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ourrene of u within x. This paper introdues an array  = [1::n℄ alledthe over array in whih eah element [i℄, 1 � i � n, is the length of thelongest proper over of x[1::i℄ or zero if no suh over exists. In fat it turnsout that  desribes all the overs of every pre�x of x. Several interestingproperties of  are established, and a simple algorithm is presented thatomputes  on-line in �(n) time using �(n) additional spae. Thus thenew algorithm omputes for all pre�xes of x information that previous overalgorithms ould ompute only for x itself, and does so with no inrease inspae or time omplexity.KEYWORDSstring, word, algorithm, period, quasiperiod, over1 INTRODUCTIONLet x denote a nonempty string of length n � 1. A substring u of x is alleda over or quasiperiod of x (we say also that u overs x) if and only if x anbe onstruted by onatenating or overlapping opies of u, so that everyposition of x lies within an ourrene of u within x. Thus x is always aover of itself; if a proper substring u of x is also a over of x, then u is alleda proper over of x. For example, the string x = ababaaba has overs xand aba, and proper over aba. A string that has a proper over is alledoverable (also, quasiperiodi).The idea of a overable string generalizes the idea of a repetition; that is,a string x that an be onstruted by onatenating opies of some propersubstring u of x. Repetitions in strings were �rst studied by the mathemati-ian Axel Thue [17℄, who showed how to onstrut repetition-free strings ofunbounded length on three letters. Over the last two deades, omputer si-entists have beome interested in the algorithmi problem of omputing allthe repetitions in a given string [8, 14, 4℄, a task that requires �(n logn) time.It is interesting to note that Thue also showed in [17℄ how to onstrut in�-nite strings without overlaps | that is, with no overable substrings that arenot repetitions. The orresponding algorithmi problem, the omputation ofthe maximal overable substrings of a given string, has also been solved inmodern times [1, 10℄. 2



Repetitions and overs in strings are speial ases of \approximate peri-odiity", a topi that has potential appliations in moleular biology, proba-bility theory, oding theory, data ompression, and formal language theory.In fat, a generalization of the idea of a over provides a basis for lassifyingstrings based on a kind of approximate periodiity: given x and a positiveinteger k � n, a set Uk = fu1; u2; : : : ; umg of strings of length k is said tobe a k-over of x if and only if x an be onstruted by onatenating oroverlapping elements of Uk. The k-over is said to be minimum if and onlyif m = jUkj is a minimum for given x and k. Thus for a range of values of k,the minimum k-over an provide a measure of how lose to periodi everystring x is. An algorithm that omputes a minimum k-over in O�n2(n�k)�time has reently been proposed [12℄.While the problem of determining whether or not a given string x is arepetition is trivial, the problem of determining whether or not x has aover is not. In [2℄ Apostolio, Farah and Iliopoulos presented a linear-time algorithm for omputing the shortest over of x. Then in [6℄ Breslauerpublished an on-line algorithm for the same problem. More reently, Mooreand Smyth [15, 16℄ showed how to ompute all the overs of x in lineartime, a result onsiderably extended in this paper with an algorithm thatomputes on-line in linear time all the overs of every pre�x of x. PRAMalgorithms have also been developed for the shortest over [7℄ and all-overs[11℄ problems, both dependent on an eÆient algorithm for the subtree maxgap problem [5℄.A proper substring u of x that is both a pre�x and a suÆx of x is alleda border