COMPUTING THE COVER ARRAY IN
LINEAR TIME

Yin Li
Algorithms Research Group
Department of Computing & Software
McMaster University
&
IBM Canada

W. F. Smyth*
Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario, Canada L8S 4K1
&

School of Computing
Curtin University of Technology

July 3, 2000

ABSTRACT

Let x denote a given nonempty string of length n = |z|. A proper substring
u of x is a proper cover of x if and only if every position of x lies within an

*Communicating author: smyth@mcmaster.ca, tel. +1-905-525-9140 ext. 23436, FAX
+1-905-524-0340

occurrence of v within z. This paper introduces an array v = 7[1..n] called
the cover array in which each element 7[i|, 1 < i < n, is the length of the
longest proper cover of z[1..i] or zero if no such cover exists. In fact it turns
out that ~ describes all the covers of every prefix of x. Several interesting
properties of v are established, and a simple algorithm is presented that
computes vy on-line in ©(n) time using O(n) additional space. Thus the
new algorithm computes for all prefixes of x information that previous cover
algorithms could compute only for x itself, and does so with no increase in
space or time complexity.

KEYWORDS

string, word, algorithm, period, quasiperiod, cover

1 INTRODUCTION

Let x denote a nonempty string of length n > 1. A substring u of x is called
a cover or quasiperiod of x (we say also that u covers x) if and only if z can
be constructed by concatenating or overlapping copies of u, so that every
position of x lies within an occurrence of v within x. Thus z is always a
cover of itself; if a proper substring u of x is also a cover of z, then u is called
a proper cover of x. For example, the string x = abcabcaabca has covers x
and abca, and proper cover abca. A string that has a proper cover is called
coverable (also, quasiperiodic).

The idea of a coverable string generalizes the idea of a repetition; that is,
a string x that can be constructed by concatenating copies of some proper
substring u of x. Repetitions in strings were first studied by the mathemati-
cian Axel Thue [17], who showed how to construct repetition-free strings of
unbounded length on three letters. Over the last two decades, computer sci-
entists have become interested in the algorithmic problem of computing all
the repetitions in a given string [8, 14, 4|, a task that requires ©(n logn) time.
[t is interesting to note that Thue also showed in [17] how to construct infi-
nite strings without overlaps that is, with no coverable substrings that are
not repetitions. The corresponding algorithmic problem, the computation of
the maximal coverable substrings of a given string, has also been solved in
modern times [1, 10].

Repetitions and covers in strings are special cases of “approximate peri-
odicity”, a topic that has potential applications in molecular biology, proba-
bility theory, coding theory, data compression, and formal language theory.
In fact, a generalization of the idea of a cover provides a basis for classifying
strings based on a kind of approximate periodicity: given x and a positive
integer k < n, a set U, = {uy,us,...,u,} of strings of length k is said to
be a k-cover of x if and only if x can be constructed by concatenating or
overlapping elements of Uy. The k-cover is said to be minimum if and only
if m = |Ug/| is a minimum for given = and k. Thus for a range of values of £,
the minimum k-cover can provide a measure of how close to periodic every
string x is. An algorithm that computes a minimum k-cover in O(nQ(n — k))
time has recently been proposed [12].

While the problem of determining whether or not a given string z is a
repetition is trivial, the problem of determining whether or not z has a
cover is not. In [2] Apostolico, Farach and Iliopoulos presented a linear-
time algorithm for computing the shortest cover of z. Then in [6] Breslauer
published an on-line algorithm for the same problem. More recently, Moore
and Smyth [15, 16] showed how to compute all the covers of z in linear
time, a result considerably extended in this paper with an algorithm that
computes on-line in linear time all the covers of every prefix of x. PRAM
algorithms have also been developed for the shortest cover [7] and all-covers
[11] problems, both dependent on an efficient algorithm for the subtree max
gap problem [5].

A proper substring u of x that is both a prefix and a suffix of x is called
a border of x. Like the previous algorithms for computing covers of x, our
algorithm makes use of the border array of x; that is, the array 5 = 8[1..n]
that gives in each position i the length of the longest border of z[1..7]. In
addition, we introduce, analogous to the border array, a “cover array” and
corresponding “cover tree”. The new algorithm also is closely analogous
to the well-known border array algorithm [3]; for each i, it has two main
components:

e update the current position 7 in the cover array that is, insert ¢ in
its correct position in the cover tree;

e compute positions j < 7 in the cover array such that z[1..j] cannot be
a cover of any z[1..k|, k > i.

