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o

urren
e of u within x. This paper introdu
es an array 
 = 
[1::n℄ 
alledthe 
over array in whi
h ea
h element 
[i℄, 1 � i � n, is the length of thelongest proper 
over of x[1::i℄ or zero if no su
h 
over exists. In fa
t it turnsout that 
 des
ribes all the 
overs of every pre�x of x. Several interestingproperties of 
 are established, and a simple algorithm is presented that
omputes 
 on-line in �(n) time using �(n) additional spa
e. Thus thenew algorithm 
omputes for all pre�xes of x information that previous 
overalgorithms 
ould 
ompute only for x itself, and does so with no in
rease inspa
e or time 
omplexity.KEYWORDSstring, word, algorithm, period, quasiperiod, 
over1 INTRODUCTIONLet x denote a nonempty string of length n � 1. A substring u of x is 
alleda 
over or quasiperiod of x (we say also that u 
overs x) if and only if x 
anbe 
onstru
ted by 
on
atenating or overlapping 
opies of u, so that everyposition of x lies within an o

urren
e of u within x. Thus x is always a
over of itself; if a proper substring u of x is also a 
over of x, then u is 
alleda proper 
over of x. For example, the string x = ab
ab
aab
a has 
overs xand ab
a, and proper 
over ab
a. A string that has a proper 
over is 
alled
overable (also, quasiperiodi
).The idea of a 
overable string generalizes the idea of a repetition; that is,a string x that 
an be 
onstru
ted by 
on
atenating 
opies of some propersubstring u of x. Repetitions in strings were �rst studied by the mathemati-
ian Axel Thue [17℄, who showed how to 
onstru
t repetition-free strings ofunbounded length on three letters. Over the last two de
ades, 
omputer s
i-entists have be
ome interested in the algorithmi
 problem of 
omputing allthe repetitions in a given string [8, 14, 4℄, a task that requires �(n logn) time.It is interesting to note that Thue also showed in [17℄ how to 
onstru
t in�-nite strings without overlaps | that is, with no 
overable substrings that arenot repetitions. The 
orresponding algorithmi
 problem, the 
omputation ofthe maximal 
overable substrings of a given string, has also been solved inmodern times [1, 10℄. 2



Repetitions and 
overs in strings are spe
ial 
ases of \approximate peri-odi
ity", a topi
 that has potential appli
ations in mole
ular biology, proba-bility theory, 
oding theory, data 
ompression, and formal language theory.In fa
t, a generalization of the idea of a 
over provides a basis for 
lassifyingstrings based on a kind of approximate periodi
ity: given x and a positiveinteger k � n, a set Uk = fu1; u2; : : : ; umg of strings of length k is said tobe a k-
over of x if and only if x 
an be 
onstru
ted by 
on
atenating oroverlapping elements of Uk. The k-
over is said to be minimum if and onlyif m = jUkj is a minimum for given x and k. Thus for a range of values of k,the minimum k-
over 
an provide a measure of how 
lose to periodi
 everystring x is. An algorithm that 
omputes a minimum k-
over in O�n2(n�k)�time has re
ently been proposed [12℄.While the problem of determining whether or not a given string x is arepetition is trivial, the problem of determining whether or not x has a
over is not. In [2℄ Apostoli
o, Fara
h and Iliopoulos presented a linear-time algorithm for 
omputing the shortest 
over of x. Then in [6℄ Breslauerpublished an on-line algorithm for the same problem. More re
ently, Mooreand Smyth [15, 16℄ showed how to 
ompute all the 
overs of x in lineartime, a result 
onsiderably extended in this paper with an algorithm that
omputes on-line in linear time all the 
overs of every pre�x of x. PRAMalgorithms have also been developed for the shortest 
over [7℄ and all-
overs[11℄ problems, both dependent on an eÆ
ient algorithm for the subtree maxgap problem [5℄.A proper substring u of x that is both a pre�x and a suÆx of x is 
alleda border of x. Like the previous algorithms for 
omputing 
overs of x, ouralgorithm makes use of the border array of x; that is, the array � = �[1::n℄that gives in ea
h position i the length of the longest border of x[1::i℄. Inaddition, we introdu
e, analogous to the border array, a \
over array" and
orresponding \
over tree". The new algorithm also is 
losely analogousto the well-known border array algorithm [3℄; for ea
h i, it has two main
omponents:� update the 
urrent position i in the 
over array | that is, insert i inits 
orre
t position in the 
over tree;� 
ompute positions j < i in the 
over array su
h that x[1::j℄ 
annot bea 
over of any x[1::k℄, k � i.In Se
tion 2 we introdu
e the 
over array and establish some of its prop-3



