
2003 January – April SFWR ENG 2B03 – Slides 10 0

Designing a Routine by
Deriving It from the MID

SFWR ENG 2B03
2003

Robert L. Baber

2003 January – April SFWR ENG 2B03 – Slides 10 1

Designing from the MID

MID = Module Internal Design
A MID contains
● the specification of each routine and
● the main overall design decisions for each

routine.

Use this information
● to your benefit and
● to the benefit of others.

2003 January – April SFWR ENG 2B03 – Slides 10 2

Why Design from the MID?

Use the information in the MID systematically
● to save yourself work,
● to reduce or avoid errors and
● to save others time, frustration and annoyance.

Don’t start all over again and “design by
intuition”.
Only hackers do it that way.
Engineers are not hackers.

2003 January – April SFWR ENG 2B03 – Slides 10 3

Postcondition

To form the postcondition:
● start with the input/output relation from the

routine semantics part of the MID *
● remove all apostrophes ' after variable names

(but not those before variable names)
● combine the modified input/output relation and

the state invariant * with ∧ (logical and)
● the result is the postcondition

* formulation with concrete state variables

2003 January – April SFWR ENG 2B03 – Slides 10 4

Names Preceded by an Apostrophe '

Names preceded by an apostrophe '
● are specification parameters (constants), not

program variables.
● represent values of the corresponding program

variables immediately before calling the routine
in question.

● are not to be removed from the postcondition
(leave them in the postcondition).

2003 January – April SFWR ENG 2B03 – Slides 10 5

Precondition

To form the precondition:
● combine the domain and the state invariant

(with concrete state variables) with ∧ (logical
and)

● remove prefixed apostrophes, then
● for every identifier x prefixed with an

apostrophe ' ('x) in the postcondition, append
the term x='x to the precondition with ∧

● the result is the precondition

2003 January – April SFWR ENG 2B03 – Slides 10 6

Design Procedure

The aim of the design procedure is
● to transform the postcondition into the

precondition (or into a condition implied by the
precondition, i.e. into a weaker condition)

● by a series of steps, where
● each step corresponds to the application of a

proof rule.
The statements corresponding to the proof rules
become the routine being designed.

2003 January – April SFWR ENG 2B03 – Slides 10 7

Proof Rule: Assignment Statement

V ⇒ Px
e

⇒ [because {Px
e} x:=e {P}]

{V} x:=e {P}

where x is a variable name and e is an expression

Design strategy: find an x and an e such that
substituting e for x in the postcondition leads to V
(or a condition more like V and repeat)

2003 January – April SFWR ENG 2B03 – Slides 10 8

Design Example: Stack Routine “Push”

V: size∈ Z ∧ 0 ≤ size < MaxDepth ∧ x∈ A
∧ (∧ i : i∈ Z ∧ 0≤i≤'size-1 : stack[i]='stack[i])
∧ size = 'size

P: size∈ Z ∧ 0 ≤ size ≤ MaxDepth
∧ (∧ i : i∈ Z ∧ 0≤i≤'size-1 : stack[i]='stack[i])
∧ size = 'size+1 ∧ stack['size] = x

Step 1: substitute size+1 for size in P
Step 2: substitute x for stack[size] in result of (1)

2003 January – April SFWR ENG 2B03 – Slides 10 9

Design Example: Assignment Statements

Step 1: substitute size+1 for size in P
Step 2: substitute x for stack[size] in result of (1)
I.e.

V ⇒ [Psize
size+1]stack[size]

x
Therefore, the program is:

stack[size] := x
size := size+1

Note the order of the statements!

2003 January – April SFWR ENG 2B03 – Slides 10 10

Proof Rule: While Loop

{V} init {I} ∧ {I∧ B} S {I} ∧ (I∧¬ B ⇒ P)
⇒

{V} init; while B do S endwhile {P}

To design a loop for V and P, determine
● a suitable loop invariant I
● init so that {V} init {I}
● B so that I∧¬ B ⇒ P
● S so that {I∧ B} S {I} (and progress toward ¬B)

2003 January – April SFWR ENG 2B03 – Slides 10 11

Design Example: While Loop, Step 1

Step 1: determine a suitable loop invariant I
● initial situation is a special case of I
● final situation (P) is a special case of I
● I is a generalization of the initial and final

situations
Approaches: generalize P to I
● so that I is easy to initialize
● by introducing a new variable if necessary

