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Abstract

Suppose a set W of strings contains exactly one rotation (cyclic shift)
of every primitive string on some alphabet Σ. Then W is a circ-UMFF
if and only if every word in Σ+ has a unique maximal factorization over
W. The classic circ-UMFF is the set of Lyndon words based on lexico-
graphic ordering (1958). Duval (1983) designed a linear sequential Lyn-
don factorization algorithm; a corresponding PRAM parallel algorithm
was described by J. Daykin, Iliopoulos and Smyth (1994). Daykin and
Daykin defined new circ-UMFFs based on various methods for totally or-
dering sets of strings (2003), and further described the structure of all
circ-UMFFs (2008). Here we prove new combinatorial results for circ-
UMFFs, and in particular for the case of Lyndon words. We introduce
Acrobat and Flight Deck circ-UMFFs, and describe some of our results in
terms of dictionaries. Applications of circ-UMFFs pertain to structured
methods for concatenating and factoring strings over ordered alphabets,
and those of Lyndon words are wide ranging and multidisciplinary.
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1 Introduction

In this paper we study infinite sets W of strings on a given alphabet Σ, |Σ| ≥ 2,
that are closed, according to a specified rule, under the reciprocal operations of
concatenation and factorization. In particular,

∗ λ ∈ Σ =⇒ λ ∈ W;

∗ (concatenation) u, v 6= u ∈ W =⇒ exactly one of uv, vu ∈ W.

The concatenation rule implies that every factor w ∈ W can be factored, that
is, w ∈ W and |w| > 1 =⇒ there exist u, v 6= u ∈ W such that uv = w. We
consider cases where, given a string x and a set W, either x ∈ W or else x can
be factored uniquely into its longest factors that belong to W. We therefore
call these sets Unique Maximal Factorization Families (UMFFs) [DD-03]. In
particular, we consider circ-UMFFs — that is, UMFFs that contain exactly
one rotation of every primitive string on the given alphabet [DD-08].

We believe that the set of Lyndon words was the first example of a circ-
UMFF [CFL-58, L-83]. Although the Lyndon factorization was originally in-
troduced for computing free monoids in Lie algebras, it has since found a wide
range of applications. Lyndon words arise in string theoretic problems involving
lexicographic ordering such as sorting and searching for substrings, prefixes and
suffixes [Du-83], and computing the canonical form of a circular string [IS-92].
Further, Lyndon words have arisen in the analysis of African music [C-04], and
even cryptanalysis [P-05]. Naturally then, efficient methods are required for
factoring strings, and both sequential [Du-83, D-08] and CRCW Parallel RAM
algorithms [DIS-94] have been designed for computing Lyndon factorizations of
strings (or equivalently words).

The rule that determines whether uv or vu is chosen to belong to W may
depend on a total ordering of the elements ofW. For the Lyndon circ-UMFF the
elements of W are ordered lexicographically; thus for u, v ∈ W, we choose uv ∈
W if and only if u < v in lexicographical order. However, in [DD-03] Daykin
and Daykin identified other circ-UMFFs based on alternate definitions of total
order. Then later [DD-08] they established fundamental properties, independent
of the definition of order, that determine concatenation and factorization over
circ-UMFFs.

In this paper we establish new combinatorial properties of factorization fam-
ilies, for instance on the ordering of prefixes and suffixes of factors. We also show
that although words in a factorization family may themselves be composed of
smaller overlapping factors, by contrast, maximal factors in a factorization over
any UMFF are not only disjoint and hence non-overlapping, but unique. This
observation has impact on the complexity of factorization algorithms, and arose
in the analysis of the parallel Lyndon algorithm of Daykin, Iliopoulos and Smyth
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[DIS-94]. We further introduce two classes of circ-UMFFs, namely Flight Deck
and Acrobat, reflecting the type of order present amongst the letters or sub-
strings in the factors of the defining circ-UMFF.

Lexicographic order is also relevant to this paper. We explore Daykin and
Daykin’s [DD-08] characterization of circ-UMFFs in the particular case of Lyn-
don words and also co-Lyndon words, which are based on a simple modification
of lexicographic ordering. As all circ-UMFFs are totally ordered sets of strings,
we compare them to a classically ordered dictionary. In these dictionaries the
ordering of some factors is forced; however we give new results for other cases
where there is a choice of ordering factors. Finally we generalize lexicographic
order, from the usual case of ordering words according to their individual letters
to ordering Lyndon factorizations according to their individual Lyndon factors.

We begin by extending existing theory on UMFFs and circ-UMFFs with
some new results in Section 2, which are illustrated for Lyndon words in Sec-
tion 3. We propose some new research problems in Section 4. Note that the
terms string and word mean the same thing (see References) hence we use both
throughout.

2 Unique Maximal Factorization Families (UMFFs)

Given an integer n ≥ 1 and a nonempty set of symbols Σ (bounded or un-
bounded), a string of length n over Σ takes the form x = x1...xn with each
xi ∈ Σ. For brevity, we write x = x[1..n] and we let x[i] denote the i-th symbol
of x. The length n of a string x is denoted by |x|. The set Σ is called an alpha-
bet whose members are letters, and Σ+ denotes the set of all nonempty finite
strings over Σ. The string of length zero is called the empty string, denoted
ε; we write Σ∗ = Σ+ ∪ {ε}.

