
Three Overlapping Squares:
The General Case Characterized?

W. F. Smyth1,2

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

smyth@mcmaster.ca

2 Department of Mathematics & Statistics
University of Western Australia, Crawley WA 6009, Australia

Abstract. The “Three Squares Lemma” [7] famously explored the con-
sequences of supposing that three squares occur at the same position in
a string; essentially it showed that this phenomenon could not occur un-
less the longest of the three squares was at least the sum of the lengths
of the other two. More recently, several papers [8, 25, 17, 11] have greatly
extended this result by supposing that only two of the squares occur at
the same position, with a third occurring in a neighbourhood to the right
— in these cases also, similar restrictions apply. In this paper an alterna-
tive strategy is proposed: the consequences of having only two squares at
neighbouring positions are carefully analyzed, and then the observation is
made that the analysis applies in a straightforward way (though perhaps
with complicated details) to the three neighbouring squares problem in
its full generality. This problem and the methodology required to solve
it are outlined. I conclude with a brief discussion of the potential appli-
cation of this research to an entirely new approach to the computation
of maximal periodicities in a string.

Keywords: string, word, overlapping squares, repetition, run, maximal pe-
riodicity.

1 Introduction

Beginning with the “Three Squares Lemma” of Crochemore & Rytter [7], there
has for several years been considerable interest in the limitations that may exist
on periodicity in strings. [7] showed that three squares could exist at the same
position in a string only if the longest of the three was at least the sum of the
lengths of the other two. A sequence of papers [8, 25, 17, 11] greatly generalized
this result and also made it more precise by considering two squares u2 and v2

at the same position, with however the third square w2 offset a distance k ≥ 0

? This work was supported in part by the Natural Sciences & Engineering Research
Council of Canada.

to the right. The analysis given in the cited papers deals with 12 of 14 subcases
that arise: two remain to be considered, but it seems clear that such behaviour
is impossible — that is, the assumption that three neighbouring squares of well-
defined size exist within these well-defined bounds leads to the conclusion that
locally the string breaks down into repetitions of small period. In this paper
I show how to characterize the general case of overlapping squares — no two
constrained to begin at the same position — and make a start on considering
the combinatorial consequences.

Interest has been added to this research by a parallel development over the
last dozen years or so: the attempt to specify sharp bounds on the number of
maximal periodicities (“runs”) that can occur in any string of given length n.
Kolpakov & Kucherov [16] showed that the maximum number of runs (usu-
ally denoted ρ(n)) was linear in n, and moreover they described a linear-time
algorithm to compute all the runs in any given string; but their proof was non-
constructive — the maximum number of runs was shown to be Θ(n) but no
constant of proportionality was specified. As briefly described in Section 2, the
resulting research, some combinatorics and much computing, has led to the con-
clusion that ρ(n) is at least 0.944575n [26] and at most 1.029n [6] — in other
words, more or less the string length n. What links these two streams of research
is a simple observation:

If the maximum number of runs over all strings of length n is itself
approximately n, then on average there will be about one run starting
at each position. Thus, if two runs start at some position, there must be
some other position, probably nearby, at which no run can start. More
generally, determining combinatorial constraints on the occurrence of
overlapping squares (runs) may lead to a better characterization of ρ(n).

There is a third avenue of research that relates closely to overlapping squares:
the computation of all the runs/repetitions in a given string. At present the only
way that this can be done is essentially by brute force: global data structures
(suffix array, longest common prefix array, Lempel-Ziv decomposition) need to be
computed in an extended preprocessing phase, when in fact it has been shown
[21] that the expected number of runs in a string is generally much less than
string length. The preprocessing is necessitated by the absence of a detailed
understanding of the combinatorics of overlapping occurrences of runs in strings.

In Section 2 terminology and notation are introduced; Section 3 shows how
to express the general case of three overlapping squares, together with a sample
lemma that applies the insights gained; finally, in Section 4 I suggest possible
future research directions.

2 Preliminaries

(Usage generally follows [27].) A string is a finite sequence of symbols (letters)
drawn from some finite or infinite set Σ called the alphabet. The alphabet size
is σ = |Σ|. We write a string x in mathbold, and we represent it as an array

x[1..n] for some n ≥ 0. We call n = x the length of x. For x = 0, x = ε, the
empty string.

