
Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 1, page 1 of 1

Exercise 1: Values of variables and expressions in a data environment

1. Let the data environment d = [(x, R, 9.3), (y, R, 2), (z, Z, 3), (z, Z, 4)]. Determine the values of
the following variables and expressions in d:

1.1: z
1.2: y
1.3: x
1.4: w
1.5: 6.6
1.6: x + 2*y
1.7: y↑z - x
1.8: y↑x - r
1.9: x>4*y
1.10: x>4*y and 2*y<z
1.11: 2*z+z/y

2. Let the data environment d = [(k, Z, 2), (y(0), R, 2), (y(1), R, 3.2), (j, Z, 1), (y(2), R, 5.1), (j, Z,
3), (y(3), R, 7.5), (y(2), Z, 9)]. Determine the values of the following variables and expressions in
d:

2.1: y(k)
2.2: y(j+k)
2.3: y(k-j) + (j-k)
2.4: y(j-k)
2.5: y(k-j+x)
2.6: y(3*j - k) + y(2*j)
2.7: y(k/2)
2.8: y((j+k)/2)
2.9: y((j+k+1)/2)
2.10: y(k) < y(j+k)
2.11: y(k) ≥ y(j-k)
2.12: j ≤ k

3. A variable name (e.g. x) can be viewed as a function on ID. What is the domain of this
function? Write a Boolean expression (condition) which specifies the domain.

4. The expression

x/(y-3) > z and nm = "AP136"

is a combination of functions and can itself be viewed as a function on ID. Draw a hierarchical
(tree) diagram illustrating the way the various functions (/, -, >, and and =) are composed to form
the function represented by the entire expression. Write a Boolean condition which specifies the
domain of this function. What is the range of this function?

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 2, page 1 of 2

Exercise 2: Program statements as functions on ID

1. Let the data environment d = [(x, R, 9.3), (y, R, 2), (z, Z, 3), (z, Z, 4), (w, Z, 6)]. Determine
the data environment A.d for each of the following assignment statements A:

1.1: x := 1.4*y + z
1.2: z := z + y
1.3: z := x + y
1.4: (z, w) := (y + z + w, 2*y + 3*z + 4*w)
1.5: (z, z) := (y + z + w, 2*y + 3*z + 4*w)
1.6: (z, z) := (y + z + w, y*w - 1)
1.7: (y, w) := (w, y)
1.8: y :=: w

2. Let the data environment d = [(k, Z, 2), (y(0), R, 2), (y(1), R, 3.2), (j, Z, 1), (y(2), R, 5.1), (j, Z,
3), (y(3), R, 7.5), (y(2), Z, 9)]. Determine the data environment A.d for each of the following
assignment statements A:

2.1: y(j) := y(k) + 3
2.2: (j, y(j)) := (j + 1, y(k) + 3)

3. Let the data environment d = [(x, R, 9.3), (y, R, 2), (z, Z, 3), (w, Z, 6)]. Determine the data
environment S.d for each of the following if statements S:

3.1: if x<0 then y := -x else y := x endif
3.2: if x>0 then y := -x else y := x endif
3.3: if r>0 then y := -x else y := x endif
3.4: if x>0 then r := -x else y := x endif
3.5: if x<0 then r := -x else y := x endif

4. Let the data environment d be as given in problem 3 above. Determine the data environment
S.d for each of the following sequences S of statements.