A string w is called a factor of x[1..n] if and only if w = x[i..j] for 1 ≤
i ≤ j ≤ n. Note that a factor is necessarily nonempty. If x = w1w2 · · · wk,
1 ≤ k ≤ n, then w1w2 · · · wk is said to be a factorization of x; moreover,
when every factor wj , 1 ≤ j ≤ k, belongs to a specified set W, this is a
factorization of x over W, denoted by FW(x).

Definition 2.1 A subset W ⊆ Σ+ is a factorization family (FF) if and only
if for every nonempty string x on Σ there exists a factorization FW(x).

Observe that every FF must contain Σ; moreover, every subset of Σ+ containing
Σ is an FF.

For some string x and some FF W, suppose x = w1w2 · · ·wk, where wj ∈
W for every j ∈ 1..k. For some k′ ∈ 1..k, write x = uwk′v, where u =
w1w2 · · ·wk′−1 (empty if k′ = 1) and v = wk′+1wk′+2 · · ·wk (empty if k′ =
k). Suppose that there does not exist a suffix u′ of u nor a prefix v′′ of v such
that u′wk′v′′ 6= wk′ and u′wk′v′′ ∈ W; then wk′ is said to be a max factor
of x. If every factor wk′ is max, then the factorization FW(x) is itself said to be
max. Observe that a max factorization must be unique: there exists no other
max factorization of x that uses only elements of W.
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Definition 2.2 Let W be an FF on an alphabet Σ. Then W is a unique
maximal factorization family (UMFF 1) if and only if there exists a max
factorization FW(x) for every string x ∈ Σ+.

We will assume throughout, that when factoring over an UMFF, the factoriza-
tion is chosen to be the one which is maximal.

Observe that Σ is an UMFF, and moreover the definition of UMFFs does not
require that Σ be ordered. The following result is a characterization of UMFFs,
and we provide a new proof of this lemma here.

Lemma 2.3 (The xyz Lemma [DD-03]) An FF W is an UMFF if and only if
whenever xy, yz ∈ W for some nonempty y, then xyz ∈ W.

Proof.
First suppose that W is an UMFF with some xy, yz ∈ W for which xyz 6∈

W. Consider the factorization of xyz. Since xy ∈ W, there must exist a
factorization xyz = w1w2 · · ·wj , j > 1, where w1 = xyv for some v ∈ Σ∗,
so that |wj | ≤ |z|. Since yz ∈ W, there must also exist a factorization xyz =
w′

1w′
2 · · ·w′

k, k > 1, where w′
k = uyz for some u ∈ Σ∗. Since y 6= ε, |wj | ≤

|z| < |yz| ≤ |w′
k|, and so the two factorizations are distinct, contradicting the

uniqueness requirement of Definition 2.2. We conclude that xyz ∈ W.
We need to show that every string v = v[1..n] has a max factorization.

Since v[1] ∈ W, there exists some largest i1 such that w1 = v[1..i1] ∈ W. If
i1 = n, the factorization is max. If not, there exists some largest i2 such that
w2 = v[i1+1..i2] ∈ W. Clearly, since W is an FF, we can continue in this way
to complete a factorization w1w2 · · ·wk of v such that, at each step, the chosen
factor wj is the longest that exists in W. We claim that this factorization is
max. Suppose otherwise. Then there exists u ∈ W and a least j ∈ 1..k such
that wj is a proper factor of u. We cannot have j = 1 because then w1 could
not be max, contrary to our construction. Thus u = pwjq with at least one
of p, q nonempty. If p = ε, then wjq ∈ W, so that wj is not the longest
possible factor, again contradicting the construction. Thus p is nonempty and
since j > 1, there exists wj−1 = w′p ∈ W for some nonempty w′. Applying
the xyz condition to xy = w′p, yz = pwjq, we conclude that wj−1wjq ∈ W,
contradicting the maximality of wj−1. Thus the factorization w1w2 · · ·wk is
max, as required.

It is an immediate consequence of Lemma 2.3 that there can be no over-
lapping factors in a unique maximal factorization of a string. In other words,
if FW(x) = w1w2 · · ·wk, then every element of W is either a factor of some
wi, i ∈ 1..k, or else does not occur at all as a factor of x. We state this more
formally as follows:

1We read UMFF as a word, hence we will write an UMFF rather than a U-M-F-F.
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Corollary 2.4 Suppose x = u1u2 · · · um and W is an UMFF, where for every
j ∈ 1..m, uj ∈ W. Then the factorization FW(x) = w1w2 · · ·wk, where

w1 = uj0+1 · · ·uj1 , w2 = uj1+1 · · ·uj2 , . . . , wk = ujk−1+1 · · ·ujk ,

0 = j0 < j1 < j2 < · · · < jk−1 < jk = m.

Proof. Suppose that for some i ∈ 1..k, wi = ujr+1 · · ·ujr+1
u′

jr+1+1, where
u′

jr+1+1 is a nonempty prefix of ujr+1+1. From Lemma 2.3 it follows that
u′

jr+1+1 = ujr+1+1. Similarly if we suppose wi has a nonempty prefix u′
jr

that is a suffix of ujr
.