of x. Like the previous algorithms for omputing overs of x, ouralgorithm makes use of the border array of x; that is, the array � = �[1::n℄that gives in eah position i the length of the longest border of x[1::i℄. Inaddition, we introdue, analogous to the border array, a \over array" andorresponding \over tree". The new algorithm also is losely analogousto the well-known border array algorithm [3℄; for eah i, it has two mainomponents:� update the urrent position i in the over array | that is, insert i inits orret position in the over tree;� ompute positions j < i in the over array suh that x[1::j℄ annot bea over of any x[1::k℄, k � i.In Setion 2 we introdue the over array and establish some of its prop-3



erties. In Setion 3 we desribe our new algorithm. Setion 4 makes use ofan example to distinguish the new algorithm from its predeessors.2 THE COVER ARRAYWe let x denote a string of length jxj = n and represent it as an arrayx[1::n℄. The speial symbol � denotes the empty string; that is, the stringof length 0. It will be onvenient to treat � as a proper substring of everynonempty string x. Thus every string has the empty border and, for example,x = abaabaab has the borders u = abaab, u = ab and u = �. As observed inthe introdution, a border array � is used to store the length of the longestborder of eah x[1::i℄; for example, the border array of abaabaab is 0011234.For a more elaborate example, see Figure 1.It is onvenient to introdue the notation �1[i℄ = �[i℄, 1 � i � n, with�j[i℄ = ���j�1[i℄� for every j � 2 suh that �j�1[i℄ is de�ned and 1 ��j�1[i℄ � n. Then x�1::�[i℄� is the longest border of x[1::i℄, and x�1::�j[i℄�is the longest border of x�1::�j�1[i℄� for every j 2 2::m. Sine by de�nition0 � �[i℄ < i for every i 2 1::n, it follows that the sequene�[i℄; �2[i℄; : : : ; �m[i℄ (1)is well-de�ned for every i and monotone dereasing to �m[i℄ = 0 for somem � 1. It is well known [3℄ that this sequene in fat identi�es every borderof x[1::i℄, and further that, given x, � an be omputed on-line in �(n) time(using the so-alled \failure funtion" algorithm). We quote without proofanother well-known result [3℄ that will be required later:Lemma 2.1 For every border array �[1::n℄ and every integer i 2 1::n � 1,the only possible values of �[i + 1℄ are zero and b + 1, where b denotes anyelement of the sequene (1). 2Corresponding to eah �j[i℄, 1 � j � m, we de�ne a period i � �j[i℄ ofx[1::i℄. The shortest period orresponding to j = 1 is alled the period of x.If p = i� �[i℄, r = bi=p, q = i mod p, u = x[1::p℄ and u0 = x[1::q℄, then wesay that x[1::i℄ = uru0 is written in normal form.It is useful to represent the border array � as a tree T�, alled the bordertree [9, 16℄; that is, a rooted tree in whih eah node has a unique integerlabel hosen from 0::n and the following rules hold: the root has label 0, and4
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0 s������1s #####2s ����3s �����4s ����5s ����7s EEEE9s12sLLLL 15sSSSS 20slllll 22sQQQQQQ���6 s���11 s 14s���19s 8 seee23s���21s16s 10s���13s���18s���17sTFigure 1: The Border and Cover Trees of x.the parent of the node with label i, i = 1; 2; : : : ; n, is the node with label�[i℄. Then as illustrated in Figure 1, the labels of the anestors of the nodelabelled i are exatly the lengths of the borders of x[1::i℄.The onept of the over array is very similar to that of the border arrayand, as we shall see below, espeially in Theorems 2.2 and 2.3, the valuesof orresponding elements in these two arrays are losely related too. Welet  = [1::n℄ denote the over array of string x, where eah element [i℄spei�es the length of the longest proper over of x[1::i℄ or zero if there is noproper over. It is shown in [6℄ that if u1 and u2 are overs of x, ju1j > ju2j,then u2 is a over of u1. Thus, analogous to the sequene (1) that exists foreah position i in the border array, we �nd in the over array a orrespondingmonotone dereasing sequene[i℄; 2[i℄; : : : ; m[i℄ (2)with m[i℄ = 0, de�ned for every i 2 1::n, where of ourse m = m(i) is afuntion of i. This sequene identi�es in desending order of length all theproper overs x�1::[i℄�; x�1::2[i℄�; : : : ; x�1::m�1[i℄�of every x[1::i℄. 5



