
COMPUTING THE COVER ARRAY INLINEAR TIMEYin LiAlgorithms Resear
h GroupDepartment of Computing & SoftwareM
Master University&IBM CanadaW. F. Smyth�Algorithms Resear
h GroupDepartment of Computing & SoftwareM
Master UniversityHamilton, Ontario, Canada L8S 4K1&S
hool of ComputingCurtin University of Te
hnologyJuly 3, 2000
ABSTRACTLet x denote a given nonempty string of length n = jxj. A proper substringu of x is a proper
over of x if and only if every position of x lies within an�Communi
ating author: smyth�m
master.
a, tel. +1-905-525-9140 ext. 23436, FAX+1-905-524-0340 1

o

urren
e of u within x. This paper introdu
es an array
 =
[1::n℄
alledthe
over array in whi
h ea
h element
[i℄, 1 � i � n, is the length of thelongest proper
over of x[1::i℄ or zero if no su
h
over exists. In fa
t it turnsout that
 des
ribes all the
overs of every pre�x of x. Several interestingproperties of
 are established, and a simple algorithm is presented that
omputes
 on-line in �(n) time using �(n) additional spa
e. Thus thenew algorithm
omputes for all pre�xes of x information that previous
overalgorithms
ould
ompute only for x itself, and does so with no in
rease inspa
e or time
omplexity.KEYWORDSstring, word, algorithm, period, quasiperiod,
over1 INTRODUCTIONLet x denote a nonempty string of length n � 1. A substring u of x is
alleda
over or quasiperiod of x (we say also that u
overs x) if and only if x
anbe
onstru
ted by
on
atenating or overlapping
opies of u, so that everyposition of x lies within an o

urren
e of u within x. Thus x is always a
over of itself; if a proper substring u of x is also a
over of x, then u is
alleda proper
over of x. For example, the string x = ab
ab
aab
a has
overs xand ab
a, and proper
over ab
a. A string that has a proper
over is
alled
overable (also, quasiperiodi
).The idea of a
overable string generalizes the idea of a repetition; that is,a string x that
an be
onstru
ted by
on
atenating
opies of some propersubstring u of x. Repetitions in strings were �rst studied by the mathemati-
ian Axel Thue [17℄, who showed how to
onstru
t repetition-free strings ofunbounded length on three letters. Over the last two de
ades,
omputer s
i-entists have be
ome interested in the algorithmi
 problem of
omputing allthe repetitions in a given string [8, 14, 4℄, a task that requires �(n logn) time.It is interesting to note that Thue also showed in [17℄ how to
onstru
t in�-nite strings without overlaps | that is, with no
overable substrings that arenot repetitions. The
orresponding algorithmi
 problem, the
omputation ofthe maximal
overable substrings of a given string, has also been solved inmodern times [1, 10℄. 2

Repetitions and
overs in strings are spe
ial
ases of \approximate peri-odi
ity", a topi
 that has potential appli
ations in mole
ular biology, proba-bility theory,
oding theory, data
ompression, and formal language theory.In fa
t, a generalization of the idea of a
over provides a basis for
lassifyingstrings based on a kind of approximate periodi
ity: given x and a positiveinteger k � n, a set Uk = fu1; u2; : : : ; umg of strings of length k is said tobe a k-
over of x if and only if x
an be
onstru
ted by
on
atenating oroverlapping elements of Uk. The k-
over is said to be minimum if and onlyif m = jUkj is a minimum for given x and k. Thus for a range of values of k,the minimum k-
over
an provide a measure of how
lose to periodi
 everystring x is. An algorithm that
omputes a minimum k-
over in O�n2(n�k)�time has re
ently been proposed [12℄.While the problem of determining whether or not a given string x is arepetition is trivial, the problem of determining whether or not x has a
over is not. In [2℄ Apostoli
o, Fara
h and Iliopoulos presented a linear-time algorithm for
omputing the shortest
over of x. Then in [6℄ Breslauerpublished an on-line algorithm for the same problem. More re
ently, Mooreand Smyth [15, 16℄ showed how to
ompute all the
overs of x in lineartime, a result
onsiderably extended in this paper with an algorithm that
omputes on-line in linear time all the
overs of every pre�x of x. PRAMalgorithms have also been developed for the shortest
over [7℄ and all-
overs[11℄ problems, both dependent on an eÆ
ient algorithm for the subtree maxgap problem [5℄.A proper substring u of x that is both a pre�x and a suÆx of x is
alleda border of x. Like the previous algorithms for
omputing
overs of x, ouralgorithm makes use of the border array of x; that is, the array � = �[1::n℄that gives in ea
h position i the length of the longest border of x[1::i℄. Inaddition, we introdu
e, analogous to the border array, a \
over array" and
orresponding \
over tree". The new algorithm also is
losely analogousto the well-known border array algorithm [3℄; for ea
h i, it has two main
omponents:� update the
urrent position i in the
over array | that is, insert i inits
orre
t position in the
over tree;�
ompute positions j < i in the
over array su
h that x[1::j℄
annot bea
over of any x[1::k℄, k � i.In Se
tion 2 we introdu
e the
over array and establish some of its prop-3

