchwork and underqualified
practitioners, must be replaced by one patterned after that employed in
already established engineering fields.

As mentioned in Section 7.0 above, a body of fundamental principles has
been developed in recent years which, when applied by a knowledgeable
software engineer, makes possible the design and development of error free
programs. This material has come to the attention of only relatively few
working programmers. In many university level courses in informatics this
foundation — if offered at all — is not yet included in the required core
curriculum. It must be brought to the attention of many more working
software developers and it must become established as a key element in
the professional education of all software engineers.

We must also imitate other aspects of the educational processes typical
of established engineering fields. In particular, students of software engineer-
ing must be willing to study fundamental principles and building blocks in
considerable depth and detail. They must not shy away from efforts which
appear at first to be rather time consuming, for in the long run these often
represent the shortest and quickest path to real mastery of the field. He
who is intimidated by the demands of such an intensive approach to learning
the field cannot expect to achieve a level of mastery of the material
comparable to that achieved by true professionals in other fields. No
effortless, automatic path to ‘software engineering’ exists; it is, therefore,
a waste of time to search for one.

Engineering design — the translation of detailed external specifications
into a complete and unambiguous description of the internal structure of
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the device, system, product, etc. — is characterized by two phases. The
first phase is a creative one which is not mechanizable. Guidelines based
on theory are useful but insufficient. Subjective insight, experience, practice
and even hunches play a role. Different designers with essentially the same
knowledge and experience will often create different proposed designs.
The second phase is quite different. The proposed design is analyzed
systematically, mechanistically and precisely to verify that it fulfills certain
criteria, among them the original external specifications. For example, the
civil engineer calculates stresses in the structure to verify that the strengths
of the materials used will not be exceeded under any environmental
conditions to be anticipated. The electrical engineer calculates the voltages
and currents at the various points in his circuit to verify that the desired
output-signal will be produced in response to the specified input. Tolerances
are specifically considered to take account of unavoidable deviations in
manufacturing, variations in the characteristics of materials used, etc.

In the case of software engineering, the designer will derive the precon-
ditions for the correctness of the programs in question and will verify
that those preconditions will be met. In the process, he will determine
preconditions, postconditions and loop invariants at the various intermediate
places in his proposed programs as appropriate. In this way, he will verify
that the external specifications of his software system will be fulfilled just
as engineers in other fields verify their proposed designs.

Properly trained software engineers will be able to achieve impressive
results. It should be emphasized, however, that — again, like their colleagues
in other engineering fields — they will not be omnipotent magicians. They
will not be able to perform miracles and the client who expects them will
still be disappointed in the future just as he was in the past (Dijkstra,
1986). In contrast with today’s less qualified software developers, the
software engineer will be able to determine whether a specification for a
proposed system can be reliably fulfilled or not before developmental work
is initiated, thus protecting his clients against unpleasant surprises of the
sort still all too common today. When the future software engineer states
such limitations, the prudent client will recognize this as a strength, a mark
of professionalism, instead of as a suggestion of weakness and incompetence
as is often the case today.

If the field of software development is to become an engineering
field, its practitioners must take a more professional attitude regarding
responsibility for the correctness, reliability and safety of their designs. The
theoretical foundation for their work mentioned above and presented in
this book gives them the technical tools necessary to ensure such correctness.
This is not, of course, sufficient. An attitude of professional responsibility
must be instilled in them in their initial education and must be supported
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throughout their careers by, for example, their professional associations. In
addition, it can be expected that society will define and enforce legal liability
in one form or another. Some steps in this direction can already be observed
in some countries. Present and future software developers must prepare
themselves to meet the challenges arising from the assumption of such
responsibility.

There are, to be sure, important differences of a basic nature between
software engineering and other engineering fields. They derive in the final
analysis from the fact that other engineering fields are based on the natural
sciences. Their artifacts are composed of physical materials with given
properties not under the control of the engineer. Those materials are subject
to forces which obey natural laws. Software engineering is not based on
the physical sciences; its artifacts are composed of abstract, purely artificial
components created entirely and solely by the mind (not even the hands)
of man. Those components do not obey natural laws but rather laws defined
by man or following directly from his other definitions. This difference has
several significant implications.