erties. In Se
tion 3 we des
ribe our new algorithm. Se
tion 4 makes use ofan example to distinguish the new algorithm from its prede
essors.2 THE COVER ARRAYWe let x denote a string of length jxj = n and represent it as an arrayx[1::n℄. The spe
ial symbol � denotes the empty string; that is, the stringof length 0. It will be 
onvenient to treat � as a proper substring of everynonempty string x. Thus every string has the empty border and, for example,x = abaabaab has the borders u = abaab, u = ab and u = �. As observed inthe introdu
tion, a border array � is used to store the length of the longestborder of ea
h x[1::i℄; for example, the border array of abaabaab is 0011234.For a more elaborate example, see Figure 1.It is 
onvenient to introdu
e the notation �1[i℄ = �[i℄, 1 � i � n, with�j[i℄ = ���j�1[i℄� for every j � 2 su
h that �j�1[i℄ is de�ned and 1 ��j�1[i℄ � n. Then x�1::�[i℄� is the longest border of x[1::i℄, and x�1::�j[i℄�is the longest border of x�1::�j�1[i℄� for every j 2 2::m. Sin
e by de�nition0 � �[i℄ < i for every i 2 1::n, it follows that the sequen
e�[i℄; �2[i℄; : : : ; �m[i℄ (1)is well-de�ned for every i and monotone de
reasing to �m[i℄ = 0 for somem � 1. It is well known [3℄ that this sequen
e in fa
t identi�es every borderof x[1::i℄, and further that, given x, � 
an be 
omputed on-line in �(n) time(using the so-
alled \failure fun
tion" algorithm). We quote without proofanother well-known result [3℄ that will be required later:Lemma 2.1 For every border array �[1::n℄ and every integer i 2 1::n � 1,the only possible values of �[i + 1℄ are zero and b + 1, where b denotes anyelement of the sequen
e (1). 2Corresponding to ea
h �j[i℄, 1 � j � m, we de�ne a period i � �j[i℄ ofx[1::i℄. The shortest period 
orresponding to j = 1 is 
alled the period of x.If p = i� �[i℄, r = bi=p
, q = i mod p, u = x[1::p℄ and u0 = x[1::q℄, then wesay that x[1::i℄ = uru0 is written in normal form.It is useful to represent the border array � as a tree T�, 
alled the bordertree [9, 16℄; that is, a rooted tree in whi
h ea
h node has a unique integerlabel 
hosen from 0::n and the following rules hold: the root has label 0, and4
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Figure 1: The Border and Cover Trees of x.the parent of the node with label i, i = 1; 2; : : : ; n, is the node with label�[i℄. Then as illustrated in Figure 1, the labels of the an
estors of the nodelabelled i are exa
tly the lengths of the borders of x[1::i℄.The 
on
ept of the 
over array is very similar to that of the border arrayand, as we shall see below, espe
ially in Theorems 2.2 and 2.3, the valuesof 
orresponding elements in these two arrays are 
losely related too. Welet 
 = 
[1::n℄ denote the 
over array of string x, where ea
h element 
[i℄spe
i�es the length of the longest proper 
over of x[1::i℄ or zero if there is noproper 
over. It is shown in [6℄ that if u1 and u2 are 
overs of x, ju1j > ju2j,then u2 is a 
over of u1. Thus, analogous to the sequen
e (1) that exists forea
h position i in the border array, we �nd in the 
over array a 
orrespondingmonotone de
reasing sequen
e
[i℄; 
2[i℄; : : : ; 
m[i℄ (2)with 
m[i℄ = 0, de�ned for every i 2 1::n, where of 
ourse m = m(i) is afun
tion of i. This sequen
e identi�es in des
ending order of length all theproper 
overs x�1::
[i℄�; x�1::
2[i℄�; : : : ; x�1::
m�1[i℄�of every x[1::i℄. 5