erties. In Se
tion 3 we des
ribe our new algorithm. Se
tion 4 makes use ofan example to distinguish the new algorithm from its prede
essors.2 THE COVER ARRAYWe let x denote a string of length jxj = n and represent it as an arrayx[1::n℄. The spe
ial symbol � denotes the empty string; that is, the stringof length 0. It will be
onvenient to treat � as a proper substring of everynonempty string x. Thus every string has the empty border and, for example,x = abaabaab has the borders u = abaab, u = ab and u = �. As observed inthe introdu
tion, a border array � is used to store the length of the longestborder of ea
h x[1::i℄; for example, the border array of abaabaab is 0011234.For a more elaborate example, see Figure 1.It is
onvenient to introdu
e the notation �1[i℄ = �[i℄, 1 � i � n, with�j[i℄ = ���j�1[i℄� for every j � 2 su
h that �j�1[i℄ is de�ned and 1 ��j�1[i℄ � n. Then x�1::�[i℄� is the longest border of x[1::i℄, and x�1::�j[i℄�is the longest border of x�1::�j�1[i℄� for every j 2 2::m. Sin
e by de�nition0 � �[i℄ < i for every i 2 1::n, it follows that the sequen
e�[i℄; �2[i℄; : : : ; �m[i℄ (1)is well-de�ned for every i and monotone de
reasing to �m[i℄ = 0 for somem � 1. It is well known [3℄ that this sequen
e in fa
t identi�es every borderof x[1::i℄, and further that, given x, �
an be
omputed on-line in �(n) time(using the so-
alled \failure fun
tion" algorithm). We quote without proofanother well-known result [3℄ that will be required later:Lemma 2.1 For every border array �[1::n℄ and every integer i 2 1::n � 1,the only possible values of �[i + 1℄ are zero and b + 1, where b denotes anyelement of the sequen
e (1). 2Corresponding to ea
h �j[i℄, 1 � j � m, we de�ne a period i � �j[i℄ ofx[1::i℄. The shortest period
orresponding to j = 1 is
alled the period of x.If p = i� �[i℄, r = bi=p
, q = i mod p, u = x[1::p℄ and u0 = x[1::q℄, then wesay that x[1::i℄ = uru0 is written in normal form.It is useful to represent the border array � as a tree T�,
alled the bordertree [9, 16℄; that is, a rooted tree in whi
h ea
h node has a unique integerlabel
hosen from 0::n and the following rules hold: the root has label 0, and4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23x = a b a a b a b a a b a a b a b a a b a b a b a� = 0 0 1 1 2 3 2 3 4 5 6 4 5 6 7 8 9 10 11 7 8 2 3
 = 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 30s��� aaaaa 2s��� ���5sAAA13s10s18s 7s���15s 20s22s1 s��� ���4 s���9 s 12s17s3 s������ 8 s���21s16s 23s6 s��� 14s11 s���19s T�
0 s������1s #####2s ����3s �����4s ����5s ����7s EEEE9s12sLLLL 15sSSSS 20slllll 22sQQQQQQ���6 s���11 s 14s���19s 8 seee23s���21s16s 10s���13s���18s���17sT
Figure 1: The Border and Cover Trees of x.the parent of the node with label i, i = 1; 2; : : : ; n, is the node with label�[i℄. Then as illustrated in Figure 1, the labels of the an
estors of the nodelabelled i are exa
tly the lengths of the borders of x[1::i℄.The
on
ept of the
over array is very similar to that of the border arrayand, as we shall see below, espe
ially in Theorems 2.2 and 2.3, the valuesof
orresponding elements in these two arrays are
losely related too. Welet
 =
[1::n℄ denote the
over array of string x, where ea
h element
[i℄spe
i�es the length of the longest proper
over of x[1::i℄ or zero if there is noproper
over. It is shown in [6℄ that if u1 and u2 are
overs of x, ju1j > ju2j,then u2 is a
over of u1. Thus, analogous to the sequen
e (1) that exists forea
h position i in the border array, we �nd in the
over array a
orrespondingmonotone de
reasing sequen
e
[i℄;
2[i℄; : : : ;
m[i℄ (2)with
m[i℄ = 0, de�ned for every i 2 1::n, where of
ourse m = m(i) is afun
tion of i. This sequen
e identi�es in des
ending order of length all theproper
overs x�1::
[i℄�; x�1::
2[i℄�; : : : ; x�1::
m�1[i℄�of every x[1::i℄. 5