2003 January – April SFWR ENG 2B03 – Slides 10 12

Design Example: While Loop, Step 1

V: n∈ Z ∧ 0≤n
P: n∈ Z ∧ 0≤n ∧ sum=∑j=1

n X(j)

Note: n may not be modified
Initialization must eliminate the ∑ series, but
neither 1 nor n may be modified.
Therefore, a new variable must be introduced:
I: n∈ Z ∧ i∈ Z ∧ 0≤i≤n ∧ sum=∑j=1

i X(j)

2003 January – April SFWR ENG 2B03 – Slides 10 13

Design Example: While Loop, Step 2

Step 2: determine init so that {V} init {I}
V: n∈ Z ∧ 0≤n
I: n∈ Z ∧ i∈ Z ∧ 0≤i≤n ∧ sum=∑j=1

i X(j)

If i=0, the ∑ series is empty (and = 0). I.e.,
V ⇒ [Ii0]sum

0
Therefore, init is:

sum := 0; i := 0

2003 January – April SFWR ENG 2B03 – Slides 10 14

Design Example: While Loop, Step 3

Step 3: determine B so that I∧¬ B ⇒ P
I: n∈ Z ∧ i∈ Z ∧ 0≤i≤n ∧ sum=∑j=1

i X(j)

P: n∈ Z ∧ 0≤n ∧ sum=∑j=1
n X(j)

If i=n (or if i≥n), then I reduces to P:
I ∧ i≥n ⇒ P

Therefore, a suitable choice for B is ¬ (i≥n), i.e.
● i<n

2003 January – April SFWR ENG 2B03 – Slides 10 15

Design Example: While Loop, Step 4

Step 4: determine S so that
● {I∧ B} S {I} and
● S makes progress toward ¬B, P, termination
I∧ B : n∈ Z ∧ i∈ Z ∧ 0≤i<n ∧ sum=∑j=1

i X(j)

I: n∈ Z ∧ i∈ Z ∧ 0≤i≤n ∧ sum=∑j=1
i X(j)

Increasing i by 1 makes progress toward ¬B. But
● {Iii+1} i:=i+1 {I}

2003 January – April SFWR ENG 2B03 – Slides 10 16

Design Example: While Loop, Step 4b

so we need Step 4b: determine S2 so that
● {I∧ B} S2 {Iii+1}

I∧ B: n∈ Z ∧ i∈ Z ∧ 0≤i<n ∧ sum=∑j=1
i X(j)

Iii+1: n∈ Z ∧ i∈ Z ∧ 0≤i+1≤n ∧ sum=∑j=1
i+1 X(j)

Note that
● I∧ B ⇒ [Iii+1]sum

sum+X(i+1)
Therefore, S is: sum:=sum+X(i+1); i:=i+1

2003 January – April SFWR ENG 2B03 – Slides 10 17

Design Example: While Loop

Combining the above, the while loop with
initialization becomes:

sum := 0; i := 0
while i<n do
sum:=sum+X(i+1); i:=i+1
endwhile

The obvious alternative body of the loop can also
be derived in this way.

2003 January – April SFWR ENG 2B03 – Slides 10 18

Proof Rule: If Statement

{V∧ B} S1 {P} ∧ {V∧¬ B} S2 {P}
⇒

{V} if B then S1 else S2 endif {P}

Alternate form for deriving a precondition:
{V1} S1 {P} ∧ {V2} S2 {P}

⇒
{V1∧ B ∨ V2∧¬ B}
if B then S1 else S2 endif {P}

2003 January – April SFWR ENG 2B03 – Slides 10 19

Designing an If Statement

If you
● try to design a program segment S for

precondition V and postcondition P,
● but find a program segment S1 with a stronger

precondition (V∧ B) instead,
● then embed S1 in an if statement and
● design S2 for {V∧¬ B} S2 {P}.

Then: {V} if B then S1 else S2 endif {P}

2003 January – April SFWR ENG 2B03 – Slides 10 20

Summary

● The precondition and the postcondition together
with the proof rules suggest the structure of the
program.

● Most expressions in a program can be derived
algebraically from the precondition, the
postcondition and the relevant proof rules.

● Don’t guess, derive mathematically. You will
get it correct and quicker that way.

● “Let the symbols do the work.” (Dijkstra)

2003 January – April SFWR ENG 2B03 – Slides 10 21

References

See list of references in 2B03 course outline

For a short introduction to designing programs
from their specifications, see especially
Error Free Software: Know-How and Know-Why
of Program Correctness

Dijkstra: EWD 1041-7