If x = uvw, then u is said to be a prefix, v a substring and w a suffix of
x. If x = uv, 0 ≤ u < x, then vu is said to be the uth rotation of x, written
Ru(x). If x = uv = wu for u < x, then u is a border of x, and x has period
p = x−u; that is, for every i ∈ 1..u, x[i] = x[i+p]. The string

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b
(1)

has borders abaab and ab, hence corresponding periods 5 and 8, respectively.
If x = vuew, where e ≥ 2 and u is neither a suffix of v nor a prefix of w (the

integer e is maximum), then ue is said to be a repetition in x. The integers u
and e are the period and exponent, respectively, of the repetition. The string
(1) has repetitions (aba)2, (abaab)2, a2, (ab)2, (ba)2, each of which is a square.
In general, every repetition has a square prefix.

If v = x[i..j] has period u, where v/u ≥ 2, and if neither x[i−1..j] nor x[i..j+1]
(whenever these are defined) has period u, then v is said to be a maximal
periodicity or run in x [18] with a (now fractional) exponent e = v/u. All of
the repetitions in (1) are runs except for (ab)2 and (ba)2: these are substrings of
the run v = ababa. In general, every repetition is a substring of some run; thus
computing all the runs implicitly computes all the repetitions.

There were three classical algorithms proposed [3, 1, 19] for computing all the
repetitions in a string of length n, each executing in O(n log n) time, asymptot-
ically optimal since the Fibonacci string fk, defined by

f0 = b, f1 = a; k ≥ 2 =⇒ fk = fk−1fk−2,

contains O(fk log fk) repetitions [3, 15, 10]. In [18] Main proposed an algorithm
to compute all the “leftmost” runs, extended by Kolpakov & Kucherov in [16]
to compute all runs. As mentioned in Section 1, this approach makes extensive
use of preprocessing, but still executes in linear time, based on a complex proof
that the maximum number ρ(n) of runs in any string of length n satisfies

ρ(n) ≤ K1n−K2

√
n log2 n (2)

for some universal positive constants K1 and K2. Even though [16] provided
computational evidence (up to n = 60) that ρ(n) ≤ n, the method of proof al-
lowed no bounds to be placed on K1 and K2. Over the last decade, the bounding
of ρ(n)

n has become a growth industry, leading to a lower bound 0.944575 [12, 20,
26] and an upper bound 1.029 [23, 22, 4, 13, 14, 5, 6], the latter result achieved us-
ing three years of CPU time on a supercomputer [24]. Meanwhile, more efficient
algorithms for computing runs have been proposed — for example, [2] — but
still with heavy preprocessing and the same general approach. Since, as noted in
Section 1, runs are expected to be sparse in strings, even for small sigma [21], a
heavy-handed global approach seems inappropriate.

A parallel approach has sought to find a combinatorial basis for estimating
the maximum number of runs in a string, specifically by considering the con-
sequences of assuming that two squares occur at the same position in a string,
with a third nearby, somewhat to the right. This generalizes the “Three Squares
Lemma” [7] that considered three squares at the same position in the string:

Lemma 1 Suppose u is not a repetition, and suppose v 6= uj for any j ≥ 1. If
u2 is a prefix of v2, in turn a proper prefix of w2, then w ≥ u+v.

A series of papers, particularly [8, 25, 17, 11], has considered the following more
general problem:

(P) Suppose that a string x has prefixes u2 and v2, 3u/2 < v < 2u,
and suppose further that a third square w2 occurs at position k+1 of x,
where v−u < w < v, w 6= u, and 0 ≤ k < v−u. What can be said about
the periodicity of x?

It turns out that the solution to Problem (P) breaks down into 14 subcases,
depending on the relative sizes of the parameters k, u, v, w; of these 12 have
been considered in detail and for each of them it turns out that x breaks down
into repetitions of small period — essentially, the postulate of three such squares
cannot be satisfied. There is good computational evidence that the remaining
two subcases exhibit the same behaviour.

