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Abstract. Given a string x = x[1..n] on an alphabet of size α, and a
threshold pmin ≥ 1, we describe four variants of an algorithm PSY1
that, using a suffix array, computes all the complete nonextendible re-
peats in x of length p ≥ pmin. The basic algorithm PSY1–1 and its
simple extension PSY1–2 are fast on strings that occur in biological,
natural language and other applications (not highly periodic strings),
while PSY1–3 guarantees Θ(n) worst-case execution time. The final vari-
ant, PSY1–4, also achieves Θ(n) processing time and, over the complete
range of strings tested, is the fastest of the four. The space requirement
of all four algorithms is about 5n bytes, but all make use of the “long-
est common prefix” (LCP) array, whose construction requires about 6n
bytes. The four algorithms are faster in applications and use less space
than a recently-proposed algorithm [17] that produces equivalent out-
put. The suffix array is not explicitly used by algorithms PSY1, but may
be required for postprocessing; in this case, storage requirements rise to
9n bytes. We also describe two variants of a fast Θ(n)-time algorithm
PSY2 for computing all complete supernonextendible repeats in x.
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1. Introduction

A repeating substring u in a string x is a substring of x that occurs more
than once. A repeat in x is a set of locations in x at which a repeating
substring u occurs; it can be specified by the length p ≥ 1 of u (what we

Address for correspondence: Munina Yusufu, Department of Computing and Software,

McMaster University, Hamilton, Ontario, Canada L8S 4K1, yusufum@mcmaster.ca.
The work of the first author is supported by the Australian Research Council. The work of

the second and third authors was supported in part by grants from the Natural Sciences &
Engineering Research Council of Canada. A preliminary version of this paper appeared in

[19]. The authors thank an anonymous referee whose comments have materially improved

this paper.



2 Simon J. Puglisi, W. F. Smyth and Munina Yusufu

call its period) and the locations. For example, in x = abaababa, ab is a
repeating substring which occurs three times at positions 1, 4, and 6 with
length 2. Thus the tuple (2; 1, 4, 6) describes the repeat of u = ab (p = 2) at
positions 1, 4, 6.

Following [22] we say that a repeat (p; i1, i2, . . . , ik), k ≥ 2, is complete
iff it includes all occurrences of u in x; left-extendible (LE) iff

x[i1−1] = x[i2−1] = · · · = x[ik−1];

and right-extendible (RE) iff

x[i1+p] = x[i2+p] = · · · = x[ik+p].

A repeat is NLE iff it is not LE; NRE iff it is not RE; nonextendible (NE) iff
it is both NLE and NRE. A repeat is supernonextendible (SNE) iff it is NE
and its repeating substring u is not a proper substring of any other repeating
substring of x.

Detecting repeats is important in applications such as bioinformatics
and data compression, as well as in musicology (identification of repeating
rhythms or passages) and software engineering (clone detection in large soft-
ware systems).

In [8, p. 147] an algorithm is described that, given the suffix tree STx
of x, computes all the NE (called “maximal”) pairs of repeats in x in time
O(αn+q), where q is the number of pairs output. [4] uses similar methods
to compute all NE pairs (p; i1, i2) such that i2−i1 ≥ gmin (or ≤ gmax) for
user-defined gaps gmin, gmax. [1] shows how to use the suffix array SAx of x
to compute the NE pairs in time O(αn+q). Since it may be that α ∈ O(n),
all of these algorithms require O(n2) time in the worst case, though in many
applications α = 4 (DNA alphabet). [7] uses the suffix arrays of both x
and its reversed string x = x[n]x[n−1] · · ·x[1] to compute all the complete
NE repeats in x in Θ(n) time. More recently, [17] describes suffix array-
based Θ(n)-time algorithms to compute all substring equivalence classes —
including the complete NE repeats — in x.

In this paper we present four variants of a new fast algorithm PSY1
that computes all the complete NE repeats in a given string x whose length
(period) p ≥ pmin, where pmin ≥ 1 is a user-specified minimum. PSY1 uses
5n bytes of space directly, but requires the LCP array, whose construction
needs 6n bytes. The variants PSY1–3 and PSY1–4 execute in Θ(n) time
independent of alphabet size.

We also describe two versions of a new linear-time algorithm PSY2 to
compute all the SNE repeats in x. The second of these, PSY2–2, executes in
time Θ(n+α). This improves on the algorithm described in [8, p. 146] that does
the same calculation (of “supermaximal” repeats) in time O(n log α) using a
suffix tree, as well as on the algorithm described in [1, p. 59] that uses a suffix
array and requires O(n+α2) time. For α ∈ O(n) these times become O(n log n)
and O(n2), respectively, whereas PSY2–2 remains Θ(n). We remark that in
many applications SNE repeats are those of greatest interest.
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In Sections 2 and 3 we describe our algorithms for computing, respec-
tively, nonextendible and supernonextendible repeats. Section 4 summarizes
the results of experiments that compare the algorithms with each other and
with existing algorithms. Section 5 discusses these results, including the strat-
egy of computing complete (NE and SNE) repeats in the context of applica-
tions to bioinformatics.