x[1::i + 1℄: x[1::
℄ : : : x[1::
℄ �x[1::
0℄ x[1::
0℄ x[1::
0℄Figure 2: x[1::
0℄ is a proper 
over of x[1::
℄�.Analogous to T�, a 
over tree T
 is a rooted tree representing 
 in whi
hea
h node has a unique integer label 
hosen from 0::n, the root has label0, and the parent of the node with label i, i = 1; 2; :::; n, is the node withlabel 
[i℄. Then the nonzero labels of the an
estors of the node labelled iare exa
tly the lengths of the proper 
overs of x[1::i℄, whi
h therefore 
an bedetermined simply by visiting i's an
estors in T
. See Figure 1.We now investigate properties of the 
over array and its relation to theborder array. Of 
ourse, sin
e a proper 
over must be a border, we see thatevery 
[i℄ must assume one of the values (1). Hen
e 
[i℄ � �[i℄ for all iand, in parti
ular, �[i℄ = 0 implies 
[i℄ = 0. But it turns out that there aremu
h tighter, and mu
h less obvious, restri
tions on the values that may beassumed by 
[i℄, as the next two theorems show.Theorem 2.2 For every integer i 2 1::n�1, if 
[i℄ 6= 0, then either 
[i+1℄ �
[i℄ + 1 or 
[i+ 1℄ = 0.Proof Let 
 = 
[i℄. Then 
 > 0 and x[1::
℄ is the longest 
over of x[1::i℄.Suppose the theorem is false, so that there exists a positive integer 
0 � 
 su
hthat x[1::
0℄ is the longest 
over of x[1::i+ 1℄ = x[1::i℄�. Then (see Figure 2)it follows that x[1::
0℄ is a proper 
over of x[1::
℄�. Observe however that, forevery �0 6= �, x[1::
0℄ is not a 
over of x[1::
℄�0.If every o

urren
e of x[1::
℄ in x[1::i+1℄ were followed by �, it would followthat x[1::
 + 1℄ would be a 
over of x[1::i + 1℄, 
ontrary to the hypothesisthat x[1::
0℄ is the longest 
over. Thus some o

urren
e of x[1::
℄ in x[1::i+1℄must be followed by �0 6= �. But as we see below, in Lemma 2.4, this isimpossible: it turns out that every o

urren
e of x[1::
℄ in x[1::i℄ must befollowed by �. We 
on
lude that x[1::
 + 1℄ must be a 
over of x[1::i + 1℄,and so the assumption 0 < 
0 � 
 is false, and the theorem is proved. 26



Theorem 2.3 For every integer i 2 1::n�1, if �[i+1℄ � �[i℄, then 
[i+1℄ =0.Proof Sin
e �[i + 1℄ = 0 implies 
[i + 1℄ = 0, we may assume without lossof generality that �[i + 1℄ > 0. Then by Lemma 2.1, �[i + 1℄ = �j[i℄ + 1for some positive integer j; by hypothesis, j � 2, so that �[i℄ > 0. Supposethat the theorem is false, so that 
[i + 1℄ = 
0 > 0 and x[1::
0℄ is a 
over ofx[1::i + 1℄. Then, setting 
 = �[i℄, we have0 � 
0 = 
[i+ 1℄ � �[i+ 1℄ � 
:Now let x[i+1℄ = �. Sin
e �[i+1℄ 6= �[i℄+1, it must be true that x[
+1℄ 6= �;that is, an o

