Designing a Routine by
Deriving It from the MID

SFWR ENG 2B03
2003
Robert L. Baber

2003 January — April SFWR ENG 2B03 — Slides 10




Designing from the M ID

MID = Module Internal Design
A MID contains
e the specification of each routine and

e the main overall design decisions for each
routine.

Use this information
e to your benefit and
e to the benefit of others.

2003 January — April SFWR ENG 2B03 — Slides 10




Why Design from the M 1D?

Use the information in the MID systematically
e to save yoursdlf work,

e to reduce or avoid errors and

e to save otherstime, frustration and annoyance.

Don't start all over again and “design by
Intuition”.

Only hackers do it that way.

Engineers are not hackers.

2003 January — April SFWR ENG 2B03 — Slides 10 2




Postcondition

To form the postcondition:

e start with the input/output relation from the
routine semantics part of the MID *

e remove all apostrophes' after variable names
(but not those before variable names)

e combine the modified input/output relation and
the state invariant * with U (logical and)

e theresult 1sthe postcondition
* formulation with concrete state variables

2003 January — April SFWR ENG 2B03 — Slides 10 3




Names Preceded by an Apostrophe’

Names preceded by an apostrophe’

@ are specification parameters (constants), not
program variables.

e represent values of the corresponding program
variables immediately before calling the routine
IN question.

e are not to be removed from the postcondition
(leave them in the postcondition).

2003 January — April SFWR ENG 2B03 — Slides 10 4




Precondition

To form the precondition:

e combine the domain and the state invariant
(with concrete state variables) with U (logical
and)

e remove prefixed apostrophes, then

e for every identifier x prefixed with an
apostrophe ' ('x) in the postcondition, append
the term x="x to the precondition with U

e the result is the precondition

2003 January — April SFWR ENG 2B03 — Slides 10 5




Design Procedure

The am of the design procedureis
e to transform the postcondition into the

orecondition (or into a condition implied by the
orecondition, i.e. into aweaker condition)

oy aseries of steps, where

e each step corresponds to the application of a

proof rule.

The statements corresponding to the proof rules
become the routine being designed.

2003 January — April SFWR ENG 2B03 — Slides 10 6




Proof Rule: Assignment Statement

Vb P,
b [because { P* } x:=e {P}]
{V} x:=e{P}

where x Isavariable name and e IS an expression

Design strategy: find an x and an e such that
substituting e for x in the postcondition leads to V
(or acondition more likeV and repeat)

2003 January — April SFWR ENG 2B03 — Slides 10 7




Design Example: Stack Routine * Push”

V:sizel ZUO£ size<MaxDepth UxI A
U(Ui: il ZUOEif'size-1: stack[i]="stack[i])
Usize="'size

P: sizel Z UO £ size £ MaxDepth
U(Ui: il ZUOEif'size-1: stack[i]="stack[i])
Usize ="'size+1 U stack['size] = x

Step 1. substitute size+1 for sizein P

Step 2: substitute x for stack|size] in result of (1)

2003 January — April SFWR ENG 2B03 — Slides 10 8




Design Example: Assignment Statements

Step 1. substitute size+1 for sizein P

Step 2: substitute x for stack|size] in result of (1)
|.e.

V b [F)sizeSi ze+1] stack|s ze]X
Therefore, the program is.
stack|[size] := X
Size .= Szetl
Note the order of the statements!

2003 January — April SFWR ENG 2B03 — Slides 10 9




Proof Rule: While Loop

{V}init{I} U{IUB} S{1} U(IUZB b P)
b
{V} init; while B do S endwhile { P}
Todesign aloop for V and P, determine
e asuitableloop invariant |
e initsothat {V} init {I}
e Bsothat IUZB P P
e Ssothat {IUB} S{I} (and progress toward @B)

2003 January — April SFWR ENG 2B03 — Slides 10 10




Design Example: While Loop, Step 1

Step 1. determine a suitable loop invariant |
e initial situation isa special case of |
e final situation (P) Isa special case of |

e | iIsageneralization of the initial and final
Situations

Approaches. generalize Pto |
e so that | Iseasy to initialize
e by introducing a new variable If necessary

2003 January — April SFWR ENG 2B03 — Slides 10

11




Design Example: While Loop, Step 1

V:nl Z UO£En

P-nl ZUOEn Usum:éj:l” X(j)

Note: n may not be modified

Initialization must eliminate the & series, but
neither 1 nor n may be modified.