In Section 2 we introduce the cover array and establish some of its prop-

erties. In Section 3 we describe our new algorithm. Section 4 makes use of
an example to distinguish the new algorithm from its predecessors.

2 THE COVER ARRAY

We let = denote a string of length || = n and represent it as an array
x[1..n]. The special symbol € denotes the empty string; that is, the string
of length 0. It will be convenient to treat e¢ as a proper substring of every
nonempty string x. Thus every string has the empty border and, for example,
r = abaabaab has the borders u = abaab, u = ab and u = e¢. As observed in
the introduction, a border array [is used to store the length of the longest
border of each z[1..i]; for example, the border array of abaabaab is 0011234.
For a more elaborate example, see Figure 1.

It is convenient to introduce the notation 8'[i] = g[i], 1 < i < n, with
Bili] = BB~ '[i]] for every j > 2 such that $77'[i] is defined and 1 <
B7'i] < n. Then z[1..A[i]] is the longest border of z[1..7], and z[1..57[i]]
is the longest border of x[l.ﬂj’l[i]] for every 7 € 2..m. Since by definition
0 < B[i] < i for every i € 1..n, it follows that the sequence

Blil, B°la), - - B™i] (1)

is well-defined for every 7 and monotone decreasing to 5™[i] = 0 for some
m > 1. Tt is well known [3] that this sequence in fact identifies every border
of z[1..i], and further that, given x, # can be computed on-line in ©(n) time
(using the so-called “failure function” algorithm). We quote without proof
another well-known result [3] that will be required later:

Lemma 2.1 For every border array S[1..n] and every integer i € 1.n — 1,
the only possible values of (i + 1] are zero and b + 1, where b denotes any
element of the sequence (1). O

Corresponding to each B7[i], 1 < j < m, we define a period i — B7[i] of
x[1..7]. The shortest period corresponding to j = 1 is called the period of x.
If p=1i—pli|, r=1i/p], ¢ =imodp, u=x[l..p] and v’ = z[1..q|, then we
say that x[1..i] = u"u is written in normal form.

It is useful to represent the border array [as a tree T}, called the border
tree [9, 16]; that is, a rooted tree in which each node has a unique integer
label chosen from 0..n and the following rules hold: the root has label 0, and

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23
r=abaababaabaababaababadda
B=00112323456 45 6 7 8 91011 7 8 2 3
Y=00000303056 025 6 08 910110 8 0 3

14 16 21 17

19
T

Figure 1: The Border and Cover Trees of z.

the parent of the node with label ¢, 7+ = 1,2,...,n, is the node with label
S[i]. Then as illustrated in Figure 1, the labels of the ancestors of the node
labelled 7 are exactly the lengths of the borders of z[1..1].

The concept of the cover array is very similar to that of the border array
and, as we shall see below, especially in Theorems 2.2 and 2.3, the values
of corresponding elements in these two arrays are closely related too. We
let v = 7[1..n] denote the cover array of string x, where each element ~[i]
specifies the length of the longest proper cover of z[1..i] or zero if there is no
proper cover. It is shown in [6] that if u; and uy are covers of x, |uy| > |ug],
then uy is a cover of uy. Thus, analogous to the sequence (1) that exists for
each position ¢ in the border array, we find in the cover array a corresponding
monotone decreasing sequence

Yl vl -] (2)

with 7y"[i] = 0, defined for every i € 1..n, where of course m = m(i) is a
function of ¢. This sequence identifies in descending order of length all the
proper covers

of every z[1..1].

z[l.i+1]: z[1..c| z[1..c| A

Figure 2: z[1..c] is a proper cover of z[1..c]\.

Analogous to T, a cover tree T, is a rooted tree representing v in which
each node has a unique integer label chosen from 0..n, the root has label
0, and the parent of the node with label 7, + = 1,2,...,n, is the node with
label v[i]. Then the nonzero labels of the ancestors of the node labelled i
are exactly the lengths of the proper covers of x[1..i], which therefore can be
determined simply by visiting i’s ancestors in 7),. See Figure 1.

