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A NEW PERIODICITY LEMMA∗

KANGMIN FAN† , SIMON J. PUGLISI‡ , W. F. SMYTH†‡ , AND ANDREW TURPIN§

Abstract. Given a string x = x[1..n], a repetition of period p in x is a substring ur =
x[i..i+rp−1], p = |u|, r ≥ 2, where neither u = x[i..i+p−1] nor x[i..i+(r+1)p−1] is a repetition.
The maximum number of repetitions in any string x is well known to be Θ(n log n). A run or
maximal periodicity of period p in x is a substring urt = x[i..i+rp+ |t|−1] of x, where ur is a
repetition, t is a proper prefix of u, and no repetition of period p begins at position i−1 of x or
ends at position i+ rp+ |t|. In 2000 Kolpakov and Kucherov [J. Discrete Algorithms, 1 (2000),
pp. 159–186] showed that the maximum number ρ(n) of runs in any string x is O(n), but their
proof was nonconstructive and provided no specific constant of proportionality. At the same time,
they presented experimental data strongly suggesting that ρ(n) < n. Related work by Fraenkel and
Simpson [J. Combin. Theory Ser. A., 82 (1998), pp. 112–120] showed that the maximum number
σ(n) of distinct squares in any string x satisfies σ(n) < 2n, while experiment again encourages the
belief that in fact σ(n) < n. In this paper, as a first step toward proving these conjectures, we present
a periodicity lemma that establishes limitations on the number and range of periodicities that can
occur over a specified range of positions in x. We then apply this result to specify corresponding
limitations on the occurrence of runs.
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1. Introduction. The study of strings began with an investigation of period-
icity properties [23], and periodicity of various kinds still remains a central theme,
important both in theory and practice—for example, in data compression, pattern
matching, computational biology, and many other areas. In this paper we present re-
sults that specify restrictions on the nature and extent of periodic behavior in strings.
Although these results are theoretical, their importance is very much a product of
their practical application, as we explain below.

It will be convenient throughout to represent strings in boldface (for example,
x = x[1..n]) and their lengths in italics (for example, x = |x|).

If w = ur for some nonempty string u and some integer r ≥ 2, then w is said to
be a repetition. Further, a repetition in x is a substring ur = x[i..i+ru−1], r ≥ 2,
in x, where x[i..i+u−1] is not a repetition and x[i..i+(r+1)u−1] 6= ur+1. We call
u the generator of the repetition, u its period, and r its exponent; and we represent
it economically by an integer triple (i, u, r). In the early 1980s three quite different
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O(x log x) algorithms were published [2, 1, 17] for the computation of all the repeti-
tions in a given string x. In a sense these algorithms were all asymptotically optimal,
since in [2] it was shown that in fact a Fibonacci string fn contains Θ(fn log fn)
repetitions.

In [16] Main introduced a more compact encoding of repetitions: a run or maximal
periodicity of period u in x was defined to be a substring urt = x[i..i+ru+t−1] of
x, where ur is a repetition, t is a proper prefix of u, and no repetition of period u
begins at position i−1 of x or ends at position i+ru+t. u is called the generator
of the run, t is called its tail, and a run is economically represented by a 4-tuple
(i, u, r, t). Computing all the runs in x permits all the repetitions in x to be listed in
an obvious way. Main [16] showed how to compute all the “leftmost” runs in x in time
Θ(x), provided that the suffix tree [24, 18] and the Lempel–Ziv (LZ) factorization [14]
of x were both available. In [4] it was shown that a suffix tree could be computed
in linear time on an indexed (bounded integer) alphabet; since the LZ factorization
is computable in linear time from the suffix tree, this meant that the overall worst-
case time requirement of Main’s algorithm was Θ(x) on an indexed alphabet. In [13]
Kolpakov and Kucherov took matters a step further by extending Main’s algorithm
to also compute nonleftmost runs in x in time proportional to their number, and then
by showing that the maximum number ρ(x) of runs in any string x was at most

(1) k1x− k2 log2 x
√

x,

where k1 and k2 are positive constants. Thus, at least in principle, all the runs in x
could be determined in linear time.

