
2003 January – April SFWR ENG 2B03 – Slides 10 0

Designing a Routine by
Deriving It from the MID

SFWR ENG 2B03

2003

Robert L. Baber



2003 January – April SFWR ENG 2B03 – Slides 10 1

Designing from the MID

MID = Module Internal Design

A MID contains

l the specification of each routine and

l the main overall design decisions for each
routine.

Use this information

l to your benefit and

l to the benefit of others.



2003 January – April SFWR ENG 2B03 – Slides 10 2

Why Design from the MID?

Use the information in the MID systematically

l to save yourself work,

l to reduce or avoid errors and

l to save others time, frustration and annoyance.

Don’t start all over again and “design by
intuition”.

Only hackers do it that way.

Engineers are not hackers.



2003 January – April SFWR ENG 2B03 – Slides 10 3

Postcondition

To form the postcondition:

l start with the input/output relation from the
routine semantics part of the MID *

l remove all apostrophes ' after variable names
(but not those before variable names)

l combine the modified input/output relation and
the state invariant * with ∧ (logical and)

l the result is the postcondition

* formulation with concrete state variables



2003 January – April SFWR ENG 2B03 – Slides 10 4

Names Preceded by an Apostrophe '

Names preceded by an apostrophe '

l are specification parameters (constants), not
program variables.

l represent values of the corresponding program
variables immediately before calling the routine
in question.

l are not to be removed from the postcondition
(leave them in the postcondition).



2003 January – April SFWR ENG 2B03 – Slides 10 5

Precondition

To form the precondition:

l combine the domain and the state invariant
(with concrete state variables) with ∧ (logical
and)

l remove prefixed apostrophes, then

l for every identifier x prefixed with an
apostrophe ' ('x) in the postcondition, append
the term x='x to the precondition with ∧

l the result is the precondition



2003 January – April SFWR ENG 2B03 – Slides 10 6

Design Procedure

The aim of the design procedure is

l to transform the postcondition into the
precondition (or into a condition implied by the
precondition, i.e. into a weaker condition)

l by a series of steps, where

l each step corresponds to the application of a
proof rule.

The statements corresponding to the proof rules
become the routine being designed.



2003 January – April SFWR ENG 2B03 – Slides 10 7

Proof Rule: Assignment Statement

V ⇒ Px
e

⇒ [because {Px
e} x:=e {P}]

{V} x:=e {P}

where x is a variable name and e is an expression

Design strategy: find an x and an e such that
substituting e for x in the postcondition leads to V
(or a condition more like V and repeat)



2003 January – April SFWR ENG 2B03 – Slides 10 8

Design Example: Stack Routine “Push”

V: size∈Z ∧ 0 ≤ size < MaxDepth ∧ x∈A

∧ (∧ i : i∈Z ∧ 0≤i≤'size-1 : stack[i]='stack[i])

∧ size = 'size

P: size∈Z ∧ 0 ≤ size ≤ MaxDepth

∧ (∧ i : i∈Z ∧ 0≤i≤'size-1 : stack[i]='stack[i])

∧ size = 'size+1 ∧ stack['size] = x

Step 1: substitute size+1 for size in P

Step 2: substitute x for stack[size] in result of (1)



2003 January – April SFWR ENG 2B03 – Slides 10 9

Design Example: Assignment Statements

Step 1: substitute size+1 for size in P

Step 2: substitute x for stack[size] in result of (1)

I.e.

V ⇒ [Psize
size+1]stack[size]

x

Therefore, the program is:

stack[size] := x

size := size+1

Note the order of the statements!



2003 January – April SFWR ENG 2B03 – Slides 10 10

Proof Rule: While Loop

{V} init {I} ∧ {I∧B} S {I} ∧ (I∧¬B ⇒ P)
⇒

{V} init; while B do S endwhile {P}

To design a loop for V and P, determine

l a suitable loop invariant I

l init so that {V} init {I}

l B so that I∧¬B ⇒ P

l S so that {I∧B} S {I} (and progress toward ¬B)



2003 January – April SFWR ENG 2B03 – Slides 10 11

Design Example: While Loop, Step 1

Step 1: determine a suitable loop invariant I

l initial situation is a special case of I

l final situation (P) is a special case of I

l I is a generalization of the initial and final
situations

Approaches: generalize P to I

l so that I is easy to initialize

l by introducing a new variable if necessary



2003 January – April SFWR ENG 2B03 – Slides 10 12

Design Example: While Loop, Step 1

V: n∈Z ∧ 0≤n

P: n∈Z ∧ 0≤n ∧ sum=∑j=1
n X(j)

Note: n may not be modified

Initialization must eliminate the ∑ series, but

neither 1 nor n may be modified.