Given two factored strings x and y, suppose that it is required, as in the
parallel RAM algorithm proposed in [DIS-94], to factor xy. This result tells
us that the factorization of xy can take place by considering only factors w ∈
W that are suffixes of x and prefixes w′ ∈ W of y: such factors are either
concatenated or remain disjoint, but will not be split. This observation suggests
that the algorithm of [DIS-94] can be extended from Lyndon factorization to
circ-UMFFs.

If x = uv, then vu is said to be a rotation (cyclic shift) of x, specifically
the |u|th rotation R|u|(x) of x, where |u| ∈ 0..|x|. Note that R0(x) = R|x|(x).
A string x is said to be a repetition if and only if it has a factorization x = uk

for some integer k > 1; otherwise, x is said to be primitive. Observe that
every rotation of a repetition is also a repetition. A string which is both a
proper prefix and a proper suffix of a nonempty string x is called a border
of x. A string x = x[1..n] has period p if and only if for every i ∈ 1..n−p,
x[i] = x[i+p]; the shortest period of x is called the period. Note that x has a
border b of length b if and only if it has period n−b.

Definition 2.5 An UMFF W over Σ+ is a circ-UMFF 2 if and only if it
contains exactly one rotation of every primitive string x ∈ Σ+.

If Σ is a totally ordered alphabet then lexicographic ordering (lexorder)
u < v with u, v ∈ Σ+ is defined if and only if either u is a proper prefix of v,
or u = ras, v = rbt for some a, b ∈ Σ such that a < b and for some r, s, t ∈ Σ∗.
We can therefore say that the set of all Lyndon words is a circ-UMFF, where the
rotation chosen from the set of rotations of each primitive string is the one that
is least in the lexorder derived from an ordering of the letters of the alphabet Σ
(see [CFL-58], [DD-08], [Du-83], and [L-83] for further discussion of the Lyndon
circ-UMFF). (Note that the choices of rotations for the words of length two for
a circ-UMFF actually induces a total order on a given unordered alphabet, see
[DD-08].) Consider the following selection of Lyndon words based on different
orderings of letters in the alphabet Σ = {a, b, c}.

2circ-UMFFs were originally defined with respect to circulant matrices in [DD-08]; here we
adopt the equivalent terminology of rotations.
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Example 2.6 Let L denote the Lyndon circ-UMFF, and x = aabac on Σ =
{a, b, c}.
(i) If a is the least letter, then R0(x) = aabac ∈ L.
(ii) If b is the least letter, then R2(x) = bacaa ∈ L.
(iii) If c is the least letter, then R4(x) = caaba ∈ L.

Indeed, we could make use of other consistent rules to select the rotation of
a string to be assigned to a circ-UMFF:

Example 2.7 Suppose that for each primitive x we consider the reversed string

x = x[n]x[n−1] · · ·x[1],

and observe that for every j ∈ 0..n−1, Rj(x) = Rn−j(x). Then a circ-UMFF is
formed by choosing the rotation of each x to be y, where y is the least rotation
of x.

Referring to Example 2.6, in the case that b is the least letter, the rule in
Example 2.7, with the order for ‘least’ being lexorder, leads to the choice of
R3(x) = acaab for a new circ-UMFF, called co-Lyndon (co-L). We call the
ordering based on lexorder of reversed strings co-lexorder 3. So for example,
over the Roman alphabet the word google, although not a Lyndon word is a
co-Lyndon word, as it is least amongst its rotations in co-lexorder.

We now define an order that is specific to each circ-UMFF and determined
only by its particular properties, not necessarily by any ordering of the strings
of Σ+.

Definition 2.8 If a circ-UMFF W contains strings u, v and uv, we write
u <W v (called the W-order).

We will show that, in essence, the W-order u <W v ‘means’ that you can
concatenate u and v with respect toW, whereas ≥W ‘means’ that concatenation
is not possible and hence implies factoring (see Theorem 2.10(3) for the case of
concatenation, and Theorem 2.13 for the case of factorization). Furthermore,
we will also show that W-order is a total order (see Theorem 2.10(4)). For the
Lyndon circ-UMFF, its specific W-order is lexorder, as we see by:

Theorem 2.9 (Duval [Du-83]) Let L be the set of Lyndon words, and suppose
u, v ∈ L. Then uv ∈ L if and only if u comes before v in lexorder.

Interestingly, the analogue of Theorem 2.9 does not hold for every circ-
UMFF. That is, if the elements of Σ∗ are somehow totally ordered under <,
it may happen that for every pair of distinct strings u and v, u < v while
v <W u. We illustrate this phenomenon for the co-Lyndon circ-UMFF. The
primitive words u = cba and v = cbba are clearly co-Lyndon words over the
Roman alphabet. Analysis of all of the rotations of uv shows that it is co-
Lyndon, and by Definition 2.8 we have u <co-L v. However, v comes before

3See [KS-98, p. 45]; other definitions exist in the literature, for example [CDP-05].
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u in co-lexorder, that is v <co-lex u! In other words, W-order can be defined
quite independently of the ordering of the elements of Σ∗.

The following theorem reveals structural properties of circ-UMFFs that pre-
scribe ordered concatenating and factoring of strings. The theorem also shows
that not every rotation of a primitive string can necessarily be chosen to belong
to a circ-UMFF.

