Tacoma Narrows Bridge

Presented by: Ramez Mousa Software Engineering 3J03 March 14, 2003

Agenda

Background information

The disaster

Reasons for the disaster

Stakeholders & their interest

Ethical issues

Actual consequences of the failure

<u>Agenda (cont'd)</u>

• Who was responsible

Lessons learned

Applications to SE systems

Comparable situations in software

Questions and answers (open discussion)

Background information

- Completed in 1940 as 3rd longest suspension bridge [iii]
- Original proposal by Washington Department of Highways was rejected and viewed as too
 expensive [ii]

Proposal of Leon Moisseiff was accepted [ii]

 Moisseiff developed "deflation theory" to justify his proposal [iii]

Background information (cont'd) • Theory justified using small trusses which accounted for cost difference Continuous oscillations on the bridge Checking cables and other devices added [v] • University of Washington contacted to study oscillations and eliminate them Suggested many recommendations, but disaster struck before implementing them [ii]

The disaster

On Nov. 7, 1940, winds of about 60 km/h [i] • Authorities closed it down • University of Washington inspectors on site [i] Bridge twisted about its centerline Bridge twisted vigorously and finally collapsed

Clip 1: Tacoma Narrows Bridge before collapse [vii]

Reasons for the disaster

Aerodynamic forces not taken into account [ii]

Width to length ratio was too large [i]

Bridge was too slender for its length

 Resonance caused by the wind was discredited [vi]

Design was selected to reduce costs [iv]

Stakeholders & their interests

- Washington Toll Bridge Authority
 - Safety
 - Economics
- Engineers working on the project
 Design the bridge according to specs
 - Ensure stability and safety of the bridge
 - Loyalty to their employers

<u>Stakeholders & their interests</u> (cont'd) • Society

 The need for a bridge Public Works Administration Financed the bridge Leon Moisseiff Ensure bridge complies with requirements, design supported with theory

Ethical Issues

Consultant Theodore L. Condron raised many issues about the stability of bridge [ii] Concerned about width to length ratio Continued investigation Found supporting arguments for deflation theory, but these arguments did not account for vertical deflations [iii]

Ethical Issues (cont'd)

- Condron felt that he was the only one with doubts about deflation theory
- Due to Moissieff's very strong reputation, he finally gave in and agreed, however, he recommended increasing the bridge's width [ii]
 "In view of Mr. Moisseiff's ability and reputation, I hesitate to make any criticism ... however, the width of this bridge relative to the length of spans was open to criticism, particularly since it was without precedent" [iii]

Ethical Issues (cont'd)

 Had his recommendations been followed, the disaster would've been avoided [ii] • Many conservative engineers have also suggested a wider, less flexible bridge [viii] Did Condron and the other engineers who had doubts voice their opinions properly? One's reputation should not be a factor in agreeing with them

Actual consequences

- 4 years of aerodynamic research [viii]
- Importance of aerodynamic on such structures [viii]
- Emergence of aerodynamics as an important part of the civil engineering curriculum
 Research on dynamic effects of wind on bridge [viii]

Actual consequences (cont'd)

- Special wind tunnel constructed [viii]
- Stability determination methods developed
- Testing structures is essential
 New bridge is a structure of unprecedented function and stability [viii]

Who was responsible

- Carmody Committee formed to investigate [III]
- Should the designers/engineers be held responsible?
- Committee decided that several factors were not known to the engineers
 The Federal Works Agency reported that the design was most suitable for its use, economics and location [vi]

Who was responsible (cont'd)

- Several other engineers argued that they wouldn't have known the effects of aerodynamics [viii]
- Engineers did their best to save the bridge [v]
 Aerodynamic forces on bridges proved disastrous in the past, however it was not known that they may affect such a large structure [iii]
 This case represents a precedent

Lessons learned

Need for aerodynamic testing [v]

- Theory must be backed up with data
- Must not go well beyond existing experience [ii]
- Criticisms from consulting engineers should be given consideration [ii]
 "Cheapest option may turn out to be most expensive" [v]

Application to SE systems

- Software systems must be built using both theory and data
- Using new, undeveloped ideas without a basis of experience should be overcome [ii] SE need to be more cautious and slow the progress down when necessary [ii] Introduction of software control into safety critical systems should be done cautiously [ii]

<u>Comparable situations in software</u>

- SE is a new field
- Not enough past experience and data to learn from
- Progress must be slower and more cautious

 In SE, a similar situation must be tested and verified in a much more complete manner <u>Comparable situations in software</u> (cont'd)

First develop theories, understand and record past data and experience and finally test the system to prove the model. Model and testing are key to developing successful software systems • "Testing can show the presence of error

but not their absence" [Dijkstra]

Photo 1: Tacoma Narrows Bridge during the collapse [i]

<u>References</u>

[i] Galloping Gertie, http://www.nwrain.net/~newtsuit/recoveries/narrows/narrows.htm [ii] Holloway, Michael C. From Bridges and Rockets, Lessons for Software Systems, 17th International System Safety Conference, August 1999. [iii] Scott, Richard. In the wake of Tacoma. ASCE Press; United States, 2001. [iv] Smith, D. A Case Study and Analysis of the Tacoma Narrows Bridge Failure, http://cee.carleton.ca/Exhibits/Tacoma_Narrows/DSmith/photos.html [v] <u>Software Engineering: Tacoma Narrows</u>, <u>http://www2.vuw.ac.nz/staff/stephen_marshall/SE/Failures/SE_Tacoma</u> .html [vi] <u>Tacoma Narrows Bridge</u>, <u>http://cems.alfred.edu/students/harttm/tacoma.html</u> [vii] Tacoma Narrows Bridge Disaster, http://www.enm.bris.ac.uk/research/nonlinear/tacoma/tacoma.html [viii] Today's Tacoma Narrows Bridge, http://www.nwrain.net/~newtsuit/recoveries/narrows/cb.htm