urren
e of x[1::
℄ in x[1::i+1℄ is followed by some �0 6= �, again
ontrary to Lemma 2.4. Therefore the assumption that 
[i+ 1℄ > 0 must befalse. 2Both of the pre
eding theorems depend on the following lemma. Unfor-tunately, the only proof of it that the authors have been able to devise israther te
hni
al.Lemma 2.4 Suppose that a nonempty string x = x[1::i℄ has a nonemptyborder x[1::
℄. Suppose further that x[1::i + 1℄ = x[1::i℄� has a proper 
overx[1::
0℄ for some 
0 � 
. Then for every letter �0 6= �, the substring x[1::
℄�0does not o

ur in x[1::i℄.Proof Suppose on the 
ontrary that a substring x[1::
℄�0 does exist in x[1::i℄for some �0 6= �. Then sin
e x[1::
0℄ is a 
over, x[1::
0�1℄ = x[
�
0+2::
℄ andtwo o

urren
es of x[1::
0℄ must either overlap or be adja
ent, We assume, asshown in Figure 3, that two o

urren
es overlap; the proof for the adja
ent
ase is similar. Hen
e there exist positive integers h and h0 su
h thatx[1::h℄ = x[
0 � h+ 1::
0℄ = x[
0 � h+ 1::
0 � 1℄�,x[1::h0℄ = x[
0 � h0 + 1::
0 � 1℄�0,where h+ h0 � 
0. It is implied that h 6= h0, sin
e otherwise we have � = �0,
ontrary to the hypothesis. Observe that x[1::h0� 1℄ and x[1::h� 1℄ are bothborders of x[1::
0 � 1℄. Then(h� 1) + (h0 � 1) � (
0 � 1)� 1: (3)7



x: : : : x[1::
℄ �0 : : :x[1::
0℄ x[1::
0-1℄� h-x[1::
0℄x[1::
0℄� h0 -Figure 3: Two o

urren
es of x[1::
0℄ must overlap.Without loss of generality, suppose that h � h0 + 1, so that (3) be
omesh� 1 � (
0 � 1)=2and x[1::
0�1℄ has a border of length at least (
0�1)=2. Hen
e we may writex[1::
0 � 1℄ in the normal formuk = ubk
u�; k � 2;where u� is a possibly empty proper pre�x of u, and u is not a repetition.Consider now an o

urren
e of x[1::
0 � 1℄�0 = ubk
u��0, with overlappingstrings x[1::
0�1℄� = ubk
u�� at left and right, as shown in Figure 3. Sin
e uis not a repetition, it is well known [13℄ that u therefore does not equal anynontrivial rotation of itself; that is, if we write u = uPREuSUF for nonemptyuPRE and uSUF , then u 6= uSUFuPRE. Further, sin
e u�� does not mat
hwith u��0, the only possible overlap at the left is of the formk�1z }| {u u : : : u u��0uu : : : u| {z }k u�� ,where u�� overlaps the �rst ju��j positions of an o

urren
e of u in x[1::
0�1℄.It follows that u�� is a pre�x of u, while u��0 is not.Hen
e the overlap at the right 
annot take the form:kz }| {uu : : : u u��0u u : : : u| {z }k�1 u��,and so must o

ur as follows: 8



uu : : : û u��0uu : : : u u���uu : : : uu��.Here in the third row the leftmost u (marked �u) of the righthand o

urren
e ofx[1::
0℄ must partially overlap with the rightmost u (marked û) of the lefthando

