Module Internal Design
MID

SFWR ENG 2B03
2003
Robert L. Baber

2003 January — April SFWR ENG 2B03 — Slides 09




MID: Purpose

Module Internal Design (MID)

e Internal structure of a module

@ access and internal routines of amodule

e implementation (“concrete”) state variables

@ connection between iImplementation
(“concrete’) and application (“abstract”) state

variables
e mathematically precisely

2003 January — April SFWR ENG 2B03 — Slides 09




MID: Language

A Module Internal Design iswritten in
e mathematical

e internal, Implementation oriented
language.

Its language Is oriented to programming
languages in general, possibly but not necessarily
to the programming language(s) to be used.

2003 January — April SFWR ENG 2B03 — Slides 09 2




MID: Target audience

MID iswritten for

e module designers and implementers

@ Inspectors, testers of the module and its parts

e people modifying the module or its components

Note: MID Isnot for designers and implementers
of program segments using the modul€’ s access
routines because of the secretsinthe MID.

2003 January — April

SFWR ENG 2B03 — Slides 09 3




MID = MIS+ internal details

Simply put, the MID consists of the MIS

plus

e specification of the internal (“concrete’) state
variables and their internal data structure

e raation between the abstract and the concrete
state variables (“abstraction relation”)

@ semantics of the access routines in terms of the
concrete state variables

@ semantics of the internal routines

2003 January — April SFWR ENG 2B03 — Slides 09 4




Abstraction Relation

Abstraction relation

e defines the association between the values of
the concrete and the abstract state variables

e normally afunction from the concrete to the
abstract data spaces (the abstraction function)

@ |.e. usually one or more concrete states
represent one abstract state (not the other way
around)

2003 January — April SFWR ENG 2B03 — Slides 09




Why Different State Spaces?

Reasons for introducing a concrete state space
that is different from the abstract state space

e types of abstract state variables not avallable In
Implementation language

e Implementation using abstract state space
Inefficient

2003 January — April SFWR ENG 2B03 — Slides 09 6




What If Concrete = Abstract State Space?

If there 1s no difference between the concrete state
space and the abstract state space

the MID reducesto

e a statement that the concrete state space isthe
same as the abstract state space and

@ semantics of the internal routines
The fact that the concrete and abstract state spaces
are the same is still a secret of the module

2003 January — April SFWR ENG 2B03 — Slides 09 7




Abstract and Concrete State Spaces

A = Abstract State Space

--p >'

()" Abstraction

MIS

2003 January — April

v - v
o -Abstraction |

MID
C = Concrete State Space

SFWR ENG 2B03 — Slides 09




MIS, MID and Abstraction Relation

The three relations on the state spaces

e |/O relation on the abstract state space in MIS
e |/O relation on the concrete state space in MID
e abstraction relation

must be consi stent.

E.g. If dl three relations are functions, the system
must form a homomorphism.

2003 January — April SFWR ENG 2B03 — Slides 09 9




MID Example: Stack Module

e name. Stack
e imported identifiers. A (datatype, see below)

@ exported access routines. init, push, pop, depth,
full

e assumptions: init called before any other access
routine

2003 January — April SFWR ENG 2B03 — Slides 09 10




MID Example: Stack Module

e abstract state variables: s, where sl A* (sisa
sequence of elementsof A, A iIsany set)

e abstract state invariant: [s| £ MaxDepth
e concrete state variables:

 Size (anon-negative integer)

o stack[O ... MaxDepth-1] of A
e concrete state invariant:

e sizel ZUO £ size £ MaxDepth

2003 January — April SFWR ENG 2B03 — Slides 09 11




MID Example: Stack Module

e abstraction function:
e s=(& i:il ZUO£ifsize-1: stack[i])
e note that thisimpliesthat |s| = size

e Note: no apostrophe ' appears before or after
any variable name in the abstraction function

2003 January — April SFWR ENG 2B03 — Slides 09 12




MID Example: Stack Module

where MaxDepth

e apositive integer

e an internal Implementation parameter
e value not specified at design time

2003 January — April SFWR ENG 2B03 — Slides 09

13




Example: Abstract and Concrete States

2003 January — April

SFWR ENG 2B03 — Slides 09

Abstract Concrete
S Size stack
[ ] 0 ?, ... 7
[ D] 1 D,?,...7?
[r, W] 2 nw,? ...7
[&, X, p] 3 ax,p?..7?
? = anything

14




MID Example: Routine Semantics
e name: Init

e Input/output relation: size' =0
@ restrictions on use: none

2003 January — April SFWR ENG 2B03 — Slides 09

15




MID Example: Routine Semantics

e name: push(x)

@ Input/output relation:
(Ui : il ZUOEif'size-1: stack'[i]="stack[i])
U stack'['size] = x Usize' = 'size+1

e domain: ('size < MaxDepth) U (xI A)

2003 January — April SFWR ENG 2B03 — Slides 09

16




MID Example: Routine Semantics

@ Nhame: pop
@ Input/output relation:
result = 'stack['size-1] U result] A

U(Ui: il ZUOLi£'size-2 : stack'[i]="stack[i])

Usize ='size-1
@ restrictionson use: 0 < 'size

2003 January — April SFWR ENG 2B03 — Slides 09

17




MID Example: Routine Semantics

e name: depth
@ Input/output relation:

(result ='size) U (size' = 'size)
@ restrictions on use: none

2003 January — April SFWR ENG 2B03 — Slides 09

18




MID Example: Routine Semantics

e name: full
@ Input/output relation:

(result = (‘'size = MaxDepth)) U (size' = 'size)

® restrictions on use: none

2003 January — April SFWR ENG 2B03 — Slides 09

19




MID Example: Routine Semantics

Convention:

e |f any state variable s not explicitly mentioned
In the input/output relation, its value is not
changed by the access routine in question

2003 January — April SFWR ENG 2B03 — Slides 09 20




MID: Summary

Module Internal Design
e internal view
e mathematically precise

e with Implementation (“concrete’) state
variables

e relation between abstract and concrete state
variables

e Internal routine semantics

2003 January — April SFWR ENG 2B03 — Slides 09

21