x[1::i + 1℄: x[1::℄ : : : x[1::℄ �x[1::0℄ x[1::0℄ x[1::0℄Figure 2: x[1::0℄ is a proper over of x[1::℄�.Analogous to T�, a over tree T is a rooted tree representing  in whiheah node has a unique integer label hosen from 0::n, the root has label0, and the parent of the node with label i, i = 1; 2; :::; n, is the node withlabel [i℄. Then the nonzero labels of the anestors of the node labelled iare exatly the lengths of the proper overs of x[1::i℄, whih therefore an bedetermined simply by visiting i's anestors in T. See Figure 1.We now investigate properties of the over array and its relation to theborder array. Of ourse, sine a proper over must be a border, we see thatevery [i℄ must assume one of the values (1). Hene [i℄ � �[i℄ for all iand, in partiular, �[i℄ = 0 implies [i℄ = 0. But it turns out that there aremuh tighter, and muh less obvious, restritions on the values that may beassumed by [i℄, as the next two theorems show.Theorem 2.2 For every integer i 2 1::n�1, if [i℄ 6= 0, then either [i+1℄ �[i℄ + 1 or [i+ 1℄ = 0.Proof Let  = [i℄. Then  > 0 and x[1::℄ is the longest over of x[1::i℄.Suppose the theorem is false, so that there exists a positive integer 0 �  suhthat x[1::0℄ is the longest over of x[1::i+ 1℄ = x[1::i℄�. Then (see Figure 2)it follows that x[1::0℄ is a proper over of x[1::℄�. Observe however that, forevery �0 6= �, x[1::0℄ is not a over of x[1::℄�0.If every ourrene of x[1::℄ in x[1::i+1℄ were followed by �, it would followthat x[1:: + 1℄ would be a over of x[1::i + 1℄, ontrary to the hypothesisthat x[1::0℄ is the longest over. Thus some ourrene of x[1::℄ in x[1::i+1℄must be followed by �0 6= �. But as we see below, in Lemma 2.4, this isimpossible: it turns out that every ourrene of x[1::℄ in x[1::i℄ must befollowed by �. We onlude that x[1:: + 1℄ must be a over of x[1::i + 1℄,and so the assumption 0 < 0 �  is false, and the theorem is proved. 26



Theorem 2.3 For every integer i 2 1::n�1, if �[i+1℄ � �[i℄, then [i+1℄ =0.Proof Sine �[i + 1℄ = 0 implies [i + 1℄ = 0, we may assume without lossof generality that �[i + 1℄ > 0. Then by Lemma 2.1, �[i + 1℄ = �j[i℄ + 1for some positive integer j; by hypothesis, j � 2, so that �[i℄ > 0. Supposethat the theorem is false, so that [i + 1℄ = 0 > 0 and x[1::0℄ is a over ofx[1::i + 1℄. Then, setting  = �[i℄, we have0 � 0 = [i+ 1℄ � �[i+ 1℄ � :Now let x[i+1℄ = �. Sine �[i+1℄ 6= �[i℄+1, it must be true that x[+1℄ 6= �;that is, an ourrene of x[1::℄ in x[1::i+1℄ is followed by some �0 6= �, againontrary to Lemma 2.4. Therefore the assumption that [i+ 1℄ > 0 must befalse. 2Both of the preeding theorems depend on the following lemma. Unfor-tunately, the only proof of it that the authors have been able to devise israther tehnial.Lemma 2.4 Suppose that a nonempty string x = x[1::i℄ has a nonemptyborder x[1::℄. Suppose further that x[1::i + 1℄ = x[1::i℄� has a proper overx[1::0℄ for some 0 � . Then for every letter �0 6= �, the substring x[1::℄�0does not our in x[1::i℄.Proof Suppose on the ontrary that a substring x[1::℄�0 does exist in x[1::i℄for some �0 6= �. Then sine x[1::0℄ is a over, x[1::0�1℄ = x[�0+2::℄ andtwo ourrenes of x[1::0℄ must either overlap or be adjaent, We assume, asshown in Figure 3, that two ourrenes overlap; the proof for the adjaentase is similar. Hene there exist positive integers h and h0 suh thatx[1::h℄ = x[0 � h+ 1::0℄ = x[0 � h+ 1::0 � 1℄�,x[1::h0℄ = x[0 � h0 + 1::0 � 1℄�0,where h+ h0 � 0. It is implied that h 6= h0, sine otherwise we have � = �0,ontrary to the hypothesis. Observe that x[1::h0� 1℄ and x[1::h� 1℄ are bothborders of x[1::0 � 1℄. Then(h� 1) + (h0 � 1) � (0 � 1)� 1: (3)7



