
COUNTING DISTINCT STRINGS

Dennis Moore

School of Computing

Curtin University of Technology

W. F. Smyth

Department of Computer Science & Systems

McMaster University

tel. 1-905-525-9140 ext. 23436
e-mail: smyth@mcmaster.ca

School of Computing

Curtin University of Technology

Dianne Miller

Department of Computer Science & Systems

McMaster University

KEYWORDS

string, word, algorithm, testing, distinct

ABSTRACT

This paper discusses how to count and generate strings that are “distinct” in two
senses: p-distinct and b-distinct. Two strings x on alphabet A and x′ on alphabet A′

are said to be p-distinct iff they represent distinct “patterns”; that is, iff there exists
no one-one mapping from A to A′ that transforms x into x′. Thus aab and baa are
p-distinct while aab and ddc are p-equivalent. On the other hand, x and x′ are said to
be b-distinct iff they give rise to distinct border (failure function) arrays: thus aab with
border array 010 is b-distinct from aba with border array 001. The number of p-distinct
(respectively, b-distinct) strings of length n formed using exactly k different letters is
the [k, n] entry in an infinite p′ (respectively, b′) array. Column sums p[n] and b[n] in
these arrays give the number of distinct strings of length n. We present algorithms to
compute, in constant time per string, all p-distinct (respectively, b-distinct) strings of
length n formed using exactly k letters, and we also show how to compute all elements
p′[k, n] and b′[k, n]. These ideas and results have application to the efficient generation
of appropriate test data sets for many string algorithms.

1 INTRODUCTION

1

When is a string “distinct” from another? The answer to this question depends on
how we intend to process the string. For some purposes we might choose to regard
x = abbcc and x′ = bccaa as distinct; if, however, we regard the letters of the alphabet
as interchangeable, so that x and x′ can be seen as conforming to the same “pattern”,
then we might prefer to think of x as being equivalent to x′ in a well-defined sense.
This would be true, for example, if we were generating test data for an algorithm which
recognized no ordering of the alphabet (say, an algorithm to compute all repetitions [1]
in a string): in this case, if the algorithm executed correctly on input x, it would do so
also on input x′.

To make this idea precise, let

x = x[1]x[2] · · ·x[n] = x[1..n], x′ = x′[1]x′[2] · · ·x′[n] = x′[1..n]

denote arbitrary finite strings of length |x| = n ≥ 1. We say that x is p-equivalent to x′

if and only if, for all integers i and j satisfying 1 ≤ i ≤ j ≤ n,

x[i] = x[j] ⇔ x′[i] = x′[j].

Clearly p-equivalence is an equivalence relation, breaking down the strings of length n

into equivalence classes. Strings that are not p-equivalent are said to be p-distinct.

Another interpretation of “distinctness” is possible. Recall that a string x is said
to have border u if and only if u is a proper prefix and suffix of x. For example,
x = abaabaab has borders u = ε (the empty string), ab and abaab, of lengths 0, 2 and
5, respectively. The border array βn = β[1..n] corresponding to xn = x[1..n] is a string
defined on the integer alphabet {0, 1, . . . , n − 1} in which, for every integer j ∈ 1..n,
β[j] is the length of the longest border of xj = x[1..j]. (β[j] is also referred to as the
“failure function” of xj [2].)

We say that two strings are b-equivalent if and only if they give rise to identical
border arrays. Strings that are not b-equivalent are said to be b-distinct. Thus, for
example, even though x5 = ababb and x′5 = ababc are p-distinct, we find that they are
nevertheless b-equivalent since both correspond to the border array β5 = 00120. On
the other hand, x5 and x′′5 = abacb are b-distinct since they give rise to distinct border
arrays 00120 and 00100, respectively. It is clear then that each distinct valid border
array determines an equivalence class of b-equivalent strings. Observe that two b-distinct
strings are necessarily also p-distinct (so that p-equivalent strings are necessarily also
b-equivalent); as we have just seen, the converse is not true.

In this paper we consider the two kinds of distinctness described above; for each, and
for all positive integers k and n, we show how to

2

∗ generate (in only constant time per string) all distinct strings of length n formed
using exactly k letters;

∗ count the number of all such strings.