Theorem 2.10 ([DD-08]) Let W be a circ-UMFF.
(1) If u ∈ W then u is border-free.
(2) If u, v ∈ W and u 6= v then uv is primitive.
(3) If u, v ∈ W and u 6= v then uv ∈ W or vu ∈ W (but not both).
(4) If u, v, uv ∈ W then u <W v and <W is a total order of W.
(5) If w ∈ W and |w| ≥ 2 then there exist u, v ∈ W with w = uv.

From this theorem we conclude that for arbitrary strings u, v ∈ W, exactly
one of the following is true: u = v, u <W v, v <W u. In particular, although
the order <W over W is not reflexive, by its transitivity deduced from part (4)
above, it is a strict order relation.

Applying part (1) of this theorem to Example 2.6, we see that the string
R1(x) = abaca, with border a, can never belong to a circ-UMFF, no matter
what rule for selection is employed. In fact we can exclude certain classes of
strings from circ-UMFFs (see [DD-08] for further limiting examples):

Proposition 2.11 Suppose that w is an element of a circ-UMFF W and u is a
nonempty prefix (respectively, suffix) of w. Then for every rotation uj = Rj(u),
j ∈ 0..|u|−1, wuj (respectively, ujw) 6∈ W.

Proof. For prefix u, let w = uv and m = |u|, then observe that

u[1..m]vu[j+1..m]u[1..j]

is always bordered, contradicting Theorem 2.10(1). The proof when u is a suffix
is analogous.

For the remainder of this section we demonstrate various applications of
Theorem 2.10 giving new combinatorial insights into circ-UMFFs.

Proposition 2.12 Given a circ-UMFF W and a string w, |w| ≥ 2, w ∈ W if
and only if w = uv, where u, v ∈ W and u <W v.

Proof. Sufficiency is a consequence of Theorem 2.10(3) and Definition 2.8; ne-
cessity is Theorem 2.10(5).

7



As a consequence, the following result, modified from [DD-08], is easily estab-
lished. It generalizes the Lyndon factorization theorem [CFL-58] to circ-UMFFs
(cf. Corollary 2.4).

Theorem 2.13 Let W be a circ-UMFF and suppose x = u1u2 · · · um, with
each uj ∈ W. Then FW(x) = u1u2 · · ·um if and only if u1 ≥W u2 ≥W ... ≥W
um.

Using the Lyndon factorization as an example, we give a sense of the varia-
tion in ordering that may occur in circ-UMFFs, even though some ordering is
prescribed by Lemma 2.3 and Theorem 2.10.

Lemma 2.14 Let W be a circ-UMFF with xy, yz ∈ W for nonempty x,y, z
(hence x 6= z). Then xyz ∈ W, xyyz ∈ W, and
(1) xy <W xyz <W yz;
(2) xy <W xyyz <W yz;
(3) either xyyzxyz ∈ W or xyzxyyz ∈ W (but not both).

Proof. An application of Lemma 2.3 and Theorem 2.10(1),(2), and (3).

We show next that the case xyyz <W xyz of Lemma 2.14(3) occurs for the
Lyndon circ-UMFF based on lexicographic ordering.

Proposition 2.15 Let L be the Lyndon circ-UMFF with xy, yz ∈ L for nonempty
x,y, z. Then xy <L xyyz <L xyz <L yz.

Proof. In view of Lemma 2.14, we need only verify that xyyz <L xyz. Since
in this case the order <L is lexorder, we may ignore the common prefix xy and
consider only whether yz <L z. But this follows from the fact that yz ∈ L and
so must be less in lexorder than its every proper suffix [Du-83, Proposition 1.2],
in particular z.

An analogous argument to the above shows that in the co-Lyndon circ-
UMFF co-L, we have xy <co-L xyz <co-L xyyz <co-L yz.

The next result shows that a “Lyndon-like” property, uv <W v, holds when-
ever both uv,v ∈ W:

Lemma 2.16 Suppose that w is an element of a circ-UMFF W. For every
proper prefix u of w such that u ∈ W and every proper suffix v of w such that
v ∈ W, u <W w <W v.

Proof. Since by Theorem 2.10(1),(3) neither of the bordered strings wu and
vw can be an element of W, it follows from Definition 2.8 and Theorem 2.10(4)
that u <W w <W v.
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In particular, the above result tells us that if w = w[1..n] ∈ W, n ≥ 2,
then w[1] <W w <W w[n]. Conversely, if w[n] <W w[1] or w[n] = w[1], then
w 6∈ W. The following result is an immediate consequence of Lemma 2.16:

Lemma 2.17 ([DD-08]) Suppose that w is an element of a circ-UMFF W. If
u1, u2, . . . , uk1 are all the proper prefixes of w in increasing order of length that
belong to W, and if v1, v2, . . . , vk2 are all the proper suffixes of w in decreasing
order of length that belong to W, then

u1 <W u2 <W · · · <W uk1 <W w <W v1 <W v2 <W · · · <W vk2 .

Recall that for the Lyndon circ-UMFF L, this lemma holds more generally
for every prefix of w ∈ L, no matter whether or not these strings are in L
[Du-83]. The next lemma shows that if u <W v, then u is less in W-order than
any right extension of v that is also in W:

Lemma 2.18 Suppose u ∈ W and v ∈ W, where W is a circ-UMFF. If u <W
v, then for every string w such that vw ∈ W, u <W vw.