The engineer in another field must always contend with the possibility
that some physical phenomenon not yet known or adequately understood
is at work and will render his analysis invalid and his design inadequate.
His mathematical models are good, usually excellent, approximations to the
real world but can never be considered to be exact. Despite all the scientific
and mathematical basis of his field, he works in a world which, in the
context of his knowledge, is fickle and will, in principle, always be so. The
software engineer, on the other hand, does not have this problem. He
defines precisely the components with which he works (e.g. the fundamental
programming statements and constructs defined in Chapter 2) and, therefore,
knows — or at least can know — all of their relevant properties exactly. He
deals only with ideal, perfect objects and therefore his mathematical models
of them can be exact. Any appearance of fickleness in the world in which
he works is attributable to his incomplete analysis of his systems and models,
of the consequences of his own definitions, not to an inherent characteristic
of that world.

A well-known and widely publicized example of such a problem in
classical engineering was the series of crashes of the Comet jet airliner in
the 1950s. Only after extensive, costly investigations was the cause disco-
vered: fatigue in a particular structural element. Fatigue in metals, a
physical, metallurgical phenomenon, was not particularly well understood
at the time and had obviously not been adequately considered by the
aircraft’s designers. An earlier example was the Tacoma Narrows bridge.
Its designers had not been aware of the potential importance of the load
exerted upon the bridge by certain aerodynamic effects. Soon after it was
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built, the bridge was twisted apart by aerodynamically induced oscillations
during a heavy wind. This also well-publicized collapse had a major and
lasting impact on bridge design.

Superficially comparable software collapses are not and will not be
attributable to a similar and inherent lack of knowledge about the underlying
phenomena. Instead, they are and will continue to be due solely to human
mistakes and oversights on the part of software designers who do not make
adequate use of the knowledge and information available to them.

Mathematics alone plays the role in software engineering which mathemat-
ics and the relevant natural sciences together play in other engineering
sciences. This implies that mathematics is even more important to the
software engineer than it is to other engineers. The education of software
engineers and the practice of software engineering will increasingly reflect
this reality.

Another implication of the characteristics of software engineering discussed
above is that it can be expected to be a less experimental field than many
other engineering sciences. There is no need to measure physical constants,
to determine empirically the strengths or other properties of materials used,
etc. There is less need to investigate experimentally the various phenomena
arising from the definitions of the several fundamental components combined
by the software engineer to form his systems of programs. Thus, experimen-
tation and testing will undoubtedly play an even smaller role in software
engineering than they do in the design phases of other engineering fields.

Another difference between software engineering and traditional engineer-
ing fields relates to the mathematical nature of their respective components.
Engineers in fields based on the physical sciences employ mainly mathematics
dealing with continuous and differentiable functions, for these describe the
real physical world most accurately. As one professor of nuclear physics
was wont to say, ‘Nature abhors sharp corners.” While the software engineer
will use such functions and the calculus for some of his analyses (especially
of the time complexity, memory complexity, etc. of his algorithms), most
of his work will deal with logical expressions, propositions, etc. Conse-
quently, his mathematics will deal mainly with discrete domains and ranges,
where the notions of continuity and differentiability are of no meaning — a
world in which smooth corners simply do not exist.

Among the implications of this situation is a particularly important one
regarding testing. Because physical systems are best described by continuous
functions, one can usually reasonably assume that if a system works at all
extreme points, it will work at all intermediate points as well. This
assumption underlies essentially all testing in traditional engineering work.
But since the software engineer’s systems cannot typically be adequately
described in terms of continuous functions, this assumption underlying
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testing is not generally valid. Only exhaustive testing can demonstrate
empirically the correctness of a design and such testing is usually impossible.
When in principle possible, it is almost always impractical. One is left with
thorough mathematical analysis as a replacement for other engineers’ testing
to demonstrate that a design fulfills its specifications.