Moreover, it is clear that further generalization is of interest: what happens
when the three squares u2,v2,w2 are merely constrained to be “neighbouring”,
without the requirement that u2 and v2 occur at the same position? What is
an appropriate formulation of such a problem? What relative values of k, u, v, w
are of combinatorial interest?

In this paper I begin to answer these questions by first considering only
two overlapping squares in some detail, then making the observation that three
overlapping squares can always be thought of as two sets of two overlapping
squares. In Section 3 a general lemma for two squares is stated and proved, and
then a “sample” three squares lemma is proved, based on the characterization
of the general case for two squares.

3 Characterizing the General Case

We are interested in the cases that arise when a square u2 beginning at some
position i in a string overlaps with a second square v2 at position i+k, k ≥ 0,
to its right.

Lemma 2 Suppose x has prefixes u2 and kv2, k ≥ 0, where x = max(2u, k+2v),
k ≤ u < 2v.

(a) k+v < u < 2v (k < min(v−1, u−v)) :

x = (pez)2 = peqfqf−e = peqfp[k+1..u−v],

where p = u[1..u−v], e = k+v
u−v > 1, z = v[1..u−(k+v), q = Rk(p), f =

u
u−v > 2, f−e ≤ 1.

(b) k
2 +v ≤ u ≤ k+v (1 ≤ u−v ≤ k ≤ 2(u−v)) :

x = (zpe)2 = (q[1..k+v−u]pe)2 = (kpe−1)2,

where z = u[1..k+v−u], p = u[1..u−v], e = 1+ u−k
u−v ≥ 1, q = Rd(p), d =

(u−k) mod (u−v).
(c) v < u < k

2 +v (k > 2(u−v)) :

x = (qype)2y,

where p = v[1..u−v], e = 1+u−k
u−v > 1, q = Rd(p), d = (u−k) mod (u−v), y =

v[2u−(k+v)+1..v]. Moreover, both x and kv have border qy.
(d) 2(k+v)

3 ≤ u < v (k ≤ 3u
2 −v < v

2) :

x = (kpe)2qkp,

where p = v[1..v−u], e = u−k
v−u > 1, q = Rd(p), d = (u−k) mod (v−u). Both

x and kv have border kp.
(e) k+v

2 < u < 2(k+v)
3 (3u−2v

2 < k < 2u−v) :

x = k(pekp)2,

where p = v[1..v−u], e = u−k
v−u > 1.

(f) k ≤ u ≤ k+v
2 (u2 a prefix of kv) :

x = k(pez)2,

where p = u[k+1..u]u[1..k], e = 2u−k
u ≥ 1, z = v[2u−k+1..v].

Proof. (a) Let z = u[k+v+1..u] = v[1..u−(k+v)], suffix of u and prefix of v.

u u

k v v

Observe that
u[k+j] = v[j] = u[j−z], z+1 ≤ j ≤ v,

so that u[1..k+v] = kv has period k+z = u−v = p (where p = u[1..u−v]).
Consequently, we may write x = (pez)2, where e = k+v

u−v > 1 (since k+v < u).

Noting that v = u[k+1..u−z], with k < u−v, we see also that u = kqf−1z,
where q = Rk(p),

f =
u

u−v
=

v

u−v
+1 > 2.

Hence x = pezkqf−1z. But zk is a prefix of the second copy of v of length p,
and comparing with the first copy of v, we see that therefore zk = Rk(p) =
q. Since moreover z = qg, where

g =
z

u−v
=

u

u−v
− k+v

u−v
= f−e ≤ 1,

we find x = peqfqf−e, as claimed. (Note that g = 1 iff k = 0.) Finally,
writing q = p[k+1..u−v]p[1..k] and f−e = 1− k

u−v , we find that qf−e =
p[k+1..u−v].

(b) Let z = u[1..k+v−u], a possibly empty prefix of u and suffix of v.

u u

k v v

Observe that

u[k+j] = v[j] = u[z+j], 1 ≤ j ≤ v−z = u−k,

where z = k+v−u < k. Thus u[z+1..u] and v have period k−z = u−v = p.
Consequently, setting p = u[z+1..k] = v[1..k−z], we may write x = (zpe)2,
where e = u−z

u−v ≥ 1, since z ≤ v. Noting that

u−z = u−k−v+u = (u−v)+(u−k), (3)

we see that e = 1+ u−k
u−v .