We now investigate properties of the cover array and its relation to the
border array. Of course, since a proper cover must be a border, we see that
every 7[¢] must assume one of the values (1). Hence v[i] < f[i] for all i
and, in particular, §[i] = 0 implies v[i] = 0. But it turns out that there are
much tighter, and much less obvious, restrictions on the values that may be
assumed by ~v[i], as the next two theorems show.

Theorem 2.2 For every integeri € 1.n—1, if y[i] # 0, then either y[i+1] >
[l + 1 or y[i + 1] = 0.

Proof Let ¢ = v[i]. Then ¢ > 0 and z[1..c] is the longest cover of z[1..i].
Suppose the theorem is false, so that there exists a positive integer ¢’ < ¢ such
that z[1..c'] is the longest cover of x[1..i + 1] = z[1..i]A. Then (see Figure 2)
it follows that z[1..¢'] is a proper cover of z[1..cJ\. Observe however that, for
every ' # A, z[l..c] is not a cover of z[1..c]\'.

If every occurrence of x[1..c] in x[1..i+1] were followed by A, it would follow
that x[1..c + 1] would be a cover of z[1..i + 1], contrary to the hypothesis
that x[1..c'] is the longest cover. Thus some occurrence of x[1..c] in z[1..i+ 1]
must be followed by A\ # A. But as we see below, in Lemma 2.4, this is
impossible: it turns out that every occurrence of z[1..c| in z[1..i] must be
followed by A. We conclude that z[l..c + 1] must be a cover of z[1..i + 1],
and so the assumption 0 < ¢’ < ¢ is false, and the theorem is proved. O

Theorem 2.3 For every integeri € 1.n—1, if Bli+1] < Bli], then y[i+1] =
0.

Proof Since §[i + 1] = 0 implies v[i + 1] = 0, we may assume without loss
of generality that S[i + 1] > 0. Then by Lemma 2.1, B[i + 1] = B7[{] + 1
for some positive integer j; by hypothesis, j > 2, so that [i] > 0. Suppose
that the theorem is false, so that v[i + 1] = ¢ > 0 and z[1..¢] is a cover of
x[1..1 + 1]. Then, setting ¢ = ([i], we have

0<d=qli+1]<fli+1]<ec

Now let z[i4+1] = A. Since S[i+1] # [[i]+1, it must be true that z[c+1] # \;
that is, an occurrence of z[1..c| in z[1..i+1] is followed by some A # A, again
contrary to Lemma 2.4. Therefore the assumption that [i + 1] > 0 must be
false. O

Both of the preceding theorems depend on the following lemma. Unfor-
tunately, the only proof of it that the authors have been able to devise is
rather technical.

Lemma 2.4 Suppose that a nonempty string x = x[1..i] has a nonempty
border x[1..c|. Suppose further that x[1..i + 1] = x[1..i]\ has a proper cover
z[1..c] for some ¢ < ¢. Then for every letter X' # A, the substring x[1..c]N
does not occur in x[l..1].

Proof Suppose on the contrary that a substring x[1..c]\" does exist in z[1..7]
for some N # A. Then since z[1..c] is a cover, z[1..c' — 1] = z[¢— ' +2..c| and
two occurrences of z[1..c'] must either overlap or be adjacent, We assume, as
shown in Figure 3, that two occurrences overlap; the proof for the adjacent
case is similar. Hence there exist positive integers h and A’ such that

z[l.hl =z[d —h+1.d]=z[d —h+ 1. — 1]\,
z[l.h] =z[d — b + 1. — 1N,

where h + h' > ¢'. It is implied that h # A, since otherwise we have A =)\,
contrary to the hypothesis. Observe that xz[1..h' — 1] and z[1..h — 1] are both
borders of z[1..c/ — 1]. Then

(h=1)+ (M =1)>(-1)-1. (3)

z[1..c] z[1..c-1]

|l«—h'—»

Figure 3: Two occurrences of z[1..c']| must overlap.

Without loss of generality, suppose that h > h' + 1, so that (3) becomes
h—12>(d—-1)/2

and z[1..c' — 1] has a border of length at least (¢’ —1)/2. Hence we may write
z[1..d — 1] in the normal form

uf = ulkly* k> 2,

where u* is a possibly empty proper prefix of u, and u is not a repetition.

