
Our reference: JDA 366 P-authorquery-v7

AUTHOR QUERY FORM

Journal: JDA

Article Number: 366

Please e-mail or fax your responses and any corrections
to:

E-mail: corrections.essd@elsevier.vtex.lt

Fax: +1 61 9699 6735

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-
screen annotation in the PDF file) or compile them in a separate list. To ensure fast publication of your paper please
return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted
by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

Location Query / Remark: click on the Q link to go
in article Please insert your reply or correction at the corresponding line in the proof

Q1 Please check updated vol. number of issue (74) in Ref. [4]. (p. 12/ line 37)
Thank you for your assistance. Page 1 of 1

mailto:corrections.essd@elsevier.vtex.lt
http://www.elsevier.com/artworkinstructions

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.1 (1-12)

Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

T

E
a

b

c

a

A
A

K
C
S
M
R
R
T

1

s
t

r
r
m
t
i

e

r

1
d

Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

he three squares lemma revisited ✩

vguenia Kopylova a,b, W.F. Smyth a,c,∗

Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, ON L8S 4K1, Canada
Bonsai, LIFL, Université Lille 1, France
Centre for Stringology & Applications, Digital Ecosystems & Business Intelligence Institute, Curtin University, GPO Box U1987, Perth WA 6845, Australia

r t i c l e i n f o a b s t r a c t

rticle history:
vailable online xxxx

eywords:
ombinatorics on words
tring algorithms
aximal periodicities

uns
epetitions
hree squares lemma

A recent paper Fan et al. (2006) [10] showed that the occurrence of two squares at the
same position in a string, together with the occurrence of a third near by, is possible
only in very special circumstances, represented by 14 well-defined cases. Similar results
were published in Simpson (2007) [19]. In this paper we begin the process of extending
this research in two ways: first, by proving a “two squares” lemma for a case not
considered in Fan et al. (2006) [10]; second, by showing that in other cases, when three
squares occur, more precise results — a breakdown into highly periodic substrings easily
recognized in a left-to-right scan of the string — can be obtained with weaker assumptions.
The motivation for this research is, first, to show that the maximum number of runs
(maximal periodicities) in a string is at most n; second, and more important, to provide
a combinatorial basis for a new generation of algorithms that directly compute repetitions
in strings without elaborate preprocessing. Based on extensive computation, we present
conjectures that describe the combinatorial behavior in all 14 of the subcases that arise.
We then prove the correctness of seven of these conjectures. Along the way we establish
a new combinatorial lemma characterizing strings of which two rotations have the same
period.

© 2011 Published by Elsevier B.V.

. Introduction

The rationale for this paper arises out of research done over the last two decades on maximal periodicities (or “runs”) in
trings and, before that, on the computation of repetitions in strings. In order to reduce proliferation of notation, we adopt
hroughout the convention that a string denoted x (in mathbold) has length x (regular math mode).

In 2006 it was shown [8] that the occurrence of two squares at the same position in a string, together with the occur-
ence of a third near by, is possible only in very special circumstances, represented by 14 well-defined subcases. Similar
esults were published in [19]. In this paper we first extend these results to a case not previously considered, then go on to

ake the results of [8] more precise under weaker assumptions. We describe experiments conducted on strings that satisfy
he “three squares” condition, then use the results of these experiments to formulate conjectures about the nature of x and
ts alphabet in each of the 14 subcases. We prove the correctness of seven of these conjectures.

These complicated combinatorial studies are motivated primarily by the desire to compute repetitions in strings more
fficiently and more directly, as we now explain.

✩ This work was supported in part by the Natural Sciences & Engineering Research Council of Canada. The authors express their gratitude to the unsung
eferees whose perceptive commentary has materially improved this paper.

* Corresponding author at: Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, ON L8S 4K1, Canada.
E-mail addresses: evguenia.kopylova@inria.fr (E. Kopylova), smyth@mcmaster.ca, B.Smyth@curtin.edu.au (W.F. Smyth).

570-8667/$ – see front matter © 2011 Published by Elsevier B.V.
oi:10.1016/j.jda.2011.03.009

http://dx.doi.org/10.1016/j.jda.2011.03.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
Original text:
Inserted Text:
Ontario, Canada\ L8S 4K1

Original text:
Inserted Text:
algoorithms

Original text:
Inserted Text:
behaviour

mailto:evguenia.kopylova@inria.fr
mailto:smyth@mcmaster.ca
mailto:B.Smyth@curtin.edu.au
http://dx.doi.org/10.1016/j.jda.2011.03.009

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.2 (1-12)

2 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Given a nonempty string x = x[1..n] of length x = n on a finite alphabet Σ , a repetition (or power) in x is a substring ue ,
u nonempty, integer e � 2, where x = vue w for some (possibly empty) strings v , w . We call e the exponent of the
repetition and the length p = u its period. We are interested in irreducible repetitions; that is, we assume always that u
is primitive (not itself a repetition), and that e cannot be increased by left or right extension in x. For e = 2,3, we say
that ue is a square or cube, respectively. There are well-known algorithms [3,1,15] that compute all the repetitions in x in
O (n log n) time, asymptotically optimal since Fibonacci strings of length n contain Ω(n log n) repetitions [3]. A repetition in
x can be represented in constant space by a triple (i, p, e), where ue is said to occur at position i in x and p = u. (Standard
stringological notation and terminology used in this paper follow [20].)

A run in x (originally introduced in [14] as a maximal periodicity) is a substring w of x of minimum period p � w/2
occurring at some position i, where neither x[i −1..i + w −1] nor x[i..i + w] (whenever these are well defined) has period p.
Note that a run always has a prefix ue , p = u, e = �w/p� � 2, that is a repetition. A run can be specified by a four-tuple
(i, p, e, t), where i, p, e are defined as for a repetition, and the tail t = w mod p. The Fibonacci string

1 2 3 4 5 6 7 8
f = a b a a b a b a

contains three runs (1,3,2,0) = (aba)2, (3,1,2,0) = a2 and (4,2,2,1) = (ab)2a. Each of the first two runs is also a square,
but the third, by virtue of its nonzero tail, actually identifies two squares, (ab)2 and (ba)2. In general, each run (i, p, e, t)
determines t + 1 repetitions of exponent e, and computing all the runs in x implicitly computes all the repetitions.