In particular, we shall see that the number of p-distinct patterns of length n formed
using exactly k letters is

{
n
k

}
, a Stirling number of the second kind, a fact apparently

not previously observed. We shall see therefore (equation (2.5)) that the total number
of p-distinct strings of length n using at most k letters is reduced by an asymptotic
factor of 1/k! from the number of such strings that are distinct in the ordinary sense.
Moreover, the computation of b-distinct patterns leads to a sequence of integers that
is apparently new, and that represents a decline, by a further exponential factor, from
the number of p-distinct patterns (Theorem 3.3(f) and equation (3.1)). Algorithms for
generating distinct strings have been implemented in a software package for the testing
of string algorithms [3].

2 DISTINCT PATTERNS

In this section we discuss p-distinct strings: how to count them and how to generate
them. In order to do so, it is convenient to identify a unique representative of each p-
distinct equivalence class. We therefore introduce a countably infinite standard alphabet

Λ = {λ1, λ2, . . . , λk,}, . . . (2.1)

with subalphabets Λk = {λ1, λ2, . . . , λk} for every integer k ≥ 1. We suppose the letters
of Λ to be naturally ordered according to λ1 < λ2 < · · · < λk < · · · ·. Then, given any
string x = x[1..n] on any alphabet A, we define the p-canonical string x∗ corresponding
to x to be the lexicographically least string on Λ that is p-equivalent to x. It is clear
that x∗ satisfies the following property:

(P) For every positive integer j, the first occurrence (if any) of λj in x∗ precedes the
first occurrence of λj+1.

We first concern ourselves with the problem of counting the number p′[k, n] of p-
canonical strings x∗ of length n formed using exactly the letters of Λk. We imagine
these values to be laid out in an infinite two-dimensional array called the p′ array.

Theorem 2.1 For any positive integers n and k:
(a) p′[1, n] = 1;
(b) if k > n, p′[k, n] = 0;
(c) p′[k, k] = 1;
(d) if k ≥ 2 and n ≥ 2, p′[k, n] = p′[k − 1, n− 1] + kp′[k, n− 1].

Proof (a) For k = 1, the only p-canonical string is x∗ = λn
1 .

(b) By property (P), no p-canonical string x∗ can contain a letter λk, k > n.

3

(c) Again by property (P), there exists exactly one p-canonical string of length
k formed using exactly k distinct letters: x∗ = λ1λ2 · · ·λk.

(d) Let π1 = p′[k − 1, n − 1] denote the number of distinct p-canonical strings
of length n− 1 that include exactly the k − 1 letters of Λk−1. Denote these
strings by

S1 = {x1, x2, . . . , xπ1}.

Then for every integer i satisfying 1 ≤ i ≤ π1, each string

xiλk . . . (2.2)

is distinct and p-canonical.

Similarly, let π2 = p′[k, n − 1] denote the number of distinct p-canonical
strings of length n− 1 on exactly k distinct letters Λk. Denote these strings
by

S2 = {y1, y2, . . . , yπ2}.

Then for every integer i satisfying 1 ≤ i ≤ π2, the k strings

{yiλ1, yiλ2, . . . , yiλk} . . . (2.3)

must all be distinct and p-canonical. Further, since the distinct final letter
occurs at least twice in each string, each of these strings is distinct from any
of the strings (2.2). Thus p′[k, n] ≥ p′[k − 1, n− 1] + kp′[k, n− 1].

Suppose now that x∗ is a p-canonical string of length n formed using exactly
the letters Λk. Let x∗ = y∗λi. If λi occurs in y∗, then y∗ ∈ S2 and therefore
x∗ is one of the strings (2.3). Otherwise, by property (P), λk cannot occur
in y∗ either, and so i = k, y∗ ∈ S1, and x∗ is one of the strings (2.2). We
conclude that p′[k, n] ≤ p′[k − 1, n − 1] + kp′[k, n − 1], and so the result is
proved.