Consider now an occurrence of z[1..¢/ — 1]\ = ul*lu*)\, with overlapping
strings 2[1..¢/ — 1]\ = u®lu*) at left and right, as shown in Figure 3. Since u
is not a repetition, it is well known [13] that u therefore does not equal any
nontrivial rotation of itself; that is, if we write u = upgrpusyr for nonempty
uprp and ugyp, then v # ugypuprp. Further, since u*A does not match
with w*)’, the only possible overlap at the left is of the form

k-1
—~
wu. .| u u*)\
uw ..o | utA
k

where u*\ overlaps the first |u*A| positions of an occurrence of u in z[1..¢'—1].
It follows that u*\ is a prefix of u, while u*)\’ is not.
Hence the overlap at the right cannot take the form:

k
——
wu ... 0| urFN
u U...uu*\,

——"
k—1

and so must occur as follows:

i
u*\

U . .. UU*N.

ul . . . u*)\

Here in the third row the leftmost u (marked) of the righthand occurrence of
z[1..c'] must partially overlap with the rightmost u (marked @) of the lefthand
occurrence of z[1..c'] in the first row. We see that therefore a nonempty suffix
of length at least

ul = (Ju A +1) = |u| — [u*| >1

of & must coincide with a prefix of u of the same length. But this means that
u is a substring of uu*, which implies that u is a nontrivial rotation of itself,
as we have seen an impossibility.

Thus the original assumption that the substring x[1..c|]\" occurs in x must
be false, and so the lemma is proved. O

We conclude this section by introducing two concepts important for the
algorithm of Section 3 together with corresponding lemmas. The first of
these ideas is that of a “live” prefix.

Given z, any string of which z is a prefix is called a right extension of x. If
a prefix u of x can possibly be a cover of some right extension of x, then wu is
said to be live with respect to x; otherwise, u is said to be dead with respect
to x. For example, if

x = abaab,

then u = aba is live, since aba covers the right extension za, while u = a and
u = ab can cover no right extension of z, and so are dead.

Since a prefix is identified by its length, and since we speak always of a
single given string =, we extend this terminology to positions in x: we say
that j is live with respect to i if and only if x[1..j] can possibly be a cover of
some right extension of z[1..i]. Also, since positions in = correspond to nodes
in the cover tree, we extend the terminology further to speak of live and dead
nodes in 7’,. Observe that if j is dead with respect to ¢, it is dead also with
respect to i+ 1. Thus, as the string x is scanned from left to right — that is,
as i increases — the number of dead positions is monotone nondecreasing.

The first lemma provides a characterization of live positions:

Lemma 2.5 With respect to every i € 1..n, j' is live if and only if x[1..5'] is
a cover of some x[1..], where j € i — [[i]..i.

Proof Suppose first that ;' is live with respect to 7. Then there exists a
minimum-length right extension y = z[1..ijv, 0 < |v| < i, of z[1..i] such that
x[1..7'] is a cover of y. Hence z[1..j" — |v|] is a border of z[1..i], and so for
some j € i— (j’ - \v|)z, x[1..7'] must cover x[1..j]. Since S[i] is the length of
the longest border of x[1..7], j' — |v| < B[i], and so j € i — [][i]..7, as required.

To prove sufficiency, suppose that x[1..5'] is a cover of some z[1..j], j €
i — Bli]..i. Write z[1..i] = «"u' in normal form, where r = |i/|u|| > 1, v’ is a
proper prefix of u, and 8[i] = |u"'u'|. Then u is a prefix of x[1..5]:

z[l..j] = u*u”

for some 1 < s < r and some proper prefix u” of u. Two cases now arise:

e If z is a prefix of u, x[1..5'] must cover u'u"” for any ¢ > s; in particular,
x[1..5'] must cover a right extension u"t'u” of x[1..7], and so j' is live
with respect to .

e If on the other hand u is a prefix of z[1..5], it follows that

z[1..5'] = u'u"
for some ¢ > 1 and some proper prefix u” of u. Therefore z[1..5']
covers any string u*u"', k > t, and in particular u"*'u" again a right
extension of z[1..i 4+ 1]. Thus in this case also j' is live with respect to
1.

O

Since z[1..j] covers itself, Lemma 2.5 tells us that every j € i — f[i]..i is
live with respect to .

The second main idea to be introduced is that of a “run”, already implicit
in Theorem 2.3. A run R, is a mazimal sequence of h > 1 positions in the
border array [such that [j + 1] = p[j] + 1 for every j € i..i + h — 1. Note
that the maximality of the run implies that g[i] < g[i — 1], for i — 1 > 1,
and Sli +h — 1] > Bli + hl], for i + h < n. For example, if we have § =
0011232345645, there are runs Ry 1, Ro9, R43, R75 and Rygp.

