
2003 January – April SFWR ENG 2B03 – Slides 11 0

Scope and Persistence (Existence) of
Variables and Identifiers

SFWR ENG 2B03

2003

Robert L. Baber



2003 January – April SFWR ENG 2B03 – Slides 11 1

A Program and its Subcomponents

program A

var x (global)

x := 1

print “A”, x

call B

call B

…

end program A

procedure B
var x (local)
x := 2
print “B”, x
call C
x := 3

end procedure B

procedure C

var y (own, state)
...
print “C”, x, y
...

end procedure C

procedure D
…
end procedure D



2003 January – April SFWR ENG 2B03 – Slides 11 2

Scope of the Variables in Program A

Variable Scope
x (in A) A, C, D (not B)
x (in B) B only (neither A, C nor D)
y (in C) C (also D in some programming

languages)
In A, C and D, the name x refers to the variable
declared in A. In B, the name x refers to the
variable declared in B.
In C (and possibly D), the name y refers to the
variable declared in C. Elsewhere, y is undefined.



2003 January – April SFWR ENG 2B03 – Slides 11 3

Persistence of the Variables in Program A

Variable Persistence (existence)
x (in A) A, B, C, D (everywhere)
x (in B) B, C, D (not A)
y (in C) A, B, C, D (everywhere)
The variable x declared in A exists throughout
program execution.
The variable x declared in B exists only while B is
active (being executed).
The variable y declared in C exists effectively
throughout program execution.



2003 January – April SFWR ENG 2B03 – Slides 11 4

Scope and Persistence of the Variables x

While C and D are executing, both variables

named x exist. Their values are maintained. The

variable x declared in B continues to exist because

B is still active; B has called C (which presumably

calls D).

References to x in C and D are references to the

(global) variable x declared in A.



2003 January – April SFWR ENG 2B03 – Slides 11 5

Creation and Release of the Variables x

The variable x declared in A is created when the
execution of A begins. This variable is released
(eliminated, ceases to exist) when the execution
of the program A terminates.

Similarly, the variable x declared in B is created
when B starts to execute (is called). It continues to
exist during execution of B’s call to C. This
variable x is released (eliminated, ceases to exist)
when the execution of B terminates.



2003 January – April SFWR ENG 2B03 – Slides 11 6

Creation and Release of the Variable y

The state variable y declared in C is created when
the execution of C begins the first time (with
some programming language implementations,
even earlier). This variable is released
(eliminated, ceases to exist) when the execution of
the entire program A terminates (not before).

In the earlier literature, such variables were also
sometimes called “own” variables.



2003 January – April SFWR ENG 2B03 – Slides 11 7

EquivalentProgram, Variables Renamed

program A

var xa (global)

xa := 1

print “A”, xa

call B

call B

…

end program A

procedure B
var xb (local)
xb := 2
print “B”, xb
call C
xb := 3

end procedure B

procedure C

var y (own, state)
...
print “C”, xa, y
...

end procedure C

procedure D
…
end procedure D



2003 January – April SFWR ENG 2B03 – Slides 11 8

Persistence of Variables

Global and state variables, in particular their

values, exist throughout program execution,

whether or not they can be referenced from all

parts of the program.

Local variables cease to exist when control returns

outside their declared scope. Their values

disappear, are no longer maintained.



2003 January – April SFWR ENG 2B03 – Slides 11 9

Persistence of State vs. Local Variables

The values of state variables

l are maintained between calls to the routine or
module in which they are declared, i.e.,

l still exist between a return and the next call.

The values of local variables

l are lost between calls to the routine in which
they are declared, i.e.,

l do not exist between a return and next call.



2003 January – April SFWR ENG 2B03 – Slides 11 10

Scope ≠≠ Range of Persistence (Existence)

If a statement within the scope of a variable is
being executed, the variable must, clearly, exist.

The reverse is not necessarily true. State variables
are local in scope but global in persistence
(existence).

Loosely speaking, therefore,

scope ⊆ range of persistence



2003 January – April SFWR ENG 2B03 – Slides 11 11

Summary

l The set of statements in a program which may
contain references to a variable is the scope of
that variable.

l If a variable and its value exist while a
statement in a program is being executed, that
statement is in the range of persistence
(existence) of that variable.

l Scope and persistence are not necessarily the
same.