2. Algorithms for Nonextendible Repeats

We suppose that a string x = x[1..n] is given, defined on an ordered alphabet
A of size α (where if there is no explicit bound on alphabet size, we suppose
α ≤ n). We refer to the suffix x[i..n], i ∈ 1..n, simply as suffix i. Then the
suffix array SAx is an array [1..n] in which SAx[j] = i iff suffix i is the jth in
lexicographical order among all the nonempty suffixes of x. Let lcpx(i1, i2)
denote the longest common prefix of suffixes i1 and i2 of x. Then LCPx is
an array [1..n+1] in which LCPx[1] = LCPx[n+1] = −1, while for j ∈ 2..n,

LCPx[j] =
∣∣∣lcpx

(
SAx[j−1],SAx[j]

)∣∣∣.
SAx can be computed in Θ(n) worst-case time [9, 12], though various supra-
linear methods [16, 14] are certainly much faster, as well as more space-
efficient, in practice [18], in some cases requiring space only for x and SAx it-
self. Given x and SAx, LCPx can also be computed in Θ(n) time [11, 15, 20]:
the first algorithm described in [15] requires 9n bytes of storage and is almost
as fast in practice as that of [11], which requires 13n bytes. However the al-
gorithm recently proposed in [20] is generally faster and requires about 6n
bytes of storage for its execution, since it overwrites the suffix array — this
is the LCP algorithm used in this paper. (For space calculations, we make
throughout the usual assumption that an integer occupies four bytes, a letter
one.) When the context is clear, we write SA for SAx, LCP for LCPx.

We also define the Burrows-Wheeler Transform BWTx or BWT [5]: for
SA[j] > 1, BWT[j] = x

[
SA[j]−1

]
, while for j such that SA[j] = 1, BWT[j] =

$, a sentinel letter not equal to any other in x. We set BWT[n+1] = $. BWT
can clearly be computed in linear time from SA; since it occupies only n rather
than 4n bytes, we use BWT rather than SA if there is a choice. Figure 1 gives
the SA, LCP, and BWT arrays for the string x = ababababab. We will use
this example in the following sections as well.

1 2 3 4 5 6 7 8 9 10 11

x = a b a b a b a b a b $
SAx = 9 7 5 3 1 10 8 6 4 2

LCPx = -1 2 4 6 8 0 1 3 5 7 -1
BWTx = b b b b $ a a a a a $

Figure 1. String x = ababababab with SA, LCP and BTW arrays
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As explained below, there are altogether nine repeats in x. As defined in
the Introduction, each repeat can be presented in the form (p; i1, i2, . . . , ik),
where p is the period of the repeat and i1, i2, . . . , ik are positions in which
the repeating substring occurs. For example, the repeating substring u= bab
of length 3 occurs in positions 2, 4, 6, 8 of x, so the repeat can be described as
(3; 2, 4, 6, 8). Note that our algorithms report this fact as a complete repeat
in the form (3; 7, 10) with period p = 3, where 7, 10 is a range identifying
SA[7] = 8,SA[8] = 6,SA[9] = 4,SA[10] = 2. For convenience, we may refer
to repeat (3; 7, 10) as bab, or as (3; 7, 10) = bab depending on the context in
the following sections. Note that, among the nine repeats in x, a, ab, abab,
ababab, and abababab are NLE; since abababab is also NRE, it is NE, and it
is the only SNE repeat in x. The other four repeats b, bab, babab, bababab are
LE.

The PSY1 and PSY2 algorithms described below make direct use of
LCP and BWT (but neither of SA nor of x itself), and therefore require only
5n bytes of storage (plus relatively small stack space in the case of PSY1).
For these algorithms, then, the 6n bytes needed for LCP construction (see
above) provide an upper bound on the overall space requirement. PSY1 and
PSY2 output ranges i..j of positions in SA that specify complete repeats
(NE for PSY1, SNE for PSY2). See Section 5 for further discussion of the
postprocessing of PSY1/PSY2 output.

PSY1–1

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time (LCP overwrites SA).

j ← 0; p← −1; q ← 0; prevNE ← 0; push(LB; 0, 0)
while j < n do

repeat
j ← j+1; p← q; q ← LCP[j+1]
if q > p and q ≥ pmin then push(LB; j, q)

until p > q
repeat

if top(LB).lcp > 0 then
(i, p)← pop(LB)
if prevNE ≥ i then output(p; i, j)
elsif NLE(i, j) then prevNE ← i; output(p; i, j)

until top(LB).lcp ≤ q
if top(LB).lcp < q and q ≥ pmin then

push(LB; i, q)

Figure 2. Algorithm PSY1–1 — compute all NE repeats
of period p ≥ pmin as ranges in SA using one stack

Algorithms PSY1 take as a point of departure the algorithm described
in [1] that, based on SAx, outputs repeating substrings of x in pairs. Given
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a threshold pmin ≥ 1, PSY1 by contrast outputs complete NE repeats, each
one a triple (p; i, j) specifying a period p ≥ pmin and a range i..j in SAx.
Thus the range implicitly reports a complete repeat as defined in Section 1.

These algorithms all perform a single left-to-right scan of LCP. Figures 2
and 3 show pseudocode for a brute force (but fast) version PSY1–1 that uses
a single stack LB (Left Boundary) to store leftmost positions i at which there
is an increase in the LCP value. More precisely, entries (j, q) are pushed onto
LB at every position j at which the LCP value increases (to q) and popped
whenever the LCP value decreases. Thus each pop, together with the current
j value, identifies a complete repeat that must be NRE but that may or may
not be NLE. Since the expected maximum length of a repeating substring
in a given string x = x[1..n] on an alphabet of size α is 2 logα n [10], this
quantity is also the expected maximum number of entries in LB; in the worst
case (x = an), the maximum could be Θ(n). Note that since there is at most
one output for each pop of LB, the number of repeats, thus in particular the
number of complete NE repeats, in x is O(n) (at most the number of internal
nodes in the suffix tree).

function NLE(i, j)
— Range is LE only if all preceding letters are identical.