Observe that at the start position ¢ of every run in the § array, Theorem 2.3
implies that v[i] = 0. Observe also as a result of Lemma 2.5 that within a
run values ¢ and f[i] both increase by 1 together, so that the set of dead
nodes remains unchanged; thus the only time at which the number of dead
nodes can increase is at the beginning of a run.

10

As we shall see in Section 3, it is important for our algorithm to characterize
dead nodes with respect to the beginning of a run:

Lemma 2.6 Let i denote a position that starts a run in a border array 3.
Then j < i — f[i] is dead with respect to i if and only if j has no children in
T, that are live with respect to 1.

Proof Suppose j < i — ([i] is dead with respect to i. Then z[1..j] cannot
possibly cover any right extension of z[1..7]. If j has a child j' in 7, that is
live with respect to i, then xz[1..j'] is a potential cover of z[1..k], for some
k > i. But since j' is a child of j, it must be true that z[1..j] covers z[1..j']
and so also the same z[1..k], a contradiction. Thus necessity is proved.

To prove sufficiency, suppose that j < i— ([i] has no child live with respect
to i, but that j itself is live with respect to i. Then, by Lemma 2.5, z[1..7]
must cover some string x[1..k|, i — B[i] < k < i. Therefore j has a child & in
T, that, again by Lemma 2.5, must be live with respect to 7, a contradiction.
We conclude that j is dead with respect to . O

As a corollary of this result, we observe that if a node j is live with respect
to a node i, then so is its parent v[j] in T.,.

We state as a final lemma a simple property of i — ([i] that is required in
the algorithm:

Lemma 2.7 The function i — ([i] is invariant for every i in the same run
and monotone nondecreasing in i; in particular, for any position i > 1 that
starts a new run in f3,

(1—1)=pli —1] <i— Bl

Proof An immediate consequence of the fact that 5[i] < g[i —1] if and only
if ¢ starts a run. O

3 COMPUTING THE COVER ARRAY

As mentioned in the introduction, the algorithm performs two main tasks
as the string x and border array [are processed from left to right, for each
i=1,2,...,n:

11

e compute [i] and add i as a new child of v[i] in the cover tree T, —
recall that by definition [is just the parent of i in T;

e for every ¢ that marks the start of a run in 3, compute the nodes in 7T,
that are dead with respect to 7.

In addition to S[1..n] and 7[1..n], the algorithm also uses the following
arrays:

e dead[0..n — 1]: by Lemma 2.6, dead[j] = true if and only if j has no
children in 7', that are live with respect to the current value of 7 and
j <i— Bi] (as we shall see, the root node 0 in T, is always live);

e livechildren[0..n]: livechildren|i] = k if and only if node i in the cover
tree T, has exactly k live children.

e largestlive[0..n]: largestliveli] = j if and only if j is the largest live
ancestor of 7 in the cover tree T, (of course i is always live with respect
to itself).

The algorithm is initialized by placing node 0 in the cover tree T, set-
ting every position in dead to false, every position in livechildren to 0, and

largestlive[i] to i for every i € 1..n. Then the procedure AllCovers outlined

below is executed on the current 70 position in z, i =1,2,...,n. AllCovers

has just three steps: Step 1 ensures that the largestlive array is kept up to
date, Step 2 attaches ¢ to its proper parent in 7, and Step 3 ensures that
the dead array is updated at the start of each new run.

1. {If B[i] in T’ is dead, f3[¢] should have the same largest live ancestor as
its parent does.}

If dead [6[2]} = true, then largestlive[ﬂ[iH + largestlive {7 [6[2]}}

2. {Compute ~v[i]: if B[i] is live, set v[i| < []i]; otherwise, since every
cover of z[1..i] must cover z[1..8[i]], set y[i] equal to the largest live
ancestor (possibly 0) of 3[i].}

[i] = largestlive[Bi]]; increment livechildren [y[i]].

