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The method is a medification of the method of Cuthill-McKee [ 1]; it is based un the selection of an appropriate
tevel structure for the connected undirected graph associated with the given matrix., (Usually, a level structure is a
spanning trec with its edges removed.) The method has been programmed in Fortran on the ICL 1905E; comparison
with the Cuthill-McKce methed indicates a substantsal furthes reduction in bandwidth for most graphs, with little

or no increase in computer time,

1. INTRODUCTION

We wish to reduce the calculation time and storage
requirements associated with operations on sparse
matrices. These objectives may often be satisfied by
storing the matrix in packed form and using special
computer algorithms to perform the required opera-
tions [2,3]; the central difficulty with such methods
is that the operations usually affect the sparseness in
an undesirable way: The algorithm unavoidably creates
more non-zero etements than were originally present,
and alters their positioning in complex ways.

An alternative, and relatively uninvestigated, ap-
proach is to preprocess the matrix into band form.
Such an approach is made interesting by the fact that
most matrix operations applied to band matrices (sce,
for example [4, p. 261] ) preserve matrix bandwidth,
To date, however, only Cuthiil--McKee [1] and
Rosen {5] have published vseful bandwidth reduction
methods.

2. OUTLINE OF OUR METROD

We begin with definitions. 4 is a square matrix of
order n with elements a(i,/). The matrix bandwidih is
the least integer 8(4) such that

a@j)=a(j)=0 forall |i—j|>8(4).

G(A), the graph of A, is an undirected graph whose n

nodes are numbered from 1 to n, and whose edges
(i.f) are defined as follows: the edge (i,f) exists if

and only ifa(j,/) # 0 or a(},i}# 0,i 7. Then the
graph bandwidth is the least integer 8§(G) such that no
edge (i,f) exists if |i—j1 > 8(G). It follows that per-
muting the node numbers (renumbering the nodes) of
G(A} is equivalent to interchanging rows and corre-
sponding columns of 4; morcover, that the graph
bandwidth 5(G(A)) always takes the same value as
the corresponding matrix bandwidth 5(4). We are
concerned thetefore in what follows to number the

# nodes of a graph G in such a way that §(G) takes as
small a value as possible. G will always be connected,
undirected, and contain no loops or multiple edges.

A level structure LS = LS{G) of a graph G is an
arrangement of the 7 nodes of G into L fevels, num-
bered /=1, ..., L, so that nodes at a given level  are
joined (by an edge of $7) to no nodes of levels other
than! — L, and 7 + 1. Alevel fsuch that | </ <L is
called an intermediate level. The number of nodes in a
level ! is denoted w{!), the width of level I. The width
of the level structure is then

w=w(LS)= max w(/)..
LALFA

In the example shown in fig. 1, w(1) =2, w(2) =
=w{3)=5,w(d)= 1, so that w(LS) = 5.

Following Cuthill-McKee, we note now that given
an LS(G) of width w, we can always number & level
by level so that w € §{(G) < 2w - 1. It is therefore of
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Fig. 1. A level structure of a graph G.

interest to search for £.Ss of small or minimum width,
and in fact we make the following conjecture:

The minimum bandwidth 6§ = §(G) of a given graph

G may be attained by numbering G based only on

consideration of those LS(G) which are of mini-

mum width wy.
We restrict our search for these “minimal” LSs by
considering only associative level structures. An asso-
ciative level structure (ALS) of G is a level structure
whose nodes of level | are arbitrarly selected, and
whose nodes of level / >> | are determined by the
following iterative rule:

The nodes of level I > 1 are exactly those nodes
joined to the nodes of level / — 1 (and not already

included in levels — 1 or! - 2).

In fact we restrict our search even more. A reversible
level structure (RLS) of a graph G is an ALS which is
unchanged if we begin with the nodes of level £, and
apply the dual  of the above rule:

The nodes of level / < L are exactly those nodes

joined to the nodes of level / + 1 (and not already

included in levels{ + ] or ! +2).
We note that an RLS is uniquely defined by any one
of its levels; we refer to any intermediate level which
defines an RLS as the defining level of the RLS.
Note also that an ALS is an RLS if and only if every
node in level / <L is joined to some node in level
1+ 1. The LS of fig. | isin fact an RLS.

We conclude our definitions by defining a maxi-
mal reversible level structure (MRLS) of G. To do
this, note first that although corresponding to a given
defining level, we may always define an RLS, it does
not follow that the RLS will contain every node of G.
For if as we proceed from level / to level / + 1, we
find that some node of level / is not joined to any
node in{ + 1, then as a consequence of the remark
above, level / represents the upper limit of the RLS
definable by the given defining level. Similarly, we
determine the Jower limit of the RLS. An MRLS then
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is simply an RLS extended 1o its upper and lower
limits from the given defining level. In most cases of
practical interest the MRLS wili in fact include every
node of &5 in case it does not, however, we make use
of a series of defining levels to define an ALS{G) con-
sisting of a chain of MRLSs.