However, there is a problem with (1): The proof is nonconstructive and gives no
information about the magnitude of the constants k1 and k2. Nevertheless Kolpakov
and Kucherov provide convincing experimental evidence that

∗ ρ(x) < x;
∗ ρ(x) is achieved by a cube-free string x on alphabet {a, b};
∗ ρ(x + 1) ≤ ρ(x)+2.

As far as we know, there are only two published works that address these fundamental
questions of periodicity. In [7] an infinite family of strings x is constructed that is
conjectured for sufficiently large x to achieve ρ(x) < x. This family thus provides a
lower bound on ρ(x). More recently, Rytter [21] has used interesting techniques to
show that ρ(n) ≤ 5n, thus establishing an upper bound.

It was mentioned above that Main’s algorithm computes all the leftmost runs in x,
that is, the leftmost occurrence of each distinct run, a collection that certainly includes
the leftmost occurrence of each distinct square in x. This suggests a connection
with another well-known problem: the determination of σ(x), the maximum number
of distinct squares in any string x, where again experiment strongly suggests that
σ(x) < x. With this problem better progress has been made: Fraenkel and Simpson
showed [6] that σ(x) ≤ 2x−2, a result recently proved somewhat more simply by Ilie
[8], then later improved to σ(x) ≤ 2x−Θ(log x) [9].

In order to show that in general ρ(x) < x (σ(x) < x), it seems to be necessary to
establish restrictions on the number of runs (squares) that can occur near a position in
x at which one or two runs (squares) are already known to occur. Perhaps the most
famous theoretical result available for such a purpose is the following “periodicity
lemma.”

Lemma 1 (see [5]). Let p and q be two periods of x, and let d = gcd(p, q). If
p+q ≤ x+d, then d is also a period of x.
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Unfortunately this lemma provides no special information about runs or the
squares with which runs must begin, and it places no restrictions on the positions
at which periodic substrings may occur. To our knowledge the only result that pro-
vides such information is the following “three squares lemma.”

Lemma 2 (see [3, 15]). Suppose u is not a repetition, and suppose w 6= uj for
any j ≥ 1. If u2 is a prefix of w2, in turn a proper prefix of v2, then w ≤ v−u.

Our main result in this paper is essentially a generalization of this result, which
we call a “new periodicity lemma”: We allow w to be offset by k positions from the
start of v2, and we do not always require complete squares v2 and w2, only sufficiently
long substrings of periods v and w. Moreover, as a corollary of our main result, we
are able to specify exactly the periodic behavior in the string.

2. New periodicity lemma. In this section we prove results that establish
restrictions on the squares that can occur in the neighborhood of positions in a string
at which one or two squares already appear. We begin with three simple definitions.

Definition 3. A square u2 is said to be irreducible if u is not a repetition.
Definition 4. A square u2 is said to be regular if no prefix of u is a square.
Definition 5. A square u2 is said to be minimal if no proper prefix of u2 is a

square.
Lemma 6. If u2 is minimal, then u2 is regular; if u2 is regular, then u2 is

irreducible.
Proof. The proof of the first statement is immediate. To prove the second, observe

that by Definition 4, no prefix of u is a square. Therefore u cannot be a repetition,
and so by Definition 3 u2 is irreducible.

The existence of a minimal square already imposes significant limitations on the
nature of other squares that can exist, as the following result shows.

Lemma 7. If x = u2 is minimal, then for all integers k ≥ 0 and w ∈ u/2..u−1,
(a) if

(2) k + w ≤ u, k+3w ≥ 2u,

x[k+1..k+2w] is not a square;
(b) if

(3) k + w > u, k+2w ≤ 2u,

either x[k+1..k+2w] is not a square or x[w′+1..w′+u] has period u−w, where

w′ = (k+w)−u.