In [12] it was shown that the maximum number ρ(n) of runs in any string of length n is O (n); specifically, that there
exist universal positive constants k1 and k2 such that

ρ(n) � k1n − k2
√

n log n. (1)

The methods used to establish the upper bound (1) were not constructive, so that no information was provided about
the magnitude of k1 and k2; nevertheless, based on computational evidence for strings of lengths n � 60, the authors
conjectured further that

ρ(n)/n � 1. (2)

Over the last 10 years, constructive methods have been discovered that have successively reduced the bound on ρ(n)/n to
5.0 [18], 3.48 [17], 1.60 [4], 1.49 [11], and finally 1.029 [6], the last achieved with the aid of three man-years of CPU time on
a network of high-performance computers.1 Perhaps more important from an algorithmic point of view, it has been shown
[16] that the expected value of ρ(n)/n ranges from about 0.4 down to 0.1 for long strings on alphabet sizes ranging from 2
to 10, decreasing to less than 0.05 for English text. In other words, the number of runs in a string of length n can normally
be expected to be sparse.

Also in [12] an algorithm was proposed to compute all the runs, hence all the repetitions, in a given string x, based on
the following steps:

∗ compute the suffix tree STx of x using Farach’s algorithm [9];
∗ compute the Lempel–Ziv factorization of x [21] using STx;
∗ compute the leftmost occurrence of each distinct run in x using Main’s algorithm [14];
∗ compute all the runs in x from the leftmost ones [12].

Although each of these steps requires O (n) time in theory, the first step was not practical for large strings; later approaches
using a suffix array [2,5] rather than a suffix tree provided practical linear-time all-runs computation algorithms.

The theoretical and algorithmic advances outlined above are impressive, but there remain significant challenges:

∗ The existing methods used to compute all the runs in a string, even though linear-time, are nevertheless time-
consuming. Indeed, the case could be made that these methods are not so far removed from brute force:
• they make no use of the expected sparsity of runs [16];
• as noted above, they depend on the prior computation of global data structures (suffix tree or suffix array, LZ factor-

ization);
• they make no use of combinatorial insights into the degeneration of a string into repetitions of small period, as

studied in [8,19], when the constraint is imposed that runs (therefore squares) overlap.
We believe that replacing heavy preprocessing by effective use of combinatorial properties will result in simpler, faster
algorithms.

∗ The efforts to establish the conjecture (2) have depended to some extent on combinatorial methods, notably the division
of runs into those with “small” periods and those with “large” periods. But the combinatorial constraints imposed by
having more than two squares begin in neighboring locations, again as studied in [8,19], have not been taken into
account.

1
SHARCNET, https://www.sharcnet.ca/my/front/.

Original text:
Inserted Text:
neighbouring

https://www.sharcnet.ca/my/front/

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.3 (1-12)

E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

p
a
w

L
w

s
i
w
u

p
s
S
a
i
p

2

t
t
b
c
s
a

(
(

(

a
c

t

L

t
o

L

(

t

w

In this paper we begin a more precise study of neighboring occurrences of three squares than has been conducted in the
ast. Both [8] and [19] examine the combinatorial consequences of having two distinct squares at the same position i with
third square occurring distance k � 0 to the right of i. This research thus generalizes the “Three Squares Lemma” [7] for
hich k = 0:

emma 1. Suppose u is not a repetition, and suppose v �= u j for any j � 1. If u2 is a prefix of v2 , in turn a proper prefix of w2 , then
� u + v.

[8] and [19] classify the various subcases that arise, depending on the relative magnitude of k and other factors, but do
o using approaches that are orthogonal and not easily reconcilable. Moreover, neither of the classifications is complete, and
t seems also that more precise and comprehensive results can be established. This paper is the first in what we expect

ill be a series designed to correct these deficiencies and ultimately to enable generalized three squares theory to become
seful in an algorithmic context.

Section 2 provides the basic results that are required in order to understand and analyze the generalized three squares
roblem. Also it establishes a framework for future work in this area. Section 3 deals exhaustively with the case in which
quares u2 and v2 occur at the same position, where v is restricted to the range u + 1..3u/2 (the “Two Squares” lemma).
ection 4 describes the software used to generate conjectures for the occurrence of three squares with v ∈ 3u/2 + 1..2u − 1,
nd presents its main results. Section 5 then establishes seven of the conjectures (that is, seven of the subcases considered
n [8]), showing that in fact the entire range covered by the three squares must break down into a repetition of small
eriodicity. Section 6 briefly outlines future work.

. Preliminaries

A simple, perhaps naïve, approach to the conjecture (2) derives from the observation that if, somehow, it can be shown
hat the occurrence of two squares at the same, or neighboring, positions is locally incompatible with the existence of a
hird square nearby, then it might be possible to show that the number of squares that can occur locally is bounded above
y the number of positions. The situation that has been partially analyzed so far, and that we consider further in this paper,
onstrains two squares u2 and v2, u < v < 2u, to occur at the same position (taken for simplicity to be position 1 of a
tring x), while a third square w2 may occur at position k + 1 in x for some k ∈ 0..v − u − 1. There are two main cases that
rise:

C1) u < v � 3u/2 (consideration of w not required);
C2) 3u/2 < v < 2u and v − u < w < v , w �= u.

In Section 3 we give new results for (C1); in Section 5 we provide more precise results for seven of the 14 subcases of
C2) that were analyzed in [8].

Before continuing, let us observe that the cases arising from the alternative assumption that u2 occurs at position 1
nd v2 at position 2 are probably of equal importance to the situation described above, just as likely to yield important
ombinatorial insights, and have to date not been investigated at all.

Recall that all squares are assumed to be irreducible. In order to describe previous work, we define a regular square u2

o be such that no prefix of u is a square.
The following lemma is easily proved (see [8]):

emma 2. If v2 has regular proper prefix u2 , then

v > max{u + 1,3u/2}.

Note that for u � 2, u2 can only take the forms λ2 and (λμ)2 and so is necessarily regular; furthermore, it can only be
hat v > 2u, so that neither of the cases (C1), (C2) identified above apply. For u > 2, Lemma 2 tells us that (C1) can arise
nly if u2 is not regular.

emma 3. Suppose x = v2 has proper prefix u2 , v < 2u. If either

(a) u2 is regular, or
b) v > 3u/2,

hen

x = u1u2u1u1u2u1u2u1u1u2, (3)

here u1 = 2u − v, u2 = 2v − 3u.