x[1::i + 1℄: x[1::
℄ : : : x[1::
℄ �x[1::
0℄ x[1::
0℄ x[1::
0℄Figure 2: x[1::
0℄ is a proper
over of x[1::
℄�.Analogous to T�, a
over tree T
 is a rooted tree representing
 in whi
hea
h node has a unique integer label
hosen from 0::n, the root has label0, and the parent of the node with label i, i = 1; 2; :::; n, is the node withlabel
[i℄. Then the nonzero labels of the an
estors of the node labelled iare exa
tly the lengths of the proper
overs of x[1::i℄, whi
h therefore
an bedetermined simply by visiting i's an
estors in T
. See Figure 1.We now investigate properties of the
over array and its relation to theborder array. Of
ourse, sin
e a proper
over must be a border, we see thatevery
[i℄ must assume one of the values (1). Hen
e
[i℄ � �[i℄ for all iand, in parti
ular, �[i℄ = 0 implies
[i℄ = 0. But it turns out that there aremu
h tighter, and mu
h less obvious, restri
tions on the values that may beassumed by
[i℄, as the next two theorems show.Theorem 2.2 For every integer i 2 1::n�1, if
[i℄ 6= 0, then either
[i+1℄ �
[i℄ + 1 or
[i+ 1℄ = 0.Proof Let
 =
[i℄. Then
 > 0 and x[1::
℄ is the longest
over of x[1::i℄.Suppose the theorem is false, so that there exists a positive integer
0 �
 su
hthat x[1::
0℄ is the longest
over of x[1::i+ 1℄ = x[1::i℄�. Then (see Figure 2)it follows that x[1::
0℄ is a proper
over of x[1::
℄�. Observe however that, forevery �0 6= �, x[1::
0℄ is not a
over of x[1::
℄�0.If every o

urren
e of x[1::
℄ in x[1::i+1℄ were followed by �, it would followthat x[1::
 + 1℄ would be a
over of x[1::i + 1℄,
ontrary to the hypothesisthat x[1::
0℄ is the longest
over. Thus some o

urren
e of x[1::
℄ in x[1::i+1℄must be followed by �0 6= �. But as we see below, in Lemma 2.4, this isimpossible: it turns out that every o

urren
e of x[1::
℄ in x[1::i℄ must befollowed by �. We
on
lude that x[1::
 + 1℄ must be a
over of x[1::i + 1℄,and so the assumption 0 <
0 �
 is false, and the theorem is proved. 26

Theorem 2.3 For every integer i 2 1::n�1, if �[i+1℄ � �[i℄, then
[i+1℄ =0.Proof Sin
e �[i + 1℄ = 0 implies
[i + 1℄ = 0, we may assume without lossof generality that �[i + 1℄ > 0. Then by Lemma 2.1, �[i + 1℄ = �j[i℄ + 1for some positive integer j; by hypothesis, j � 2, so that �[i℄ > 0. Supposethat the theorem is false, so that
[i + 1℄ =
0 > 0 and x[1::
0℄ is a
over ofx[1::i + 1℄. Then, setting
 = �[i℄, we have0 �
0 =
[i+ 1℄ � �[i+ 1℄ �
:Now let x[i+1℄ = �. Sin
e �[i+1℄ 6= �[i℄+1, it must be true that x[
+1℄ 6= �;that is, an o