x: : : : x[1::℄ �0 : : :x[1::0℄ x[1::0-1℄� h-x[1::0℄x[1::0℄� h0 -Figure 3: Two ourrenes of x[1::0℄ must overlap.Without loss of generality, suppose that h � h0 + 1, so that (3) beomesh� 1 � (0 � 1)=2and x[1::0�1℄ has a border of length at least (0�1)=2. Hene we may writex[1::0 � 1℄ in the normal formuk = ubku�; k � 2;where u� is a possibly empty proper pre�x of u, and u is not a repetition.Consider now an ourrene of x[1::0 � 1℄�0 = ubku��0, with overlappingstrings x[1::0�1℄� = ubku�� at left and right, as shown in Figure 3. Sine uis not a repetition, it is well known [13℄ that u therefore does not equal anynontrivial rotation of itself; that is, if we write u = uPREuSUF for nonemptyuPRE and uSUF , then u 6= uSUFuPRE. Further, sine u�� does not mathwith u��0, the only possible overlap at the left is of the formk�1z }| {u u : : : u u��0uu : : : u| {z }k u�� ,where u�� overlaps the �rst ju��j positions of an ourrene of u in x[1::0�1℄.It follows that u�� is a pre�x of u, while u��0 is not.Hene the overlap at the right annot take the form:kz }| {uu : : : u u��0u u : : : u| {z }k�1 u��,and so must our as follows: 8



uu : : : û u��0uu : : : u u���uu : : : uu��.Here in the third row the leftmost u (marked �u) of the righthand ourrene ofx[1::0℄ must partially overlap with the rightmost u (marked û) of the lefthandourrene of x[1::0℄ in the �rst row. We see that therefore a nonempty suÆxof length at least juj � �ju��j+ 1� = juj � ju�j � 1of û must oinide with a pre�x of �u of the same length. But this means that�u is a substring of ûu�, whih implies that u is a nontrivial rotation of itself,as we have seen an impossibility.Thus the original assumption that the substring x[1::℄�0 ours in x mustbe false, and so the lemma is proved. 2We onlude this setion by introduing two onepts important for thealgorithm of Setion 3 together with orresponding lemmas. The �rst ofthese ideas is that of a \live" pre�x.Given x, any string of whih x is a pre�x is alled a right extension of x. Ifa pre�x u of x an possibly be a over of some right extension of x, then u issaid to be live with respet to x; otherwise, u is said to be dead with respetto x. For example, if x = abaab;then u = aba is live, sine aba overs the right extension xa, while u = a andu = ab an over no right extension of x, and so are dead.Sine a pre�x is identi�ed by its length, and sine we speak always of asingle given string x, we extend this terminology to positions in x: we saythat j is live with respet to i if and only if x[1::j℄ an possibly be a over ofsome right extension of x[1::i℄. Also, sine positions in x orrespond to nodesin the over tree, we extend the terminology further to speak of live and deadnodes in T . Observe that if j is dead with respet to i, it is dead also withrespet to i+1. Thus, as the string x is sanned from left to right | that is,as i inreases | the number of dead positions is monotone nondereasing.The �rst lemma provides a haraterization of live positions:Lemma 2.5 With respet to every i 2 1::n, j 0 is live if and only if x[1::j 0℄ isa over of some x[1::j℄, where j 2 i� �[i℄::i.9