The above comments are also indicative of differences between software
engineering tomorrow and programming today. Today, the typical software
developer does not employ mathematical analysis, e.g. of the type presented
in this book, in designing or verifying his programs. (Most of the reasons
were listed in section 7.0 above.) Tomorrow’s software engineer will do so.

Today’s programmer relies heavily on ‘testing’ to get his designs more or
less right. ‘Testing’ here is a misnomer for ‘design by trial and error’ or,
recalling the Mocsian three week wonders (Baber, 1982, Ch. 0), ‘try building
it and see if it collapses’. This form of ‘testing’ will essentially disappear
from the design phases of software development. Testing will remain in
software engineering only in the same form as it appears in other engineering
work — to demonstrate that the external specifications have been fulfilled.
But even there, for the reasons discussed above, testing will probably
assume a lesser role, often becoming merely a subjective demonstration
supplementing the more conclusive and reliable analytical verification.

In summary, the field of software development will be increasingly
characterized by an engineering approach. Sometime in the future, the
practice of software engineering will be based on a theoretical foundation
and will rely even more heavily on mathematical analysis than do already
established engineering fields. Like other engineers today, the software
engineer will accept professional responsibility for the correctness of his
designs and for his technical ability to ensure that correctness. Much of his
effort will be devoted to avoiding errors in the first place.

7.2 The transition

The transition from software development as a trade or craft to a more
professional engineering field has been discussed for some years already.
Progess has been slow but is apparently accelerating. This evolutionary
pattern will undoubtedly continue.

There are many vested interests in the status quo and the consequent
resistance to change will impede progress. In the course of the step by step
development of the field some of these vested interests will, however, be
injured from time to time, making life difficult for some practitioners. Some
will not survive.

The driving force behind the transition to the professional practice of
software engineering will be an increase in the qualifications of the
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field's practitioners. Most importantly, the fraction of practitioners with a
professional education will increase. The main mechanism by which this
change will come about will be natural attrition. A significant and increasing
fraction of new entrants to the field will be graduates of university courses
in software engineering, informatics and computing science, while relatively
few, if any, persons leaving the field will have such a background. The
contributions made by the true professionals will be out of proportion to
their number. This will, in turn, increase the standards against which non-
professional programmers will be measured, inducing them to improve their
technical understanding fundamentally or, failing that, causing them to be
relegated to positions of lesser importance, e.g. coding technicians with less
responsibility. As a result, the influence of the professional software
engineers on the development of the field will in time increase and the
influence of the non-professionals will decrease. This process will not occur
suddenly and discontinuously but rather it will take place slowly but surely
over an extended time.

Present software developers can expect to feel competitive pressure
especially from recent graduates of university level courses in informatics
and software engineering. Their more extensive preparation and better
theoretical foundation will enable them to benefit from practical experience
rapidly, so that they will soon overtake their non-professional working
colleagues with longer experience.

Several alternatives are open to experienced software developers who
become threatened by newer, better qualified entrants to the field. Some
will try to learn the most important and fundamental new concepts and
theory, some of them successfully, some not. Others will seek refuge in
management positions, again, some successfully, some not. Still others will
yield to the threat and leave the field of software development, some
voluntarily, some not. The remainder will stand fast and resist, mostly
unsuccessfully in the long term. The excess of demand over supply of
software developers will tend to minimize the rate at which practitioners
leave the field, but recessions in demand will cause temporary oversupply
from time to time. During these periods the less qualified will tend to
become squeezed out of the field.

Those non-professionally trained software developers who successfully
move into management will be able to take advantage of their experience
and put it to good use. They will not be immune, however, to competitive
pressure from the more recent professional entrants to the field, but rather
will enjoy only a respite. At a later time, the replacement process will
continue at the level of technical software management as well.