4.1: z := y + z + w
w := 2*y + 3*z + 4*w

4.2: x := y*z
y := w

4.3: y := w
x := y*z

4.4: x := x + w*z
y := w

4.5: y := w
x := x + w*z

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 2, page 2 of 2

4.6: x := y*z
y := w
z := 2*x - w

5. Let the data environment d = [(x, R, 9.3), (y, R, 2)]. Determine the data environment D.d for
each of the following declare statements D:

5.1: declare (z, R, z + y)
5.2: declare (z, R, x + y)

6. Let the data environment d be as given in problem 5 above. Determine the data environment
S.d for each of the sequences S of statements below:

6.1: declare (z, R, x + y)
release z

6.2: declare (z, R, x + 2*y)
release y

6.3: declare (z, R, x)
release x

6.4: declare (z, R, x)
x:=y
y:=z
release z

7. Let the data environment d = [(i, Z, 0), (s, R, 0), (n, Z, 2), (x(1), Z, 1), (x(2), Z, 2)]. Let the
while loop W be:

while i<n do
i := i + 1
s := s + x(i)

endwhile

Determine the data environment W.d by applying the formal definition of the while loop or the
while lemmata directly.

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 3, page 1 of 2

Exercise 3: Preconditions and postconditions

1. Determine the complete preconditions:

1.1: {?} z := z + x {z ≤ max}
1.2: {?} x := z - y {x - y > 0}
1.3: {?} x := z - y {y - x > 0}
1.4: {?} x := 5 - z {w*y - 2*w↑2 < z}
1.5: {?} sum := sum + z {sum = x + y + z}
1.6: {?} y(m) := z {y(m) = y(n)}
1.7: {?} d(j) := a(k) {andi=1

j-1 d(i) ≤ d(i+1)}
1.8: {?} if x < 0 then y := -x else y := x endif {y > 0}
1.9: {?} if x < 0 then y := -x else y := x endif {y ≥ 0}
1.10: {?} if x < 0 then y := -x else y := x endif {y < 0}
1.11: {?} if x < 0 then y := -x else y := x endif {y ≤ 0}
1.12: {?} if x < 0 then y := -x else y := x endif {2 ≤ y ≤ 4}
1.13: {?} if x < 0 then y := x else y := x - 2 endif {-1 ≤ y ≤ 4}

1.14: {?}
i := i + 1
sum := sum + x(i)
{i∈ Z and n∈ Z and i≤n and sum=∑j=1

i x(j)}

1.15: {?}
x(gl) :=: x(gr)
gr := gr - 1
gl := gl - 1
{gl<gr≤ig andi=gl+1

gr x(i)=x(gr) andi=gr+1
ig x(gr)<x(i)}

2. Prove the following propositions, using the relevant proof rules.

2.1: {V1 and B} S1 {P} and {not B} S2 {P}
⇒ {V1} if B then S1 else S2 endif {P}

2.2: {B} S1 {P} and {V2 and not B} S2 {P}
⇒ {V2} if B then S1 else S2 endif {P}

2.3: {V1} S1 {P} and {V2} S2 {P}
⇒ {V1 and V2} if B then S1 else S2 endif {P}

3. Prove the following strict and complete versions of proof rule DC1, using the lemmata for the
several types of preconditions:

3.1: {V1}S{P1} strictly and {V2}S{P2} strictly
⇒ {V1 and V2}S{P1 and P2} strictly

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 3, page 2 of 2

3.2: {V1}S{P1} completely and {V2}S{P2} completely
⇒ {V1 and V2}S{P1 and P2} completely

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 4, page 1 of 1

Exercise 4: While loops and loop invariants

1. Verify (i.e. prove) the following correctness proposition by applying proof rule W2 and other
proof rules as required:

{n∈ Z and 0≤n}
declare (sum, R, 0)
declare (i, Z, 0)
while i<n do

i := i + 1
sum := sum + x(i)

endwhile
release i

{sum = ∑k=1
n x(k)}

for which the developer gave the following loop invariant:

n∈ Z and i∈ Z and 0≤i≤n and sum = ∑k=1
i x(k)

Organize your proof clearly and systematically. Show each step in the decomposition process
clearly and distinctly.

2. Complete the program segment below by deducing the missing parts denoted by a question
mark (?) by suitable algebraic manipulation of the relevant Boolean expressions which would
arise in the correctness proof (not by guessing or by trial and error). Use the loop invariant given
below. Use the hypotheses of proof rule W2 as appropriate as the basis for your derivation of the
missing parts. Show precisely how you derived each missing component of the program segment.