Proof. Suppose that for some pair of integers k and w satisfying either (2) or (3),
x[k+1..k+2w] = w2.

First assume that k = 0. Then if (2) holds, either w = u, a contradiction, or else
w < u, contradicting the minimality of u2. On the other hand, if (3) holds, then both
w > u and w ≤ u must hold, again a contradiction. Thus we can assume that k ≥ 1.

(a) Suppose that (2) holds, let w′ = u−(k+w), and consider

ŵ = x[1..w−w′] = x[k+w′+1..k+w].

Since by (2)

(w−w′)− (k+w′) = k+3w−2u ≥ 0,
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u u

w′+1..w′+u

� -w′

� -k � -w � -w

Fig. 1. Lemma 7(b).

the substring x[1..k+w] has period k+w′. Again by (2),

(k+w)− 2(k+w′) = (k+w)− 2(u−w) ≥ 0,

so that x[1..k+w] has prefix
(
x[1..k+w′]

)2, contradicting the minimality of
u2. Thus in case (a) no such k and w can exist.

(b) Next we suppose that (3) holds so that w < u and hence that k−w′ = u−w > 0
(see Figure 1).
Consider

w = x[w′+1..w′+w] = x[k+1..u+w′].

Since by (3) w′+w = k+(2w−u) ≥ k, the substring x[w′+1..w′+u] of length
u has period k−w′ = u−w, as required.

To show that in case (a) of Lemma 7 the assumption that k+3w ≥ 2u (as well as
the weaker condition w ≥ u/2) is necessary, consider the example u = 14, k = 6, w = 5:

x = u2 = abbaba(babab)(bab‖ab)(babab)ababbab.

Here w = babab, and w3 is a substring of x.
To show that in case (b) of Lemma 7 the substring w2 can in fact exist, consider

the example u = 11, k = 4, w = 8 with w′ = 1:

x = u2 = babc(abcabca‖b)(abcabcab)ca.

The substring x[2..12] = (abc)3ab has period u−w = 3.
We turn now to the situation in which a regular square and an irreducible square

occur at the same position. We first prove two basic lemmas that describe the re-
lationship between regularity and irreducibility, and then go on to prove our main
result.

Lemma 8. If v2 is irreducible with regular proper prefix u2, then

v > max{u+1, 3u/2}.

Proof. Observe that 1 ≤ u < v, and observe further that u+1 ≥ 3u/2 if and only
if u ≤ 2.

For u = 1, u2 = λ2 for some letter λ and the shortest irreducible square v2 =
(λ2µ)2 for some letter µ 6= λ. Thus for u = 1, v ≥ 3 > u+1, as required.

For u = 2, since u2 is regular, u2 = (λµ)2 and the shortest irreducible square
v2 = (λµλµν)2 for some letter ν. Thus for u = 2, v ≥ 5 > u+1, as required.

Suppose therefore that u ≥ 3, and suppose further, without loss of generality,
that v < 2u. Then

v = uu[1..v−u] = u[v−u+1..u]v[2u−v+1..v],
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where y = u[1..v−u] of length v−u is a prefix of u, and hence of v, and z = u[v−u+1..u]
of length 2u−v is a prefix of v, and hence of u. If we now assume 2v ≤ 3u, it follows
that v−u ≤ 2u−v, so that y is also a prefix of z. Thus u has prefix y2 and so u2

cannot be regular, a contradiction. We conclude that 2v > 3u, as required.
Observe that if u2 is not regular, Lemma 8 may not hold: u = ababa allows

v = ababaab with v < 3u/2.
Lemma 9. If x = v2 is irreducible with regular proper prefix u2, v < 2u, then

x = u1u2u1u1u2u1u2u1u1u2,

where u1 = 2u−v, u2 = 2v−3u.
Proof. Since v < 2u, u ≥ 3 by Lemma 8. Let u1 be the suffix of u of length

u1 = 2u−v that is a prefix of v, and hence also a prefix of u. By the regularity
of u and Lemma 8, u1 < u/2 and so u = u1u2u1 for some nonempty u2. Then
v = u1u2u1u1u2, so that u2 = 2v−3u, as required.