The software developers most threatened by the process outlined above
will be the recent and future non-professional entrants to the field (the
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Mocsian ‘three week wonders’). In the immediate future, the pressure
described above will not be too apparent but it will increase continually
throughout their entire careers. Clearly, many of them will not be able to
withstand it over the course of a career lasting some 40 years.

'Some precursors of changes of the types outlined above can already be
discerned. More and more universities and colleges are offering degree
programs in informatics, computing science and software engineering. These
programs are gfowing quantitatively and qualitatively. They are popular
among prospective students as well as their graduates’ employers. These
trends can be observed in different countries.

In most cases, software engineering subjects are taught within the
erartment of computing science. No clear separation of such departments
into two — science and engineering — is yet apparent, although some
observers are convinced that very preliminary indications of such a division
can be detected.

Engineering societies are engaging more actively in computing. While
their entry into the field was typically based in hardware areas (e.g. electrical
engineering and communication), they are devoting ever more attention to
software. Again, these developments can be observed in different countries.

Associations of computing specialists are cooperating more closely with
established engineering societies. This cooperation takes on various forms
§uch as jointly sponsoring technical conferences, jointly publishing individual
issues of their professional journals, seriously considering merging, formally
joining a national federation of engineering societies, etc.

7.3 Concluding remarks

The history of established engineering fields strongly suggests that a
mathematical and theoretical foundation of the type presented in this book
will become fundamental to the education of software developers and to
the professional practice of software development. It therefore behooves
each software practitioner of today to give serious thought to his own
personal transition to tomorrow’s world of software development — what
role he can realistically expect to play in that world, how he can best
acquire the new knowledge and expertise he will need, etc. Some, believing
or fearing that they cannot acquire an adequate understanding of the
m:}thematical and theoretical foundation needed by the professional, will
reject this material. They should candidly assess their chances of survival
in the field, for the status of many working programmers will, especially in
the long run, be threatened by the increasing numbers of new, professionally
qualified entrants to the field. In time, these professionals will ensure that
practical software development will be based on principles of the type
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presented in this book; those who are unwilling or unable to acquire an
adequate working knowledge of this theoretical foundation will. slowly but
surely, be relegated to ancillary positions or squeezed out of the field
entirely.

Today, software development appears to be well into an initial phase of
transition to an engineering field. There have been many technical changes
to date, but a more fundamental change is on the horizon. The preparation
of practitioners will constitute the first area of major change. A corresponding
change in the practice of the field will follow in due time. Present software
developers will have to adapt to these changes by acquiring new, more
fundamental knowledge such as that presented in this book, transferring to
(temporarily) safe positions in management or involving very specialized
technical (as opposed to engineering) skill, accepting less responsible
positions as software technicians or allowing themselves to be squeezed out
of the field sooner or later.

This book has presented a significant part of the mathematical and
theoretical foundation which can enable the software engineer to develop
error free programs. Critical prerequisites for applying these concepts
successfully are a thorough understanding of them together with fluency in
the relevant mathematics — just as in the case of every other engineering
field. Mastery of some set of tools and techniques is not enough — it is, in
the language of mathematics, a necessary but not a sufficient condition for
success.

Much can be achieved with relatively little, not especially advanced
mathematical knowledge. Rather, a mathematical way of thinking is the
essential element. A program or a part thereof is viewed as a mathematical
object — just as we looked upon points, lines, triangles, spheres, numbers,
etc. as mathematical objects when we were in school. Theorems about
certain properties of the mathematical object in question are formulated
and logically proved. In order to do this, certain axioms and assumptions
are presumed.

Such an approach is useful not only when applied to existing or proposed
programs. Often, substantial parts of a program can be derived from a
proof of correctness or a sketch of such a proof.