urren
e of x[1::
℄ in x[1::i+1℄ is followed by some �0 6= �, again
ontrary to Lemma 2.4. Therefore the assumption that
[i+ 1℄ > 0 must befalse. 2Both of the pre
eding theorems depend on the following lemma. Unfor-tunately, the only proof of it that the authors have been able to devise israther te
hni
al.Lemma 2.4 Suppose that a nonempty string x = x[1::i℄ has a nonemptyborder x[1::
℄. Suppose further that x[1::i + 1℄ = x[1::i℄� has a proper
overx[1::
0℄ for some
0 �
. Then for every letter �0 6= �, the substring x[1::
℄�0does not o

ur in x[1::i℄.Proof Suppose on the
ontrary that a substring x[1::
℄�0 does exist in x[1::i℄for some �0 6= �. Then sin
e x[1::
0℄ is a
over, x[1::
0�1℄ = x[
�
0+2::
℄ andtwo o

urren
es of x[1::
0℄ must either overlap or be adja
ent, We assume, asshown in Figure 3, that two o

urren
es overlap; the proof for the adja
ent
ase is similar. Hen
e there exist positive integers h and h0 su
h thatx[1::h℄ = x[
0 � h+ 1::
0℄ = x[
0 � h+ 1::
0 � 1℄�,x[1::h0℄ = x[
0 � h0 + 1::
0 � 1℄�0,where h+ h0 �
0. It is implied that h 6= h0, sin
e otherwise we have � = �0,
ontrary to the hypothesis. Observe that x[1::h0� 1℄ and x[1::h� 1℄ are bothborders of x[1::
0 � 1℄. Then(h� 1) + (h0 � 1) � (
0 � 1)� 1: (3)7

x: : : : x[1::
℄ �0 : : :x[1::
0℄ x[1::
0-1℄� h-x[1::
0℄x[1::
0℄� h0 -Figure 3: Two o

urren
es of x[1::
0℄ must overlap.Without loss of generality, suppose that h � h0 + 1, so that (3) be
omesh� 1 � (
0 � 1)=2and x[1::
0�1℄ has a border of length at least (
0�1)=2. Hen
e we may writex[1::
0 � 1℄ in the normal formuk = ubk
u�; k � 2;where u� is a possibly empty proper pre�x of u, and u is not a repetition.Consider now an o

urren
e of x[1::
0 � 1℄�0 = ubk
u��0, with overlappingstrings x[1::
0�1℄� = ubk
u�� at left and right, as shown in Figure 3. Sin
e uis not a repetition, it is well known [13℄ that u therefore does not equal anynontrivial rotation of itself; that is, if we write u = uPREuSUF for nonemptyuPRE and uSUF , then u 6= uSUFuPRE. Further, sin
e u�� does not mat
hwith u��0, the only possible overlap at the left is of the formk�1z }| {u u : : : u u��0uu : : : u| {z }k u�� ,where u�� overlaps the �rst ju��j positions of an o

urren
e of u in x[1::
0�1℄.It follows that u�� is a pre�x of u, while u��0 is not.Hen
e the overlap at the right
annot take the form:kz }| {uu : : : u u��0u u : : : u| {z }k�1 u��,and so must o

ur as follows: 8

uu : : : û u��0uu : : : u u���uu : : : uu��.Here in the third row the leftmost u (marked �u) of the righthand o

urren
e ofx[1::
0℄ must partially overlap with the rightmost u (marked û) of the lefthando

urren
e of x[1::
0℄ in the �rst row. We see that therefore a nonempty suÆxof length at least juj � �ju��j+ 1� = juj � ju�j � 1of û must
oin
ide with a pre�x of �u of the same length. But this means that�u is a substring of ûu�, whi
h implies that u is a nontrivial rotation of itself,as we have seen an impossibility.Thus the original assumption that the substring x[1::
℄�0 o

urs in x mustbe false, and so the lemma is proved. 2We
on
lude this se
tion by introdu
ing two
on
epts important for thealgorithm of Se
tion 3 together with
orresponding lemmas. The �rst ofthese ideas is that of a \live" pre�x.Given x, any string of whi
h x is a pre�x is
alled a right extension of x. Ifa pre�x u of x
an possibly be a
over of some right extension of x, then u issaid to be live with respe
t to x; otherwise, u is said to be dead with respe
tto x. For example, if x = abaab;then u = aba is live, sin
e aba
overs the right extension xa, while u = a andu = ab
an
over no right extension of x, and so are dead.Sin
e a pre�x is identi�ed by its length, and sin
e we speak always of asingle given string x, we extend this terminology to positions in x: we saythat j is live with respe
t to i if and only if x[1::j℄
an possibly be a
over ofsome right extension of x[1::i℄. Also, sin
e positions in x
orrespond to nodesin the
over tree, we extend the terminology further to speak of live and deadnodes in T
 . Observe that if j is dead with respe
t to i, it is dead also withrespe
t to i+1. Thus, as the string x is s
anned from left to right | that is,as i in
reases | the number of dead positions is monotone nonde
reasing.The �rst lemma provides a
hara
terization of live positions:Lemma 2.5 With respe
t to every i 2 1::n, j 0 is live if and only if x[1::j 0℄ isa
over of some x[1::j℄, where j 2 i� �[i℄::i.9