{n∈ Z and 0≤n}
declare (sum, R, ?)
declare (i, Z, ?)
while ? do

sum := ?
i := i - 1

endwhile
release i

{sum = ∑k=1
n x(k)}

loop invariant: n∈ Z and i∈ Z and 0≤i≤n and sum = ∑k=i+1
n x(k)

3. Prove the correctness of your completed version of the program segment in problem 2 above
for the given loop invariant. Again, organize your proof clearly and systematically and show each
step in the decomposition process.

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 5, page 1 of 2

Exercise 5 and Design Assignment: Design of a while loop

Introduction

You are encouraged to consult with your colleagues on possible approaches to this design
problem, but the final written solution which you hand in must be your own individual work.

The design problem

You are to design a subprogram which performs the function described below.

The one dimensional array X is given, with index values ranging from 1 to n inclusive. The set
associated with the elements of array X is unspecified. A function prop(.) is available for use in
expressions in the subprogram to be designed. This function maps the value of an element of
array X to either true or false, depending upon whether or not that value satisfies a certain (but
here unspecified) property.

The subprogram to be designed is to permute the values of the array elements X such that
• the values in the lower region of X (i.e. starting at X(1)) satisfy the property (i.e. the value of

the function prop is true) and
• the values in the upper region of X (i.e. ending at X(n)) do not satisfy the property (i.e. the

value of the function prop is false).

In addition, the subprogram to be designed must determine the value of a variable which
identifies the boundary between the two regions of the array X.

Questions and tasks to do

1. What ambiguity or ambiguities in the above preliminary specification remain to be clarified in
order to specify adequately the interface between the subprogram to be designed and a program
calling it? How should such ambiguities be clarified in a real life situation? What does
“adequately” mean in this context? For whom is the interface specification written?

2. Specify a postcondition for the subprogram outlined above. Illustrate your postcondition with a
diagram showing the range of index values of the array X and the two regions of the array X.

3. Specify a precondition for the subprogram to be designed. The precondition may be an ordinary
one (i.e. it is not necessary that it be strict). Illustrate your precondition with a diagram of the
same type as that used to illustrate your postcondition.

4. Give the remaining information required in a specification of your subprogram. (Cf. the lecture
notes, section 6.2 and the examples in section 5.3.1 and elsewhere.)

5. Identify more than one possible loop invariant. Illustrate each with a diagram of the same type
as that used to illustrate your postcondition. Select one suitable loop invariant. Why did you
select the one you did? What criteria did you use for making your choice? Hint: There are at least
three feasible loop invariants, one or more of which are better in some sense than others.

6. Design a subprogram satisfying the precondition and postcondition and for your selected loop
invariant. Base all design decisions on proof rules, relevant conditions (e.g. the loop invariant)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 5, page 2 of 2

and other correctness considerations, not on intuitive or subjective considerations, e.g. about how
the program operates. In your several design steps use the most efficient (least time consuming)
combination of formal, semi-formal and informal approaches which you are confident will lead to
a provably correct program. How did you determine (a) the loop condition, (b) the initialization
and (c) the body of the loop?

7. Prove mathematically rigorously the correctness of your design. Organize your proof of
correctness in such a way that it can be checked easily and straightforwardly by an independent
reviewer whose time is being charged for. (I.e. the longer the time required by the reviewer, the
lower your mark will be.)

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 6, page 1 of 1

Exercise 6: General review

1. Let the data environment d=[(x(1), R, 3.3), (x(2), R, 2), (x(3), R, 1), (k, Z, 5)]. Determine the
following:

1.1: (x(x(k-2))).d
1.2: (release x(k-1)).d
1.3: (x(x(3)):=x(1)+k).d

2. Solve the following proof tasks. If a correctness proposition which is to be verified is not, in
fact, true, deduce a counterexample (i.e. a test case which will illustrate the presence of the error)
from the discrepancy in your attempted proof.

