
2003 January – April SFWR ENG 2B03 – Slides 09 0

Module Internal Design
MID

SFWR ENG 2B03

2003

Robert L. Baber

2003 January – April SFWR ENG 2B03 – Slides 09 1

MID: Purpose

Module Internal Design (MID)

l internal structure of a module

l access and internal routines of a module

l implementation (“concrete”) state variables

l connection between implementation
(“concrete”) and application (“abstract”) state
variables

l mathematically precisely

2003 January – April SFWR ENG 2B03 – Slides 09 2

MID: Language

A Module Internal Design is written in

l mathematical

l internal, implementation oriented

language.

Its language is oriented to programming

languages in general, possibly but not necessarily

to the programming language(s) to be used.

2003 January – April SFWR ENG 2B03 – Slides 09 3

MID: Target audience

MID is written for

l module designers and implementers

l inspectors, testers of the module and its parts

l people modifying the module or its components

Note: MID is not for designers and implementers

of program segments using the module’s access

routines because of the secrets in the MID.

2003 January – April SFWR ENG 2B03 – Slides 09 4

MID = MIS + internal details

Simply put, the MID consists of the MIS

plus

l specification of the internal (“concrete”) state
variables and their internal data structure

l relation between the abstract and the concrete
state variables (“abstraction relation”)

l semantics of the access routines in terms of the
concrete state variables

l semantics of the internal routines

2003 January – April SFWR ENG 2B03 – Slides 09 5

Abstraction Relation

Abstraction relation

l defines the association between the values of
the concrete and the abstract state variables

l normally a function from the concrete to the
abstract data spaces (the abstraction function)

l i.e. usually one or more concrete states
represent one abstract state (not the other way
around)

2003 January – April SFWR ENG 2B03 – Slides 09 6

Why Different State Spaces?

Reasons for introducing a concrete state space

that is different from the abstract state space

l types of abstract state variables not available in
implementation language

l implementation using abstract state space
inefficient

2003 January – April SFWR ENG 2B03 – Slides 09 7

What If Concrete = Abstract State Space?

If there is no difference between the concrete state

space and the abstract state space

the MID reduces to

l a statement that the concrete state space is the
same as the abstract state space and

l semantics of the internal routines

The fact that the concrete and abstract state spaces

are the same is still a secret of the module

2003 January – April SFWR ENG 2B03 – Slides 09 8

Abstract and Concrete State Spaces

A = Abstract State Space

C = Concrete State Space

MIS

MID'C

'A

C'

A'
A

bs
tr

ac
tio

n

A
bs

tr
ac

tio
n

2003 January – April SFWR ENG 2B03 – Slides 09 9

MIS, MID and Abstraction Relation

The three relations on the state spaces

l I/O relation on the abstract state space in MIS

l I/O relation on the concrete state space in MID

l abstraction relation

must be consistent.

E.g. if all three relations are functions, the system

must form a homomorphism.

2003 January – April SFWR ENG 2B03 – Slides 09 10

MID Example: Stack Module

l name: Stack

l imported identifiers: A (data type, see below)

l exported access routines: init, push, pop, depth,
full

l assumptions: init called before any other access
routine

2003 January – April SFWR ENG 2B03 – Slides 09 11

MID Example: Stack Module

l abstract state variables: s, where s∈A* (s is a
sequence of elements of A, A is any set)

l abstract state invariant: |s| ≤ MaxDepth

l concrete state variables:

• size (a non-negative integer)

• stack[0 … MaxDepth-1] of A

l concrete state invariant:

• size∈Z ∧ 0 ≤ size ≤ MaxDepth

2003 January – April SFWR ENG 2B03 – Slides 09 12

MID Example: Stack Module

l abstraction function:

• s = (& i : i∈Z ∧ 0≤i≤size-1 : stack[i])

• note that this implies that |s| = size

l Note: no apostrophe ' appears before or after
any variable name in the abstraction function

2003 January – April SFWR ENG 2B03 – Slides 09 13

MID Example: Stack Module

where MaxDepth

l a positive integer

l an internal implementation parameter

l value not specified at design time

2003 January – April SFWR ENG 2B03 – Slides 09 14

Example: Abstract and Concrete States

?, … ?

b,?, … ?

r, w, ?, … ?

a, x, p, ?, … ?

Abstract

s stack

Concrete

size

0

1

2

3

[]

[b]

[r, w]

[a, x, p]

? = anything

2003 January – April SFWR ENG 2B03 – Slides 09 15

MID Example: Routine Semantics

l name: init

l input/output relation: size' = 0

l restrictions on use: none

2003 January – April SFWR ENG 2B03 – Slides 09 16

MID Example: Routine Semantics

l name: push(x)

l input/output relation:

(∧ i : i∈Z ∧ 0≤i≤'size-1 : stack'[i]='stack[i])

∧ stack'['size] = x ∧ size' = 'size+1

l domain: ('size < MaxDepth) ∧ (x∈A)

2003 January – April SFWR ENG 2B03 – Slides 09 17

MID Example: Routine Semantics

l name: pop

l input/output relation:

result = 'stack['size-1] ∧ result∈A

∧ (∧ i : i∈Z ∧ 0≤i≤'size-2 : stack'[i]='stack[i])

∧ size' = 'size-1

l restrictions on use: 0 < 'size

2003 January – April SFWR ENG 2B03 – Slides 09 18

MID Example: Routine Semantics

l name: depth

l input/output relation:

(result = 'size) ∧ (size' = 'size)

l restrictions on use: none

2003 January – April SFWR ENG 2B03 – Slides 09 19

MID Example: Routine Semantics

l name: full

l input/output relation:

(result = ('size = MaxDepth)) ∧ (size' = 'size)

l restrictions on use: none

2003 January – April SFWR ENG 2B03 – Slides 09 20

MID Example: Routine Semantics

Convention:

l If any state variable is not explicitly mentioned
in the input/output relation, its value is not
changed by the access routine in question

2003 January – April SFWR ENG 2B03 – Slides 09 21

MID: Summary

Module Internal Design

l internal view

l mathematically precise

l with implementation (“concrete”) state
variables

l relation between abstract and concrete state
variables

l internal routine semantics