Proof. Observe first that if u = vw, then by Lemma 2.16 v <W v, a contradic-
tion. Thus u 6= vw, so that by Theorem 2.10(3) either uvw or vwu is in W.
If vwu ∈ W, Lemma 2.16 implies v <W u, a contradiction. Thus u <W vw,
as required.

We can generate certain types of new factors in a circ-UMFF from repetitions
of given factors:

Lemma 2.19 ([DD-08]) Let W be a circ-UMFF. If u1, u2, ..., um ∈ W with
u1 <W u2 <W ... <W um and m ≥ 2, and if k1, k2, ..., km > 0 are integers,
then u1

k1u2
k2 ...um

km ∈ W.

Of course, Lemma 2.19 also applies to any subsequence of the factors
u1, u2, ..., um, so that uk1

i1
uk2

i2
· · ·ukr

ir
∈ W, where 1 ≤ i1 < i2 < · · · < ir ≤ m.

As a special case of Lemmas 2.18 and 2.19, we see that for r ∈ 1..|Σ| such that
1 ≤ i1 < i2 < · · · < ir ≤ |Σ|,

λi1 <W λi1λi2 <W · · · <W λi1λi2 · · ·λir ,

where λij ∈ Σ, 1 ≤ j ≤ r. Note however that the usual lexicographic or po-
sitional property of order — that i1 < i2 < i3 ⇒ i1i2 < i1i3 — does not
necessarily hold for circ-UMFFs. For example, on the binary alphabet {0, 1},
0 <W 1, even though it follows from the above lemmas that for every circ-
UMFF, 0 <W 011 <W 1, it may also be true that 010011 ∈ W — in other
words, that 01 <W 0011, in which case W would not be the Lyndon circ-UMFF.
(See [DD-08], Section 5 ‘To Find all circ-UMFFs’, for details of the procedure
for constructing a circ-UMFF.)

We will now explore “dictionary” type properties of circ-UMFFs, showing
that some orders of concatenations are predetermined.
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Proposition 2.20 Suppose W is a circ-UMFF defined on Σ = {λ1, λ2, . . . .},
and let u ∈ Σ+.
(1) If u ∈ W and λi <W u then λi <W λiu.
(2) If u ∈ W and u <W λi then uλi <W λi.
(3) If u ∈ W and λi <W λj, and λj <W u then λi <W λju.
(4) If λiu ∈ W then λi <W λiu.
(5) If λi <W λj and λju ∈ W then λi <W λju.

Proof. Parts (1),(2),(3) are derived from Definition 2.8 and Theorem 2.10, part
(4) is a special case of Lemma 2.17, part (5) a special case of Lemma 2.18.

By contrast, choice for concatenation arises in certain contexts. For instance,
even if λi <W λj as above, then for some nonempty u, it is possible that either
λiu <W λj or λj <W λiu in W; if we choose the former we get:

Proposition 2.21 Suppose W is a circ-UMFF over Σ = {λ1, λ2, . . . .}, with
λi <W λj. Suppose u, v ∈ Σ∗ and λiu, λjv ∈ W. If λiu <W λj, then λiu <W
λjv.

Proof. From λi <W λj we have that λiu and λjv are distinct. Then applying
Theorem 2.10(3) to λiu and λjv, we have either λjvλiu ∈ W or λiuλjv ∈ W.
Without loss of generality, let us assume that λjvλiu ∈ W. Applying Lemma
2.3 to λjvλiu and λiuλj yields the bordered string λjvλiuλj ∈ W, contradict-
ing Theorem 2.10(1). Thus λiuλjv ∈ W, and the result follows from Proposition
2.12.

However, had we instead chosen λj <W λiu, we could have gone on to pos-
sibly choose either λjv <W λiu or λiu <W λjv in W, and so on.

We now identify two interesting classes of circ-UMFF, which to our knowl-
edge are not exhaustive:

Definition 2.22 A circ-UMFF W is said to be Type Flight Deck if and only
if w[1...n] ∈ W with |w| ≥ 2 implies that for every i ∈ 2..n, w[1] ≤W w[i].

Definition 2.23 A circ-UMFF W is said to be Type Acrobat if and only if it
contains elements uv1, w and uv2, nonempty u not a prefix of w, such that

uv1 <W w <W uv2.

Suppose Σ = {a <W b <W c <W d} for some W-order. Then examples of el-
ements chosen for a Flight Deck circ-UMFF over Σ are λiu = ac and λjv = bd,
so that λiuλjv = acbd ∈ W, whereas λjvλiu = bdac /∈ W since this string
contains the internal letter a which is less than its first letter b. Instances of
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circ-UMFFs satisfying the Flight Deck condition include: all binary circ-UMFFs
(if any word starts with 0, then they all start with 0 and end with 1 and there
are no other letters to consider in the alphabet), and the Lyndon circ-UMFF
(no rotation, hence no letter can be lexicographically less than the first letter).
To show that the co-Lyndon circ-UMFF cannot be of type Flight Deck, consider
the alphabet of integers {1 < 2 < 3 < ...}, then the W-order (co-lexorder co-L)
is {1 >co-L 2 >co-L 3 >co-L ...} and while 321 and 231 are both co-Lyndon
words, the latter word 231 does not satisfy the Flight Deck condition since the
second letter is less than the first in this W-order, co-lexorder. Observe also
that the Lyndon circ-UMFF cannot be of type Acrobat due to the conditions
on uv1, w and uv2.