2.1: {V?} y(n):=y(2)+k {y(j)=w}

2.2: {ia≤na and ib≤nb+1 or ia≤na+1 and ib≤nb}
if ib>nb or ia≤na and A(ia)≤B(ib) then ia:=ia+1 else ib:=ib+1 endif
{ia≤na+1 and ib≤nb+1} ?

2.3: {ia≤na and ib≤nb+1 or ia≤na+1 and ib≤nb}
if ib>nb or A(ia)≤B(ib) then ia:=ia+1 else ib:=ib+1 endif
{ia≤na+1 and ib≤nb+1} ?

3. Using the lemma for a complete precondition, prove the complete version of proof rule IF1, i.e.
the following

Theorem: If

{V and B} S1 {P} completely and
{V and not B} S2 {P} completely

then

{V} if B then S1 else S2 endif {P} completely

4. Design a program segment PS such that

1. {V} PS {P} and
2. (call PS).d = [(r, Z, .)] & d for every data environment d in the domain of PS

where V and P are given as follows. Justify your choice of each part of PS by a relevant proof rule
and indicate which proof rule you applied.

V: n∈ Z and z∈ Z and 1≤z≤n+1

P: n∈ Z and z∈ Z and r∈ Z and 1≤z≤r≤n+1 andi=z
r-1 x(i)=sp and (r=n+1 or x(r)≠sp)

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 7, page 1 of 3

Exercise 7: Monitoring a nuclear reactor

Introduction

You are encouraged to consult with your colleagues on possible approaches to this design prob-
lem, but the final written solution which you hand in must be your own individual work.

System environment: The safety monitoring and control system

During the operation of the nuclear reactor various variables (e.g. temperature, pressure, coolant
flow rates, neutron flux, etc.) are measured at various locations in the reactor installation and are
transmitted as electrical signals to the monitoring and control computer. These input variables are
processed by the computer system. The results of these calculations control certain safety related
functions as well as the display panel in the operational control room.

The safety system is subdivided into three subsystems: monitoring, control and display. Sensory
and control data flow between the reactor and the control subsystem in both directions. For each
measured variable a binary signal (“trip signal”) from the reactor to the monitoring subsystem
indicates whether the measured variable is within the normal range or not. Also for each meas-
ured variable a “veto” signal from the control subsystem to the monitoring subsystem indicates
whether the corresponding trip signal should be ignored (e.g. because it has already been acted
upon appropriately) or not. The monitoring subsystem processes the trip and veto signals and
calculates the monitor mode and the state (off or on) of each display lamp. The monitor mode
signal (one signal for the entire system) is required by the control subsystem. The display lamp
signals (one for each measured variable) are required by the display subsystem.

The subprogram to be designed: the monitoring subsystem

The subject of this exercise is the specification and design of the subprogram for the monitoring
subsystem (see section above). This subprogram calculates the monitor mode and the states of the
display lamps. The input data to this subprogram consists of the following globally declared
program variables: the trip signals, the veto signals, the display lamp signals and the monitor
mode. The monitoring subprogram is called by the main program repeatedly and frequently in
order to update the output signals.

The monitor mode is either normal or abnormal (“ok” or “trip”). The monitor mode should be set
to “trip” whenever any trip signal is active while the corresponding veto signal is inactive (off). A
display lamp should be switched on whenever the corresponding trip signal is active. Every
output signal (output program variable) of this subprogram should latch, i.e. remain on once
switched on. These variables will be reset if and as required by the control subsystem, not by the
subprogram to be designed in this exercise.

Your task

Develop an unambiguous, mathematically precise specification of the externally observable
behaviour of the subprogram to be designed (i.e. from the standpoint of the calling program).
Include in your specification a strict precondition and a postcondition. Design a subprogram
which implements that specification and prove its correctness formally.