The recurrence relation of Theorem 2.1(d) is well-known; with the initial values
specified by Theorem 2.1(a)-(c), it defines the Stirling numbers

{
n
k

}
of the second kind

[4, 5]. Hence

p′[k, n] =
{

n

k

}
. . . (2.4)

for all positive integers n and k. In fact, as we illustrate with an example, the cor-
respondence between classical Stirling numbers and our p′[k, n] values can be made in
another way. A common definition [5] of

{
n
k

}
is the number of ways that a set S of n

elements can be decomposed into k nonempty nonintersecting subsets whose union is
S. To see how this definition corresponds to p′[k, n], consider the case n = 4, k = 2. If

4

we write down the seven strings counted by p′[2, 4] and collect into k = 2 subsets the
indices of identical letters in these strings, we find that each pair of subsets is a unique
(because each string is distinct) decomposition of {1, 2, 3, 4} into nonempty (because
each of the k letters occurs) nonintersecting (because each position contains exactly one
letter) subsets:

1234

aaab {1, 2, 3} {4}
aaba {1, 2, 4} {3}
aabb {1, 2} {3, 4}
abaa {1, 3, 4} {2}
abab {1, 3} {2, 4}
abba {1, 4} {2, 3}
abbb {1} {2, 3, 4}

The unions of the pairs of sets in the righthand column exhaust all the possible ways of
forming S = {1, 2, 3, 4} from k = 2 nonempty nonintersecting subsets.

Theorem 2.1(d) provides an iterative method of computing p′[k, n] and various for-
mulæ for direct computation are available in the literature [6]. Observe that, for any
fixed value of k, the partial column sum

∑k
i=1 p′[i, n] is the number of p-distinct strings

of length n formed from at most k letters. Since for n large with respect to k almost all
of these strings contain exactly k letters, it follows that

lim
n→∞

(
k∑

i=1

p′[i, n]
/

kn

k!

)
= 1. . . . (2.5)

In the usual meaning of distinctness in strings, the number of distinct strings of length
n formed from at most k letters is kn. Thus (2.5) tells us that using p-distinct strings
on an alphabet of fixed size k reduces the number of strings that need to be generated
by an asymptotic factor of 1/k!. Of particular interest is the case

p[n] ≡
n∑

i=1

p′[i, n],

the number of p-distinct strings of length n, known in the literature as Bell numbers
[7]. These numbers also can be computed directly or iteratively in various ways [6, 8],
in particular using

p[n] =
n−1∑
j=0

(
n− 1

j

)
p[j], . . . (2.6)

5

p[0] ≡ 1, that avoids any reference to the p′ values. The first few Bell numbers are
p[1] = 1, p[2] = 2, p[3] = 5, p[4] = 15, p[5] = 52, p[6] = 203. By contrast, there are
46,656 distinct (in the ordinary sense) strings of length 6 on an alphabet of 6 letters.

We conclude this section with a discussion of the generation of p-canonical strings.
It is clear from the proof of Theorem 2.1(d) that, in order to generate all the strings
counted by p′[k, n], we

∗ append λk to the strings counted by p′[k − 1, n− 1];
∗ append λ1, λ2, . . . , λk to the strings counted by p′[k, n− 1].

This observation gives rise to straightforward recursive algorithms to generate either
all the p-canonical strings x∗ counted by p′[k, n] or else pseudorandom strings x∗. The
generation of each pseudorandom string will necessarily require Θ(n) time, but the
generation of all p-canonical strings of length n can actually be accomplished in constant
time per string by making use of a rooted tree structure Tn of height n, as described
below.

The nodes of Tn may be thought of as pairs (λ, k), where λ is a letter of Λ and k is
the number of distinct letters λ found in the nodes which lie on the path to the current
node from the root. T1 consists of the single root node (λ1, 1), and for every integer
n ≥ 2, Tn is formed by adding the following children to every leaf node (λ, k) of Tn−1:

(λ1, k), (λ2, k), . . . , (λk, k), (λk+1, k + 1).

It is easy to see that Tn has exactly p[n] leaf nodes and that the letters found on the
paths to these nodes from the root give exactly the p[n] p-canonical strings x∗ of length
n. Thus the generation of these strings x∗ is accomplished simply by generating Tn.
Observe that, for every integer n ≥ 2, Tn is formed from Tn−1 by appending p[n] leaf
nodes, a task requiring Θ(p[n]) time. Since by (2.6) p[n] ≥ 2p[n− 1], it follows that Tn

can be constructed in Θ(p[n]) time.

Theorem 2.2 For every positive integer n, all p[n] p-canonical strings of length n can
be computed in Θ(p[n]) time and represented in Θ(p[n]) space.