Lemma 2.24 Suppose W is a Flight Deck circ-UMFF over Σ and let µ ∈ Σ.
Suppose w ∈ W with |w| ≥ 2, and the letter λ occurs in w at least once.
(1) If w[1] = λ, then λw ∈ W; otherwise, wλ ∈ W.
(2) If w[1] ≥W µ, then µw ∈ W; otherwise, wµ ∈ W.

Proof. In either case, since λ, µ ∈ W and λ, µ 6= w we can apply Theorem
2.10(3). Part (1) is then a consequence of Theorem 2.10(1) and the definition
of Flight Deck; part (2) follows similarly.

We now consider the W-order of suffixes for these two types of circ-UMFFs,
namely Flight Deck and Acrobat (cf. Lemma 2.17).

Theorem 2.25 Suppose that w = uv is an element of a circ-UMFF W, with
u and v nonempty. Then either wv ∈ W or v2wv1 ∈ W, where v = v1v2, v1

and v2 nonempty. In the latter case W can be Type Acrobat.

Proof. If v ∈ W, then since v and w are distinct, applying Theorem 2.10(3)
either wv or vw is an element of W; since vw is bordered, it follows from
Theorem 2.10(1) that vw 6∈ W, thus wv ∈ W. Hence if this case does not hold
we may suppose that neither v nor wv is an element of W.

Since wv 6∈ W, then by Definition 2.5, if wv is primitive it follows that some
rotation of wv must be in W. So first we will establish that wv is primitive,
and then choose a rotation for W.

Suppose that wv = uvv is a repetition. Then wv = zr for some integer
r ≥ 2. Therefore |z| < |uv|, and so w = uv has period |z|, hence a nonempty
border, contradicting Theorem 2.10(1). Thus wv is not a repetition, and so
some rotation of wv is an element of W.

First suppose that a rotation of the form w = u2v
′′
u1 is in W for nonempty

u1, u2 such that u = u1u2. But then applying Lemma 2.3 to xy = w and
yz = u1u2v implies that the bordered word u2v

′′
u1u2v is in W, contradicting

Theorem 2.10(1). Suppose then that a rotation of the form w = v
′′
vuv

′ ∈
W. Similarly applying Lemma 2.3 to xy = uv

′
v

′′
and yz = w implies that
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the bordered word uv
′
v

′′
vuv

′
is in W, again a contradiction. Likewise, the

rotations w = vvu and w = vuv cannot belong to W.
Thus we conclude that the unique rotation of wv that belongs to W takes

the form v2uvv1, where v1,v2 are by hypothesis nonempty. Then by Theorem
2.10(5) we can split v2uvv1 into a pair of factors, both of them in W:

∗ Suppose v2u1 ∈ W, u2vv1 ∈ W for some nonempty u1. But then apply-
ing Lemma 2.3 to uv = u1u2v1v2 and v2u1, we find that the bordered
word u1u2v1v2u1 is in W, a contradiction.

∗ Suppose v2uv′ ∈ W, v′′v1 ∈ W for some nonempty v′ such that v =
v′v′′. (Assume v′′ is nonempty for otherwise v2uv′ is bordered.) But
then applying Lemma 2.3 to v2uv′ and uv = uv′v′′, we find that the
bordered word v2uv is in W, again a contradiction.

Thus the partition of v2uvv1 may take the form v2 ∈ W, uvv1 ∈ W, where
v2 <W uvv1. In this case we have distinct uv and v2 both belonging to W,
and so applying Theorem 2.10(3),(1) we know v2uv 6∈ W. Hence, also applying
Theorem 2.10(4) we deduce that

uv <W v2 <W uvv1,

so that W is Type Acrobat.

Moreover, notice above that since v2uvv1 ∈ W, by further application of The-
orem 2.10 we also have the Acrobat instance

uvv2 <W v2uvv1 <W uvv1.

The partition of Theorem 2.10(5) is not necessarily unique, so consider the
possibility that v2 ∈ W and v1 = v

′
1v

′′
1 , where v

′
1,v

′′
1 are nonempty, and we

split v2uvv1 through v1 so that v2uvv
′
1, v

′′
1 are in W with v2uvv

′
1 <W v

′′
1 .

Since v2, v2uvv
′
1v

′′
1 and v

′′
1 are in W, from Lemma 2.16 we know that v2 <W

v
′′
1 . We now have that uv, v2, v2v

′′
1 ,v2uvv

′
1v

′′
1 ,v2uvv

′
1 and v

′′
1 are all in W,

furthermore they are all distinct. Hence we can apply Theorem 2.10(1),(3) and
(4) to order permutations of these distinct factors into a total order. Consider
the three possible concatenations v2v

′′
1 <W v2uvv

′
1v

′′
1 or v2uvv

′
1v

′′
1 <W v2v

′′
1 ,

uv <W v
′′
1 or v

′′
1 <W uv, and v2uvv

′
1v

′′
1 <W uvv

′′
1 or uvv

′′
1 <W v2uvv

′
1v

′′
1 .