λ← BWT[i]; i′ ← i+1
while i′ ≤ j and λ = BWT[i′] do i′ ← i′+1
return (i′ ≤ j)

Figure 3. Determine whether the repeat SA[i..j] is NLE
(one stack)

An important feature of PSY1–1 is the use of the variable prevNE
— this is the lefthand position i in SA of the repeat (p; i, j) most recently
discovered, through an invocation of function NLE, to be in fact non-left-
extendible. The importance of prevNE derives from the observation that if
any repeat of a substring u is NLE, then so is the complete repeat of any
prefix of u — thus storing prevNE ensures that the upward propagation
of the NLE property in the suffix tree of x is recognized without invoking
function NLE unnecessarily. For example, for the string x in Figure 1, after
the repeat (8; 4, 5) = abababab was popped, since it is NLE, prevNE will be
set to 4; then when the following repeat (6; 3, 5) = ababab (note that ababab is
a prefix of abababab) is popped, since i = 3 < 4 = prevNE, it will be directly
output without being checked by function NLE; similarly for the following
repeats: (4; 2, 5) = abab, (2; 1, 5) = ab, and (1; 1, 5) = a.

In practice, this heuristic greatly reduces the time requirement. It is in-
teresting that, apart from highly periodic strings (that rarely occur in prac-
tice), PSY1–1 is the fastest of the four variants on the strings used for testing.

However, PSY1–1 is not linear in string length n in the worst case. For
integer k ≥ 1, n = 8k+2, x = (ab)n/2, every repeat of b, bab, . . . , b(ab)n/2−2

is LE, requiring n/2, n/2−1, . . . , n/2−(n/2− 2) positions of SA, respectively,



6 Simon J. Puglisi, W. F. Smyth and Munina Yusufu

to be checked by function NLE, a total of
n/2−2∑

i=0

(n/2−i) = (n/2+2)(n/2−1)/2 ∈ Θ(n2)

letter comparisons. More generally, every string x = un/k, where k is a
constant that divides n, will require Θ(n2) letter comparisons.

For example, for the string x in Figure 1, after the repeat (7; 9, 10) =
bababab was popped, it will be checked by function NLE to determine whether
BWT[9] = BWT[10]; since it is LE, the following repeat (5; 8, 10) = babab
will also be checked by function NLE to see whether BWT[8], BWT[9], and
BWT[10] are equal. We notice that redundant letter comparisons occur here.
Repeats (3; 7, 10) = bab and (1; 6, 10) = b will be processed analogously.

PSY1–2

To avoid repetitive checking of LE repeats, we introduce two integer variables,
leftLE and rightLE, that identify the left and right boundaries, respectively,
of the repeat (range in SA) most recently found to be LE in the left-to-right
scan of LCP. In the event that leftLE..rightLE is a subrange of a range i..j
whose LE status needs to be checked, this change allows the LE subrange to
be skipped.

Assume that a particular repeat (p; i′..j′) is LE. Then

x[SA[i′]− 1] = x[SA[i′ + 1]− 1] = ... = x[SA[j′]− 1].

If we set i′ ← leftLE, j′ ← rightLE, then for the subsequent complete NRE
repeat (p̃; i, j) such that i ≤ i′ < j′ ≤ j, we also need to check whether or
not it is NLE; that is, to check whether or not there exists at least one pair
in the letters

x[SA[i]− 1],x[SA[i + 1]− 1], ...,x[SA[j]− 1]

that are different from each other. But since i ≤ i′ < j′ ≤ j, we only need to
check that

((p̃; i..leftLE) is NLE) ∨ ((p̃; rightLE..j) is NLE).
From this analysis, we know that we can eliminate unnecessary letter

comparisons. The revised algorithm PSY1–2 is shown in Figure 4.
Compared with PSY1–1, for the string x of Figure 1, by using PSY1–2,

we can reduce letter comparisons for the repeats (5; 8, 10) = babab, (3; 7, 10) =
bab, and (1; 6, 10) = b followed by LE repeat (7; 9, 10) = bababab, by setting
leftLE and rightLE accordingly. As discussed below, there may however
still be some duplicated letter comparisons using PSY1–2.