Proof Suppose �rst that j 0 is live with respe
t to i. Then there exists aminimum-length right extension y = x[1::i℄v, 0 � jvj < i, of x[1::i℄ su
h thatx[1::j 0℄ is a
over of y. Hen
e x[1::j 0 � jvj℄ is a border of x[1::i℄, and so forsome j 2 i��j 0�jvj�::i, x[1::j 0℄ must
over x[1::j℄. Sin
e �[i℄ is the length ofthe longest border of x[1::i℄, j 0� jvj � �[i℄, and so j 2 i��[i℄::i, as required.To prove suÆ
ien
y, suppose that x[1::j 0℄ is a
over of some x[1::j℄, j 2i� �[i℄::i. Write x[1::i℄ = uru0 in normal form, where r = bi=juj
 � 1, u0 is aproper pre�x of u, and �[i℄ = jur�1u0j. Then u is a pre�x of x[1::j℄:x[1::j℄ = usu00for some 1 � s � r and some proper pre�x u00 of u. Two
ases now arise:� If x is a pre�x of u, x[1::j 0℄ must
over utu00 for any t � s; in parti
ular,x[1::j 0℄ must
over a right extension ur+1u00 of x[1::i℄, and so j 0 is livewith respe
t to i.� If on the other hand u is a pre�x of x[1::j 0℄, it follows thatx[1::j 0℄ = utu000for some t � 1 and some proper pre�x u000 of u. Therefore x[1::j 0℄
overs any string uku000, k � t, and in parti
ular ur+1u000, again a rightextension of x[1::i+ 1℄. Thus in this
ase also j 0 is live with respe
t toi.2 Sin
e x[1::j℄
overs itself, Lemma 2.5 tells us that every j 2 i � �[i℄::i islive with respe
t to i.The se
ond main idea to be introdu
ed is that of a \run", already impli
itin Theorem 2.3. A run Ri;h is a maximal sequen
e of h � 1 positions in theborder array � su
h that �[j + 1℄ = �[j℄ + 1 for every j 2 i::i + h� 1. Notethat the maximality of the run implies that �[i℄ � �[i � 1℄, for i � 1 � 1,and �[i + h � 1℄ � �[i + h℄, for i + h � n. For example, if we have � =0011232345645, there are runs R1;1, R2;2, R4;3, R7;5 and R12;2.Observe that at the start position i of every run in the � array, Theorem 2.3implies that
[i℄ = 0. Observe also as a result of Lemma 2.5 that within arun values i and �[i℄ both in
rease by 1 together, so that the set of deadnodes remains un
hanged; thus the only time at whi
h the number of deadnodes
an in
rease is at the beginning of a run.10