Therefore, a new variable must be introduced:

I: n∈Z ∧ i∈Z ∧ 0≤i≤n ∧ sum=∑j=1
i X(j)



2003 January – April SFWR ENG 2B03 – Slides 10 13

Design Example: While Loop, Step 2

Step 2: determine init so that {V} init {I}

V: n∈Z ∧ 0≤n

I: n∈Z ∧ i∈Z ∧ 0≤i≤n ∧ sum=∑j=1
i X(j)

If i=0, the ∑ series is empty (and = 0). I.e.,

V ⇒ [Ii0]sum
0

Therefore, init is:

sum := 0; i := 0



2003 January – April SFWR ENG 2B03 – Slides 10 14

Design Example: While Loop, Step 3

Step 3: determine B so that I∧¬B ⇒ P

I: n∈Z ∧ i∈Z ∧ 0≤i≤n ∧ sum=∑j=1
i X(j)

P: n∈Z ∧ 0≤n ∧ sum=∑j=1
n X(j)

If i=n (or if i≥n), then I reduces to P:

I ∧ i≥n ⇒ P

Therefore, a suitable choice for B is ¬(i≥n), i.e.

l i<n



2003 January – April SFWR ENG 2B03 – Slides 10 15

Design Example: While Loop, Step 4

Step 4: determine S so that

l {I∧B} S {I} and

l S makes progress toward ¬B, P, termination

I∧B : n∈Z ∧ i∈Z ∧ 0≤i<n ∧ sum=∑j=1
i X(j)

I: n∈Z ∧ i∈Z ∧ 0≤i≤n ∧ sum=∑j=1
i X(j)

Increasing i by 1 makes progress toward ¬B. But

l {Iii+1} i:=i+1 {I}



2003 January – April SFWR ENG 2B03 – Slides 10 16

Design Example: While Loop, Step 4b

so we need Step 4b: determine S2 so that

l {I∧B} S2 {Iii+1}

I∧B: n∈Z ∧ i∈Z ∧ 0≤i<n ∧ sum=∑j=1
i X(j)

Iii+1: n∈Z ∧ i∈Z ∧ 0≤i+1≤n ∧ sum=∑j=1
i+1 X(j)

Note that

l I∧B ⇒ [Iii+1]sum
sum+X(i+1)

Therefore, S is: sum:=sum+X(i+1); i:=i+1



2003 January – April SFWR ENG 2B03 – Slides 10 17

Design Example: While Loop

Combining the above, the while loop with

initialization becomes:

sum := 0; i := 0

while i<n do

sum:=sum+X(i+1); i:=i+1

endwhile

The obvious alternative body of the loop can also

be derived in this way.



2003 January – April SFWR ENG 2B03 – Slides 10 18

Proof Rule: If Statement

{V∧B} S1 {P} ∧ {V∧¬B} S2 {P}
⇒

{V} if B then S1 else S2 endif {P}

Alternate form for deriving a precondition:
{V1} S1 {P} ∧ {V2} S2 {P}

⇒
{V1∧B ∨ V2∧¬B}
if B then S1 else S2 endif {P}



2003 January – April SFWR ENG 2B03 – Slides 10 19

Designing an If Statement

If you

l try to design a program segment S for
precondition V and postcondition P,

l but find a program segment S1 with a stronger
precondition (V∧B) instead,

l then embed S1 in an if statement and

l design S2 for {V∧¬B} S2 {P}.

Then: {V} if B then S1 else S2 endif {P}



2003 January – April SFWR ENG 2B03 – Slides 10 20

Summary

l The precondition and the postcondition together
with the proof rules suggest the structure of the
program.

l Most expressions in a program can be derived
algebraically from the precondition, the
postcondition and the relevant proof rules.

l Don’t guess, derive mathematically. You will
get it correct and quicker that way.

l “Let the symbols do the work.” (Dijkstra)



2003 January – April SFWR ENG 2B03 – Slides 10 21

References

See list of references in 2B03 course outline

For a short introduction to designing programs

from their specifications, see especially

Error Free Software: Know-How and Know-Why

of Program Correctness

Dijkstra: EWD 1041-7


