
The Ariane 5 Explosion

By: Nicholas YC Chu

The Ariane 5

• The Ariane 5 was a rocket used to bring
payloads into orbit. No humans on board.

Event History

• The Ariane 5 was launched 9:34 am, June 4, 1996.
• 36 sec. later, at 3700 meters, the Flight Control

System failed.
• Rocket swung in the position of 2 solid boosters.
• 39 sec after launch, the high aerodynamic loads

caused a 20 degree offset.
• 40 sec after launch, the self-destruct sequence was

initiated.
• The Ariane 5 was totally destroyed.

Inertial Reference System (IRS)

• Used during the launch sequence.
• Contains 7 variables used to store data from

various sensors.
• Data sent is in 64-bit floating point number.
• The IRS uses 16-bit signed integers.
• The IRS needs to convert the data from the

sensors before execution can proceed.

Technical Mishap

• Cause of explosion:
– Software failed in the inertial reference system (IRS).
– Software was taken from the Ariane 4, where it worked

successfully.
– Due to the success rate in the Ariane 4, they wanted to

change the IRS as little as possible.
– An error is caused if the 64-bit number cannot be

represented by a 16-bit number.
– An error handling code was there for up to 4 of the 7

being too large.

Main Problem

• When the IRS software was carried over, it was under the
assumption that only four of seven variables required
error-handling code.

• This assumption was based on the trajectory data for the
Ariane 4.

• The flight behavior for the Ariane 5 was quite different,
which in this case lead to information loss.

• The variable BH, which holds the data on the horizontal
bias, experienced overflow and was unprotected by the
error-handling code. The IRS shut down.

Result Of Failure

• Loss of 500 million invested dollars (US)
• Loss of the payload
• Loss of faith from companies who use the

Arianespace company
• Loss of time

 Stakeholders

• Arianespace
• ESA, European Space Agency
• Tax payers
• Companies that launched with Arianespace
• Other engineers who worked on the project

The Inquiry Board’s
Recommendations

• A failure report was produced shortly after
the explosion.

• Section 4 contained a number of specific
recommendations.

• There were three main category’s of
recommendations.

The Inquiry Board’s
Recommendations (1)

• The IRS software testing procedures should
involve as much real equipment as
technically feasible

• Use as much realistic input data as possible,
and get better test coverage.

• If the IRS was not tested in isolation, failure
could have been avoided.

The Inquiry Board’s
Recommendations (2)

• This recommendation relates to the
philosophy that was used in dealing with the
software.

• The IRS was not treated with mission
critical care.

• In the case of error, it just shut down.
Should have continued to send “best effort
data”.

The Inquiry Board’s
Recommendations (3)

• The third and final class of
recommendations deals with all software in
general.

• Software should be subject to a software
qualification review.

• The industrial architect should take part in
the review.

Is This Enough?

• The main recommendation is to do more
testing.

• “Testing can show the presence of errors
but not their absence” [Dijkstra]

• The Ariane project had software developers
when Software Engineers were needed.

The Real Solution

• Have people responsible for software.
• Elevate the process of software

development to that of a true engineering
discipline.
– Schools teach students how to develop software

using traditional engineering concepts.
– Have the security that software products are

being built with the highest standards.

Parties At Fault?

• No one was singled out
• No groups were blamed

– The people there did the best job they could.
– No engineer worked on or approved the

software IRS system.
– The developers followed the standard practices

to that date.

Ethics

• The developers were not negligent or
unethical in their work.

• The know-how isn’t there.
• They did not follow the best practices

because they were not professionally
educated in software.

Compared To Classical
Engineering

• IRS shut down when error occurred.
– In engineering artifacts, redundant safety

systems are present.
• No formal mathematical analysis of

software components were performed.
• In all other engineering disciplines,

mathematical models are created before
construction.

Conclusion

• The explosion could have been easily
avoided.

• Better practices are needed to prevent
amateurish errors.

• Universities and Engineering Societies
should work together.

• Professional software engineers are needed
to have professional accountability.

References
• Pictures taken from CNN.com and Arianespace.com
• [1] Brooks, Frederick P. “The Mythical Man-Month:

Anniversary Edition”
• Published by Addison-Wesley, 1995
• [2] Parnas, David L. “Teaching Programming as

Engineering”
• in “Software Fundamentals: Collected Papers by David L.

Parnas”
• Published by Addison-Wesley, 2001
• [3] Parnas, David L. “Software Engineering: An

Unconsummated Marriage”
• in “Software Fundamentals: Collected Papers by David L.

Parnas”

• Published by Addison-Wesley, 2001
• [4] Lions, J.L. “Flight 501 Failure: Report by the Inquiry

Board”
• Available on the Internet:

java.sun.com/people/jag/Ariane5.html
• [5] Jézéquel, J., and Meyer, B., “The Lessons of Ariane”
• Available on the Internet:

archive.eiffel.com/doc/manuals/technology/contract/ariane
/page.html

• [6] Baber, R.L. “The Ariane 5 explosion as seen by as
software engineer”

• Available on the Internet:
cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane
5.htm

• [7] Garlington, Ken “Critique of ‘The Lessons of Ariane’”
• Available on the Internet:

flash.net/~kennieg/ariane.html#f34

• [8] Arianespace, “Ariane 5”
• Available on the Internet:
• arianespace.com/site/launcher/future_sub_index.html
• [9] Parnas, David L., “Inspection of Safety-Critical

Software Using Program-Function Tables”
• in “Software Fundamentals: Collected Papers by David L.

Parnas”
• Published by Addison-Wesley, 2001
• [10] Parnas, David L. “The Professional Responsibilities

of Sofware Engineers”
• in “Software Fundamentals: Collected Papers by David L.

Parnas”
• Published by Addison-Wesley, 2001
• [11] Baber, R.L. “Mathematically Rigorous Software

Design”
• Available on the Internet:
• cas.mcmaster.ca/~baber/Courses/46L03/MRSDLect.pdf