As we shall see in Se
tion 3, it is important for our algorithm to
hara
terizedead nodes with respe
t to the beginning of a run:Lemma 2.6 Let i denote a position that starts a run in a border array �.Then j < i� �[i℄ is dead with respe
t to i if and only if j has no
hildren inT
 that are live with respe
t to i.Proof Suppose j < i � �[i℄ is dead with respe
t to i. Then x[1::j℄
annotpossibly
over any right extension of x[1::i℄. If j has a
hild j 0 in T
 that islive with respe
t to i, then x[1::j 0℄ is a potential
over of x[1::k℄, for somek � i. But sin
e j 0 is a
hild of j, it must be true that x[1::j℄
overs x[1::j 0℄and so also the same x[1::k℄, a
ontradi
tion. Thus ne
essity is proved.To prove suÆ
ien
y, suppose that j < i��[i℄ has no
hild live with respe
tto i, but that j itself is live with respe
t to i. Then, by Lemma 2.5, x[1::j℄must
over some string x[1::k℄, i� �[i℄ � k � i. Therefore j has a
hild k inT
 that, again by Lemma 2.5, must be live with respe
t to i, a
ontradi
tion.We
on
lude that j is dead with respe
t to i. 2As a
orollary of this result, we observe that if a node j is live with respe
tto a node i, then so is its parent
[j℄ in T
.We state as a �nal lemma a simple property of i� �[i℄ that is required inthe algorithm:Lemma 2.7 The fun
tion i � �[i℄ is invariant for every i in the same runand monotone nonde
reasing in i; in parti
ular, for any position i > 1 thatstarts a new run in �, (i� 1)� �[i� 1℄ < i� �[i℄:Proof An immediate
onsequen
e of the fa
t that �[i℄ � �[i�1℄ if and onlyif i starts a run. 2
3 COMPUTING THE COVER ARRAYAs mentioned in the introdu
tion, the algorithm performs two main tasksas the string x and border array � are pro
essed from left to right, for ea
hi = 1; 2; : : : ; n: 11

�
ompute
[i℄ and add i as a new
hild of
[i℄ in the
over tree T
 |re
all that by de�nition
[i℄ is just the parent of i in T
 ;� for every i that marks the start of a run in �,
ompute the nodes in T
that are dead with respe
t to i.In addition to �[1::n℄ and
[1::n℄, the algorithm also uses the followingarrays:� dead[0::n � 1℄: by Lemma 2.6, dead[j℄ = true if and only if j has no
hildren in T
 that are live with respe
t to the
urrent value of i andj < i� �[i℄ (as we shall see, the root node 0 in T
 is always live);� live
hildren[0::n℄: live
hildren[i℄ = k if and only if node i in the
overtree T
 has exa
tly k live
hildren.� largestlive[0::n℄: largestlive[i℄ = j if and only if j is the largest livean
estor of i in the
over tree T
 (of
ourse i is always live with respe
tto itself).The algorithm is initialized by pla
ing node 0 in the
over tree T
 , set-ting every position in dead to false, every position in live
hildren to 0, andlargestlive[i℄ to i for every i 2 1::n. Then the pro
edure AllCovers outlinedbelow is exe
uted on the
urrent ith position in x, i = 1; 2; : : : ; n. AllCovershas just three steps: Step 1 ensures that the largestlive array is kept up todate, Step 2 atta
hes i to its proper parent in T
 , and Step 3 ensures thatthe dead array is updated at the start of ea
h new run.1. fIf �[i℄ in T
 is dead, �[i℄ should have the same largest live an
estor asits parent does.gIf dead��[i℄� = true, then largestlive��[i℄� largestliveh
��[i℄�i.2. fCompute
[i℄: if �[i℄ is live, set
[i℄ �[i℄; otherwise, sin
e every
over of x[1::i℄ must
over x�1::�[i℄�, set
[i℄ equal to the largest livean
estor (possibly 0) of �[i℄.g
[i℄ largestlive��[i℄�; in
rement live
hildren�
[i℄�.3. fIdentify all the nodes in T
 that have be
ome dead as a result ofstarting the new run.gIf i > 1 starts a new run in the border array �:12

3.1 Compute
1 i� �[i℄,
2 (i� 1)� �[i� 1℄ (Lemma 2.7).3.2 For every j =
1 � 1;
1 � 2; :::;
2 (Lemma 2.6):� if not dead[j℄ and j has no live
hildren in T
, thendead[j℄ true; de
rement live
hildren�
[j℄�;� (re
ursively) if j has just been set dead and
[j℄ has no live
hildren in T
, thendead�
[j℄� true; de
rement live
hildrenh
�
[j℄�i:We
laim thatTheorem 3.1 Pro
edure AllCovers
omputes the
over array
[1::n℄
or-re
tly.Proof We
onsider the steps separately, beginning with Step 3.Let 1 = i1 < i2 < � � � < ik � n denote the positions in � at whi
h runsstart. In Step 3 ea
h position j 2 ih�1::ih � 1, h = 2; 3; : : : ; k � 1, is testedto determine whether or not it should be set dead with respe
t to ih+1 | byLemma 2.5, ea
h su
h position was live with respe
t to ih. By Lemma 2.6,the parent
[j℄ of any position j that is set dead must be inspe
ted:
[j℄ mustpreviously have been live, but it will now be dead if and only if it has no live
hildren. Thus, Step 3 must re
ursively examine the parent of any positionthat has been set dead, until an an
estor is found that has at least one live
hild, and that therefore remains alive. Note that sin
e ih+1 is always livewith respe
t to itself, there must by Lemma 2.6 exist a path
ontaining onlylive nodes that leads from ih+1 to the root. Thus the root is always live, andStep 3 will always terminate at the �rst live node along the path from j tothe root.Note that the positions j 2 ih�1::ih� 1 are
onsidered in the reverse orderih�1; ih�2; : : : ; ih�1 in order to take a