Proof Suppose �rst that j 0 is live with respet to i. Then there exists aminimum-length right extension y = x[1::i℄v, 0 � jvj < i, of x[1::i℄ suh thatx[1::j 0℄ is a over of y. Hene x[1::j 0 � jvj℄ is a border of x[1::i℄, and so forsome j 2 i��j 0�jvj�::i, x[1::j 0℄ must over x[1::j℄. Sine �[i℄ is the length ofthe longest border of x[1::i℄, j 0� jvj � �[i℄, and so j 2 i��[i℄::i, as required.To prove suÆieny, suppose that x[1::j 0℄ is a over of some x[1::j℄, j 2i� �[i℄::i. Write x[1::i℄ = uru0 in normal form, where r = bi=juj � 1, u0 is aproper pre�x of u, and �[i℄ = jur�1u0j. Then u is a pre�x of x[1::j℄:x[1::j℄ = usu00for some 1 � s � r and some proper pre�x u00 of u. Two ases now arise:� If x is a pre�x of u, x[1::j 0℄ must over utu00 for any t � s; in partiular,x[1::j 0℄ must over a right extension ur+1u00 of x[1::i℄, and so j 0 is livewith respet to i.� If on the other hand u is a pre�x of x[1::j 0℄, it follows thatx[1::j 0℄ = utu000for some t � 1 and some proper pre�x u000 of u. Therefore x[1::j 0℄overs any string uku000, k � t, and in partiular ur+1u000, again a rightextension of x[1::i+ 1℄. Thus in this ase also j 0 is live with respet toi.2 Sine x[1::j℄ overs itself, Lemma 2.5 tells us that every j 2 i � �[i℄::i islive with respet to i.The seond main idea to be introdued is that of a \run", already impliitin Theorem 2.3. A run Ri;h is a maximal sequene of h � 1 positions in theborder array � suh that �[j + 1℄ = �[j℄ + 1 for every j 2 i::i + h� 1. Notethat the maximality of the run implies that �[i℄ � �[i � 1℄, for i � 1 � 1,and �[i + h � 1℄ � �[i + h℄, for i + h � n. For example, if we have � =0011232345645, there are runs R1;1, R2;2, R4;3, R7;5 and R12;2.Observe that at the start position i of every run in the � array, Theorem 2.3implies that [i℄ = 0. Observe also as a result of Lemma 2.5 that within arun values i and �[i℄ both inrease by 1 together, so that the set of deadnodes remains unhanged; thus the only time at whih the number of deadnodes an inrease is at the beginning of a run.10



As we shall see in Setion 3, it is important for our algorithm to haraterizedead nodes with respet to the beginning of a run:Lemma 2.6 Let i denote a position that starts a run in a border array �.Then j < i� �[i℄ is dead with respet to i if and only if j has no hildren inT that are live with respet to i.Proof Suppose j < i � �[i℄ is dead with respet to i. Then x[1::j℄ annotpossibly over any right extension of x[1::i℄. If j has a hild j 0 in T that islive with respet to i, then x[1::j 0℄ is a potential over of x[1::k℄, for somek � i. But sine j 0 is a hild of j, it must be true that x[1::j℄ overs x[1::j 0℄and so also the same x[1::k℄, a ontradition. Thus neessity is proved.To prove suÆieny, suppose that j < i��[i℄ has no hild live with respetto i, but that j itself is live with respet to i. Then, by Lemma 2.5, x[1::j℄must over some string x[1::k℄, i� �[i℄ � k � i. Therefore j has a hild k inT that, again by Lemma 2.5, must be live with respet to i, a ontradition.We onlude that j is dead with respet to i. 2As a orollary of this result, we observe that if a node j is live with respetto a node i, then so is its parent [j℄ in T.We state as a �nal lemma a simple property of i� �[i℄ that is required inthe algorithm:Lemma 2.7 The funtion i � �[i℄ is invariant for every i in the same runand monotone nondereasing in i; in partiular, for any position i > 1 thatstarts a new run in �, (i� 1)� �[i� 1℄ < i� �[i℄:Proof An immediate onsequene of the fat that �[i℄ � �[i�1℄ if and onlyif i starts a run. 2
3 COMPUTING THE COVER ARRAYAs mentioned in the introdution, the algorithm performs two main tasksas the string x and border array � are proessed from left to right, for eahi = 1; 2; : : : ; n: 11