Probably the greatest problem arising in the application of the concepts
presented in this book is formulating the theorems which represent the
criteria of ‘correctness’, i.e. which give meaning to the term ‘correct’ as
applied to a particular program. This problem can be solved only by
mastering the language in which these theorems are best and most con-
veniently expressed — i.e. by mastering the language of mathematics. Again
as in the case of other engineering fields, one need not be a mathematician,
but one must be able to ‘speak mathematics’.
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We software developers want to be professionals. But are we? What must
we do to become such? It is characteristic of all professionals that they
view mistakes as signs of incompetence and take extensive steps to reduce
their error rate as much as possible. Most pilots never crash. Most surgeons
never kill a patient. Most civil engineers never design a building or a bridge
which collapses. Only when most software developers regularly deliver error
free programs to their clients will we be able to convince others that we
are professionals, software engineers in the true sense of the word.




Appendix 0

Mathematical fundamentals

This, therefore, is mathematics: she reminds you of the invisible form
of the soul; she gives life to her own discoveries; she awakens the
mind and purifies the intellect; she brings light to our intrinsic ideas;
she abolishes oblivion and ignorance which are ours by birth.

— Proclus

In the mathematics I can report no deficience, except it be that men
do not sufficiently understand the excellent use of the pure
mathematics, in that they do remedy and cure many defects in the wit
and faculties intellectual.

— Francis Bacon

This appendix reviews those specific mathematical topics upon which the
material presented in the body of this book is based. For the most part,
this consists of definitions of the relevant mathematical terms. Many of
these definitions are presented in two forms: an informal explanation or
description of ‘the concept involved and a formal mathematical definition.
The informal explanation serves usually to motivate the introduction of the
term and to convey a general, subjective understanding of the concept in
question. The formal definition, in rigorous mathematical language, makes
the term precise.

This appendix does not purport to treat these subjects thoroughly. Rather,
it is intended to (a) refresh the reader’s memory in certain key areas and
(b) permit him to extend his knowledge to a limited extent into areas which
are new to him. For more information on these subjects, the reader is
referred to the many mathematical texts on analysis, functional analysis and
algebra. Additional material on topics covered in this appendix can often
be found in introductory chapters or appendices in text books on other
mathematical subjects, e.g. groups, linear algebra, measure theory, prob-
ability theory, etc. The more advanced reader will also find mathematical
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texts on logic, predicate calculus and related subjects of interest and
relevance.

The main topics covered below are sets, sequences, functions and Boolean
algebra.

A0.0 Sets

A0.0.0 Basic definitions

A set is a collection of distinguishable objects. Any one of the objects
comprising a particular set is called an element or a member of that set.

By distinguishable we mean that each element in a set is different from
every other one. In other words, one element cannot appear more than
once in a particular set. If a set is specified by enumerating its elements and
the same element is listed more than once, it is included only once in the
set.

A set may contain a finite number of elements, infinitely many (an
‘unbounded number’ of) elements or no elements. A set containing no
elements is called the empty or null set. A set containing exactly one
element is sometimes called a singleton set.

Example 1: The set {1, 2, 3} is a set containing three elements, the
numbers 1, 2 and 3.

Example 2: The set {1, 2, 3, 4, ...} contains infinitely many elements.
This set is the set of natural numbers; each of its elements is called a natural
number.

A particular set is defined by specifying, directly or indirectly, which objects
it contains, i.e. by specifying its elements. When defining a set, one should
be careful that the purported definition is logically consistent. Particularly
when the definition of a set contains references to the set being defined,
must one beware of ambiguities and paradoxes. Such recursive references
may be explicit or implied by such terms as ‘all sets’, ‘any set’, etc. The
mathematical literature contains a number of famous paradoxes illustrating
logical difficulties in this area (see, for example, Kline, 1980, pp. 204 ff.).

A simple way of defining a set is to list all of its elements, as in the two
examples above. When defining a set in this way, the order in which the
elements are listed is of no consequence. Another way to define a set is to
state a condition; every object (element) which satisfies the condition is a
member of the set and any potential element which does not satisfy the
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condition is excluded from the set. Such a definition of a set is usually
written in the following form:

S = {x| C)}

meaning that the set S contains every x which satisfies the condition C -
and no other elements.