We shall find in Section 4 that for highly periodic strings, RPT1–2
provides significant speed-up over RPT1–1, mainly due to the use of the
variables leftLE and rightLE; but it runs the same or slightly slower for
other strings, indicating that not many cases exist in these strings such that
the subranges of a range are LE; therefore the functionality of leftLE and
rightLE actually is not very useful. Moreover, RPT1–2 is still not linear in
the worst case, a result that is not unexpected, but that turns out to be
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— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time (LCP overwrites SA).

j ← 0; p← −1; q ← 0; prevNE ← 0; push(LB; 0, 0)
while j < n do

repeat
j ← j+1; p← q; q ← LCP[j+1]
if q > p and q ≥ pmin then push(LB; j, q)

until p > q
leftLE ← j; rightLE ← j
repeat

if top(LB).lcp > 0 then
(i, p)← pop(LB)
if prevNE ≥ i then output(p; i, j)
elsif rightLE < j and NLE(rightLE, j) then

prevNE ← rightLE; output(p; i, j)
elsif i < leftLE and NLE(i, leftLE) then

prevNE ← i; output(p; i, j)
else

leftLE ← i; rightLE ← j
until top(LB).lcp ≤ q
if top(LB).lcp < q and q ≥ pmin then

push(LB; i, q)

Figure 4. Algorithm PSY1–2 — compute all NE repeats
of period p ≥ pmin as ranges in SA using one stack and LE
range variables leftLE, rightLE

rather more difficult to establish than for RPT1–1. Consider a string x in
which the following substrings occur:

u(k) = µλ1 · · ·λk (k times)

u(k−1) = µλ1 · · ·λk−1 (2 times)
...

u(1) = µλ1 (2 times)

where µ and λi, 1 ≤ i ≤ k, are letters such that λ1 < λ2 < · · · < λk < µ. For
example, let

x = u(k)u(1)u(1)u(k)u(2)u(2) · · ·u(k)u(k−1)u(k−1)u(k)

of length n = 2(k2+k−1), and observe that for every λi, 1 ≤ i ≤ k, there
exist exactly k−i+1 distinct substrings

λiλi+1 · · ·λk < λiλi+1 · · ·λk−1 < · · · < λi,

all of which are NRE and LE repeats, with the lexicographically least occur-
ring k times, the others twice. It follows that during the execution of PSY1–2,
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the function NLE will need to perform letter comparisons on the substring
λiλi+1 · · ·λk of length k−i+1 a total of k−i+1 separate times. Then at least

k∑
i=1

(k−i+1)2 = k(k+1)(2k+1)/6 ∈ Θ(k3)

letter comparisons are required. Since n ∈ Θ(k2), we see that the number of
letter comparisons is O(n

√
n), as far as we know the worst case for PSY1–2.

PSY1–3

To guarantee worst-case linear time, we use another stack PREVRANGES,
thus creating a third variant PSY1–3 (see Figures 5 and 6).

function NLE(i, j, PREVRANGES)
— Range is NLE if any subrange is NLE.

λ← BWT[i]; I ← i
while top(PREVRANGES).j′ > i do

(i′, j′, λ′)← pop(PREVRANGES)
if λ 6= $ then

if λ = λ′ then I ← j−1
else λ← $

if λ = $ then return TRUE
else

λ← CHECK(I+1, j, λ)
if λ = $ then return TRUE
else push(PREVRANGES; i, j, λ); return FALSE

function CHECK(min,max, λ)
j′ ← min
while j′ ≤ max and BWT[j′] = λ do j′ ← j′+1
if j′ > max then

return λ
else

return $

Figure 5. Determine whether the repeat SA[i..j] is NLE
(two stacks)

If the current repeat processed by function NLE (Figure 5) is found
to be left-extendible, its range limits i, j are pushed onto PREVRANGES
together with the letter λ that precedes each suffix in the range i..j. Since
each range must be either disjoint from, or a proper subrange of, subsequent
ranges identified during the scan (reflecting the subtree structure of the suffix
tree of x), these ranges allow us to efficiently determine the left-extendibility
of subsequent ranges without duplicating letter comparisons already made,
based on the following simple observations:
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∗ every subrange of an LE range must also be LE (that is, a single NLE
subrange ensures that the enclosing range is also NLE);
∗ moreover, the letter λ 6= $ that establishes left-extendibility must be

identical over all the subranges found in PREVRANGES.

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time (LCP overwrites SA).

j ← 0; p← −1; q ← 0; prevNE ← 0
push(LB; 0, 0); push(PREVRANGES; 0, 0, $)
while j < n do

repeat
j ← j+1; p← q; q ← LCP[j+1]
if q > p and q ≥ pmin then push(LB; j, q)

until p > q
repeat

if top(LB).lcp > 0 then
(i, p)← pop(LB)
if prevNE ≥ i then output(p; i, j)
elsif NLE(i, j, PREVRANGES) then

setempty(PREVRANGES)
push(PREVRANGES; 0, 0, $)
prevNE ← i; output(p; i, j)

until top(LB).lcp ≤ q
if top(LB).lcp < q and q ≥ pmin then

push(LB; i, q)

Figure 6. Algorithm PSY1–3 — compute all NE repeats
of period p ≥ pmin as ranges in SA using two stacks

We mentioned above that by using PSY1–2, we can only reduce some
letter comparisons for the repeats (5; 8, 10) = babab, (3; 7, 10) = bab, and
(1; 6, 10) = b followed by LE repeat (7; 9, 10) = bababab, but it is turns out
that by using PSY1–3, we will eliminate all unnecessary letter comparisons.
For example, if NRE repeats (7; 9, 10), (5; 8, 10), and (3; 7, 10) are already
identified by function NLE as LE, when an NRE repeat (1; 6, 10) is checked
by function NLE, since ranges 9..10, 8..9 and 7..8 were already checked (only
once) and λ = a was pushed onto stack PREVRANGES (since BWT[7] =
BWT[8] = a), therefore function NLE will yield this λ value and only check
the range 6..7; that is, whether or not BWT[6] = BWT[7].