� ompute [i℄ and add i as a new hild of [i℄ in the over tree T |reall that by de�nition [i℄ is just the parent of i in T ;� for every i that marks the start of a run in �, ompute the nodes in Tthat are dead with respet to i.In addition to �[1::n℄ and [1::n℄, the algorithm also uses the followingarrays:� dead[0::n � 1℄: by Lemma 2.6, dead[j℄ = true if and only if j has nohildren in T that are live with respet to the urrent value of i andj < i� �[i℄ (as we shall see, the root node 0 in T is always live);� livehildren[0::n℄: livehildren[i℄ = k if and only if node i in the overtree T has exatly k live hildren.� largestlive[0::n℄: largestlive[i℄ = j if and only if j is the largest liveanestor of i in the over tree T (of ourse i is always live with respetto itself).The algorithm is initialized by plaing node 0 in the over tree T , set-ting every position in dead to false, every position in livehildren to 0, andlargestlive[i℄ to i for every i 2 1::n. Then the proedure AllCovers outlinedbelow is exeuted on the urrent ith position in x, i = 1; 2; : : : ; n. AllCovershas just three steps: Step 1 ensures that the largestlive array is kept up todate, Step 2 attahes i to its proper parent in T , and Step 3 ensures thatthe dead array is updated at the start of eah new run.1. fIf �[i℄ in T is dead, �[i℄ should have the same largest live anestor asits parent does.gIf dead��[i℄� = true, then largestlive��[i℄� largestliveh��[i℄�i.2. fCompute [i℄: if �[i℄ is live, set [i℄  �[i℄; otherwise, sine everyover of x[1::i℄ must over x�1::�[i℄�, set [i℄ equal to the largest liveanestor (possibly 0) of �[i℄.g[i℄ largestlive��[i℄�; inrement livehildren�[i℄�.3. fIdentify all the nodes in T that have beome dead as a result ofstarting the new run.gIf i > 1 starts a new run in the border array �:12



3.1 Compute 1  i� �[i℄, 2  (i� 1)� �[i� 1℄ (Lemma 2.7).3.2 For every j = 1 � 1; 1 � 2; :::; 2 (Lemma 2.6):� if not dead[j℄ and j has no live hildren in T, thendead[j℄ true; derement livehildren�[j℄�;� (reursively) if j has just been set dead and [j℄ has no livehildren in T, thendead�[j℄� true; derement livehildrenh�[j℄�i:We laim thatTheorem 3.1 Proedure AllCovers omputes the over array [1::n℄ or-retly.Proof We onsider the steps separately, beginning with Step 3.Let 1 = i1 < i2 < � � � < ik � n denote the positions in � at whih runsstart. In Step 3 eah position j 2 ih�1::ih � 1, h = 2; 3; : : : ; k � 1, is testedto determine whether or not it should be set dead with respet to ih+1 | byLemma 2.5, eah suh position was live with respet to ih. By Lemma 2.6,the parent [j℄ of any position j that is set dead must be inspeted: [j℄ mustpreviously have been live, but it will now be dead if and only if it has no livehildren. Thus, Step 3 must reursively examine the parent of any positionthat has been set dead, until an anestor is found that has at least one livehild, and that therefore remains alive. Note that sine ih+1 is always livewith respet to itself, there must by Lemma 2.6 exist a path ontaining onlylive nodes that leads from ih+1 to the root. Thus the root is always live, andStep 3 will always terminate at the �rst live node along the path from j tothe root.Note that the positions j 2 ih�1::ih� 1 are onsidered in the reverse orderih�1; ih�2; : : : ; ih�1 in order to take aount of the possibility that j may beset dead and that moreover [j℄ 2 ih�1::ih� 1 also. It is for this same reasonthat, in order to avoid redundant proessing of the same path to the root, itis neessary to hek in Step 3.2 that not dead[j℄: j ould have been set deadbeause it is the parent of a larger node, already set dead, in ih�1::ih � 1.Sine livehildren�[j℄� is always deremented for every node j that is setdead, we onlude that Step 3 deals orretly with the task of setting nodesdead at the start of eah new run. 13