urren
e of x[1::
0℄ in the �rst row. We see that therefore a nonempty suÆxof length at least juj � �ju��j+ 1� = juj � ju�j � 1of û must 
oin
ide with a pre�x of �u of the same length. But this means that�u is a substring of ûu�, whi
h implies that u is a nontrivial rotation of itself,as we have seen an impossibility.Thus the original assumption that the substring x[1::
℄�0 o

urs in x mustbe false, and so the lemma is proved. 2We 
on
lude this se
tion by introdu
ing two 
on
epts important for thealgorithm of Se
tion 3 together with 
orresponding lemmas. The �rst ofthese ideas is that of a \live" pre�x.Given x, any string of whi
h x is a pre�x is 
alled a right extension of x. Ifa pre�x u of x 
an possibly be a 
over of some right extension of x, then u issaid to be live with respe
t to x; otherwise, u is said to be dead with respe
tto x. For example, if x = abaab;then u = aba is live, sin
e aba 
overs the right extension xa, while u = a andu = ab 
an 
over no right extension of x, and so are dead.Sin
e a pre�x is identi�ed by its length, and sin
e we speak always of asingle given string x, we extend this terminology to positions in x: we saythat j is live with respe
t to i if and only if x[1::j℄ 
an possibly be a 
over ofsome right extension of x[1::i℄. Also, sin
e positions in x 
orrespond to nodesin the 
over tree, we extend the terminology further to speak of live and deadnodes in T
 . Observe that if j is dead with respe
t to i, it is dead also withrespe
t to i+1. Thus, as the string x is s
anned from left to right | that is,as i in
reases | the number of dead positions is monotone nonde
reasing.The �rst lemma provides a 
hara
terization of live positions:Lemma 2.5 With respe
t to every i 2 1::n, j 0 is live if and only if x[1::j 0℄ isa 
over of some x[1::j℄, where j 2 i� �[i℄::i.9



Proof Suppose �rst that j 0 is live with respe
t to i. Then there exists aminimum-length right extension y = x[1::i℄v, 0 � jvj < i, of x[1::i℄ su
h thatx[1::j 0℄ is a 
over of y. Hen
e x[1::j 0 � jvj℄ is a border of x[1::i℄, and so forsome j 2 i��j 0�jvj�::i, x[1::j 0℄ must 
over x[1::j℄. Sin
e �[i℄ is the length ofthe longest border of x[1::i℄, j 0� jvj � �[i℄, and so j 2 i��[i℄::i, as required.To prove suÆ
ien
y, suppose that x[1::j 0℄ is a 
over of some x[1::j℄, j 2i� �[i℄::i. Write x[1::i℄ = uru0 in normal form, where r = bi=juj
 � 1, u0 is aproper pre�x of u, and �[i℄ = jur�1u0j. Then u is a pre�x of x[1::j℄:x[1::j℄ = usu00for some 1 � s � r and some proper pre�x u00 of u. Two 
ases now arise:� If x is a pre�x of u, x[1::j 0℄ must 
over utu00 for any t � s; in parti
ular,x[1::j 0℄ must 
over a right extension ur+1u00 of x[1::i℄, and so j 0 is livewith respe
t to i.� If on the other hand u is a pre�x of x[1::j 0℄, it follows thatx[1::j 0℄ = utu000for some t � 1 and some proper pre�x u000 of u. Therefore x[1::j 0℄
overs any string uku000, k � t, and in parti
ular ur+1u000, again a rightextension of x[1::i+ 1℄. Thus in this 
ase also j 0 is live with respe
t toi.2 Sin
e x[1::j℄ 
overs itself, Lemma 2.5 tells us that every j 2 i � �[i℄::i islive with respe
t to i.The se
ond main idea to be introdu
ed is that of a \run", already impli
itin Theorem 2.3. A run Ri;h is a maximal sequen
e of h � 1 positions in theborder array � su
h that �[j + 1℄ = �[j℄ + 1 for every j 2 i::i + h� 1. Notethat the maximality of the run implies that �[i℄ � �[i � 1℄, for i � 1 � 1,and �[i + h � 1℄ � �[i + h℄, for i + h � n. For example, if we have � =0011232345645, there are runs R1;1, R2;2, R4;3, R7;5 and R12;2.Observe that at the start position i of every run in the � array, Theorem 2.3implies that 
[i℄ = 0. Observe also as a result of Lemma 2.5 that within arun values i and �[i℄ both in
rease by 1 together, so that the set of deadnodes remains un
hanged; thus the only time at whi
h the number of deadnodes 
an in
rease is at the beginning of a run.10