If we choose the former in each case (recall from Section 2 that some, but not
all, orderings are predetermined) we have

uv <W v2v
′′
1 <W v2uvv

′
1v

′′
1 <W uvv

′′
1 ,

and so

uv <W v2v
′′
1 v2uvv

′
1v

′′
1 <W uvv

′′
1 ,

12



and this total order belongs to a type Acrobat circ-UMFF W.
Finally, suppose that v2 ∈ W has |v2| ≥ 2, and suppose also that we can

split v2uvv1 through v2 = v
′
2v

′′
2 so that v

′
2, v

′′
2 are nonempty and distinct,

with v
′
2, v

′′
2 uvv1 ∈ W and v

′
2 <W v

′′
2 uvv1. Then we have the distinct elements

uv,v
′
2,v

′′
2 uvv1 all in W. When applying Theorem 2.10 as before, if we choose

uv <W v
′
2, then since we have both uv <W v

′′
2 uvv1 and v

′
2 6= v

′′
2 , this case

yields the Acrobat instance uv <W v
′′
2 uvv1 <W uvv

′
2.

Observe that, if w = uv in Theorem 2.25 satisfies the Flight Deck condition
so that for every i ∈ 2..|w|, w[1] ≤W w[i], then clearly wv = uvv satisfies the
Flight Deck condition too.

3 The Lyndon Dictionary

Here we illustrate parts (1)–(5) of Theorem 2.10 for the case that W is the
Lyndon circ-UMFF L, so that UMFF L-order is lexicographic: thus for brevity
we write < instead of <L. We emphasize that these are known properties
[CFL-58, Du-83] of Lyndon words, briefly reviewed here to link them to the
results established in Section 2 more generally for circ-UMFFs.

Assume u, v, w ∈ L are distinct non-empty Lyndon words:

(1) It is well known [Du-83] that Lyndon words are border-free.

(2) If uv is a repetition, then at least one of u,v is bordered, hence not in L.

(3) For u < v Duval [Du-83] shows that uv ∈ L. Since uv is the lexicograph-
ically least rotation, vu 6∈ L.

(4) Assume u < v and v < w. Then uv and vw are both Lyndon words.
If the order is not total, so that w < u, then wu ∈ L. If we now apply
Lemma 2.3 to uv and vw, we find that uvw ∈ L, and similarly applying
Lemma 2.3 to vw and wu implies that vwu ∈ L. Since uvw is a Lyndon
word, the rotation vwu cannot be a Lyndon word too. Thus u < w and
u < v < w.

(5) Suppose w = w[1..n] ∈ L, n ≥ 2. We want to show that we can always
partition w = uv such that u,v ∈ L. Applying Lemma 2.16 we can write
w = λhyµk, where w[1] = λ < µ = w[n], the positive integers h and
k are both maximal (w[h+1] 6= λ and w[k−1] 6= µ), and y is possibly
empty. Let r be the position of the rightmost occurrence of λ in w. If
r = 1, choose u = w[1..n − 1],v = w[n]. If r > 1, look for the rightmost
position s < r such that w[s] > w[r] = λ. If there is no such s, choose
u = w[1], v = w[2..n]; otherwise, choose u = w[1..s], v = w[s+1..n] =
λr−sw[r+1..n].

Since by (4) the infinite set of all Lyndon words over an arbitrary alphabet
is totally ordered in lexorder, it may be considered to be a “dictionary”, and

13



likewise the infinite set of co-Lyndon words. Recall that the Lyndon circ-UMFF
is of type Flight Deck but not the co-Lyndon circ-UMFF (see Section 2). We
will now show that the co-Lyndon circ-UMFF is of type Acrobat. Further, the
following example compares these two dictionaries, over the ordered Roman
alphabet, to the usual English dictionary.

Example 3.1 The words fowl, goose, growl, howl, oriole, owl, scowl and trowel
all occur in the English dictionary in alphabetical, or lexicographic order, whereas
they do not all occur in the Lyndon or co-Lyndon dictionaries:

(i) fowl, growl, howl are each Lyndon and satisfy the Flight Deck condition.
(ii) owl, goose, oriole are each co-Lyndon and while they do not satisfy the Flight
Deck condition, the co-Lyndon circ-UMFF satisfies the Acrobat condition, for
instance owl <co−L goose <co−L oriole.
(iii) scowl, trowel are neither Lyndon nor co-Lyndon.

Note that if Σ∗L denotes the lexicographic ordering of Σ∗, then the Lyndon
total order is a sub-order of Σ∗L.

We now consider the partition of the Lyndon circ-UMFF into those words
which are the unique concatenation of exactly two smaller non-overlapping Lyn-
don words, and those words which do contain overlapping Lyndon words as in
Lemma 2.3. For example, over the ordered Roman alphabet, the Lyndon word
abac contains the unique pair of Lyndon words ab and ac. Similarly ababababc
and abbbbbbbbbbbb both comprise unique concatenations, whereas the Lyndon
word abcdefg contains many overlapping Lyndon words such as abcde and bcdefg.

Theorem 3.2 Suppose that u = u[1..m], v[1..n], and w = uv are Lyndon
words. Suppose further that for every factorization of w of the form w = u′v′,
u′ 6= u and u′, v′ both nonempty, at least one of u′, v′ is non-Lyndon. Then
w must take one of the following forms:

(1) If n = 1, then w = µu[2..m]λ, where µ and λ are letters satisfying µ <
λ ≤ u[i], for every i ∈ 2..m.