3. {Identify all the nodes in 7, that have become dead as a result of
starting the new run.}

If + > 1 starts a new run in the border array f:

12

3.1 Compute ¢; < i — f[i], ¢cg < (i — 1) — B[— 1] (Lemma 2.7).
3.2 Forevery j =c¢; — 1,¢1 — 2, ..., ¢5 (Lemma 2.6):

 if not dead[j] and j has no live children in 7', then
dead[j] < true; decrement livechildren [’y[j]];

* (recursively) if j has just been set dead and ~[j] has no live
children in 7, then

dead [7[]]] <+ true; decrement livechildren [7 [7[]]]}

We claim that

Theorem 3.1 Procedure AllCovers computes the cover array ~y[1..n] cor-
rectly.

Proof We consider the steps separately, beginning with Step 3.

Let 1 =14y < iy < --- < 1, < n denote the positions in § at which runs
start. In Step 3 each position j € ip,_q..0 — 1, h =2,3,...,k — 1, is tested
to determine whether or not it should be set dead with respect to 75,1 by
Lemma 2.5, each such position was live with respect to 7;,. By Lemma 2.6,
the parent v[j] of any position j that is set dead must be inspected: y[j] must
previously have been live, but it will now be dead if and only if it has no live
children. Thus, Step 3 must recursively examine the parent of any position
that has been set dead, until an ancestor is found that has at least one live
child, and that therefore remains alive. Note that since i, is always live
with respect to itself, there must by Lemma 2.6 exist a path containing only
live nodes that leads from 7,1 to the root. Thus the root is always live, and
Step 3 will always terminate at the first live node along the path from j to
the root.

Note that the positions j € ij,_1..i5, — 1 are considered in the reverse order
th—1,1,—2,...,17, 1 in order to take account of the possibility that j may be
set dead and that moreover v[j] € ij_1..i5, — 1 also. It is for this same reason
that, in order to avoid redundant processing of the same path to the root, it
is necessary to check in Step 3.2 that not dead[j]: j could have been set dead
because it is the parent of a larger node, already set dead, in 2, 1..1, — 1.

Since livechildren [7[]}] is always decremented for every node j that is set
dead, we conclude that Step 3 deals correctly with the task of setting nodes
dead at the start of each new run.

13

Step 2 is a straightforward update of T, based on the current position i.
Its correctness depends entirely on the correct update of largestlive[ﬁ[iﬂ in
Step 1.

Step 1 will be executed only when ([i] has been set dead during one of the
previous executions of Step 3.2. As noted in the proof of Step 3, if some j is
to be set dead with respect to 7,41, it must have been live with respect to iy,
hence by Lemma 2.5 live with respect to ip41 — 1. Therefore z[1..5] would
be a potential cover of x[1..i41]; thus it would cover some right extension of
x[l..ﬂ[ih+1]], which is a suffix of x[1..i541]. Hence the following fact holds:
at the time that any position j is set dead, it must be true that j is greater
than S[ip 1], where i544 is the current value used in Step 3.1.

Since by Lemma 2.1 values in the § array can increase by at most one from
a given position to the next, it follows that every such dead position 7 must
later become a value in the g array that is, j = S[i] for some ¢’ > i

in order for Step 1 to be executed. In particular, the values 7 must be
processed in Step 1 in ascending order of magnitude; that is, in descending
order in the cover tree T),. This means that Step 1 will pass correct values of
the largest live ancestor from parent to child. O

Now consider the time required by AllCovers. Each of the steps except
possibly Step 3.2 requires only constant time. Then AllCovers requires O(n)
time plus the total time used within Step 3.2. To estimate this total time,
observe that the time required for each execution of Step 3.2 is proportional
to

max{(c; — ¢3), no. of nodes set dead}.

Since the sum of ¢; — ¢y over all runs is at most n — 1 and since each of the n
nodes may be set dead at most once, it follows that the total time for Step
3.2 is O(2n). Hence

Theorem 3.2 Procedure AllCovers requires ©(n) time and ©(n) space for
its execution. U

AllCovers is an optimal on-line algorithm: it computes v, thus making
available all the covers of every prefix of z, in ©(n) time and space. Note that
since the calculation of 3 is also on-line, AllCovers can easily be modified to
simultaneously compute on-line both the border and the cover arrays.

The reader will find it instructive to follow the algorithm as it applies to
the example given in Figure 1. Note particularly that, as a result of the fact

that ([22] = 2, the following nodes are all set dead: 5,6,9,10,11,13 — 19.