Fig. 2. An MRLS chain.

In fig. 2, choosing the defining level 7—8-9, we
find the following MRLS:

level |
level 2 ®
level3 @

©
level4 (D ©
level5 @@ @O
level6 @ @

At level 6 the MRLS has an upper limit, because
node |3 is not joined to node 14. Using another de-
fining level, suy 18-19--20, we find another MRLS
for the other side:

levell @ ©
level2 (@ @

level3 @ © @
leveld Q) @ @
levet5 @3 @

level 6 (9

We are at last in a position to outline our method:

1. {Initialize] Start link 1 of the breakdown of G
into a chain of MRLSsj « 1.

2. |Find link f] Execute procedure BREAKDOWN
G.0).

3. [Remove link j from G] Remove the nodes of the
MRLSs determined by BREAKDOWN (G, /) from G.
If G is now empty, go to 4, Otherwise, increment
j+<j+!1,and goto 2,

4. [Number the chain of MRLS] Number the
nodes of G based on a level by level numbering of the
chains of MRLSs. Select a numbering which gives rise
to a least bandwidth 6(G). [See below, numbering the
level structure.,]
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The procedure BREAKDOWN(G,f) performs the fol-
lowing processing:

1. [Find possible defining levels] Sclect some node
i € (7 which is of maximum degree, Find every possible
defining level containing /. |Sece below, finding the
defining levels] .

2. [Select MRLSs for link j] For every defining

level found above, determine the corresponding MRLS.

There will be k; MRLSs of least width wy. Store
these in a table MRLS(j k), k=1, ..., k;.

We note that this numbering algoril{un will yield a
minimum bandwidth 8(G) if the following assump-
tions/conjectures are valid:

1. A node of maximum degree will always belong
to an intermediate level of any ALS which is of mini-
mum width.

2. Rather than consider all possible level struc-
tures LS(G) of G, it suffices to consider only those
ALSs which may be formed from a chain of MRLSs.

3. Further, only ALSs of minimum width need be
considered for numbering (if w(LS; ) > w(LS,), then
8, 26,).

4. Any node contained in an MRLS defined by a
defining level containing a given node i (of maximum
degree) is also contained in any vther such MRLS de-
fined from the same node i,

5. The level by level algorithm used to number the
LS actually yields a 6 which is the smallest achicvable
for that LS [see fig. 4].

3. FINDING THE DEFINING LEVELS

We discuss first the selection of the node i. Cuthill-
McKee remark that “‘usually” nodes in first or final
(non-intermediate) levels should have minimum or
near-minimum degree; we make the complementary
argument that usually when the ALS has minimum
width, the nodes of maximum degree will belong to
intermediate levels: unlike first and final levels, an
intermediate level ! has two levels, ! — F and i + 1,
which together “‘absorb™ the joins to the points of {,
We take asour starting node i, therefore, simply any
node of maximum degree,

We note now that a defining level is a rather
special set of nodes: For if we think of removing
from G the nodes of such a level, together with the
edges of which they are end-nodes, then the remaining
graph may no longer be connected — it must consist
of two or more disjoint non-void subgraphs. Fig. 3 illu-
strates the algorithm, based on this fact, which gen-
erates a defining level containing a given node i, To
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Choose any two nodes
joined to i but to cach
other, These are the original
nodes of type 1 and type Il.
i nsell is type 11,

Nodes joined to type 1
nodes are also type I; to
type 1 nodes, also type 11,

Nodes joined to both type
I and type Il nodes are
type U1 The set of all
type Il nodes is a defining
level containing .

Fig. 3. Defining levels containing node i,

determine all possible defining levels containing i, we
simply try all possible combinations of unconnected
type I and type 1l nodes which are joined to i. Note,
however, that the same defining level may result
from several different pairs of starting nodes.

It may in fact happen, as shown in fig. 4, that the
defining level separates G into more than two disjoint
subgraphs. In such a case, the LS-numbering algorithm

eve D @
LS(G) =i O 0 8
et 838200

[wi(l.8)=6, 5(G)=5} .

Fig. 4, Several disjoint subgraphs.
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must take account of “branches” or disjoint sets
within a single level of the LS. In the example of

fig. 4, there is no chain of MRLSs which has width less
than 6; perhaps significantly, however, it is pussible

to {ind a non-revessible ALS which has width § and
which moreuver may be numbered level by level in
the ordinary way to give 8(G) = 5.