For the proof of our main result, the following definitions will be helpful. If
x = uv, v nonempty, then vu = Ru(x) is said to be the uth rotation of x; also, if u
is both a proper prefix and a suffix of x, then it is said to be a border of x.

We frequently make use of the following two well-known results.
Lemma 10 (see [22, p. 76]). Let x be a string of length n and minimum period

p, and let j ∈ 1..n−1 be an integer. Then Rj(x) = x if and only if x is a repetition
and p divides j.

Lemma 11 (see [22, p. 76]). If a string x is a repetition, then so is every rotation
of x.

We first state the new periodicity lemma (NPL) in a rather general and easily
understood form: Having gone through the proof, we will then be able to reexpress it
to yield stronger conclusions based on weaker premises. A total of 14 cases arise in the
proof (see Table 1). For each of these cases, we are able to identify a specific square
prefix of u that is forced by the presence of w2 in the string x, thus contradicting the
assumption that u2 is regular; therefore, if u2 is not regular, the square prefix must
exist.

For each of the main cases, we specify the range of values of k (either k ∈ 0..u1

or k ∈ u1+1..u1+u2−1) and the end position of w(1) (first occurrence of w) in x.
To facilitate this latter task, we introduce the notation u1

(j),u2
(j) to denote the jth

occurrence of u1,u2, respectively, in x. Thus “w(1) ends in u2
(2)” means that the

first occurrence of w in x ends in the second occurrence of u2 in x. In most of the
cases, it is useful to introduce a substring s that is both a prefix of w and a suffix of
one of the substrings u1

(j) or u2
(j) in which w(1) ends.

Lemma 12 (NPL). If x has regular prefix u2 and irreducible prefix v2, u < v <
2u, then for every k ∈ 0..v−u−1 and every w ∈ v−u+1..v−1, w 6= u, x[k+1..k+2w]
is not a square.

Proof. Suppose instead that for some k and w, w2 = x[k+1..k+2w]. Recall the
definitions of u1 and u2 given in Lemma 9, with u1+u2 = v−u.
A. k ≤ u1.

I. w(1) ends in u1
(2) (k+w ≤ u, s = u−(k+w)).

(a) w(2) ends in u1
(3) (k+2w ≤ u+u1) (see Figure 2).

Define q = u1[1..q] and z = u1[1..z], which are both prefixes of u1

and suffixes of w:

q = u1−s = k+w−(u1+u2), z = k+2w−u.
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u1 u2 u1 u1

� -u
� -v

k w(1) w(2)

q s z

Fig. 2. Case A.I.(a).

u1 u2 u1 u1 u2

� -u
� -v

k w(1) w(2)

s

Fig. 3. Case A.I.(b).

Observe that

q−k = w−(u1+u2) > 0, z−q = w−u1 > 0.

Since q < z, q is a border of z, and thus z has period z−q.
(i) q ≥ z/2 (k ≥ u2). Here z, and hence u1, has prefix

z[1..z−q]2 = z[1..w−u1]2,

contradicting the regularity of u2.
(ii) q < z/2 (k < u2). Here we can set z = qpq, where p > 0.

Since q > k, we can also set q = kt, where, as noted above,
t = w−(u1+u2) > 0. Hence z = ktpkt = ktr for r = pkt.
Observe now that tpkt is a prefix of w(1), while r is a prefix
of w(2). Thus r = Rt(r), so that by Lemmas 10 and 11, r and
all of its rotations are repetitions of period t. It follows that z,
a prefix of u1, is a repetition of period t = w−(u1 +u2) and
exponent at least 3, contradicting the regularity of u2.

(b) w(2) ends in u2
(2) (k+2w > u+u1) (see Figure 3).

Since w > u1+u2, k+s < u1; since w < u, k+s > 0. Therefore ks is
a prefix of u1, and since su1 is a prefix of w, it follows that u has
prefix (ks)2, k+s = u−w, contradicting the regularity of u2.