Therefore, anew variable must be introduced.:
I:nl ZUil ZUOEi£n Usum:éjzli X(j)

2003 January — April SFWR ENG 2B03 — Slides 10 12




Design Example: While L oop, Step 2

Step 2: determine init so that {V} init {1}
V:nl Z UOEn
I:nl ZUil ZUOEi£n Usum:éjzl' X(j)

If i=0, thea seriesis empty (and = 0). |.e,
Vb [I'g]3M,

Therefore, init is.
sum:=0;1:=0

2003 January — April SFWR ENG 2B03 — Slides 10

13




Design Example: While L oop, Step 3

Step 3: determine B so that IUZB b P
I:nl ZUil ZUOEiEn Usum:éjzl' X(j)
P: nl Z UOEn mezéjzln X(j)
If i=n (or if 12 n), then | reducesto P
lUinpb P
Therefore, asuitable choicefor B is@(i2 n), 1.e.
e I<n

2003 January — April SFWR ENG 2B03 — Slides 10 14




Design Example: While Loop, Step 4

Step 4. determine S so that

e {IUB} S{I} and

e® S makes progress toward 9B, P, termi nation
IUB : nl ZUil ZUOEi<n Usum:éjzl' X(j)

I:nl ZUil ZUOEi£n Usum:éjzl' X(j)

Incr_easi ng i by 1 makes progress toward JB. But
o {I' .} i:=i+1{1}

2003 January — April SFWR ENG 2B03 — Slides 10 15




Design Example: While Loop, Step 4b

so we need Step 4b: determine S2 so that

o {IUB} S2{I':, 4}

IUB: nl Z Uil Z UO0Ei<n Usum:éj:li X(j)
g0l Z Uil Z U0gI+1£n Usum=8_,"*1 X ()
Note that

oIUBP [Iii+1]sumsum+X(i+1)

Therefore, Sis: sum:=sum+X(i+1); I:=I+1

2003 January — April SFWR ENG 2B03 — Slides 10 16




Design Example: While L oop

Combining the above, the while loop with
Initialization becomes:

sum:=0;1:=0

whilei<n do

sum:=sum+X(i+1); 1:=1+1

endwhile

The obvious alternative body of the loop can also

be derived in this way.

2003 January — April SFWR ENG 2B03 — Slides 10

17




Proof Rule: If Statement

{VUB} S1{P} U{VUZB} S2{P}
b
{V} if B then S1 else S2 endif { P}

Alternate form for deriving a precondition:

{V1} S1{P} U{V2} S2{P}
b

{V1UB UV2UZB}

if B then S1 else S2 endif { P}

2003 January — April SFWR ENG 2B03 — Slides 10 18




Designing an If Statement

If you
e try to design a program segment Sfor

orecondition V and postcondition P,
out find a program segment S1 with a stronger

nrecondition (VUB) instead,

e then embed S1 in an If statement and
e design S2 for { VUZB} S2{P}.

Then: {V} If B then S1 else S2 endif { P}

2003 January — April SFWR ENG 2B03 — Slides 10 19




Summary

e The precondition and the postcondition together
with the proof rules suggest the structure of the
program.

e® Most expressions in a program can be derived
algebraically from the precondition, the
postcondition and the relevant proof rules.

e Don’'t guess, derive mathematically. Y ou will
get it correct and quicker that way.

e “Let the symbols do the work.” (Dijkstra)

2003 January — April SFWR ENG 2B03 — Slides 10 20




Refer ences

See ligt of references in 2B03 course outline

For a short introduction to designing programs
from their specifications, see especially

Error Free Software: Know-How and Know-\Why
of Program Correctness

Dijkstras EWD 1041-7

2003 January — April SFWR ENG 2B03 — Slides 10 21