Since p is a prefix of v and z+p = k, it follows that k = zp. Thus we can
also write x = (kpe−1)2.
Finally, setting y = u[k+2v−u+1..u], since zy is a suffix of u of length

k+v−u+2(u−v)−k = u−v = p,

it follows that zy is a rotation of p. In fact, zy = q = Rd(p), where by (3)

d = (u−z) mod (u−v) = (u−k) mod (u−v).

Then z = qf , where

f =
z

p
=

(k+v)−u

u−v
=

k

u−v
−1 ≤ 1,

so that qf = q[1..z] and x = (q[1..k+v−u]pe)2, as required.

(c) Let z = u[1..k+v−u], nonempty prefix of u and suffix of v.

u u

k v v

As in (b), observe that

u[k+j] = v[j] = u[z+j], 1 ≤ j ≤ v−z = u−k,

with z = k+v−u < k. Again u[z+1..u] has period k−z = u−v = p, where
p = u[z+1..k] = v[1..u−v]. However, unlike (b), not v, but only v[1..v−y],
has period p, where y = v[2u−(k+v)+1..v] = v[u−z+1..v] and

y = k+2v−2u = z−(u−v) = z−p < z.

Thus, noting that z < v and setting

e =
u−z

u−v
=

(u−v)+(u−k)
u−v

= 1+
u−k

u−v
> 1,

we can write x = (zpe)2y. Since u[z+1..u] has prefix p and k = z+p, we
see that k = zp; further, since z has suffix y and z = p+y, it follows that
z = qy for some rotation q of p. In fact, q = Rd(p), where

d = (v−y) mod (u−v) = ((v−z)+(u−v)) mod (u−v) = (u−k) mod (u−v).

Noting that k = qyp, we see that both kv and x have border qy, while
x = (qype)2y, as required.

(d) Again let z = u[1..k+v−u], nonempty prefix of u and suffix of u.

u u

k v v

Observe that
u[k+j] = v[j] = u[z+j], 1 ≤ j ≤ u−z,

where z = k+v−u > k. Thus u[k+1..u] and v[1..u−k] have period z−k = v−u =
p. Therefore, setting p = v[1..z−k], e = u−k

v−u , we can write x = (kpe)2y,
where y = v[2u−(k+v)+1..v] is a suffix of v, y = (k+v−u)+(v−u) = z+p > z.
Since z is a suffix of y and y−z = p, it follows that y = qz, where q = Rd(p),
d = (u−k) mod (v−u). Similarly, since k is a prefix of z and z−k = p, we
see that z = kp, hence that y = qkp. Thus x = (kpe)2qkp, as claimed, and
x and kv both have border kp.

To see that e > 1, note that k < v
2 , so that e > v−u/2

v−u > 1.
(e) Let z = v[1..2u−(k+v)], nonempty prefix of v and suffix of u.

u u

k v v

Observe that

u[k+j] = v[j] = u[(u−z)+j], 1 ≤ j ≤ z.

Thus u[k+1..u] has period p = (u−z)−k = v−u. Consider

y = v[u−k+1..v] = u[1..(k+v)−u] = u[1..k+p],

nonempty suffix of v and prefix of u. Since y has prefix k, it follows that
y = kp, where p = u[k+1..k+p]. Thus for e = u−k

v−u , v = pekp, x = k(pekp)2,
as stated. Since k+v < 2u, u−k > v−u, and so e > 1.

(f) Let z = v[2u−k+1..k+V], suffix of v.

u u

k v v

Observe that

v[j] = u[k+j] = v[u+k+j], 1 ≤ j ≤ u−k,

so that v[1..2u−k] has period p = u. Then for p = u[k+1..u]u[1..k] and
e = 2u−k

u ≥ 1, v = pez and x = k(pez)2. 2

Case (f) of Lemma 2 is not a true overlap, but is included for completeness. Note
also that cases (b), (c) and (e) require k > 0, and so do not exist if it is assumed
that u2 and v2 (or v2 and w2) occur at the same position.