We may establish a similar result for the generation of all p-canonical strings counted
by p′[k, n]. In this case we generate only the subtree of Tn whose paths of length n

terminate at a vertex whose label is (λ, k) for any letter λ; these paths represent exactly
the p′[k, n] p-canonical strings of length n which contain exactly k letters. Thus in this
case only the nodes on these paths need to be computed, and so we have

Theorem 2.3 For all positive integers k and n ≥ k, all p′[k, n] p-canonical strings of
length n formed using exactly k letters can be computed in O(kp′[k, n])
time and represented in O(kp′[k, n]) space.

6

Proof The recurrence relation of Theorem 2.1(d) implies that, in order to compute the
strings counted by p′[k, n], k diagonal entries

p′[1, n− j − k + 1]=1, p′[2, n− j − k + 2], . . . , p′[k, n− j]

need to be computed for every integer j = n − k, n − k − 1, . . . , 0. Thus for
j = n− k, the k elements

p′[1, 1]=1, p′[2, 2]=1, . . . , p′[k, k]=1

in the main diagonal of the p′ array are computed, while for j < n − k the
elements in the diagonal distance n−k−j above the main diagonal are computed.
For every valid integer j, let

Dk,n−j =
k−1∑
i=0

p′[k − i, n− i− j]

denote the sum of the terms in the (n− k − j)th diagonal. Observe that, since
p′[k, n − j] is the largest element in its diagonal, kp′[k, n − j] ≥ Dk,n−j , with
equality if and only if j = n−k. Further, it follows from the recurrence relation
that

p′[k, n− j] > kp′[k, n− j − 1] ≥ Dk,n−j−1,

provided n− j > 1. Hence

n−k∑
j=0

Dk,n−j ≤ kp′[k, n] + p′[k, n](1 + 1/k + · · ·+ 1/kn−k−1)

≤ (k + 2)p′[k, n],

and the result follows.

We remark finally that the tree Tn may be traversed in various ways corresponding
to various orderings of the p-canonical strings. For example, preorder traversal of Tn

(or any subtree of it generated by p′[k, n]) yields the strings in lexicographic order; so
also does postorder traversal if the empty letter is assumed to sort largest. In fact, if
each string of Tn can be discarded after generation, then the strings determined by Tn

can actually be generated using only Θ(n) storage, corresponding to either preorder
or postorder traversal of Tn. Since by (2.6) p[n] ≥ 2n−1, this reduces the storage
requirement to O(log p[n]).

3 DISTINCT BORDER ARRAYS

7

In this section we consider how to generate and how to count b-distinct strings. We
begin with a series of lemmas that show how b-distinct strings of length n + 1 can be
derived from those of length n.

Among any class of b-equivalent strings, it will again be convenient to identify one
b-canonical string x∗ as a representative of its class: as with p-canonical strings, we
choose this string to be the lexicographically least among those strings on the standard
alphabet that are in the class. Every class of b-equivalent strings on Λ is of infinite
cardinality, but we can simplify matters without loss of generality by restricting such
classes only to strings that are also p-canonical. Then, for example, the class of p-
canonical b-equivalent strings on Λ corresponding to β5 = 00100 is

S5 = {λ1λ2λ1λ3λ2, λ1λ2λ1λ3λ3, λ1λ2λ1λ3λ4},

with b-canonical element x∗5 = λ1λ2λ1λ3λ2.

In order to establish a recurrence to compute a b-canonical string x∗n+1 = x∗[1..n+1]
from a b-canonical string x∗n = x∗[1..n], we need to understand how βn+1 is computed
from βn. Let βi[n], i ≥ 1, denote β[βi−1[n]], where β0[n] ≡ n. We state without proof
a lemma on which the standard failure function algorithm [2] is based:

Lemma 3.1 Let βn denote the border array of some string xn of length n ≥ 1, and let
k < n be the least integer such that βk[n] = 0. Then

(a) the borders of xn are exactly xβi[n] = x[1..βi[n]] for integers i ∈ 1..k;
(b) for any string xn+1 with proper prefix xn, βn+1 = βnβ[n + 1], where

β[n + 1] ∈ {0, β[n] + 1, β2[n] + 1, . . . , βk[n] + 1}.

This result describes the values that may possibly be assumed by β[n + 1], given
βn = β[1..n]. We now prove a much stronger result, that the set of values actually
assumed by β[n + 1] is independent of the underlying string xn.