4. NUMBERING THE LEVEL STRUCTURE

As indicated by the work of Cuthill-McKee,
tatural numbering (that is, numbering the nodes of
cach level in the order in which they happen to be
stored) can in many cases produce quite satisfac tory,
even optimum, results. The computer programn pre-
sently uses a slight modification of natural number-
ing, which involves a limited look-ahead from level /
tolevel 1 + 1. This method is an improvement on
natural numbering in most cases, but pot optinal,
Several other methods are under consideration, each

volving both look-ahead (from level / to level 7 + 1)
and look-back (from level / to level / 1) features,
These methods all seem 1o produce near-optimal
level by level numbering of the LS, at some cost in
terms of computer storage and processing time. The
time penally seems to be slight, however, because in
practice processing is often terminated by finding a
bandwidth 8(G) = wy.

In this context, we remark that it seems usuzlly to
be possible to number the LS so that §(G) < wy +K,
where K is some small positive integer.

5. THE COMPUTER RESULTS

Four different methods have been programmed:

1. [Cuthill-McKee (denoted by CM)] Each node of

minimum degree is used as a starting node for a
numbering of G based on a spanning tree strategy [1].

2. [Modified Cuthill—McKee (MCM)) Starting
nodes include also nodes of “near-minimum™ degree,

3. [Our Method (OM)] The method tested here
differs in some respects from the method described
above. In particular, only one MRLS is determined for
G, not the chain of MRLSs indicated in fig. 2; the LS
is thus in all cases based on only one delining level.
Moreover, the sophisticated handling of disjoint sub-
graphs indicated in fig. 4 las not been programmed,
We have already noted the limitations on the number-
ing system,

4. [Rosen Method (RM)} Given a numbering of
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G(A}), rows and cortesponding columns of 4 are inter-
changed in a methodical way, in an effort to reduce
the bandwidth [5].

The first three of these methods may be terimed
constructive methods, since they develop a number-
ing generally unrelated to any previous numbering ol
the nodes. The fourth method, by contrast, is an
iterative method . Because of this distinction, and
alsu because RM used atone tends to be very much
slower and probably less effective than CM or MCM
L1}, we have followed the example of Cuthill-McKee
and used RM only in combination. The six approaches
tested are then:

CM; CM followed by RM;
MCM; MCM followed by RM;
OM; OM followed by RM.

These approaches were tested against 13 different
graphs of varying size and complexity. Table ] de-
scribes the characteristics of the graphs tested, and
table 2 gives averages of the results obtained.

Table |
Characteristics of test graphs

Graph No.of  No.of  Orig. Min,
No. nodes cdges bandwidth bandwidth

1 19 34 18 4

2 45 85 36 5

3 26 39 4 3

4 14 24 7 4

5 16 16 15 2

6 14 27 6 3

7 42 81 37 7

8 7 11 [ 3

9 14 23 4 4
10 25 43 6 5
11 32 42 K} 6
AVE, 23 48 t5 4.2
12 N 240 37 12
13 99 169 89 13

AVE, 95 205 63 12.5

We conclude with a few remarks:

(1) The computer times quoted must be regarded
as approximate, since the computer available to the
authors had no facility for precise program-controlled
subroutine timing. Morcover, the CM + RM and
MCM + RM timings were both revised downward to
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Tuble 2

Average test results
AVE. I-11 AVE. 12-13
Methaod
bundwidth  Time bandwidth  Time

(sec) (sev)
M 5. 045 18 6.0
CM + RM 44 1.52 14.5 24.5
MCM 4.8 2.02 18 40.0
MCM + RM 4.2 3.02 14.5 69.0
OM 4.5 0.70 14.5 JLO

OM+RM 4.2 2.52 12.5 42.8

make allowance for possible inefficiencies in the
programming of these methods.

(2) OM has also been programmed in a somewhat
inefficient manner (at the moment every level struc-
ture, not just those of minimum width, is redun-
dantly numbered). The expected cffect of removing
inefficiencies and adding the more sophisticated
features noted ubove to the progeam is that the
OM + RM results (average bandwidth = minimum
bandwidih = 4.2/12.5) will be attained within the
present OM time (0.70/31.0 sec).

(3) We have taken the liberty of improving CM
and MCM somewhat for the purpose of the computer
tests, The numbering system used in cach case is the
simple look-ahead method used for OM. This gives
decreased and more data-independent bandwidth
vatues than would be achicved by the original natural

numbering, with negligible increase in computer time.
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(4) With these remarks in mind, it is possible to
argue that OM represents an improvement over
previous methods in the sense that it yields a sub-
stantiatly lower average bandwidth with comparable
computer lime investment. This argument, however,
requires lurther experimental justification. We note
that CM will generally perform more efficiently on
graphs containing few nodes of minimum degree,
whereas OM is more suited to graphs which give rise
to few possible MRLSs.

{5) The behaviour of all methods as graph size in-
creases requires investigation. Based on the presently
available evidence, one might conjecture that com-
puter time for every method except CM increases
with n? (or more).
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