Original text:
Inserted Text:
neighbouring

Original text:
Inserted Text:
neighbouring

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.4 (1-12)

4 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Proof. (a) is proved in [8]. For (b), since u � 3, we may let u1 be the nonempty suffix of u of length u1 = 2u − v that
is a prefix of v , hence also a prefix of u. Then u/2 − u1 = v − 3u/2 > 0, and so u1 < u/2; thus u = u1u2u1 for some
nonempty u2 . Then v = u1u2u1u1u2 and u2 = 2v − 3u, as required. �

Thus the weaker condition of Lemma 3(b) still provides the assurance that the factorization (3) holds in (C2).
In order to prove our new results, the following definitions will be helpful. If x = uv , then vu = Ru(x) is said to be

the uth rotation of x; note that if u is empty, R0(x) = x, while if v is empty, Rx(x) = x. Also, we extend the use of the
term “period”, defined in Section 1 in the context of repetitions: a string x is said to have period u if and only if for every
i = 1,2, . . . , x − u, x[i] = x[i + u]. Finally, if u is both a proper prefix and a suffix of x, then it is said to be a border of x;
x has border u if and only if it has period x − u.

We note also the following three well-known results [13]:

Lemma 4. (“Periodicity Lemma”, see [10].) Let p and q be two periods of x, and let d = gcd(p,q). If p + q � x + d, then d is also a
period of x.

Lemma 5. (See [20, p. 76].) Let x be a string of minimum period u, and let v ∈ 1..x − 1 be an integer. Then R v(x) = x if and only if x is
a repetition and u divides v.

Remark 6. If, for nonempty x and positive integer v � x − 1, R v (x) = x, then gcd(v, x) is a period of x.

Lemma 7. (See [20, p. 76].) If a string x is a repetition of period u, then so is every rotation of x.

Rather surprisingly, the following lemma appears to be new; it will be useful for analyzing various subcases of our
results.

Lemma 8. Suppose both x and R v(x), 0 < v < x, have period u, where � = x mod u > 0 and r = �x/u�. Let xv denote R v(x), and let
d = gcd(u, �). Then

(a) if r = 1 and v � �, xv−�[1..2�] is a square of period �;
(b) if r = 1 and v � �, x[1..v + �] has period �;
(c) if r > 1 and v < u, x[1..v + �] has period �; if moreover v + d � u, then x is a repetition of period d;
(d) if r > 1 and u � v � x − u, x[1..u + �], hence x, is a repetition of period d;
(e) if r > 1 and x − u < v, where v ′ = v − (x − u), x[v ′ + 1..u + �] has period �; if moreover v ′ � d, then x is a repetition of period d.

Proof.

(a) Since the rotation is by v � �, it follows that the suffix xv [u + 1..u + �] of xv must equal the suffix x[v − � + 1..v] of
x[1..v]. Since xv has period u, therefore

xv [u + 1..u + �] = xv [1..�],
and so

x[v − � + 1..v]xv [1..�] = (
xv [1..�])2

.

But in addition

x[v − � + 1..v]xv [1..�] = xv−�[1..�]xv−�[� + 1,2�]
= xv−�[1..2�],

thus establishing (a).
(b) Periodicity u, together with the requirement that u + v � u + � = x, implies

x[1..v] = xv [x − v + 1..x] = x[x − u + 1..x − u + v] = x[� + 1..� + v],
and so x[1..v + �] has period �, as required.

(c) Observe that a prefix

x[1..v] = xv [x − v + 1..x]
of x[1..v + �] of length v is constrained to match the corresponding suffix x[� + 1..� + v]. Thus x[1..v + �] has a border
of length v , hence period �, as required.
If in addition v + d � u, then also v + � � u, so that x[1..v + �] has two periods, u and �. Since (v + �) + d � u + �,
Lemma 4 applies, implying that x[1..v + �] has period d. It follows that d is also a period of u, and since d | u, therefore

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.5 (1-12)

E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–••• 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

T
T

(

L
w

c
u
r
t
s

t
w
b

3

L

w

P
t

able 1
he 14 subcases identified in [8], slightly modified, for three neighboring squares u, v , w (with v − u < w < v , w �= u).

Subcase
S

k k + w k + 2w Special
conditions

1 0 � k � u1 k + w � u k + 2w � u + u1 k � u2

2 0 � k � u1 k + w � u k + 2w � u + u1 k < u2

3 0 � k � u1 k + w � u k + 2w > u + u1 –
4 0 � k � u1 u < k + w � u + u1 – –
5 0 � k � u1 u + u1 < k + w � v – –
6 0 � k � u1 v < k + w < 2u – –

7 u1 < k < u1 + u2 k + w � u + u1 k + 2w � 2u –
8 u1 < k < u1 + u2 k + w � u + u1 k + 2w > 2u –
9 u1 < k < u1 + u2 u + u1 < k + w � v – w < u

10 u1 < k < u1 + u2 k + w � v k + 2w � u + v w > u
11 u1 < k < u1 + u2 k + w � v u + v < k + 2w � 2v − u2 –
12 u1 < k < u1 + u2 k + w � v 2v − u2 < k + 2w –
13 u1 < k < u1 + u2 v < k + w � 2u – –
14 u1 < k < u1 + u2 2u < k + w < 2u + u2 − 1 – –

u is a repetition of period d; since furthermore d | �, u[1..�] must be a repetition of period d, and thus so also is x, as
required.

d) In this case we must have

x[1..u] = x[� + 1..� + u],
from which we conclude that x[1..u + �] has period �. Since x[1..u + �] also has period u, it must therefore by Lemma 4
have period d. Since d | u + �, the result follows.

(e) Here we require

x
[
v ′ + 1..u

] = x
[
� + v ′ + 1..� + u

]
,

so that z = x[v ′ + 1..u + �] of length z = u + � − v ′ has a border of length u − v ′ , hence period �. Observe that when
v ′ � d, z = u + � − v ′ � u + � − d � u, so that z also has period u. Since in this case z + d � u + �, Lemma 4 again
applies, implying that z has period d. As in (c), it follows that x is a repetition of period d. �

In [8] a “new periodicity lemma” was proved:

emma 9 (NPL). If x has prefixes u2 and v2 , u2 regular, u < v < 2u, then for every k ∈ 0..v − u − 1 and every w ∈ v − u + 1..v − 1,
�= u, x[k + 1..k + 2w] is not a square.

The proof of this result required the analysis of 14 subcases (see Table 1), each established by showing that its existence
ontradicts the regularity of u2. Recall that if u2 is not regular, then it must have a prefix, say u2

−1 , u−1 < u; similarly, if
2
−1 is not regular, it must have a prefix u2

−2 , u−2 < u−1; thus, eventually, there exists some integer t > 0 such that u2−t is
egular. However, NPL applies to u2−t and u2

−t+1 only if it should happen that 3u−t/2 < u−t+1 < 2u−t . Therefore, dropping
he regularity assumption, while using instead the weaker condition 3u/2 < v < 2u, extends the applicability of NPL to
ome cases where u2 is in fact not regular. (For example, u = aabaa of length 5, v = aabaaaab of length 8.)