Now we have the conclusion that since every LE range is pushed onto
PREVRANGES with a λ value that is not a sentinel $, therefore subsequent
NRE repeats, which include the previous ranges as subranges, will only check
the ranges that are unmarked with λ values; thus in the worst case, the
number of letter comparisons is O(n).
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PSY1–4

To guarantee worst-case linear time, and still use one stack, we create the
fourth variant PSY1–4 (see Figure 7). As shown in Figure 7, PSY1–4 performs
a single left-to-right scan of LCP, inspecting each position j from 1 to n.
During the scan, whenever a position lb (initially lb = j) is found for which
the LCP value increases, an entry is pushed onto a stack LB. As before,
LB specifies the Left Boundary lb and period p of a repeat that must be
NRE, but that may or may not be NLE: lb marks the leftmost occurrence
in SA of a repeating substring of length p = LCP[lb+1] > LCP[lb], thus
the left boundary of a repeat. In fact, a triple (p, lb, bwt) is pushed onto
the stack, where bwt is a letter that determines the left-extendibility of the
repeat: initially bwt equals the sentinel letter $ if BWT[lb] 6= BWT[lb+1], and
otherwise equals BWT[lb]. This is the calculation performed repeatedly by
the function LEletter. Thus bwt = $ if the repeat is NLE (and so eventually
should be output), but assumes a regular letter value if the repeat (so far at
least) is LE.

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time and 6n bytes of space.

lcp← LCP[1]; lb← 1; bwt1← BWT[1]
push(LB; lcp, lb, bwt1)
for j ← 1 to n do

lb← j; lcp← LCP[j+1]
— Compute LEletter of BWT[j] and BWT[j+1].

bwt2← BWT[j+1]; bwt← LEletter(bwt1, bwt2)
bwt1← bwt2
while top(LB).lcp > lcp do

pop(LB; p, i, prevbwt)
if prevbwt = $ and p ≥ pmin then

output(p; i, j)
lb← i
top(LB).bwt← LEletter(prevbwt, top(LB).bwt)
bwt← LEletter(prevbwt, bwt)

if top(LB).lcp = lcp then
top(LB).bwt← LEletter(top(LB).bwt, bwt)

else
push(LB; lcp, lb, bwt)

function LEletter(`1, `2)
if `1 = $ or `1 6= `2 then return $
else return `1

Figure 7. Algorithm PSY1–4: compute all NE repeats of
period p ≥ pmin as ranges in SA
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Since the pushes to LB occur in increasing order of position lb, the pops
occur in decreasing order of lb: the most recently pushed triple is popped
when a position j is reached for which LCP[j+1] < top(LB).lcp. Then j is
the right boundary for the popped triple (p, i, prevbwt) and a repeat (p; i, j)
is identified. Observe that this repeat is NRE: if the same letter followed
each occurrence of the repeating substring of length p, then p could not be
maximum, contradicting the definition of LCP.

It remains to determine whether or not the popped triple is NLE. For
this the popped value prevbwt needs to be inspected to determine whether it
is $ — that is, whether the repeat is NLE, whether it should be output. To
ensure that top(LB).bwt is maintained correctly, we use a simple property of
ranges of repeats: two ranges are either disjoint (empty common prefix) or
else one range contains the other (common prefix over the longer range). It
follows that if top(LB).bwt = $ for a contained range, then for every range
that encloses it, we must also have top(LB).bwt = $. Moreover, if for some
letter λ ∈ A, a contained range is LE with bwt = λ, then the enclosing range
will be LE only if every other contained range also has bwt = λ. In PSY1–
4 the correct bwt value for the enclosing range is maintained by invoking
LEletter to update top(LB).bwt whenever LCP[j +1] ≤ top(LB).lcp. For
LCP[j+1] < top(LB).lcp, LEletter is used again to update the current bwt
based on the prevbwt just popped.

In view of this discussion, we claim the correctness of PSY1–4. Execution
time is Θ(n), since the number of executions of the while loop is at most the
number of triples pushed onto LB, thus O(n).

Space required directly for the execution of all PSY1 variants is 5n
bytes plus maximum stack storage: 8-byte entries in LB and 9-byte entries in
PREVRANGES. The largest number of entries in both of these stacks will
be the maximum depth of the suffix tree — thus O(n) in the worst case —
but expected depth on an alphabet of size α > 1 is 2 logα n [10]. Thus even
for α = 2, expected space for LB is 18 logα n bytes — if n = 220, 360 bytes.
On strings arising in practice, LB requires negligible space (Section 5).

3. Algorithms for Supernonextendible Repeats

PSY2–1

The SNE (“supermaximal”) repeats algorithm described in [1] does not deal
explicitly with the problem of determining whether or not a complete super
NRE (SNRE) repeat is also SNLE. This determination requires that the
left extensions (BWT values) of the k positions in the repeat be pairwise
distinct. The straightforward approach to this problem requires at most

(
k
2

)
letter comparisons, where k can possibly be order n. However, we make two
observations:
∗ The cardinality k of an SNE repeat cannot exceed the alphabet size

α. Thus a single test suffices to eliminate candidate SNRE repeats of
cardinality greater than α, and the straightforward algorithm can then
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compute SNE repeats in time O(n+zα2), where z ∈ O(n) is the number
of SNRE repeats in x.
∗ Use of a bit map B = B[1..α] can reduce to Θ(α) the time required to

determine whether or not each SNRE repeat is also SNLE, thus reducing
worst-case time to Θ(αn).