The magnitude or size of a set is the number of elements it contains. If,
for example, the set A is defined to be the set {true, false}. then the
magnitude of A (usually written |A|) is 2, i.e. |A] = 2.

It sometimes happens that one set contains all the elements of another
set. In such a case, we say that the latter set is a subset of the first set.
More precisely,

Definition A0.0: If A and B are sets and if every element of A is also an
element of B, then the set A is a subset of B.

If A is a subset of B, one sometimes says that B is a superset of A.

If the set A is empty, then by convention the above definition of subsets
is interpreted in such a way that A, the empty set, is a subset of any set
B.

Two sets which contain exactly the same elements are, by the above
definition, subsets of each other. This provides an appropriate and con-
venient condition for a definition of equality of sets:

Definition A0.1: The sets A and B are equal if A is a subset of B and B
is a subset of A.

When the set A is a subset of set B, but not vice versa, then the set A is
‘smaller’ than the set B in the sense that B contains one or more elements
which are not elements of A. In such a case, we say that A is a proper
subset of B.

A0.0.1 Combination of sets

It is useful to combine sets in certain ways. One such combination forms a
set by merging or lumping all the elements in two or more given sets
together. More formally:

Definition A0.2: The union of two given sets A and B is the set consisting
of those elements contained in either of the given sets (and only of those
elements). Symbolically,

A U B ={x | x is an element of A or x is an element of B}
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The connective ‘or’ in the above condition is to be interpreted so that an
x which is an element of both A and B satisfies the condition; i.e. such an
element is a member of the union of A and B.

The above definition can be extended in a straightforward and obvious way
for more than two sets. The union of any number of sets contains every
element which is contained in any one (or more) of the given sets.
The phrase ‘is an element of’ occurs frequently in such expressions and
formulae. It is, therefore, often shortened to ‘is in’ or simply ‘in’.
Another commonly useful combination of sets is the set containing only
those elements which belong to all of the given sets:

Definition A0.3: The intersection of two given sets A and B is the set
consisting of those elements contained in both of the given sets (and only
of those elements). Symbolically,

ANB={x]|xin A and x in B}

The difference of two sets is the set of elements contained in one set but
not the other:

Definition A0.4: Given two sets A and B, the difference
A — B = {x|xin A and x not in B}

For a variety of reasons, it is often desirable to take one element from one
set and a second element from another set and consider the pair of elements
selected, keeping track of which element came from which set. The set of
all such pairs of elements is, in such cases, also of interest. We formally
define such a structure as follows.

Definition A0.5: The cartesian product of the sets A and B is the set of
all ordered pairs, the first element of which is in A and the second, in B.
Symbolically,

A X B ={(x,y)|xin A and y in B}

The word ‘ordered’ in the above definition expresses the restriction that,
for example, the pair (1, 2) is not to be considered the same as the pair
(2, 1). By maintaining this distinction, we keep track of which element
came from which set as required by the informal definition. This distinction
is still made when the two given sets are equal.

The above definition can be generalized to the case of more than two
given sets. The cartesian product of n sets is the set of all ordered n-tuples,
the first element of which is in the first set, the second element of which
is in the second set, etc.
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Example 3: If A = {1, 2, 3} and B = ({true, false}. then the cartesian
product of A and B is the set

A X B = {(1, true), (1, false), (2. true), (2. false). (3, true). (3.
false)}

and the cartesian product B X A is the set

B x A = {(true, 1), (false, 1), (true, 2), (false, 2), (true, 3), (false,
3)}.

Note that A X B # B X A. Note also that |[A X B| = |B x A| = |A| =
|B|.

A0.1 Relations, functions and expressions

A0.1.0 Relations

It is often meaningful and convenient to associate one or more elements of
one set with one or more elements of a second set. If desired, the two sets
may be equal. Such an association, or relation, can be specified by listing
all pairs of elements which are to be associated with one another.