In [8] a table of the 14 subcases was presented, showing for each one the periodicity induced by the occurrence of the
hree squares — u2 and v2 as prefixes of x, and w2 at some position k + 1, for k ∈ 0..v − u − 1, w ∈ v − u + 1..v − 1,

�= u. In Section 5 we begin to refine these results, showing that in fact seven of the 14 subcases result in highly periodic
ehavior that is easily recognized — essentially this means that three squares can occur only in trivial circumstances.

. Case (C1) — v ∈ u + 1..3u/2

The first result establishes the basic structure of x in this case:

emma 10. If x = v2 with prefix u2 , u < v � 3u/2, then

x = um
1 u2um+1

1 u2u1, (4)

here u1 = v − u � u/2, u2 = u mod u1 � 0, m = �u/u1� � 2, and u2 is a proper prefix of u1 .

roof. Let u1 be the suffix of v of length v − u, and observe that 2u1 � u. The result clearly holds in the trivial case
hat u1 | u (u2 = 0), where v = um+1 and x = u2(m+1); assume therefore that u2 > 0. Observe that u1 is a prefix of u and
1 1

Original text:
Inserted Text:
neighbouring

Original text:
Inserted Text:
behaviour

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.6 (1-12)

6 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
therefore also a prefix of v . Observe further that if for some � > 0, u�
1 is a prefix of v with (� + 1)u1 < u, then u�+1

1 is
necessarily a prefix of u, hence also a prefix of v . Since in particular this statement is true for � = m − 1, we see that um

1
is a prefix of v; in other words, v = um

1 u2u1 , and (4) follows. Since u2 = uum
1 u2 is a prefix of v2 = uum+1

1 u2u1 , and since
u2 < u1, we see also that u2 must be a proper prefix of u1 . �

Lemma 10 speaks of squares, but since every run begins with a square, it also describes runs (assuming of course that
the runs corresponding to u2 and v2 cannot be left-extended). Consider the example

x = aabaabaabaaab aabaabaabaaab. (5)

Here u1 = aab, u2 = a, m = 3, and the square u2 = (u3
1u2)

2 gives rise to the run u2a. In the related example

x = abbabbabbaabb abbabbabbaabb, (6)

we again have u2 = a, m = 3, but now u1 = abb and the run u2 cannot be extended. If more generally we address ourselves
to the question of what runs exist in (4) in the nontrivial case that u2 > 0, we easily identify the following:

(R1) v2 and u2u∗ for some possibly empty proper prefix u∗ of u1 such that both u∗ and u2u∗ are prefixes of u1; for
example, u∗ = a in (5), ε in (6).

(R2) uu∗ = um
1 u2u∗ and u1uu∗ = um+1

1 u2u∗ , runs that may be adjacent as in (6) or overlap as in (5), and that together
cover all of x except for a suffix of the final copy of u1 .

(R3) m + 1 runs

u2
2u∗, (u1u2)

2u∗, . . . ,
(
um

1 u2
)2

u∗ = u2u∗, (7)

all centred at position u + 1 of x, with the first one u2
2u∗ repeated at position (2m + 1)u1 + u2 + 1. The centred runs

(7) arise in the analyses of [18] and [4].
(R4) Miscellaneous runs of period strictly less than u1. For example, the runs aa that occur as a substring of occurrences of

u1 in (5). Another example: in the case u1 = abaab, u2 = a, m = 2,

x = abaababaabaabaab abaababaabaabaab,

we identify, in addition to 2m + 4 runs aa, a sequence of four overlapping runs (aba)2, (aba)4, (aba)2, (aba)3ab, that
cover x.

We prove the following:

Lemma 11. The string (4), u2 > 0, contains no repetitions (runs) of period z � u1 other than those characterized in (R1)–(R3).

Proof. We consider possible runs R = zt z∗ , t > 1, z∗ a possibly empty proper prefix of z. Suppose first that R is a substring
of one of the runs (R2). In this case we may assume that z is not a multiple of u1, but that z > u1. Notice that R has a
prefix z1z2 , where z1 = z2 = z. Then z1 has a prefix that is a rotation Rs(u1) for some s ∈ 0..u1 − 1. Since z > u1 and not
a multiple of u1, it follows that z2 has a prefix that is a rotation Rs′ (u1) for some s′ �= s, s′ ∈ 0..u1 − 1. Since these two
prefixes must be equal, we conclude from Lemma 5 that u1 is a repetition, contradicting the assumption that u is a run of
minimum period u1.

Suppose then that R is not a substring of either run (R2), with z � u1. We may suppose also that R is not a run of (R3).
Then R overlaps the join u∗ of the two runs uu∗ and u1uu∗ , both of period u1. If the first occurrence, say z1 , of the
repeating substring z does not overlap the join, then it must be a substring of uu∗ and so have period u1; but since some
other occurrence of z does overlap the join, it cannot therefore, by the nonextendibility of the run uu∗ , both have period
u1 and be equal to z1 , a contradiction. We conclude that z1 overlaps the join; however, since R is not in (R3), z1 cannot
have period u1. Consequently no other occurrence of z can have period u1, and so R = z1z2z∗ , where z2 overlaps the final
occurrence of u1 in x; thus z2 = z∗

2z′
2 , where z∗

2 has period u1 and z′
2 is a nonempty substring of u1 = u∗z′

2u′
1 for some

proper suffix u′
1 of u1 .

We see then that z2 has no suffix of length greater than u1 that has period u1; since this must also be true of z1 , it
follows that z∗

2 � mu1 + u2 + u∗ . But then, setting z1 = z∗
1z′

1 with z∗
1 = z∗

2, we see that z∗
1 � mu1 + u2 + u∗ , hence that

z∗
1 = z∗

2 = mu1 + u2 + u∗ . Therefore the run R is exactly v2, already included in (R1). This completes the proof. �
To summarize: in the situation identified by Lemma 10, for a string x of length

x = (2m + 2)u1 + 2u2 = (2u1)m + 2(u1 + u2), u2 > 0,

there exist exactly m + 5 runs (R1)–(R3), together with runs (R4) of period strictly less than u1, and no others.