As we shall see in Se
tion 3, it is important for our algorithm to 
hara
terizedead nodes with respe
t to the beginning of a run:Lemma 2.6 Let i denote a position that starts a run in a border array �.Then j < i� �[i℄ is dead with respe
t to i if and only if j has no 
hildren inT
 that are live with respe
t to i.Proof Suppose j < i � �[i℄ is dead with respe
t to i. Then x[1::j℄ 
annotpossibly 
over any right extension of x[1::i℄. If j has a 
hild j 0 in T
 that islive with respe
t to i, then x[1::j 0℄ is a potential 
over of x[1::k℄, for somek � i. But sin
e j 0 is a 
hild of j, it must be true that x[1::j℄ 
overs x[1::j 0℄and so also the same x[1::k℄, a 
ontradi
tion. Thus ne
essity is proved.To prove suÆ
ien
y, suppose that j < i��[i℄ has no 
hild live with respe
tto i, but that j itself is live with respe
t to i. Then, by Lemma 2.5, x[1::j℄must 
over some string x[1::k℄, i� �[i℄ � k � i. Therefore j has a 
hild k inT
 that, again by Lemma 2.5, must be live with respe
t to i, a 
ontradi
tion.We 
on
lude that j is dead with respe
t to i. 2As a 
orollary of this result, we observe that if a node j is live with respe
tto a node i, then so is its parent 
[j℄ in T
.We state as a �nal lemma a simple property of i� �[i℄ that is required inthe algorithm:Lemma 2.7 The fun
tion i � �[i℄ is invariant for every i in the same runand monotone nonde
reasing in i; in parti
ular, for any position i > 1 thatstarts a new run in �, (i� 1)� �[i� 1℄ < i� �[i℄:Proof An immediate 
onsequen
e of the fa
t that �[i℄ � �[i�1℄ if and onlyif i starts a run. 2
3 COMPUTING THE COVER ARRAYAs mentioned in the introdu
tion, the algorithm performs two main tasksas the string x and border array � are pro
essed from left to right, for ea
hi = 1; 2; : : : ; n: 11



� 
ompute 
[i℄ and add i as a new 
hild of 
[i℄ in the 
over tree T
 |re
all that by de�nition 
[i℄ is just the parent of i in T
 ;� for every i that marks the start of a run in �, 
ompute the nodes in T
that are dead with respe
t to i.In addition to �[1::n℄ and 
[1::n℄, the algorithm also uses the followingarrays:� dead[0::n � 1℄: by Lemma 2.6, dead[j℄ = true if and only if j has no
hildren in T
 that are live with respe
t to the 
urrent value of i andj < i� �[i℄ (as we shall see, the root node 0 in T
 is always live);� live
hildren[0::n℄: live
hildren[i℄ = k if and only if node i in the 
overtree T
 has exa
tly k live 
hildren.� largestlive[0::n℄: largestlive[i℄ = j if and only if j is the largest livean
estor of i in the 
over tree T
 (of 
ourse i is always live with respe
tto itself).The algorithm is initialized by pla
ing node 0 in the 
over tree T
 , set-ting every position in dead to false, every position in live
hildren to 0, andlargestlive[i℄ to i for every i 2 1::n. Then the pro
edure AllCovers outlinedbelow is exe
uted on the 
urrent ith position in x, i = 1; 2; : : : ; n. AllCovershas just three steps: Step 1 ensures that the largestlive array is kept up todate, Step 2 atta
hes i to its proper parent in T
 , and Step 3 ensures thatthe dead array is updated at the start of ea
h new run.1. fIf �[i℄ in T
 is dead, �[i℄ should have the same largest live an
estor asits parent does.gIf dead��[i℄� = true, then largestlive��[i℄� largestliveh
��[i℄�i.2. fCompute 
[i℄: if �[i℄ is live, set 
[i℄  �[i℄; otherwise, sin
e every
over of x[1::i℄ must 
over x�1::�[i℄�, set 
[i℄ equal to the largest livean
estor (possibly 0) of �[i℄.g
[i℄ largestlive��[i℄�; in
rement live
hildren�
[i℄�.3. fIdentify all the nodes in T
 that have be
ome dead as a result ofstarting the new run.gIf i > 1 starts a new run in the border array �:12