Figure 8 gives details of the algorithm PSY2–1 suggested by these remarks.
Since PSY2–1 requires no stacks, storage is reduced to 5n bytes plus α bits
(again with up to 6n bytes for LCP construction).

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time (LCP overwrites SA).

j ← 0; p← −1; q ← 0
while j < n do

high← 0
repeat

j ← j+1; p← q; q ← LCP[j+1]
if q > p then high← q; start← j

until p > q
if high > 0 and SNLE(start, j) then

output(p; start, j)

function SNLE(start, end)
k ← end−start+1
if k > α then return FALSE
else

B[1..α]← FALSEα

for h← start to end do
λ← BWT[h]
if B[λ] then return FALSE
else B[λ]← TRUE

return TRUE

Figure 8. Algorithm PSY2–1 — compute all SNE repeats
as ranges in SA using a bit array B

PSY2–2

A theoretical and perhaps also practical disadvantage of PSY2–1 is its need
to perform Θ(α)-time processing in function SNLE in order to clear the bit
array B, a task that may be repeated O(n) times. We now describe a more
sophisticated approach that reduces worst-case complexity to Θ(n+α) at the
cost of a slight increase in actual processing time.

Instead of BWTx, we compute an array LAST = LASTx[1..n] in which
for every j ∈ 1..n, LAST[j] measures the offset between the BWT letter
corresponding to the current position j in SA and the position jprev of the
rightmost previous occurrence in SA of the same BWT letter — if jprev does
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function SNLE(start, end,LAST)
k ← end−start+1
if k > α then return FALSE
else

for h← start+1 to end do
if h−LAST[h] > start then return FALSE

return TRUE

Figure 9. Algorithm PSY2–2 — the simplified SNLE func-
tion using LAST

— Initialize an array storing rightmost positions of each letter.
for `← 1 to α do

lastpos[`]← 0
— Compute LAST in a single left-to-right scan of SA.

α′ ← α−1
for j ← 1 to n do

i← SA[j]−1
if i← 0 then

LAST[j]← α′

else
letter ← x[i]; jprev ← lastpos[letter]
if jprev = 0 or j−jprev ≥ α then

LAST[j]← α′

else
LAST[j]← j−jprev−1

lastpos[letter]← j

Figure 10. Preprocessing for Algorithm PSY2–2 — com-
puting LAST

not exist or if j−jprev ≥ α, then LAST[j]← α−1. However, if jprev exists
and satisfies j−jprev < α, we set

LAST[j]← j−jprev−1,

so that LAST[j] takes values in the range 0..α−2. Then when function SNLE
processes a possibly supernonextendible repeat consisting of end−start+1
occurrences of a repeating substring of x, for every position h ∈ start+
1..end, the value of BWT[h] will be unique within the range if and only if
h−LAST[h] > start. Given LAST, the function SNLE simplifies as shown in
Figure 9.

In general it is possible that the offsets stored in LAST could be integers
of size O(n). But offsets of magnitude greater than α−1 need not be stored,
since as remarked above the interval start..end consists of at most α positions.
Thus LAST requires the same amount of storage as BWT, which stores letters
that are also restricted to be at most α−1 in magnitude. The method can
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be implemented for any finite α, but with the usual convention that each
letter in the alphabet is confined to a single byte (α ≤ 256), the array LAST
becomes an array of bytes, just like BWT. The calculation of LAST is shown
in Figure 10. (In fact, in order to take advantage of the CPU cache, our
implementation of this algorithm actually computes BWT first, then makes
a pass over BWT to convert it into LAST — an approach that turns out to be
2–3 times faster than a straightforward implementation of the preprocessing
algorithm.)

4. Experimental Results

Experiments were conducted on a diverse selection of files (Table 1) cho-
sen from the collection at http://www.cas.mcmaster.ca/~bill/strings/.
These files are of five main types:
∗ highly periodic strings – strings that do not occur often in practice, con-

taining many repetitions (Fibonacci strings, binary strings constructed
in [6]);
∗ strings with very few runs (random strings on small and fairly large

alphabets).
∗ DNA strings on alphabet {a, c, g, t};
∗ protein sequences on an alphabet of 20 letters;
∗ strings on large alphabets (English-language, ASCII characters).

File Type Name No. Bytes α Description
highly periodic fibo35 9,227,465 2 Fibonacci

fibo36 14,930,352 2 Fibonacci
fss9 2,851,443 2 run-rich [6]
fss10 12,078,908 2 run-rich [6]

random rand2 8,388,608 2 α = 2
rand21 8,388,608 21 α = 21

DNA ecoli 4,638,690 4 escherichia coli genome
chr22 34,553,758 4 human chromosome 22
chr19 63,811,651 4 human chromosome 19

Genbank protein prot-a 16,777,216 20 sample
database prot-b 33,554,432 20 doubled sample
English bible 4,047,392 63 King James bible

howto 39,422,105 197 Linux howto files
mozilla 51,220,480 256 Mozilla source code
Table 1. Files used for testing.

Tests were conducted using a 2.6GHz Opteron 885 processor with 2GB
main memory available, under Red Hat Linux 4.1.2–14. The compiler was gcc
with the -O3 option. The run times used were the minima over four runs,
not including disk I/O. We choose minima instead of average running times
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because increased running time is usually caused by some form of interference
from the operating system due to competing activities in the computer: the
minimum time will therefore be closest to actual.