We make the observation that if a third square w2 begins to the right of the
starting position of v2, sufficiently near to satisfy the postulates of Lemma 2,
then the analysis of the three squares u2,v2,w2 reduces to a simultaneous con-
sideration of two of the lemma’s cases. Thus, for example, the analysis of the
situation shown in Figure 1 would take place in terms of the simultaneous occur-
rence of cases (d) (for u2 and v2) and (b) (for v2 and w2). Indeed, all cases of
three overlapping squares can be represented by pairs [ij], a ≤ i, j ≤ f , referring
to the cases (a)-(f) arising in Lemma 2. Figure 1 illustrates case [db].

u u

v v

w w

k1

k2

Fig. 1. u2 overlapping v2 (case (d)) that in turn overlaps w2 (case (b)): what is the
combined effect?

Lemma 3 In case [db], if u ≥ 4(v−w), then v is a repetition of period p =
gcd(v−u, v−w).

Proof. We use subscripts 1 to identify variables for u and v, subscripts 2 for
those of v and w. Observe then that for e1 > 1, e2 ≥ 1,

x = (k1p1
e1)2q1k1p1 = k1(q2[1..k2+w−v]p2

e2)2,

where the variables subscripted 1 relate to case (d) of Lemma 2, those subscripted
2 to case (b). It follows that p1

e1k1p1
e1q1k1p1 = v2 must be a square, hence

that p1
e1k1p1 = p1

e1−1q1k1p1, where q1 = Rd1(p1). Applying the condition
that

p1
e1k1p1 = q2[1..k2+w−v]p2

e2 ,

and recalling that z1 = k1p1 in case (d), while z2 = k2+w−v in case (b), we
find that a substring v′ of v of length v′ = v−(z1+z2) has two periods, p1 = v−u
and p2 = v−w, where v = q2[1..z2]v′z1. Thus, in order to apply the Periodicity
Lemma [9], we compute

v−(z1+z2)−(p1+p2) = v−2v+u+w−z1−z2

= u+w−v−z1−k2−w+v

= u−z1−k2.

Since z1 = k1+v−u and, from the definition of case (d) of Lemma 2, k1+v ≤ 3u
2 ,

it follows that z1 ≤ u
2 ; also, from Lemma 2(b), we conclude that k2 ≤ 2(v−w).

Thus, u−z1−k2 ≥ u
2−2(v−w) ≥ 0 if

u ≥ 4(v−w), (4)

the condition that v′ has period p = gcd(p1, p2). But then, observing that v
has a prefix of period p1 that includes v′, as well as a suffix of period p2 that
includes v′, we see that, if condition (4) holds, v itself must have period p. Since
v has suffix p1, it must moreover be true that v is a repetition of period p, as
required. 2

The preceding lemma is a sample of the combinatorial information that may
be obtained from considering all cases [ij] as specified above. To date, all the
results given in [7, 8, 25, 17, 11] deal only with the special cases [ij], i = a, d, that
arise for k1 = 0.

4 Commentary & Future Research

Obviously there is much work to be done to state and prove results such as
Lemma 3 (which I believe can in fact be sharpened somewhat). In proving the
results of [17], it turned out to be very helpful to look at the results of computer
simulations for small values of k, u, v, w. It seems that similar techniques can
profitably be used to generate conjectures for the cases [ij] of three overlapping
squares that arise from Lemma 2.

More generally, once the combinatorics of overlapping squares is well under-
stood, it may well be possible to begin to design an algorithmic approach to the
computation of runs that handles the various cases that arise without the need
for elaborate preprocessing. This would for the first time permit direct analysis
and computation of the local periodicities of a string in a manner consistent with
their sparseness of occurrence.

References

1. Alberto Apostolico & Franco P. Preparata, Optimal off-line detection
of repetitions in a string, Theoret. Comput. Sci. 22 (1983) 297–315.

2. Gang Chen, Simon J. Puglisi & W. F. Smyth, Fast & practical algorithms
for computing all the runs in a string, Proc. 18th Annual Symp. Combinatorial
Pattern Matching, B. Ma & K. Zhang (eds.), LNCS 4580, Springer-Verlag (2007)
307–315.