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 7, page 2 of 3

The agreement of a number of safety engineers with your specification, in particular with your
postcondition, must be obtained. Your specification should, therefore, be formulated and ex-
plained in a way appropriate to their backgrounds and experience. Select your notation, diagrams,
etc. accordingly. These engineers are mainly nuclear and electrical engineers with significant
experience with electrical and electronic instrumentation for nuclear reactors.

Note that the design of the entire system will be subjected to a thorough examination, analysis
and verification procedure before the safety of the system is certified. Your design and documen-
tation (including your proof of correctness) should, therefore, be presented in a form which will
enable such an examination to be conducted as effectively and efficiently as possible, i.e. in
minimum time and at minimum cost.

Questions:

1. How, in logical terms, is latching (leaving a signal on if already on) achieved in a digital
electronic circuit in which the input is a trigger (turn on) signal and the output the latched signal?
How can the same effect be realized most simply with a computer program variable?

2. Specify the interface between the subprogram to be designed and the calling program precisely
and as completely as appropriate and necessary (e.g. in the form of correctness propositions).
Specify a strict precondition and a postcondition for your subprogram. What type(s) of diagram(s)
and/or other notation are most appropriate for presenting the meaning of your specification to the
safety engineers and for obtaining their agreement?

3. Which variables can be modified by the execution of the subprogram to be designed? Which
variables does the subprogram reference? (Give complete lists.)

4. If your subprogram contains a loop, state the loop invariant and the loop variant.

5. State your criteria and reasons for each design decision. What alternatives were possible for
each design decision? Why did you reject them?

6. Design the complete subprogram.

7. How have you taken into consideration the requirement that your design, the presentation of it
and your correctness proof be effectively and most efficiently verifiable?

References: (Answer all questions above first and only then refer to the following references.)

Bloomfield, Robin E. and Froome, Peter K.D., “The Application of Formal Methods to the
Assessment of High Integrity Software”, IEEE Transactions on Software Engineering, 1986
September, Vol. SE-12, No. 9, pp. 988-993.

Bloomfield, R.E. and Ehrenberger, W.D., Licensing issues associated with the use of computers
in the nuclear industry, EUR11147en, Commission of the European Communities, Directorate-
General Telecommunications, Information Industries and Innovation, Luxembourg, 1987. See
especially pages 183 and 200.

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 7, page 3 of 3

Fields, Bob and Elvang-Gøransson, Morten, “A VDM Case Study in mural”, IEEE Transactions
on Software Engineering, 1992 April, Vol. 18, No. 4, pp. 279-295.

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 8, page 1 of 2

Exercise 8: Compressing a flight departure display

Introduction

You are encouraged to consult with your colleagues on possible approaches to this design prob-
lem, but the final written solution which you hand in must be your own individual work.

System environment

Flight departures are displayed in airport lounges and check-in areas on large specially designed
boards with one line per flight. When a flight departs, its line is blanked out. From time to time,
these blank lines are eliminated and succeeding non-blank lines moved up, freeing space at the
bottom of the display boards. The space thus freed can then be used for data on later flights.

In the computer system which drives the display boards the flight data to be displayed are stored
in the array D, with index values ranging from 1 to n inclusive, where n is the number of lines on
the display boards. The data for each flight are stored in one array element. A second array A
corresponds to the array D. The value of each array element A(i) indicates whether the data in
D(i) is active (A(i)=true) or is inactive (A(i)=false), i.e. is to be considered logically blanked out
because the flight has already departed.

The subprogram to be designed: compressing the flight data arrays

The subprogram compress to be designed should compress the data in the arrays D and A, i.e.
move active lines to earlier elements in the arrays so that all inactive data lines are in consecutive
elements at the ends of the arrays. In the process of compressing the arrays, the relative order (the
sequence) of the active data lines should remain unchanged. The subprogram compress should
return a value nact which indicates the number of active data lines in the final arrays.

Your task

Develop an unambiguous, mathematically precise specification of the externally observable
behaviour of the subprogram to be designed (i.e. from the standpoint of the calling program).
Include in your specification a strict precondition and a postcondition. Design a subprogram
which implements that specification and prove its correctness formally.