(2) if n > 1, then w = uku1λ, where k is a positive integer, u1 a possibly
empty proper prefix of u, and the letter λ > u[|u1|+1];

Proof. Suppose n = 1 and let µ = u[1], λ = v. Since uv ∈ L, applying Lemma
2.16 we have µ < λ, and so if m = 1, (1) is proved. For m > 1, since µ ∈ L
we have u[2..m]λ /∈ L. For m = 2, λ ≤ u[2], otherwise u[2]λ ∈ L, which is a
contradiction; hence (1) holds. For m > 2, since µ < λ ≤ u[2], it follows that
u[1..2] ∈ L, hence that u[3..m]λ /∈ L. Similarly, for m = 3, λ ≤ u[3], again
establishing (1). Continuing this analysis yields (1) for all finite m.
Suppose n > 1, and let λ = v[n]. Since uv ∈ L, by Lemma 2.16 we have
λ > u[1]. Further, since λ ∈ L then uv[1..n−1] /∈ L. From these observations
we deduce that u = v[i] for i ∈ 1..n − 1, and (2) holds when m = 1. Suppose
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m ≥ 1. Then since λ ∈ L, uv[1..n−1] /∈ L and since u ∈ L we deduce that
v[1] ≤ u[1]. However, uv ∈ L implies u[1] ≤ v[1], and so v[1] = u[1]. Since
λ > u[1] this establishes (2) for m = 1 and n = 2; since v[1] = u[1] then
applying Theorem 2.10(1) to uv we have λ > u[2] which establishes (2) for
m > 1 and n = 2.
For m > 1 and n > 2, it is required that uu[1]v[2..n−1] /∈ L. Thus v[2] ≤ u[2],
while uv ∈ L implies v[2] ≥ u[2], so that v[2] = u[2]. Applying Theorem
2.10(1) to uv we have λ > u[3] establishing (2) for n = 3. (Note that if m = 1
and n > 2, then w = um+n−1λ = unλ.)
Proceeding with this analysis yields (2) for all finite m and n > 1.

We conclude by generalizing the lexicographic order < of strings (defined
in Section 2) to the lexicographic order ¿ of Lyndon factorizations of strings.
Suppose two strings u and v happen to be equal, then obviously so are their
Lyndon factorizations, that is u = v ⇐⇒ FL(u) = FL(v). If u < v, then recall
that in lexorder there are two cases: u could be a proper prefix of v (u <pref v),
or u is not a prefix of v and there is a first difference occuring between letters
in u and v (u <diff v). We now define lexorder ¿ of factorizations.

Definition 3.3 Let u, v ∈ Σ+ with respective Lyndon factorizations FL(u) =
u1u2 · · ·ur and FL(v) = v1v2 · · ·vs. Then
(i) FL(u) ¿pref FL(v) means that either ui = vi for 1 ≤ i ≤ r and r < s, or
for some least i ≤ min{r, s}, ui 6= vi and uiui+1...ur <pref vi.
(ii) FL(u) ¿diff FL(v) means that for some least i ≤ min{r, s}, ui 6= vi and
ui <diff vi.

We can then relate the lexorder < of distinct strings to the lexorder ¿ of
their factorizations.

Proposition 3.4 Let u, v ∈ Σ+ where u < v in lexorder, with respective Lyn-
don factorizations FL(u), FL(v). Then
(i) u <pref v if and only if FL(u) ¿pref FL(v),
(ii) u <diff v if and only if FL(u) ¿diff FL(v).

Proof.
In both cases necessity is by definition of the lexorder ¿ of factorizations, and
sufficiency is by definition of the lexorder < of strings.

4 Problems

Consider the well-known sequence of Fibonacci strings, where commencing with
the Fibonacci strings b and a, strings with greater than unit length are the con-
catenation of the previous two: b, a, ab, aba, abaab, abaababa, . . . (these strings
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are also known as finite Fibonacci words; see [BMP-07], [IMS-98], [Lu-95] for
related works on Fibonacci strings). A simple application of Lemma 2.3 to
the pair of strings aba, abaab falsely implies that the string ababaab is Fi-
bonacci. Thus although Fibonacci strings form a factorization family (FF),
they do not yield unique factorization, and in fact there are many ways to fac-
tor the string ababaab into Fibonacci strings: (ab)(aba)(ab), and (ab)(abaab),
also (ab)(ab)(a)(a)(b), etc.

In the quest for more examples and properties of factorization families, we
propose the following lines of enquiry:

1. Commencing with the study of border-free UMFFs, describe the structural
properties of all UMFFs.

2. Apply the inherent construction of Theorem 2.10 to design algorithms
both for constructing all circ-UMFFs, and all binary circ-UMFFs.

3. Design generic algorithms for factoring strings over general, Flight Deck
and Acrobat circ-UMFFs.

4. Establish whether or not all circ-UMFFs on the same alphabet are in some
sense isomorphic.

5. Given a string u, determine the circ-UMFF(s) which factorizes u into the
maximal or minimal number of factors. For example, if λ ∈ Σ then the
repetition λk has k factors over any circ-UMFF. However, the string dcba
over {a < b < c < d} can be factored into one co-Lyndon or four Lyndon
words.
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