Lemma 3.2 For n ≥ 1, the values assumed by β[n+1] depend only on βn and the size
of the alphabet.

Proof Suppose that there exist two strings xn and yn, both defined on alphabets of size
α, both with border array βn. Suppose further that for some letter λ and some
integer m, xn+1 = xnλ has border array βn+1 = βnm, but that there exists no
letter µ such that yn+1 = ynµ has βn+1. Then β[n + 1] = m is one of the values
specified in Lemma 3.1(b).

First consider the case m = βi[n] + 1 for some integer i ∈ 1..k. Since βi[n] =
m− 1, it follows that

y[1..m− 1] = y[n + 2−m..n].

8

Since βi[n + 1] 6= m, we observe that setting y[n + 1] = y[m] implies

y[1..m′] = y[n + 2−m′..n]

for some m′ > m. But this means that

y[1..m′ − 1] = y[n + 2−m′..n],

so that β[n] = m′− 1 > m− 1, a contradiction. Thus the lemma holds for every
m = βi[n] + 1.

Now suppose that m = 0. Then every one of the α possible choices y[n + 1] = µ

yields a unique value β[n+1] 6= 0, while at least one choice x[n+1] = λ gives rise
to β[n+1] = 0. Hence there exists m′ > 0 such that y[n+1] yields β[n+1] = m′

while x[n+1] does not yield β[n+1] = m′, in contradiction to the previous case.

We conclude that βn+1 is a border array of some xn+1 if and only if it is a border
array of some yn+1.

This fundamental result raises the possibility, discussed below, that βn+1 can be
computed from βn without reference to any specific string. We can use the result im-
mediately, however, to show that every b-canonical string x∗n+1 must have a b-canonical
string as a prefix:

Lemma 3.3 For n ≥ 1, every b-canonical string x∗n+1 = x∗nλ, where x∗n is also b-
canonical and λ is some letter of the standard alphabet.

Proof Suppose x∗n+1 = xnλ with associated border array βn+1, where xn is a string of
length n that is not b-canonical. Suppose that xn has border array βn. Then
there exists a string yn < xn with border array βn. Hence by Lemma 3.2 there
also exists yn+1 = ynλ′ with border array βn+1, where yn+1 < x∗n+1. But then
x∗n+1 is not b-canonical, a contradiction.

It is thus clear that all of the b-canonical strings x∗n+1 can be formed from b-canonical
strings x∗n — no other strings need be considered. This foreshadows a tree structure
similar to that of Section 2, where strings x∗n+1 are children of strings x∗n. The next
lemma provides more exact information about how to generate distinct border arrays
βn+1 from a given βn, and also about the form of the associated b-canonical strings
x∗n+1.

Lemma 3.4 Suppose a border array βn corresponds to a b-canonical string x∗n on the
standard alphabet Λ. Then βn gives rise to exactly κ distinct border
arrays βn+1 if and only if x∗nλκ is a b-canonical string that corresponds to
β

(0)
n+1 = βn0.

9

Proof Suppose first that xn+1 = x∗nλκ is b-canonical and has only the empty border.
Then, since every b-canonical string corresponding to a given border array must
be lexicographically least, it follows that there exists no λi, i < κ, such that
x∗nλi has only the empty border; that is, for every i ∈ 1..κ − 1, every x∗nλi has
a distinct nonempty border.

Now suppose that for some integer i > κ, the b-canonical string x∗nλi has a
longest border of length m > 0, so that βn+1 = βnm. (Note that in fact, since
m ≥ i > κ ≥ 2, m ≥ 3.) It follows from Lemma 3.3 that x∗n has a b-canonical
prefix x∗m = x∗m−1λi for some b-canonical string x∗m−1. Moreover, since x∗nλκ

has only the empty border, it follows that the string x∗m−1λκ also has only the
empty border. Then for some positive integer κ′ ≤ κ, x∗m−1λκ′ is a b-canonical
string with only the empty border while x∗m−1λi, i > κ′, is a b-canonical string
with a nonempty border. In other words, we have reduced an instance of a
problem for finite positive integers n and κ to an instance of exactly the same
problem for finite positive integers m−1 and κ′. This reduction can therefore be
continued indefinitely, an impossibility which persuades us that there exists no
i > κ such that x∗nλi has a nonempty border. Thus there are exactly κ distinct
border arrays βn+1, and sufficiency is proved.