3. Maxime Crochemore, An optimal algorithm for computing all the repe-
titions in a word, Inform. Process. Lett. 12–5 (1981) 244–248.

4. Maxime Crochemore & Lucian Ilie, Maximal repetitions in strings, J.
Comput. Sys. Sci. (2008) 796–807.

5. Maxime Crochemore, Lucian Ilie & Liviu Tinta, Towards a solution to the
“runs” conjecture, Proc. 19th Annual Symp. Combinatorial Pattern Matching,
P. Ferragina & G. Landau (eds.), LNCS 5029, Springer-Verlag (2008) 290–302.

6. Maxime Crochemore, Lucian Ilie & Liviu Tinta, The “runs” conjecture,
TCS 412–27 (2011) 2931–2941.

7. Maxime Crochemore and Wojciech Rytter, Squares, cubes, and time-
space efficient strings searching, Algorithmica 13 (1995), pp. 405–425.

8. Kangmin Fan, Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A new
periodicity lemma, SIAM J. Discrete Math. 20–3 (2006) 656–668.

9. N. J. Fine and H. S. Wilf, Uniqueness theorems for periodic functions,
Proc. Amer. Math. Soc. 16 (1965) 109–114.

10. Aviezri S. Fraenkel & Jamie Simpson, The exact number of squares in
Fibonacci words, Theoret. Comput. Sci. 218–1 (1999) 95–106.

11. Frantisek Franek, Robert C. G. Fuller, Jamie Simpson & W. F. Smyth,
More results on overlapping squares, J. Discrete Algorithms (2012) to ap-
pear.

12. Frantisek Franek, R. J. Simpson & W. F. Smyth, The maximum number
of runs in a string, Proc. 14th Australasian Workshop on Combinatorial Algs.,
Mirka Miller & Kunsoo Park (eds.) (2003) 26–35.

13. Mathieu Giraud, Not so many runs in strings, Proc. 2nd Internat. Conf. on
Language & Automata Theory & Applications, Carlos Mart́ın-Vide, Friedrich Otto
& Henning Fernau (eds.), LNCS 5196, Springer-Verlag (2008) 232–239.

14. Mathieu Giraud, Asymptotic behavior of the numbers of runs and mi-
croruns, Inform. & Computation 207–11 (2009) 1221–1228.

15. Costas S. Iliopoulos & W. F. Smyth, A characterization of the squares
in a Fibonacci string, Theoret. Comput. Sci. 172 (1997) 281–291.

16. Roman Kolpakov & Gregory Kucherov, On maximal repetitions in
words, J. Discrete Algorithms 1 (2000) 159–186.

17. Evguenia Kopylova & W. F. Smyth, The three squares lemma revisited,
J. Discrete Algorithms 11 (2012) 3–14.

18. Michael G. Main, Detecting leftmost maximal periodicities, Discrete Ap-
plied Maths. 25 (1989) 145–153.

19. Michael G. Main & Richard J. Lorentz, An O(n log n) algorithm for find-
ing all repetitions in a string, J. Algorithms 5 (1984) 422–432.

20. Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai &
Ayumi Shinohara, New lower bounds for the maximum number of runs
in a string, PSC (2008) 140–145.

21. Simon J. Puglisi & R. J. Simpson, The expected number of runs in a word,
Australasian J. Combinatorics 42 (2008) 45–54.

22. Simon J. Puglisi, R. J. Simpson & W. F. Smyth, How many runs can a
string contain?, Theoret. Comput. Sci. 401 (2008) 165–171.

23. Wojciech Rytter, The number of runs in a string: improved analysis
of the linear upper bound, Proc. 23rd Symp. Theoretical Aspects of Computer
Science, B. Durand & W. Thomas (eds.), LNCS 2884, Springer-Verlag (2006) 184–
195.

24. SHARCNET, https://www.sharcnet.ca/my/front/
25. R. J. Simpson, Intersecting periodic words, Theoret. Comput. Sci. 374 (2007)

58–65.
26. Jamie Simpson, Modified Padovan words and the maximum number of

runs in a word, Australasian J. Combinatorics 46 (2010) 129–145.
27. Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003)

423pp.