The agreement of the airport authority’s staff with your specification must be obtained before
proceeding with the development of the subprogram. Your specification should, therefore, be
formulated and explained in a way appropriate to their backgrounds and experience. Select your
notation, diagrams, etc. accordingly. These staff members have some experience in specifying
and developing application software. Some represent user departments; others, the data process-
ing department. Some, but not all, have specialized software development knowledge.

Questions:

1. How, in the postcondition, can one express the requirement that the order of active data lines
be the same before and after execution of the subprogram?

2. Specify the interface between the subprogram to be designed and the calling program precisely
and as completely as appropriate and necessary (e.g. in the form of correctness propositions).

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 8, page 2 of 2

Specify a strict precondition and a postcondition for your subprogram. What type(s) of diagram(s)
and/or other notation are most appropriate for presenting the meaning of your specification to the
customer’s staff in order to obtain their agreement?

3. Which variables can be modified by the execution of the subprogram compress? Which vari-
ables does the subprogram reference? (Give complete lists.)

4. If your subprogram contains a loop, state the loop invariant.

5. State your criteria and reasons for each design decision. What alternatives were possible for
each design decision? Why did you reject them?

6. How have you taken into consideration the requirement that your specification and the presen-
tation of it be understandable to the people for whom it is written?

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 9, page 1 of 2

Exercise 9: Generalizing a given subprogram

Introduction

You are encouraged to consult with your colleagues on possible approaches to this design prob-
lem, but the final written solution which you hand in must be your own individual work.

Background

An existing subprogram mid returns as its result a substring of the input string. Input variables are
the string variable p1 and the integer variables p2 and p3. The result is returned as the value of the
string variable rmid. The value of rmid is the substring of p1 which begins in position p2 and is
p3 elements long. The variable rmid is not declared by mid. The positions in strings are numbered
beginning with 1 (not 0).

The subprogram mid is very restrictive. Neither p1 nor rmid may be the null string (be of zero
length). The input variable p2 must refer to a position within p1. The variables p2 and p3 together
must refer to a substring which ends within p1, i.e. does not “go over the end” of p1. If any of
these restrictions are violated, executing mid leads to a run-time error and abnormal termination.

Also available is a subprogram len. The value of its input variable p1 is a string. The value of its
output variable rlen is an integer indicating the length of p1. The existing documentation does not
indicate whether or not the subprogram len will handle an empty input string or not.

The subprogram to be designed: a generalized version of mid

The new subprogram midgen to be designed should have as weak a precondition as feasible. In
particular, it should allow either p1 or rmid (or both) to be of zero length. Any integer values
(positive, zero or negative) of p2 and p3 should be permitted. If the input variables have “errone-
ous” or “illogical” values the subprogram midgen should return the longest substring of p1 which
would seem to make sense.

The new subprogram midgen is to replace mid. The input and output variables of both subpro-
grams should, therefore, have the same names. The new subprogram midgen may use, i.e. call,
mid. If it does, it must, of course, ensure that the restrictive strict precondition of mid is satisfied
before such a call is executed.

Your task

1. Develop an unambiguous, mathematically precise specification of the externally observable
behaviour of the given subprogram mid (i.e. from the standpoint of the calling program). Include
in your specification a strict precondition and a postcondition.

2. Develop an unambiguous, mathematically precise specification of the desired behaviour of the
new subprogram midgen to be designed. Include in your specification a strict precondition and a
postcondition.

3. Show that the specification of midgen is more general than that of mid, i.e. that any (correct)
call to mid may be replaced by a call to midgen. In other words, show that midgen satisfies mid’s
specification.

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 9, page 2 of 2

4. Finally, design midgen and prove that it satisfies its specification.
(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 10, page 1 of 2

Exercise 10: Finding the zero of a function

Introduction

You are encouraged to consult with your colleagues on possible approaches to this design prob-
lem, but the final written solution which you hand in must be your own individual work.