ount of the possibility that j may beset dead and that moreover
[j℄ 2 ih�1::ih� 1 also. It is for this same reasonthat, in order to avoid redundant pro
essing of the same path to the root, itis ne
essary to
he
k in Step 3.2 that not dead[j℄: j
ould have been set deadbe
ause it is the parent of a larger node, already set dead, in ih�1::ih � 1.Sin
e live
hildren�
[j℄� is always de
remented for every node j that is setdead, we
on
lude that Step 3 deals
orre
tly with the task of setting nodesdead at the start of ea
h new run. 13

Step 2 is a straightforward update of T
 based on the
urrent position i.Its
orre
tness depends entirely on the
orre
t update of largestlive��[i℄� inStep 1.Step 1 will be exe
uted only when �[i℄ has been set dead during one of theprevious exe
utions of Step 3.2. As noted in the proof of Step 3, if some j isto be set dead with respe
t to ih+1, it must have been live with respe
t to ih,hen
e by Lemma 2.5 live with respe
t to ih+1 � 1. Therefore x[1::j℄ wouldbe a potential
over of x[1::ih+1℄; thus it would
over some right extension ofx�1::�[ih+1℄�, whi
h is a suÆx of x[1::ih+1℄. Hen
e the following fa
t holds:at the time that any position j is set dead, it must be true that j is greaterthan �[ih+1℄, where ih+1 is the
urrent value used in Step 3.1.Sin
e by Lemma 2.1 values in the � array
an in
rease by at most one froma given position to the next, it follows that every su
h dead position j mustlater be
ome a value in the � array | that is, j = �[i0℄ for some i0 > ih+1| in order for Step 1 to be exe
uted. In parti
ular, the values j must bepro
essed in Step 1 in as
ending order of magnitude; that is, in des
endingorder in the
over tree T
. This means that Step 1 will pass
orre
t values ofthe largest live an
estor from parent to
hild. 2Now
onsider the time required by AllCovers. Ea
h of the steps ex
eptpossibly Step 3.2 requires only
onstant time. Then AllCovers requires �(n)time plus the total time used within Step 3.2. To estimate this total time,observe that the time required for ea
h exe
ution of Step 3.2 is proportionalto maxf(
1 �
2); no. of nodes set deadg:Sin
e the sum of
1�
2 over all runs is at most n� 1 and sin
e ea
h of the nnodes may be set dead at most on
e, it follows that the total time for Step3.2 is O(2n). Hen
eTheorem 3.2 Pro
edure AllCovers requires �(n) time and �(n) spa
e forits exe
ution. 2AllCovers is an optimal on-line algorithm: it
omputes
, thus makingavailable all the
overs of every pre�x of x, in �(n) time and spa
e. Note thatsin
e the
al
ulation of � is also on-line, AllCovers
an easily be modi�ed tosimultaneously
ompute on-line both the border and the
over arrays.The reader will �nd it instru
tive to follow the algorithm as it applies tothe example given in Figure 1. Note parti
ularly that, as a result of the fa
tthat �[22℄ = 2, the following nodes are all set dead: 5; 6; 9; 10; 11; 13� 19.14