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.7 (1-12)

E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

4

u
t

a
u
o
s
w

u

T

w
f
e
s

w
t

c

— For every subcase (u1, u2,k, w) determined by u1_max, u2_max,
— compute subcase identifier S, maximum alphabet σ and u1 , u2

1. for u1 ← 1 to u1_max do
2. for u2 ← 1 to u2_max do
3. for k ← 0 to u∗ − 1 do — Recall u∗ ≡ u1 + u2.
4. for w ← u∗ + 1 to v − 1 do
5. if w �= 2u1 + u2 then
6. σ ← u∗
7. u1 = 12 · · · u1; u2 = u1 + 1u1 + 2 · · · u∗
8. (σ , u1, u2) ← force_square(σ , u1, u2,k, w)

9. S ← compute_subcase — from Table 1
10. return (S, σ , u1, u2,k, w)

Fig. 1. Algorithm construct_x(S, σ , u1, u2,k, w): u1 ∈ 1..u1_max, u2 ∈ 1..u2_max.

function force_square(σ , u1, u2,k, w)

— For given values k and w, apply condition (8) to
— recompute σ , u1 , u2 in x = u1u2u1u1u2u1u2u1u1u2

1. wlim ← min(k + w, x − w) – possibly k + 2w > x
2. for i ← k + 1 to wlim do
3. if x[i] �= x[i + w] then
4. σ ← σ − 1
5. replace all occurrences of max(x[i], x[i + w]) in x with min(x[i], x[i + w])
6. return (σ , u1, u2)

Fig. 2. Function force_square(σ , u1, u2,k, w).

. Generating conjectures

In this section we first describe the algorithm used to generate conjectures about the periodicity induced by two squares
2 and v2 at the same position, with a third square w2 occurring at distance k, as described in Lemma 9. We then go on

o provide precise statements of the conjectures generated.
The algorithm construct_x is a function that, given two positive integer values u1_max and u2_max, generates all subcases

llowable under the conditions specified in Table 1 for every u1 ∈ 1..u1_max, u2 ∈ 1..u2_max, k ∈ 0..u1 + u2 − 1, w ∈ u1 +
2 + 1..3u1 + 2u2 − 1, w �= u. We claim that these subcases are disjoint and together correspond exactly to the conditions
n u, v , k and w stated in Lemma 9. For each allowable set of values (u1, u2,k, w) construct_x determines the applicable
ubcase identifier S . But the algorithm does more: it also computes the maximum alphabet size σ for x that is consistent
ith S , where x = max(2v,k + 2w).

Initially the maximum alphabet size of x is σ0 = u1 + u2, since by (3) w and v can contain only entries from substrings
1 and u2 . Let u∗ = u1u2 and let the initial alphabet Σ0 = {1,2, . . . , u∗} with

u1 = 12 · · · u1, u2 = (u1 + 1)(u1 + 2) · · · u∗.

he condition applied to determine alphabet size σ is

x[k + 1..k + w] = x[k + w + 1..k + 2w], (8)

here at each position i ∈ 1..w in w such that x[k + i] = u∗[j1] for some j1 ∈ 1..u∗ , and such that x[k + w + i] = u∗[j2]
or some j2 ∈ 1..u∗ ,2 we require that the letter u∗[j1] equal the letter u∗[j2]. If these letters are not already equal, then in
very copy of u1 or u2 in x, we replace the numerically larger of the two by the smaller, updating the alphabet at each
tep as follows:

Σ ← Σ − {
max

(
u∗[j1], u∗[j2]

)}
, (9)

here initially Σ = Σ0. After all w such pairs of positions have been considered, the letters remaining in Σ are exactly
hose that occur in x: σ = |Σ |. Figs. 1 and 2 outline these calculations.

Algorithm construct_x was executed for u1_max = u2_max = 30, yielding a total of 1,415,925 strings spread over the 14
ases as shown in Table 2. In this table,

∗ column 2 gives the number of strings generated for Subcase S;
∗ σmax is the maximum over all maximum alphabet sizes σ computed for any string generated for Subcase S;
∗ d = gcd(u1, u2, w) and columns 4 and 5 count the number of generated strings for which σ equals or exceeds d,

respectively;

2 In subcases 13 and 14 it may happen that k + w + i > 2v; for such values of i, therefore, no such j2 exists.

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.8 (1-12)

8 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Table 2
Statistics for 1 415 925 strings generated using u1_max = u2_max = 30.

1 2 3 4 5 6 7

S # strings σmax # σ = d # σ > d # Σ = {1,2, . . . , σ } # gaps

1 7840 7 7840 0 7840 0
2 8960 10 8960 0 8960 0
3 131 100 29 118 305 12 795 131 100 0
4 283 620 30 276 799 6821 278 132 5488
5 227 505 30 227 505 0 227 505 0
6 121 800 15 121 800 0 121 800 0
7 47 250 27 44 548 2702 44 860 2390
8 51 640 15 51 640 0 51 640 0
9 90 335 15 90 335 0 90 335 0

10 64 050 10 64 050 0 64 050 0
11 54 000 15 51 707 2293 54 000 0
12 16 800 15 15 612 1188 16 800 0
13 201 405 30 197 860 3545 201 405 0
14 109 620 15 108 770 850 108 831 789

Table 3
Overview of conjectures.

Subcases S Conditions Breakdown of x/v2

1, 2, 5, 6, 8–10 (∀x, σ = d) x = d(x/d)

3, 4, 7 σ = d x = d(x/d)

σ > d x = sαs[1..u1 mod s]sγ s[1..u1 mod s]sε

11–14 σ = d x = d(x/d)

σ > d v2 = (rβ r[1..r mod u1])2 (???)

∗ columns 6 and 7 give the number of generated strings for which the alphabet resulting from function force_square
consists of consecutive integers 1,2, . . . , σ , or not, respectively.

A string-by-string computer-based analysis of the generated strings counted in Table 2 yields a collection of conjectures,
summarized in Table 3. Essentially, it appears that whenever σ = d, x breaks down into a repetition of period d. If σ > d,
however, then there is still a highly repetitive breakdown, but of a more complex kind. For Subcases 3,4,7, the breakdown
depends on parameters

s = gcd(u − w, w − u1); α = �u/s�; γ = �v/s�; ε = (u1 + u2)/s; (10)

while for Subcases 11–14, even though there is always a highly periodic breakdown, the exact nature of it remains a puzzle
— often it depends, as shown, on

r = v − w; β = (2u/r) − 1. (11)

The conjectures given in the first collection of seven subcases in Table 3 — 1, 2, 5, 6, 8–10 — will be proved correct
in Section 5. Since it is known therefore for these cases that x is a repetition of period d = gcd(u1, u2, w), it follows that
σ �> d — otherwise, such a repetition would not always be possible. Moreover, since a repetition of period d can always be
represented using d distinct letters, it follows that σ �< d. In other words, σ = d is a condition necessary for periodicity d,
but we have as yet no proof that it is also sufficient, as it appears to be judging from the conjectures for Subcases 3, 4, 7,
11–14. Note that according to the experiments done so far, about 96% of the generated strings x yield σ = d and so reduce
to x = d(x/d); even more striking is the fact that out of 1 415 925 strings only 8667 (about 0.6%) have a prefix of length σ
in which some letter is necessarily duplicated. These are combinatorial mysteries that require explanation.