3.1 Compute 
1  i� �[i℄, 
2  (i� 1)� �[i� 1℄ (Lemma 2.7).3.2 For every j = 
1 � 1; 
1 � 2; :::; 
2 (Lemma 2.6):� if not dead[j℄ and j has no live 
hildren in T
, thendead[j℄ true; de
rement live
hildren�
[j℄�;� (re
ursively) if j has just been set dead and 
[j℄ has no live
hildren in T
, thendead�
[j℄� true; de
rement live
hildrenh
�
[j℄�i:We 
laim thatTheorem 3.1 Pro
edure AllCovers 
omputes the 
over array 
[1::n℄ 
or-re
tly.Proof We 
onsider the steps separately, beginning with Step 3.Let 1 = i1 < i2 < � � � < ik � n denote the positions in � at whi
h runsstart. In Step 3 ea
h position j 2 ih�1::ih � 1, h = 2; 3; : : : ; k � 1, is testedto determine whether or not it should be set dead with respe
t to ih+1 | byLemma 2.5, ea
h su
h position was live with respe
t to ih. By Lemma 2.6,the parent 
[j℄ of any position j that is set dead must be inspe
ted: 
[j℄ mustpreviously have been live, but it will now be dead if and only if it has no live
hildren. Thus, Step 3 must re
ursively examine the parent of any positionthat has been set dead, until an an
estor is found that has at least one live
hild, and that therefore remains alive. Note that sin
e ih+1 is always livewith respe
t to itself, there must by Lemma 2.6 exist a path 
ontaining onlylive nodes that leads from ih+1 to the root. Thus the root is always live, andStep 3 will always terminate at the �rst live node along the path from j tothe root.Note that the positions j 2 ih�1::ih� 1 are 
onsidered in the reverse orderih�1; ih�2; : : : ; ih�1 in order to take a

ount of the possibility that j may beset dead and that moreover 
[j℄ 2 ih�1::ih� 1 also. It is for this same reasonthat, in order to avoid redundant pro
essing of the same path to the root, itis ne
essary to 
he
k in Step 3.2 that not dead[j℄: j 
ould have been set deadbe
ause it is the parent of a larger node, already set dead, in ih�1::ih � 1.Sin
e live
hildren�
[j℄� is always de
remented for every node j that is setdead, we 
on
lude that Step 3 deals 
orre
tly with the task of setting nodesdead at the start of ea
h new run. 13