14

4 COMPARISON WITH PREVIOUS ALGO-
RITHMS

In order to make clear the distinction between the algorithm presented here
and previous cover algorithms, we duplicate here the example given in Fig-
ure 1:

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23
r=abaababaabaababaababadda
f=0011232345 6 456 7 8 91011 7 8 2 3
Y=00000303056 0256 08 910110 8 0 3

For this string Algorithm AFI [2] would compute only y[23] = 3, the shortest
proper cover of z. If instead AFI were applied to the truncated string x[1..19],
it would compute only the length 3 of the shortest cover, but would be unable
to report the covers of lengths 6 and 11. Since AFIis not an on-line algorithm,
it would be unable to extend its computation of the shortest cover of z[1..19]
to x: even though z[1..19] is a prefix of z, the two problems would have to
be considered independently.

The on-line Algorithm B [6] would on the other hand be able to compute
the shortest cover only of every prefix of z. Thus the array produced by
Algorithm B would be as follows:

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23
’7/:[]0000303053053039530303

Finally, the Algorithm MS [15, 16] would like AFI compute only v[23] = 3,
since the only proper cover of z is z[1..3]. For the prefix z[1..19], however,
MS would compute the three values

11,6,3,

specifying its three proper covers. But, also like AFI, Algorithm MS is not

on-line and so would need to treat z and z[1..19] as separate problems.
Viewed in this light, then, the new algorithm combines the benefits of

Algorithms B and MS, while still of course maintaining linear execution time.

15

References

1]

[10]

[11]

[12]

Alberto Apostolico & Andrzej Ehrenfeucht, Efficient Detection of Quasi-
periodicities in Strings, Tech. Report No. 90.5, The Leonardo Fibonacci
Institute, Trento, Italy (1990).

Alberto Apostolico, Martin Farach & Costas S. Iliopoulos, Optimal su-
perprimitivity testing for strings, Inform. Process. Lett. 39-1 (1991) 17-
20.

A. V. Aho, J. E. Hopcroft & J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading MA, (1974).

Alberto Apostolico & F. P. Preparata, Optimal off-line detection of rep-
etitions in a string, Theoret. Comput. Sci. 22 (1983) 297-315.

O. Berkman, Costas S. Iliopoulos & Kunsoo Park, The subtree max

gap problem with application to parallel string covering, Information €
Computation 123-1 (1995) 127-137.

D. Breslauer, An on-line string superprimitivity test, Inform. Process.
Lett. 44-6 (1992) 345-347.

D. Breslauer, Testing string superprimitivity in parallel, Inform. Pro-
cess. Lett. 49-5 (1994) 235-241.

Maxime Crochemore, An optimal algorithm for finding the repetitions
in a word, Inform. Process. Lett. 12-5 (1981) 244-248.

Ming Gu, Martin Farach & Richard Beigel, An efficient algorithm for dy-
namic text indexing, Proc. Fifth Annual ACM-SIAM Symp. on Discrete
Algorithms (1994) 697-704.

Costas S. Iliopoulos & Laurent Mouchard, Fast local covers, preprint
(1999).

Costas S. Iliopoulos & Kunsoo Park, An optimal O(nlogn)-time algo-
rithm for parallel superprimitivity testing, J. Korea Information Sci.
Soc. 21-8 (1994) 1400-1404.

Costas S. Iliopoulos & W. F. Smyth, On-line algorithms for k-covering,
preprint.

16

[13] M. Lothaire, Combinatorics on Words, Addison-Wesley (1982).

[14] Michael G. Main & Richard J. Lorentz, An O(nlogn) algorithm for
finding all repetitions in a string, J. Algs. 5 (1984) 422-432.

[15] Dennis Moore & W. F. Smyth, An optimal algorithm to compute all the
covers of a string, Inform. Process. Lett. 50 (1994) 239-246.

[16] Dennis Moore & W. F. Smyth, Correction to: An optimal algorithm
to compute all the covers of a string, Inform. Process. Lett. 54 (1995)
101-103.

[17] Axel Thue, Uber unendliche zeichenreihen, Norske Vid. Selsk. Skr. I,
Mat. Nat. KI. Christiana 7 (1906) 1-22.

ACKNOWLEDGEMENTS

The work of the second author was supported in part by Grant No. A8180
of the Natural Sciences & Engineering Research Council of Canada and
by Grant No. GO-12278 of the Canadian Genome Analysis & Technology
Agency.

17