II. w(1) ends in u1
(3) (k+w ≤ u+u1, s = u+u1−(k+w)) (see Figure 4).

Since w 6= u, k+s 6= u1. Observe that w(1) has prefix Rk(u1u2), while
w(2) has prefix Ru1−s(u1u2). Since u1−s 6= k (otherwise w = u), it
follows from Lemma 10 that u1u2 is a repetition of period |k−(u1−s)| =
|u−w|, contradicting the regularity of u2. Note that if u2 is not regular,
then u must also have period |u−w|.

III. w(1) ends in u2
(2) (k+w ≤ v, s = v−(k+w), k+s > 0) (see Figure 5).

w(1) has prefix Rk(u1u2), while w(2) has prefix Rt(u1u2), where t =
u1+u2−s. Since t = k+w−u > k, it follows from Lemma 10 that u1u2

is a repetition of period t−k = w−u, contradicting the regularity of u2.
Note that if u2 is not regular, then u must also have period w−u.

IV. w(1) ends in u1
(4) (k+w ≤ 2u, s = 2u−(k+w)) (see Figure 6).
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u1 u2 u1 u1 u2 u1

� -u
� -v

k w(1) w(2)

s

Fig. 4. Case A.II.

u1 u2 u1 u1 u2 u1 u2

� -u
� -v

k w(1) w(2)

s

Fig. 5. Case A.III.

u1 u2 u1 u1 u2 u1 u2 u1

� -u
� -v

k w(1) w(2)

s

Fig. 6. Case A.IV.

u1 u2 u1 u1 u2 u1

� -u
� -v

k w(1) w(2)

q s q

Fig. 7. Case B.I.(a).

As in case A.III., w(1) has prefix Rk(u1u2), while w(2) has prefix
Ru1−s(u1u2). It follows from Lemma 10 that u1u2 is a repetition of
period k+s−u1 = v−w, contradicting the regularity of u2. Note that if
u2 is not regular, then u must also have period v−w.

B. k > u1.
I. w(1) ends in u1

(3) (k+w ≤ u+u1, s = u+u1−(k+w), k+s < 2u1).
(a) w(2) ends in u1

(4) (k+2w ≤ 2u) (see Figure 7).
Let q be the prefix of u1 and suffix of w(2) defined by

q = w−u2−s = k+2w−v;

then, because it is a prefix of u1, q occurs at position u+1 of x and,
because it is a suffix of w(1), also at position k+w−q+1. These two
copies of q are offset by period

t = u+q−(k+w) = w+u−v.

Since

q−2t = k+2w−v−2w−2u+2v

= k+v−2u > 0,
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u1 u2 u1 u1 u2 u1 u2

� -u
� -v

k w(1) w(2)

u1 s

Fig. 8. Case B.I.(b).

u1 u2 u1 u1 u2 u1 u2

� -u
� -v

k w(1) w(2)

u1 s

Fig. 9. Case B.II.(a).

u1 u2 u1 u1 u2 u1 u2 u1

� -u
� -v

k w(1) w(2)

r q s z

Fig. 10. Case B.II.(b)(i).

therefore q, and hence u1, has a square prefix of period w+u−v,
contradicting the regularity of u2.

(b) w(2) ends in u2
(3) (k+2w > 2u) (see Figure 8).

Observe that since u1 occurs at position s+u2+1 in w(2), and since
u1

2 begins at position u1+u2−k+1 in w(1), therefore u1 = Rt(u1)
for t = k+s−u1 = u−w. Hence by Lemma 10, u1 is a repetition of
period u−w, contradicting the regularity of u2.

II. w(1) ends in u2
(2) (k+w ≤ v, s = v−(k+w), k+s 6= u1+u2).

(a) w < u (k+s > u1+u2) (see Figure 9).
Observe that u1

2 occurs at position u1+u2−k+1 in w(1), while u1

occurs at position s+1 in w(2). Since s > u1+u2−k, this means
that u1 = Rt(u1) for t = k+s−(u1+u2) = u−w > 0. Hence u1 is
a repetition of period u−w, contradicting the regularity of u2.