Example 4: Consider a set P of persons and a set L of languages. We
will relate (associate) with each person (element) in P the language or
languages in L which that person speaks. If the set of persons is

P = {Dominique, James, Giovanna, Carlos}
and the set of languages _is
L = {French, English, Italian, Spanish}
then the relation between the elements of these sets might be

R = {(Dominique, French), (Dominique, English),
(James, English),
(Giovanna, Italian), (Giovanna, French),
(Carlos, Spanish), (Carlos, French), (Carlos, English)}

Note that the above relation R is a subset of the cartesian product P X L.

The last observation in the above example is a general one and provides
the motivation for the following definition.

Definition A0.6: A relation between (or on) two given sets A and B is a
subset of the cartesian product A X B.
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The above definition can be generalized to more than two given sets in the
obvious manner.

In the above example, some persons speak more than one language and
some languages are spoken by more than one person. In some special but
mathematically interesting cases, a less general situation prevails.

Example 5: Consider the set P of persons in the above example and their
ages. The corresponding relation Ra between P and Y, the set of possible
ages in years (non-negative integers), might be

Ra = {(Dominique, 25), (James, 15), (Giovanna, 45), (Carlos, 45)}

The set Ra is clearly a subset of P x Y, so it fulfills the definition of a
relation. Associated with each person is only one age. Thus, the relation
is unique in the direction from a person to an age. It is not unique in the
other direction, however. Two people, Giovanna and Carlos, are 45 years
old.

A0.1.1 Functions

Relations which are unique in the above sense in at least one direction
arise in important situations in mathematical analyses. The term function is
applied to such relations.

Definition A0.7: A function F on a set A to a set B is a relation between
A and B which exhibits the following property: If (a, b1) is an element of
F and (a, b2) is an element of F, then bl = b2.

In other words, the first element of an ordered pair uniquely determines
the second element of that pair. Any particular element in A appears as a
left element in an ordered pair in F at most once. The function (relation)
F associates with any a in A at most one b in B. A function from the set
A to the set B can be viewed as a rule for transforming or converting an
element of A into a unique element of B.

In the above definition the sets A and B may be equal. No modification
of the above statements is needed.

The notion of a function as a rule suggests the commonly used notation
F(a) to represent that element of B which is associated with the element a
in A. The element a of the set A is called the argument of the function.
The element F(a) of the set B is the value of the function obtained by
applying F to the argument a.

The set A may be the cartesian product of other sets (e.g. A1, A2, etc.)
in which case the function is said to have several arguments, each of which
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is an element of A1, A2, etc. respectively. If, for example, A = A1 x A2
X A3, then an element of A could be written (al, a2, a3). where al is an
element of Al; a2, of A2 and a3, of A3. The corresponding value of the
function would be written F(al, a2, a3).

The term mapping is a synonym for function. The terms operator and
operation are often used as synonyms for function. They are also sometimes
used as synonyms for relation, especially in cases in which the relation
defines a function in an obvious or straightforward way.

A function F on the set A to the set B is a subset of the cartesian product
A X B. Therefore, if (a, b) is an element of F, then a must be an element
of A. But the reverse statement is not necessarily true, that is, for any
particular a in A there need not be an element (a, b) in F. In other words,
the function F does not necessarily transform every @ in A into an element
in B. Similarly, the function F need not cover B entirely, that is, associate
every element in B with some element in A.

Example 6: Consider the set N of natural numbers (N = {1, 2, 3, ...})
and the square root function on IN to N. Expressed as a subset of N
X N, this function is

(1, 1), (4, 2), (9, 3), (16, 4), (25, 5), ...}

Note that many elements of N have no square root in the natural numbers,
e.g. 2, 3, 5, etc.; i.e. this square root function does not map every element
of N into some value.

We will often want to talk about the subset of A consisting of those elements
which F does transform into an element of B. This subset is called the
domain of the function F. We will also want to talk about the subset of B
consisting of those elements into which F transforms elements of A. This
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