Run times for the tests are shown in Tables 2, 3 and 4.

File SA LCP BWT LAST
fibo35 0.898 0.142 0.025 0.031
fibo36 0.886 0.601 0.027 0.033
fss9 0.826 0.561 0.026 0.031
fss10 0.958 0.576 0.025 0.032
periodic AVG 0.892 0.470 0.026 0.032
rand2 0.947 0.144 0.026 0.031
rand21 1.135 0.112 0.025 0.031
random AVG 1.041 0.128 0.025 0.031
ecoli 1.413 0.116 0.025 0.031
chr22 1.635 0.146 0.035 0.040
chr19 1.873 0.160 0.044 0.053
DNA AVG 1.754 0.141 0.035 0.041
prot-a 1.778 0.142 0.027 0.032
prot-b 1.971 0.159 0.034 0.039
protein AVG 1.874 0.151 0.030 0.036
bible 1.417 0.111 0.024 0.030
howto 1.912 0.178 0.035 0.039
mozilla 1.815 0.135 0.032 0.036
English AVG 1.417 0.141 0.030 0.035
AVERAGE 1.390 0.235 0.029 0.035

Table 2. Microseconds per letter used by each run for pre-
processing: SA, LCP, BWT, and LAST arrays

We give in Table 2 the preprocessing times for the various data struc-
tures required by the PSY1, PSY2, and [17] algorithms; specifically, the SA,
LCP, BWT, and LAST arrays. For SA construction the KS algorithm was
used [9] — the fastest such algorithm is perhaps MP2 [14] that, based on
experiments documented in [14, 18], would perform 5–10 times faster on av-
erage, using about 5.2n bytes of storage. For LCP construction the algorithm
of [20] was used.

Test results for the algorithms are shown in Table 3 (PSY1 together
with the algorithm of [17]) and Table 4 (PSY2).

Averages within file type are not weighted by file size, and the final
AVERAGE is a simple average of the “microseconds per letter” ratios for
each of the 14 test files. Note that for each program tested, the number of
microseconds per letter is generally stable within each file type and not highly
variable overall. Tests of PSY1 used pmin = 1; as expected, for larger pmin

the run time decreased, usually to about half the starting value.
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File PSY1–1 PSY1–2 PSY1–3 PSY1–4 [17]
fibo35 0.054 0.052 0.019 0.012 0.061
fibo36 0.056 0.052 0.020 0.012 0.056
fss9 0.049 0.049 0.021 0.014 0.057
fss10 0.055 0.055 0.021 0.013 0.059
periodic AVG 0.054 0.052 0.020 0.013 0.058
rand2 0.014 0.016 0.017 0.017 0.052
rand21 0.008 0.009 0.010 0.012 0.013
random AVG 0.011 0.013 0.013 0.015 0.032
ecoli 0.012 0.014 0.015 0.015 0.031
chr22 0.014 0.016 0.016 0.016 0.047
chr19 0.014 0.020 0.022 0.016 0.051
DNA AVG 0.013 0.017 0.019 0.016 0.043
prot-a 0.011 0.013 0.013 0.013 0.028
prot-b 0.012 0.014 0.014 0.013 0.037
protein AVG 0.012 0.013 0.014 0.013 0.033
bible 0.016 0.017 0.017 0.015 0.049
howto 0.015 0.017 0.018 0.016 0.060
mozilla 0.011 0.013 0.013 0.013 0.032
English AVG 0.014 0.016 0.016 0.015 0.047
AVERAGE 0.024 0.025 0.017 0.014 0.045

Table 3. Microseconds per letter used by each run for PSY1
and the algorithm of [17]

In each section of both Table 3 and 4, we underline in bold the quantity
that achieves the best result for the current test case.

To assess the effect of stack use on the space requirements of the PSY1
family, a record was kept of maximum stack usage for each of the files tested,
as shown in Table 5. The files prot-a and prot-b consumed by far the
most stack space, totalling in each case a little less than 125K bytes. (The
maximum size of the LB stack was as expected identical for all four PSY1
algorithms.)

5. Discussion

We make the following observations:
∗ We see from Tables 3 and 4 that the six new algorithms tested are

very fast, especially on strings that arise in practice: even if SA were to
execute 10 times faster, as it might if MP2 were used, still each algorithm
would require 5% or less of the total SA/LCP time shown in Table 2.
∗ From the 6th and last lines in Table 3, we observe that the PSY1–4

executes very quickly on highly periodic strings and is the fastest one
of the four variants over the complete range of strings tested.
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File PSY2–1 PSY2–2
fibo35 0.005 0.004
fibo36 0.005 0.004
fss9 0.006 0.004
fss10 0.006 0.005
periodic AVG 0.006 0.004
rand2 0.010 0.008
rand21 0.010 0.008
random AVG 0.010 0.008
ecoli 0.010 0.008
chr22 0.010 0.008
chr19 0.010 0.008
DNA AVG 0.010 0.008
prot-a 0.010 0.008
prot-b 0.010 0.008
protein AVG 0.010 0.008
bible 0.010 0.008
howto 0.009 0.008
mozilla 0.008 0.007
English AVG 0.009 0.008
AVERAGE 0.009 0.007