4 COMPARISONWITH PREVIOUS ALGO-RITHMSIn order to make
lear the distin
tion between the algorithm presented hereand previous
over algorithms, we dupli
ate here the example given in Fig-ure 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23x = a b a a b a b a a b a a b a b a a b a b a b a� = 0 0 1 1 2 3 2 3 4 5 6 4 5 6 7 8 9 10 11 7 8 2 3
 = 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 3For this string Algorithm AFI [2℄ would
ompute only
[23℄ = 3, the shortestproper
over of x. If instead AFI were applied to the trun
ated string x[1::19℄,it would
ompute only the length 3 of the shortest
over, but would be unableto report the
overs of lengths 6 and 11. Sin
e AFI is not an on-line algorithm,it would be unable to extend its
omputation of the shortest
over of x[1::19℄to x: even though x[1::19℄ is a pre�x of x, the two problems would have tobe
onsidered independently.The on-line Algorithm B [6℄ would on the other hand be able to
omputethe shortest
over only of every pre�x of x. Thus the array produ
ed byAlgorithm B would be as follows:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 = 0 0 0 0 0 3 0 3 0 5 3 0 5 3 0 3 9 5 3 0 3 0 3Finally, the Algorithm MS [15, 16℄ would like AFI
ompute only
[23℄ = 3,sin
e the only proper
over of x is x[1::3℄. For the pre�x x[1::19℄, however,MS would
ompute the three values11; 6; 3;spe
ifying its three proper
overs. But, also like AFI, Algorithm MS is noton-line and so would need to treat x and x[1::19℄ as separate problems.Viewed in this light, then, the new algorithm
ombines the bene�ts ofAlgorithms B and MS, while still of
ourse maintaining linear exe
ution time.
15

Referen
es[1℄ Alberto Apostoli
o & Andrzej Ehrenfeu
ht, EÆ
ient Dete
tion of Quasi-periodi
ities in Strings, Te
h. Report No. 90.5, The Leonardo Fibona

iInstitute, Trento, Italy (1990).[2℄ Alberto Apostoli
o, Martin Fara
h & Costas S. Iliopoulos, Optimal su-perprimitivity testing for strings, Inform. Pro
ess. Lett. 39-1 (1991) 17-20.[3℄ A. V. Aho, J. E. Hop
roft & J. D. Ullman, The Design and Analysis ofComputer Algorithms, Addison-Wesley, Reading MA, (1974).[4℄ Alberto Apostoli
o & F. P. Preparata, Optimal o�-line dete
tion of rep-etitions in a string, Theoret. Comput. S
i. 22 (1983) 297-315.[5℄ O. Berkman, Costas S. Iliopoulos & Kunsoo Park, The subtree maxgap problem with appli
ation to parallel string
overing, Information &Computation 123-1 (1995) 127-137.[6℄ D. Breslauer, An on-line string superprimitivity test, Inform. Pro
ess.Lett. 44-6 (1992) 345-347.[7℄ D. Breslauer, Testing string superprimitivity in parallel, Inform. Pro-
ess. Lett. 49-5 (1994) 235-241.[8℄ Maxime Cro
hemore, An optimal algorithm for �nding the repetitionsin a word, Inform. Pro
ess. Lett. 12-5 (1981) 244-248.[9℄ Ming Gu, Martin Fara
h & Ri
hard Beigel, An eÆ
ient algorithm for dy-nami
 text indexing, Pro
. Fifth Annual ACM-SIAM Symp. on Dis
reteAlgorithms (1994) 697-704.[10℄ Costas S. Iliopoulos & Laurent Mou
hard, Fast lo
al
overs, preprint(1999).[11℄ Costas S. Iliopoulos & Kunsoo Park, An optimal O(n logn)-time algo-rithm for parallel superprimitivity testing, J. Korea Information S
i.So
. 21-8 (1994) 1400-1404.[12℄ Costas S. Iliopoulos & W. F. Smyth, On-line algorithms for k-
overing,preprint. 16

[13℄ M. Lothaire, Combinatori
s on Words, Addison-Wesley (1982).[14℄ Mi
hael G. Main & Ri
hard J. Lorentz, An O(n logn) algorithm for�nding all repetitions in a string, J. Algs. 5 (1984) 422-432.[15℄ Dennis Moore & W. F. Smyth, An optimal algorithm to
ompute all the
overs of a string, Inform. Pro
ess. Lett. 50 (1994) 239-246.[16℄ Dennis Moore & W. F. Smyth, Corre
tion to: An optimal algorithmto
ompute all the
overs of a string, Inform. Pro
ess. Lett. 54 (1995)101-103.[17℄ Axel Thue, �Uber unendli
he zei
henreihen, Norske Vid. Selsk. Skr. I,Mat. Nat. Kl. Christiana 7 (1906) 1-22.ACKNOWLEDGEMENTSThe work of the se
ond author was supported in part by Grant No. A8180of the Natural S
ien
es & Engineering Resear
h Coun
il of Canada andby Grant No. GO-12278 of the Canadian Genome Analysis & Te
hnologyAgen
y.

17