5. Case (C2) — subcases yielding full periodicity

For the first group of seven subcases identified in Table 3, we prove the stated conjecture; namely, that x = v2 is a
repetition of period d = gcd(u1, u2, w). Note that the lemma mentions only six subcases because the first two (1 and 2) are
handled in the same way.

Lemma 12. (Figs. 3–8, Subcases 1, 2, 5, 6, 8–10.) Suppose that x has prefixes u2 and v2 , 3u/2 < v < 2u (so that (3) holds). Suppose
further that w2 , v − u < w < v, w �= u, occurs at position k of x, where

(a) 0 � k � u1 , k + w � u and k + 2w � u + u1 , or

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.9 (1-12)

E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–••• 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

(

(

T

P

(

Fig. 3. (a) Subcases 1 and 2.

Fig. 4. (b) Subcase 5.

b) 0 � k � u1 and u + u1 < k + w � v, or
(c) 0 � k � u1 and v < k + w � 2u, or
d) u1 < k < u1 + u2 and u < k + w � u + u1 and 2u < k + 2w, or

(e) u1 < k < u1 + u2 and u + u1 < k + w � v and w < u, or
(f) u1 < k < u1 + u2 and k + w � v and k + 2w � u + v and w > u.

hen v2 is a repetition of period gcd(u1, u2, w).

roof.

(a) Let q = w − (u1 + u2) + k, z = w − u1 + q, with corresponding q and z, so that z − q > q − k > 0 with z > q > k. Define
also s and s′ with s = u1 − q < u1 − k = s′ . Since w(2) , the second copy of w , ends in u(3)

1 , the third copy of u1 , it
follows that z � u1; hence q < u1 and s > 0.
Since s and s′ are both prefixes of w and suffixes of u1 , it follows that s is both a proper prefix and a proper suffix
of s′ , hence that s′ − s = q − k is a period of s′ . Similarly, q and z are both prefixes of u1 and suffixes of w , so that
q is both a proper prefix and a proper suffix of z, implying that z − q is a period of z. The overlap of z (prefix of u1)
and s′ (suffix of u1) is a string f (actually a prefix of w) of length z − k that must have both periods p1 = q − k and
p2 = z − q. Since f = p1 + p2, it follows that p1 + p2 < f + d, where d = gcd(p1, p2); thus the conditions of Lemma 4
are satisfied, and f has period d � p1 < p2, and in fact d | f , so that f = rd, r � 3. Moreover, since f is a substring of
u1 , it will be copied left by period p1, right by period p2, both divisible by d; thus z, s′ and u1 all have period d. Note
that d | u2, since

d = gcd
(

w − (u1 + u2), w − u1
) = gcd(w − u1, u2). (12)

Next observe that s′ and z also overlap as prefix and suffix, respectively, of w , by a distance q − k. Since d | q − k, it
follows that w also has period d. Considering w(2) , we see that not only does u1 have period d, but so also does the
nontrivial rotation Rq(u1).
Now we can apply Lemma 8 to u1 and Rq(u1). If u1 = td, u1 is a repetition of period d′ = d. If however we suppose
that u1 = td + �, 0 < � < d, then since f � 3d, t � 4 > 1. Since moreover d < q < u1 − d, case (d) of Lemma 8 applies,
and we conclude that u1 is necessarily a repetition of period d′ = gcd(d, �). In both of these cases, d′ | d and d′ | u1,
so that from (12) we conclude that d′ = gcd(u1, u2, w). Thus u1 and u2 , hence v2, also are repetitions of period d′ ,
completing the proof of (a).

b) Let s = v − (w + k) with 0 � s < u2; let t = u1 + u2 − s = k + (w − u) with u1 < t � u1 + u2; let z = (w − u) − s =
(k + 2w) − (v + u), and note that possibly z � 0. Fig. 4 shows the corresponding strings s, t , z, with z > 0.
As observed in [8], Rk(u1u2) and Rt(u1u2) are both prefixes of w , with k � u1 < t . For t < u1 +u2 (s > 0), Lemma 5 and
Remark 6 can be applied to conclude, since t − k = w − u, that u1u2 is a repetition of period d = gcd(w − u, u1 + u2)

(incorrectly stated in [8] to be period t − k). However, for t = u1 + u2 (that is, s = 0, a case missed in [8]), since
k+ s = v − w and v − w > 0 by hypothesis, therefore Rk(u1u2) = u1u2 is a repetition of period d′ = gcd(v − w, u1 +u2).
Because

w − u = (u1 − k) + (u2 − s) = (u1 + u2) − (k + s) = (u1 + u2) − (v − w), (13)

we see that these cases are really the same: d′ = d. Note further that by Lemma 7 u2u1 is also a repetition of period d,
and that u necessarily has period d.

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.10 (1-12)

10 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 5. (c) Subcase 6.

Fig. 6. (d) Subcase 8.

Suppose first that z � 0, so that w(2) = (Ru2−s(u2u1))
q/(u1+u2) for some integer q > u1 + u2, and so w has period d.

Then of course w(1) and in particular its prefix Rk(u), as well as its substring Ru1 (u) and its suffix Rt(u), all have
period d. Let y = Rk(u), so that Rt−k(y) = R w−u(y) = Rt(u). We now apply Lemma 8 to y and R w−u(y), where y = u.
Since d | w − u, therefore d � w − y. Also 2w � v + u implies w � y + (u1 + u2)/2; since d | u1 + u2 and u1u2 is a
repetition, therefore w + d < 2y or w − y < y − d. We conclude that d � w − y < y − d, so that case (d) of Lemma 8
applies (with x ∼ y, u ∼ d, v ∼ w − y): y, hence by Lemma 7 u, is a repetition of period d. Since d divides both u and
u1 + u2, it therefore divides u1, hence u2, hence w , and so d = gcd(u1, u2, w) is a period of v2, as required.
On the other hand, if z > 0, we compare w(1) and w(2) to discover that u = Rk+s(u). Since from (13) k + s = 0 implies
w = v , a case excluded by hypothesis, we conclude, again using Lemma 5 and Remark 6, that u is a repetition of
period d′′ = gcd(k + s, u). Thus u has two periods d and d′′ such that d + d′′ � (u + u1 + u2)/2 < u, and so Lemma 4
applies. We conclude that u is a repetition of period d∗ = gcd(d,d′′), where as above d∗ divides u, u1, u2 and w . Thus
gcd(u1, u2, w) is again a period of v2.