To prove necessity, suppose that there exist exactly κ distinct border arrays
βn+1. But then one of them must be βn0 and, as we have just seen, must
correspond to x∗nλκ.

It is noteworthy that Lemma 3.4 does not necessarily hold on a finite alphabet Λk;
in other words, it holds only if the alphabet is sufficiently large. For example, on the
alphabet Λ3 = {λ1, λ2, λ3}, the b-canonical string x∗7 = λ1λ2λ1λ3λ1λ2λ1 has border
array β7 = 0010123, but there is no x∗8 = x∗7λ on Λ3 with border array β8 = 00101230.

Lemmas 3.2-3.4 suggest an algorithm for generating all b-canonical strings of length
n: for every integer j = 1, 2, . . . , n − 1, append to each b-canonical string x∗j single
standard letters λ1, λ2,, until for some integer κ ≥ 2, x∗jλκ has only the empty
border. Then the strings x∗jλ1, x

∗
jλ2, . . . , x

∗
jλκ will be exactly the b-canonical strings

derived from x∗j .

To implement this algorithm, we generate a rooted tree T ′
n, similar to the tree em-

ployed in Section 2. Here each node of T ′
n is a pair (λ, β), where λ ∈ Λ and β denotes

the border array entry for λ in the string defined by the labels in the nodes on the path
from the root of T ′

n to the current node. Thus T ′
1 consists of the root node (λ1, 0), and

for every integer n ≥ 2, T ′
n is formed by adding the children

(λ1, β1), (λ2, β2), . . . , (λκ, 0)

10

to every leaf node of T ′
n−1. Hence each node of T ′

n determines a b-canonical string
together with its border array. Denoting by b[n] the number of b-canonical strings of
length exactly n, we see that T ′

n has exactly b[n] leaf nodes. Thus all b[n] b-canonical
strings (and their corresponding border arrays) can be represented simply by appending
b[n] children to the leaf nodes of T ′

n−1, a task requiring Θ(b[n]) time since the border
array element contained in each new child can be computed in amortized constant time
using the standard failure function algorithm [2]. Since by Lemma 3.4 every non-leaf
node of T ′

n, n > 0, has at least two children, it follows that the number of nodes in each
level of T ′

n exceeds the number of nodes in all previous levels, hence that T ′
n−1 contains

fewer than b[n] nodes, and so can be constructed in O(b[n]) time. We have then the
analogue to Theorem 2.2:

Theorem 3.1 For every positive integer n, all b[n] b-canonical strings of length n can
be computed in Θ(b[n]) time and represented in Θ(b[n]) space.

We remark that trivial modification to the algorithm outlined above yields an algo-
rithm to compute all the b-canonical strings of length n defined on Λk: in computing
the children of each node, it is necessary only, as indicated above, to ensure that every
child (λκ, 0) = (λk+1, 0) is omitted from the tree. Note also that it is straightforward,
using the tree T ′

n, to compute b-canonical strings that are “random” in the sense that,
at each step, a child x∗j of x∗j−1 is pseudorandomly selected.

It is clear from Lemma 3.4 that there always exist at least two border arrays β
(0)
n+1 =

βn0 and β
(m+1)
n+1 = βn(m+1), where m = β[n]. The next result shows how to determine

whether or not there exists β
(i)
n+1, 1 ≤ i ≤ m, and so provides a basis for an algorithm

which, given all distinct border arrays βn, computes all distinct border arrays βn+1

without any knowledge of x∗n. Thus Theorem 3.2 establishes the interesting and nonob-
vious fact that distinct border arrays of length n can be computed by constructing a
tree T ′′

n whose nodes contain border array elements only. In fact, as observed by a ref-
eree, T ′′

n can like T ′
n be constructed in Θ(b[n]) time, but only at a cost of introducing an

extra pointer into each node i. Thus no storage is saved using T ′′
n and it turns out that

the algorithm for its construction is considerably more complicated than the one given
above for T ′

n. The algorithm is therefore not described here in detail. In the following
theorem, the notation j′ → j is used to mean that βi[j′] = j for some i > 0.

Theorem 3.2 Let m = β[n] ≥ 1. For every integer i ∈ 1..m, there exists a valid border
array β

(i)
n+1 = βni if and only if the following conditions all hold:

(a) β[m + 1] 6→ i;
(b) β[m]→ i− 1;
(c) there exists no integer i′ → i such that β

(i′)
n+1 = βni′ is valid.