Table 4. Microseconds per letter used by each run for PSY2 algorithms

∗ Contrary to the averages given in the last line of Table 3, PSY1–1 and
PSY1–2 are actually slightly faster than PSY1–3 and PSY1–4 on strings
that arise in practice (that is, strings that are not highly periodic): the
average microseconds per letter for PSY1–1 on such files is 0.013, the
best of all.
∗ As shown in Table 5, we have computed maximum stack size for each of

the test files: only for prot-a and prot-b did the maximum size of the
LB stack exceed three digits — for prot-a (the worst case) the total
maximum storage for LB and PREVRANGES was 0.1% of the 5n bytes
required for LCP and BWT storage.
∗ The algorithm of [17] was originally designed to provide more compre-

hensive output than that of our PSY1 algorithms, and so is not directly
comparable. However, the authors have modified their code to reduce
processing requirements. Using this version for Table 3, the modified
version appears to execute around 2–3 times slower than PSY1 on real-
world files.
∗ We conducted no experiments on the algorithm of [7] because it needs

to compute SA/LCP twice and will therefore be very slow.
∗ Even though, in addition to its asymptotic advantage, PSY2–2 runs

around 30% faster than PSY2–1, nevertheless it does not overcome the
disadvantage of the additional preprocessing time required for LAST



18 Simon J. Puglisi, W. F. Smyth and Munina Yusufu

compared to BWT (see both Tables 2 and 4): PSY2–1 together with
BWT runs consistently slightly faster than PSY2–2 with LAST.

File LB PREVRANGES
fibo35 33 30
fibo36 34 32
fss9 33 36
fss10 37 40
random2 24 8
random21 8 5
ecoli 24 14
chr22 64 35
chr19 249 50
prot-a 6701 7448
prot-b 6701 7448
bible 23 112
howto 91 292
mozilla 2772 2750

Table 5. Maximum number of stack entries required by PSY1

In view of particularly the first of these observations, it seems clear
that future progress in computing repeats will depend upon more efficient
preprocessing – either much improved SA/LCP construction or the use of
entirely new data structures.

The output of PSY1 and PSY2 can be used in various ways and for
various purposes. For offline data compression the output can be used for
phrase selection [2, 13, 23]. It could also be used in the algorithm of [3] for
duplicate text/document detection. If the user requires positions in x to be
output, this can trivially be achieved, since SA is available, by postprocess-
ing that replaces i..j by SA[i],SA[i+1], . . . ,SA[j]. In applications to protein
sequences, such as the detection of low-complexity regions, the use of PSY1
will provide significant algorithmic speed-up over currently-proposed meth-
ods [21] that are effective but slow. In the context of genome analysis the
postprocessing of interest may be to compute NE pairs as in [8, 4, 1]. As-
suming an integer alphabet 1..α, this can be accomplished as follows for each
range i..j. Introduce a new array BWT′ = BWT′[1..n], where for SA[h] < n,
BWT′[h] = x[SA[h]+1], otherwise BWT′[h] = $.

(1) Perform a radix sort on the pairs

(BWT[i],BWT′[i]), (BWT[i+1],BWT′[i+1]), . . . , (BWT[j],BWT′[j])

into bins that are accessed from an array B = B[1..α, 1..α]. As a byprod-
uct of the sort, positions in a Boolean array E = E[1..α] are set: E[b] =
TRUE if and only if row b of B is empty.
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(2) For every nonempty row b1 of B, and for every b2 ∈ 1..α, perform the
following simple processing:

for h1 ← b1+1 to α do

if not E[h1] then

for h2 ← (1 to b2−1) and (b2+1 to α) do

output all pairs B(b1, b2) with B(h1, h2)

This approach requires checking at most α2(α−1)2/2 positions in B for each
range processed; in the DNA case with α = 4, this amounts to at most 72
(that is, α3+2α) positions, but will for most ranges be much less. Otherwise
the time required is proportional to the number of pairs output. Due to CPU
cache effects, we believe this will be an efficient algorithm for computing NE
pairs: it depends only on i, j, BWT,BWT′.

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch, Replacing
suffix trees with enhanced suffix arrays, J. Discrete Algs. 2 (2004) 53–86.

[2] Alberto Apostolico and Stefano Lonardi, Off-line compression by greedy textual
substitution, Proc. IEEE 88–11 (2000) 1733–1744.

[3] Yaniv Bernstein and Justin Zobel, Accurate discovery of co-derivative docu-
ments via duplicate text detection, Information Systems 31 (2006) 595–609.

[4] Gerth S. Brodal, Rune B. Lyngso, Christian N. S. Pederesen, and Jens Stoye,
Finding maximal pairs with bounded gap, J. Discrete Algs. 1 (2000) 77–103.

[5] Michael Burrows and David J. Wheeler, A Block-Sorting Lossless Data Com-
pression Algorithm, Technical Report 124, Digital Equipment Corporation
(1994).

[6] Frantisek Franek, R. J. Simpson, and W. F. Smyth, The maximum number of
runs in a string, Proc. 14th Australasian Workshop on Combinatorial Algs.,
Mirka Miller & Kunsoo Park (eds.) (2003) 36–45.

[7] Frantisek Franek, W. F. Smyth, and Yudong Tang, Computing all repeats using
suffix arrays, J. Automata, Languages & Combinatorics 8–4 (2003) 579–591.

[8] Dan Gusfield, Algorithms on Strings, Trees & Sequences, Cambridge University
Press (1997) 534 pp.
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