(c) Let k′ = w + k − v with corresponding k′ as shown in Fig. 5; since w < v , therefore k′ < k. Comparing the prefixes of
w(1) and w(2) , we see that Rk(u) = Rk′ (u), so that u is a repetition of period gcd(k − k′, u) = gcd(v − w, u). A similar
argument shows that u1u2 is a repetition of period gcd(v − w, u1 + u2), and the argument of (a) shows that v2 is again
a repetition of period gcd(u1, u2, w).

(d) Let s = u + u1 − w − k with corresponding string s as shown in Fig. 6, a suffix of u1 and a prefix of w . As in [8] we
observe that u(4)

1 occurs at position s + u2 + 1 of w(2) , hence at the same position of w(1) , thus overlapping u2
1 in w(1)

by t = s + u2 − (u1 + u2 − k) = s + k − u1 > 0. Thus u1 = Rt(u1) and we conclude, again using Lemma 5 and Remark 6,
that u1 is a repetition whose period d divides t , where d = u1/p for some integer p > 1. We see then that d | u1 and
d | s + k. Note also that since u − w = s + k − u1, therefore d | u − w; furthermore, since u − w = 2u1 − (w − u2), it
follows that d | w − u2.
Now let z be the nonempty proper prefix of u2u1 and suffix of w defined as shown in Fig. 6 by z = k+2w −2u. Then sz
is a border of w , which therefore has period w − (s + z) < w . Consider now the substring w[s +k − u1 + 1..s + u2 + u1]
of w(2) that must equal the prefix w[1..2u1 + u2 − k] of w(1) . It follows that w ′ = w[1..s + u2 + u1] has period
s+k−u1 = u− w . Note from w(2) that u+z = w +u1 −s, hence that u− w = u1 −(s+z) < u1. Since d divides u− w , the
period of w ′ , and since the suffix u1 of w ′ also has period u − w in addition to being a repetition of period d, it follows
that w ′ also has period d. Note now that since w(2) has suffix sz, so also does w(1) , and thus, provided 2s + z � u1,
u1 has suffix szs. (That 2s + z < u1 follows from the identities noted above: u − w = s + k − u1 = u1 − (s + z); that is,
2s + z = 2u1 − k.) Recalling that d | s + z, we see that periodicity d is extended from w ′ with suffix szs to w = w ′z.
The preceding paragraph establishes that w has periods p1 = w −(s+ z) and p2 = d, where d | s+ z, so that p1 + p2 � w
and Lemma 4 can be applied, yielding the conclusion that w has period d′ = gcd(w − (s + z),d). But then d′ must divide
both d and w , hence also u2 (since d | w −u2) as well as u1. Thus v2 is a repetition of period gcd(u1, u2, w), as required.

(e) As shown in Fig. 7, r and s are both suffixes of u2 and prefixes of w , where, since w < u, therefore r < s. Then s has
border r, hence period s − r = u − w < s. Note that the string su1 is a prefix of w(2) , hence of w(1) , so that su1 overlaps
with itself by s − r; thus su1 also has period u − w .
Since v − s = k + w , therefore k + s = v − w < u by hypothesis, and so k + s + u1 < u + u1 < k + w . Thus the copy
of u1 in w(2) must overlap with u2 in w(1) , telling us that u1 = Ru−w(u1), where u − w < u1. From Lemma 5 we
1

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.11 (1-12)

E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–••• 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56

57

58

59

60

61
Fig. 7. (e) Subcase 9.

Fig. 8. (f) Subcase 10.

conclude that u1 is a repetition of period u − w , and further that the prefix z = ru2
1 of w has period u − w . Observe

that u − w | u1, moreover since w − u2 = 2u1 − (u − w), that u − w | w − u2.
Now consider the occurrence of u∗ = u2u1 that has as its prefix a suffix of w(2) . Considering the corresponding suffix
of w(1) , we see that

u∗[1..u1 − (s − r)
] = u1[s − r + 1..u1], (14)

a suffix of u1 of length u1 − (s − r) = u1 − (u − w) � u − w , since u1 = q(u − w) for some q > 1. Therefore u∗[1..u1 −
(s − r)] of length (q − 1)(u − w) has period u − w . Continuing the match, we find that

u∗[u1 − (s − r) + 1..w − (u1 + s)
] = u∗[1..u2 − s], (15)

that by virtue of (14) continues the period u − w . Thus from (14) and (15) we conclude that w has a suffix of length
w − (u1 + s) of period u − w , and as we saw earlier, it also has a prefix z of length r +2u1 of period u − w . The periodic
suffix and prefix of w have an overlap of

w − u1 − s + r + 2u1 − w = u1 − (u − w),

as we have seen divisible by u − w . We conclude therefore that w has period u − w .
Similarly, since (14)–(15) also tell us that u2 has a prefix of length min(u2, w − (u1 + s)) of period u − w , and since as
we have seen the suffix of u2 of length s has the same period, we find the overlap

min
(
u2, w − (u1 + s)

) + s − u2 = min
(
s, w − (u1 + u2)

)

= min
(
s, u − (k + s)

)

= min
(
s, u1 − (s − t)

)
,

a quantity greater than u − w . We conclude therefore that u2 also has period u − w . But the periodicity of w , taken
together with the facts that u1 is a repetition of period u − w and that s has period u − w , tell us that the string
su2[1..u2 − s] = Ru2−s(u2) also has period u − w . By Lemma 5, therefore, u2 is a repetition of period u − w and
gcd(u2, u2 − s). Since as we have seen u − w also divides u1 and w − u2, (d) holds.