(b) w > u (k+s < u1+u2).
(i) w(2) ends in u1

(5) (k+2w ≤ v+u, w−s ≤ u) (see Figure 10).
Let r = u2[k−u1+1..u2], where r = u1 + u2 − k and r− s = w−
u > 0. Observe that w(1) = (ru1)(u1q), where q = u2[1..u2−s].
Also w(2) has prefix su1z, where z = u2[1..r−s], of length r+u1.
Since w−s ≤ u, the copy of u that begins at position v+1 of
x has prefix (u1z)(u1q), where q−z = u2−r > 0. Thus u has
prefix (u1z)2 of period u1+r−s = w−(u1+u2), contradicting
the regularity of u2.

(ii) w(2) ends in u1
(6) (k+2w ≤ v+u+u1, u < w−s ≤ u+u1) (see

Figure 11).
Observe that w(1) has suffix Ru2−s(u2u1

2), while w(2) has suffix
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u1 u2 u1 u1 u2 u1 u2 u1 u1

� -u
� -v

k w(1) w(2)

s

Fig. 11. Case B.II.(b)(ii).

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� -u
� -v

k w(1) w(2)

s � -t

Fig. 12. Case B.II.(b)(iii).

u1 u2 u1 u1 u2 u1 u2 u1 u1

� -u
� -v

k w(1) w(2)

s

Fig. 13. Case B.III.

Rt(u2u1
2), where t = u1 +u2 +w−s−u. Since t−(u2−s) =

w−(u1+u2) > 0, it follows from Lemmas 10 and 11 that u2u1
2,

and hence u, is a repetition of period w−(u1+u2), contradicting
the regularity of u2.

(iii) w(2) ends in u2
(4) (k +2w < 2v, u+u1 < w− s < v) (see

Figure 12).
As in case B.II.(b)(ii), w(1) has suffix Ru2−s(u2u1

2), while now
w(2) has suffix Rt(u2u1

2), where t = w−s−(u+u1) > 0. Since
u2−s−t = v−w > 0, it follows from Lemmas 10 and 11 that
u2u1

2, and hence u, is a repetition of period v−w, contradicting
the regularity of u2.

III. w(1) ends in u1
(4) (k+w ≤ 2u, s = 2u−(k+w), k+s < u) (see Figure 13).

Observe that w(1) has prefix Rk(u), while w(2) has prefix Ru1−s(u).
Since u1 < k+s, it follows by Lemma 10 that u is a repetition of period
k+s−u1 = v−w, contradicting the regularity of u2.
If w(2) extends only to the end of u1

(5), the argument of case B.II.(a)
can instead be used to show that u1 is a repetition of period v−w, again
contradicting the regularity of u2.

IV. w(1) ends in u2
(3) (k+w ≤ 2u+u2, s = 2u+u2−(k+w)) (see Figure 14).

The arguments of case B.III. apply: u (or u1) is a repetition of period
v−w, contradicting the regularity of u2.

This completes the proof.
In view of this result, and especially its proof, we realize that if u2 is not con-

strained to be regular, the existence of the three squares imposes severe conditions on



A NEW PERIODICITY LEMMA 665

u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� -u
� -v

k w(1) w(2)

s

Fig. 14. Case B.IV.

the periodicity of u, as shown in Table 1. In this table we specify, for each of the 14
cases identified in the proof, the prefix of u (u1, u1u2, or u itself) that begins with a
square, as well as the period of the square. We also indicate cases in which the entire
prefix is in fact a repetition. Of course all copies of the prefix in x will have the same
periodicity properties. Furthermore, in all cases (3–6 and 10–14) in which a period of
u is identified, the periodicity lemma applies, since u also has period u1+u2 = v−u.
For example, in cases 6 and 12–14 u, hence u2, hence all of v2, will have period
gcd(v − w, v−u); a similar result holds for cases 4–5 and 11. An alternative form of
Lemma 12 may then be given as follows.