Step 2 is a straightforward update of T based on the urrent position i.Its orretness depends entirely on the orret update of largestlive��[i℄� inStep 1.Step 1 will be exeuted only when �[i℄ has been set dead during one of theprevious exeutions of Step 3.2. As noted in the proof of Step 3, if some j isto be set dead with respet to ih+1, it must have been live with respet to ih,hene by Lemma 2.5 live with respet to ih+1 � 1. Therefore x[1::j℄ wouldbe a potential over of x[1::ih+1℄; thus it would over some right extension ofx�1::�[ih+1℄�, whih is a suÆx of x[1::ih+1℄. Hene the following fat holds:at the time that any position j is set dead, it must be true that j is greaterthan �[ih+1℄, where ih+1 is the urrent value used in Step 3.1.Sine by Lemma 2.1 values in the � array an inrease by at most one froma given position to the next, it follows that every suh dead position j mustlater beome a value in the � array | that is, j = �[i0℄ for some i0 > ih+1| in order for Step 1 to be exeuted. In partiular, the values j must beproessed in Step 1 in asending order of magnitude; that is, in desendingorder in the over tree T. This means that Step 1 will pass orret values ofthe largest live anestor from parent to hild. 2Now onsider the time required by AllCovers. Eah of the steps exeptpossibly Step 3.2 requires only onstant time. Then AllCovers requires �(n)time plus the total time used within Step 3.2. To estimate this total time,observe that the time required for eah exeution of Step 3.2 is proportionalto maxf(1 � 2); no. of nodes set deadg:Sine the sum of 1� 2 over all runs is at most n� 1 and sine eah of the nnodes may be set dead at most one, it follows that the total time for Step3.2 is O(2n). HeneTheorem 3.2 Proedure AllCovers requires �(n) time and �(n) spae forits exeution. 2AllCovers is an optimal on-line algorithm: it omputes , thus makingavailable all the overs of every pre�x of x, in �(n) time and spae. Note thatsine the alulation of � is also on-line, AllCovers an easily be modi�ed tosimultaneously ompute on-line both the border and the over arrays.The reader will �nd it instrutive to follow the algorithm as it applies tothe example given in Figure 1. Note partiularly that, as a result of the fatthat �[22℄ = 2, the following nodes are all set dead: 5; 6; 9; 10; 11; 13� 19.14



4 COMPARISONWITH PREVIOUS ALGO-RITHMSIn order to make lear the distintion between the algorithm presented hereand previous over algorithms, we dupliate here the example given in Fig-ure 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23x = a b a a b a b a a b a a b a b a a b a b a b a� = 0 0 1 1 2 3 2 3 4 5 6 4 5 6 7 8 9 10 11 7 8 2 3 = 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 3For this string Algorithm AFI [2℄ would ompute only [23℄ = 3, the shortestproper over of x. If instead AFI were applied to the trunated string x[1::19℄,it would ompute only the length 3 of the shortest over, but would be unableto report the overs of lengths 6 and 11. Sine AFI is not an on-line algorithm,it would be unable to extend its omputation of the shortest over of x[1::19℄to x: even though x[1::19℄ is a pre�x of x, the two problems would have tobe onsidered independently.The on-line Algorithm B [6℄ would on the other hand be able to omputethe shortest over only of every pre�x of x. Thus the array produed byAlgorithm B would be as follows:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 = 0 0 0 0 0 3 0 3 0 5 3 0 5 3 0 3 9 5 3 0 3 0 3Finally, the Algorithm MS [15, 16℄ would like AFI ompute only [23℄ = 3,sine the only proper over of x is x[1::3℄. For the pre�x x[1::19℄, however,MS would ompute the three values11; 6; 3;speifying its three proper overs. But, also like AFI, Algorithm MS is noton-line and so would need to treat x and x[1::19℄ as separate problems.Viewed in this light, then, the new algorithm ombines the bene�ts ofAlgorithms B and MS, while still of ourse maintaining linear exeution time.
15
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