(f) As shown in Fig. 8, let r and s be suffixes of u2 that are also prefixes of w; since w > u, it follows that r > s, where
we define z = r − s = w − u. Thus z < r < u2, and so as shown we may let z be a prefix of u2 , so that w(2) has prefix
su1z that must equal prefix ru1 of w(1) . Thus w(1) must have prefix s y = s(u1z)2. Of course y has period p1 = u1 + z,
but since u1z overlaps itself, therefore y also has period p2 = z. Since p1 + p2 = u1 + 2z < y, we conclude by Lemma 4
that y has period d = gcd(u1 + z, z). Note that d divides z = w − u and u1, thus w − u2 and y, where y is a repetition
of period d.
Next observe that since u2 is a proper substring of w(2) , therefore for the largest integer j � 0 such that z(u1z) j is
a prefix of u2 , sz(u1z) j+1 must be a prefix of w(1) . This is because the jth occurrence of u1z in u2 within w(2)
56

57

58

59

60

61

corresponds to the (j + 1)th occurrence of u1z in w(1) . (Fig. 8 shows z < u1 and j = 0.)
Moreover Rs(w) = zu2

1u2 must be a prefix of (u1z) j+2 and therefore has period d. Consequently u1u2 , a prefix of v
that overlaps Rs(w) by z, has period d, and since d | z, we find that v has period d. Within v both u2u1 and u1u2
occur, and so both have period d. If u2 < u1, let g = u1u2 and apply Lemma 8(d) to g and Ru2 (g) to show that u2u1 ,
thus v2, is a repetition of period d′ , where d′ | d, hence that d′ | u2, so that d′ = gcd(u1, u2, w). Similarly for u1 � u2.
This completes the proof. �

JID:JDA AID:366 /FLA [m3G; v 1.51; Prn:18/03/2011; 8:27] P.12 (1-12)

12 E. Kopylova, W.F. Smyth / Journal of Discrete Algorithms ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

Q137 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Fig. 9. Subcase 3.

6. Commentary and future research

An obvious direction for continuation of this research is to deal with the unproved conjectures of Table 3. We have
already started to examine Subcase 3, illustrated in Fig. 9. A natural first angle of approach would also be to study the
unproved subcases on the assumption that σ = d. Proofs for σ > d seem likely to be more difficult.

As noted in Section 4, there remain several other combinatorial puzzles related to (C2), that might well be relevant to
future application of these results to theory and practice:

∗ It would be of interest to establish an upper bound on σ — it seems that σ � (u1 + u2)/2.
∗ Does σ = gcd(u1, u2, w) imply that x is a repetition of period d? If so, can this fact be used to simplify proofs?
∗ If a string x generated by function force_square includes a maximum letter greater than alphabet size σ , does it follow

that σ > gcd(u1, u2, w)?

Also for the case (C1), u < v < 3u/2, considered in Section 3, it seems that further analysis would yield a precise upper
bound on the number of runs that takes into account the runs (R4).

We will maintain a website accessible from

http://www.cas.mcmaster.ca/~bill/cv.shtml

to monitor progress with three squares research. We remark that computer experiment has played a critical, perhaps indis-
pensable, role in both the formulation and the proof of these fundamental combinatorial results.

References

[1] Alberto Apostolico, Franco P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput. Sci. 22 (1983) 297–315.
[2] Gang Chen, Simon J. Puglisi, W.F. Smyth, Fast & practical algorithms for computing all the runs in a string, in: B. Ma, K. Zhang (Eds.), Proc. 18th Annual

Symp. Combinatorial Pattern Matching, in: LNCS, vol. 4580, Springer-Verlag, 2007, pp. 307–315.
[3] Maxime Crochemore, An optimal algorithm for computing all the repetitions in a word, Inform. Process. Lett. 12 (5) (1981) 244–248.
[4] Maxime Crochemore, Lucian Ilie, Maximal repetitions in strings, J. Comput. System Sci. 74 (2008) 796–807.
[5] Maxime Crochemore, Lucian Ilie, Computing longest previous factor in linear time and applications, Inform. Process. Lett. 106 (2008) 75–80.
[6] Maxime Crochemore, Lucian Ilie, Liviu Tinta, Towards a solution to the “runs” conjecture, in: P. Ferragina, G. Landau (Eds.), Proc. 19th Annual Symp.

Combinatorial Pattern Matching, in: LNCS, vol. 5029, Springer-Verlag, 2008, pp. 290–302.
[7] Maxime Crochemore, Wojciech Rytter, Squares, cubes, and time–space efficient strings searching, Algorithmica 13 (1995) 405–425.
[8] Kangmin Fan, Simon J. Puglisi, W.F. Smyth, Andrew Turpin, A new periodicity lemma, SIAM J. Discrete Math. 20 (3) (2006) 656–668.
[9] Martin Farach, Optimal suffix tree construction with large alphabets, in: Proc. 38th IEEE Symp. Found. Computer Science, IEEE Computer Society, 1997,

pp. 137–143.
[10] N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc. 16 (1965) 109–114.
[11] Mathieu Giraud, Not so many runs in strings, in: Carlos Martín-Vide, Friedrich Otto, Henning Fernau (Eds.), Proc. 2nd Int. Conference on Language and

Automata Theory and Applications, in: LNCS, vol. 5196, Springer-Verlag, 2008, pp. 232–239.
[12] Roman Kolpakov, Gregory Kucherov, On maximal repetitions in words, J. Discrete Algorithms 1 (2000) 159–186.
[13] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1997, 238 pp.
[14] Michael G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math. 25 (1989) 145–153.
[15] Michael G. Main, Richard J. Lorentz, An O (n log n) algorithm for finding all repetitions in a string, J. Algorithms 5 (1984) 422–432.
[16] Simon J. Puglisi, R.J. Simpson, The expected number of runs in a word, Australas. J. Combin. 42 (2008) 45–54.
[17] Simon J. Puglisi, R.J. Simpson, W.F. Smyth, How many runs can a string contain? Theoret. Comput. Sci. 401 (2008) 165–171.
[18] Wojciech Rytter, The number of runs in a string: improved analysis of the linear upper bound, in: B. Durand, W. Thomas (Eds.), Proc. 23rd Symp.

Theoretical Aspects of Computer Science, in: LNCS, vol. 2884, Springer-Verlag, 2006, pp. 184–195.
[19] R.J. Simpson, Intersecting periodic words, Theoret. Comput. Sci. 374 (2007) 58–65.
[20] Bill Smyth, Computing Patterns in Strings, Pearson Addison–Wesley, 2003, 423 pp.
[21] Jacob Ziv, Abraham Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory 23 (1977) 337–343.

Original text:
Inserted Text:
\&

http://www.cas.mcmaster.ca/~bill/cv.shtml
bill
Sticky Note
-5

bill
Sticky Note
Marked set by bill

	The three squares lemma revisited
	Introduction
	Preliminaries
	Case (C1) - v ∈u + 1..3u/2
	Generating conjectures
	Case (C2) - subcases yielding full periodicity
	Commentary and future research
	References