Lemma 13. Let u = u1u2u1, v = uu1u2, u1 and u2 nonempty. If x = v2 =
ky, where k ∈ 0..v−u−1 and y has period w ∈ v−u+1..v−1, w 6= u, then every
occurrence of u in x is determined by cases 1–6 of Table 1.

Observe that this result holds for every nonempty border u1 of u such that
u1 < u/2.

The rightmost column of Table 1 specifies the length of x that may be required in
order to establish the periodicity of the prefix of u. For example, in cases 1–3 not even
all of u2 is required, and even in case 12 not all of v2 is required. This observation
leads to the following weaker, but perhaps still interesting, corollary of the NPL that
relates only to u2.

Lemma 14. Let u = u1u2u1, u1 and u2 nonempty. If x = u2u1u2 = ky,
where k ∈ 0..u1 and y has period w ∈ u1 +u2 +1..u1 +u2 +u, w 6= u, then every
occurrence of u in x is determined by Table 1.

Again this result holds for every nonempty border u1 of x.
We can state an equivalent of Lemma 12 for runs. Observe first that by definition

every run is irreducible. Observe also that if a run of period u and tail t occurs at
position i in x, no run of the same period can occur at any position j ∈ i..i+u+t.
Thus, if we define a regular run to be a run of generator u where u2 is a regular
square, we can state the following lemma.

Lemma 15. Suppose x has a regular run of period u as prefix and another run of
period v < 2u as prefix. Then for every integer k ∈ 0..v−u−1 and for every w ∈ u..v,
no run of period w (other than, for k = 0, the two given runs) occurs at position k+1
of x.

Finally, we remark that Lemmas 12 and 15 apply only trivially to the cases u = 1
and u = 2. As noted earlier for u = 1, v ≥ 3 > 2u, while for u = 2, v ≥ 5 > 2u,
contrary to the requirement of the lemmas that v < 2u. However, for all u ≥ 3, the
hypothesis of the lemmas can be satisfied—for example, if u = aba of length 3, v may
be abaab of length 5 < 2 × 3. More generally, we may think of such squares v2 as
being “small,” in contrast to those of period greater than 2u that are “large”; thus
Lemmas 12 and 15 restrict the occurrences of squares/runs when the second square
at some position is small. Note also that if u2 is in fact minimal (hence by Lemma 6
regular), then the irreducible square v2 must be regular.
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3. Discussion. We have proved two main lemmas (Lemmas 7 and 12) that
restrict the periods w of squares that can occur at positions i+ k in x when at
position i either one (Lemma 7) or two (Lemma 12) squares are known to occur. It
seems that, with the exception of [15, Lemma 8.1.14], such properties have not been
studied previously. In particular, we hope that with the help of Lemma 12, it will be
possible to establish, or at least make progress with, the three conjectures arising out
of [13].

The Main/Kolpakov–Kucherov algorithm [16, 13] is the only known linear-time
algorithm for computing all the runs in a given string x. It is complex and, until
recently, depended for its worst-case linear behavior on the use of Farach’s algorithm
[4], also complex and not space-efficient, for linear-time computation of suffix trees.
Since 2003 three worst-case linear-time suffix array construction algorithms [10, 11, 12]
have been available for use in the computation of the LZ factorization, but even after
the substitution of suffix arrays for suffix trees in the all-runs algorithm, significant
complications remain. For instance, it seems clear [19, 20] that due to their recursive
nature the linear-time algorithms are not in practice the fastest suffix array construc-
tion algorithms available. We hope that, with a more precise understanding of the
periodicity of runs, it will become possible to design simpler algorithms that will
compute all the runs in a string in a more direct and efficient manner.

Acknowledgment. The authors thank a referee for suggestions that have ma-
terially improved the presentation.
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