Step 2 is a straightforward update of T
 based on the 
urrent position i.Its 
orre
tness depends entirely on the 
orre
t update of largestlive��[i℄� inStep 1.Step 1 will be exe
uted only when �[i℄ has been set dead during one of theprevious exe
utions of Step 3.2. As noted in the proof of Step 3, if some j isto be set dead with respe
t to ih+1, it must have been live with respe
t to ih,hen
e by Lemma 2.5 live with respe
t to ih+1 � 1. Therefore x[1::j℄ wouldbe a potential 
over of x[1::ih+1℄; thus it would 
over some right extension ofx�1::�[ih+1℄�, whi
h is a suÆx of x[1::ih+1℄. Hen
e the following fa
t holds:at the time that any position j is set dead, it must be true that j is greaterthan �[ih+1℄, where ih+1 is the 
urrent value used in Step 3.1.Sin
e by Lemma 2.1 values in the � array 
an in
rease by at most one froma given position to the next, it follows that every su
h dead position j mustlater be
ome a value in the � array | that is, j = �[i0℄ for some i0 > ih+1| in order for Step 1 to be exe
uted. In parti
ular, the values j must bepro
essed in Step 1 in as
ending order of magnitude; that is, in des
endingorder in the 
over tree T
. This means that Step 1 will pass 
orre
t values ofthe largest live an
estor from parent to 
hild. 2Now 
onsider the time required by AllCovers. Ea
h of the steps ex
eptpossibly Step 3.2 requires only 
onstant time. Then AllCovers requires �(n)time plus the total time used within Step 3.2. To estimate this total time,observe that the time required for ea
h exe
ution of Step 3.2 is proportionalto maxf(
1 � 
2); no. of nodes set deadg:Sin
e the sum of 
1� 
2 over all runs is at most n� 1 and sin
e ea
h of the nnodes may be set dead at most on
e, it follows that the total time for Step3.2 is O(2n). Hen
eTheorem 3.2 Pro
edure AllCovers requires �(n) time and �(n) spa
e forits exe
ution. 2AllCovers is an optimal on-line algorithm: it 
omputes 
, thus makingavailable all the 
overs of every pre�x of x, in �(n) time and spa
e. Note thatsin
e the 
al
ulation of � is also on-line, AllCovers 
an easily be modi�ed tosimultaneously 
ompute on-line both the border and the 
over arrays.The reader will �nd it instru
tive to follow the algorithm as it applies tothe example given in Figure 1. Note parti
ularly that, as a result of the fa
tthat �[22℄ = 2, the following nodes are all set dead: 5; 6; 9; 10; 11; 13� 19.14



4 COMPARISONWITH PREVIOUS ALGO-RITHMSIn order to make 
lear the distin
tion between the algorithm presented hereand previous 
over algorithms, we dupli
ate here the example given in Fig-ure 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23x = a b a a b a b a a b a a b a b a a b a b a b a� = 0 0 1 1 2 3 2 3 4 5 6 4 5 6 7 8 9 10 11 7 8 2 3
 = 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 3For this string Algorithm AFI [2℄ would 
ompute only 
[23℄ = 3, the shortestproper 
over of x. If instead AFI were applied to the trun
ated string x[1::19℄,it would 
ompute only the length 3 of the shortest 
over, but would be unableto report the 
overs of lengths 6 and 11. Sin
e AFI is not an on-line algorithm,it would be unable to extend its 
omputation of the shortest 
over of x[1::19℄to x: even though x[1::19℄ is a pre�x of x, the two problems would have tobe 
onsidered independently.The on-line Algorithm B [6℄ would on the other hand be able to 
omputethe shortest 
over only of every pre�x of x. Thus the array produ
ed byAlgorithm B would be as follows:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 = 0 0 0 0 0 3 0 3 0 5 3 0 5 3 0 3 9 5 3 0 3 0 3Finally, the Algorithm MS [15, 16℄ would like AFI 
ompute only 
[23℄ = 3,sin
e the only proper 
over of x is x[1::3℄. For the pre�x x[1::19℄, however,MS would 
ompute the three values11; 6; 3;spe
ifying its three proper 
overs. But, also like AFI, Algorithm MS is noton-line and so would need to treat x and x[1::19℄ as separate problems.Viewed in this light, then, the new algorithm 
ombines the bene�ts ofAlgorithms B and MS, while still of 
ourse maintaining linear exe
ution time.
15
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