Summary of your task

An existing subprogram gcalc calculates the value of a function g. Design the subprogram zero
which determines the zero crossing of g using the subprogram gcalc.

The function g

The function g is a real function of several real parameters, only one of which, f, is of conse-
quence in this exercise. The function g of f is continuous but not everywhere differentiable. It is
not necessarily monotonic. It is known, however, that for all permissible values of the other
parameters (1) g has exactly one zero (i.e. g.f=0 for one and only one value of f), (2) for suffi-
ciently large positive values of f the value of g.f is positive and (2) for sufficiently large negative
values of f the value of g.f is negative.

Typically the zero of g lies between f=-3 and f=+3. You may base design decisions which affect
the efficiency of the subprogram zero on this observation, but the correctness of zero may not
depend upon it.

The given subprogram gcalc

The result produced by the given subprogram gcalc approximates g.f. The inaccuracy of this
result can be neglected for the purposes of this exercise, i.e. one can consider here that gcalc
calculates the function g exactly.

The program variable pf is the input variable and the program variable resg is the result variable
(output). Both are floating point variables. The output variable resg is not declared by gcalc. The
values of the other input parameters are passed to gcalc via other program variables which must
be declared and assigned values by the caller of zero or some superior subprogram.

The subprogram zero to be designed

The new subprogram zero to be designed should determine an approximation to the zero of g.
The required accuracy of the result is given by the input variable d (0<d<<1). The result of the
subprogram zero should be returned to the calling program as the value of the variable resf0.

When designing the subprogram zero strive for high executional speed (low time complexity).

Your task

1. Develop an unambiguous, mathematically precise specification of the externally observable
behaviour of the given subprogram gcalc (i.e. from the standpoint of the calling program). Include
in your specification a strict precondition and a postcondition.

2. Develop an unambiguous, mathematically precise specification of the desired behaviour of the

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 10, page 2 of 2

new subprogram zero to be designed. Include in your specification a strict precondition and a
postcondition.

3. Finally, design zero and prove that it satisfies its specification. Prove that your iterative method
converges and that any loop in the subprogram zero will always terminate.

Questions:

4. Have you interpreted the description of the variable d so that it represents absolute or relative
accuracy? Why?

5. May the value of d be arbitrarily small? If yes, why? If no, what considerations limit its lower
bound?

6. How can one ensure that an iterative process for locating a point with a unique property in an
interval terminates (converges)?

(end)

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 11, page 1 of 2

Exercise 11: Semantics of a Pascal and a Basic program

1. Translate the following program written in Pascal. In your new formulation of this program use
only program statements and compositions thereof that have been defined in the lectures and
lecture notes (i.e. assignment statement, declaration, release, null statement, if statement, se-
quence of statements, while loop and subprogram call without formal parameter passing).

program printsquares;
procedure square(par1: integer; var par2: integer);
begin
 par2 := par1 * par1;
 par1 := -10
end;

var n, f: integer;
begin
 writeln(n, ' ', f, 'First line');
 n := 1;
 while n ≤ 10 do
 begin
 square(n, f);
 writeln(n, ' ', f);
 n := n + 1
 end
end.

2. If the second line above were changed to

procedure square(var par1: integer; var par2: integer); [alternative A]

or to

procedure square(par1: integer; par2: integer); [alternative B]

or to

procedure square(var par1: integer; par2: integer); [alternative C]

how would your translated program be different?

3. Translate in the same way the following program written in Basic.

1000 REM Game of 13 matches
1010 N=13
1020 S=1
1030 W=1
2000 IF N≤0 THEN GOTO 4000
2010 GOSUB 5000
3000 N=N-W
3010 S=3-S

Mathematically Rigorous Software Design, 2002 – Exercises

Exercise 11, page 2 of 2

3090 GOTO 2000
4000 PRINT "End of game. Player";S;"won."
4010 END

5000 ...
...
5080 W=...
5090 RETURN

(end)