Proof To prove the necessity of the three conditions, suppose first that βni is a valid

11

border array. Then there exists a b-canonical string x∗n+1 = x∗nλ with a longest
border x∗i = x∗[1..i], where x∗n has a longest border x∗m = x∗[1..m], m ≥ i. Thus
λ ≡ x∗[n + 1] = x∗[i] while λ 6= x∗[m + 1], since otherwise it would follow that
x∗n+1 would have a longest border x∗m+1. We conclude that x∗[m + 1] 6= x∗[i],
from which (a) follows.

To prove (b), observe first that for i = 1, (b) is true. Suppose therefore that
i > 1. But then the fact that λ = x∗[i] leads to the conclusion that x∗[n] =
x∗[m] = x∗[i− 1], hence that β[m]→ i− 1.

To prove (c), suppose on the contrary that for some i′ → i, βni′ is a valid
border array. But then in order to form a border x∗i of x∗n+1, a longer border x∗i′

is necessarily formed, contradicting the assumption that βni is a valid border
array. Thus (c) also must be true.

To prove sufficiency, suppose that (a), (b) and (c) all hold. Since β[m]→ i− 1,
we may choose λ = x∗[i] to ensure that x∗n+1 has a border of length at least i.
Since β[m+1] 6→ i, we are assured that x∗[m+1] 6= x∗[i], hence that x∗n+1 does
not have a border of length m. Since by (c) i is a leaf node in Bn+1, we are
further assured that x∗n+1 has no border longer than i. Thus β

(i)
n+1 = βni is a

valid border array, as required.

We turn now to consideration of a b′ array analogous to the p′ array of Section 2: for
positive integers k and n, b′[k, n] denotes the number of b-canonical strings of length n

formed using exactly the k standard letters of Λk. Then the already-defined quantities
b[n] are the column sums in the b′ array:

b[n] =
∑
k≥1

b′[k, n].

As we shall see below (Theorem 3.3(a)), all terms in the nth column of the b′ array
are zero for k > dlog2(n + 1)e; that is, the kth letter of the alphabet does not appear
in b-canonical strings of length n < 2k−1. For k ≤ dlog2(n + 1)e, computation of the
elements b′[k, n] requires generation of a tree T ′′′

n in which each node takes the form
of a triple (λ, β, i), where as in Section 2 the additional term i counts the number of
distinct letters in the b-canonical string represented by the path from the root. Using
T ′′′

n a straightforward algorithm allows b′[k, n] to be computed in O(b[n]) time.

In general, it appears to be much more difficult to find well-known expressions for the
elements of the b′ array than for those of the p′ array. However, the following theorem
provides enough information to allow useful upper bounds to be stated on b′[k, n] and
b[n]. It also illustrates the difficulty of expressing these values in closed form.

12

Theorem 3.3 Given positive integers k and n:
(a) b′[k, n] = 0, k > dlog2(n + 1)e.
(b) b′[1, n] = b′[k, 2k−1] = 1.
(c) b′[2, n] = p′[2, n] = 2n−1 − 1.
(d) Let b̂[k, n] denote the number of strings counted by b′[k, n] which

contain λk only in position n. Then

b̂[3, n] = 2n−3 − 2dn/2e−2 − 2n−4

bn/2c−2∑
j=0

b̂[3, j + 2]/22j

for every n ≥ 2.
(e) Let b̃[k, n] = b′[k, n]− b̂[k, n]. Then for every k ≥ 3 and n ≥ 3,

b̃[k, n] ≥ 2b′[k, n− 1].

(f) For every nonnegative integer j,

b′[k, 2k−1 + j] ≤ p′[k, k + j],

with equality holding for 1 ≤ k ≤ 2.

Proof (a) The proof is by induction. Observe that the result holds for n = 1. We
suppose then that it holds for every n satisfying 2k−1 ≤ n ≤ 2k − 1 for some
positive integer k, and we show that therefore it must hold for values n′

satisfying 2k ≤ n′ ≤ 2k+1 − 1.

By the definition of the b′ array, the inductive assumption is equivalent to
supposing that over the range of values n, at most k letters λ1, λ2, . . . , λk

(in ascending order) are required in order to form the b-canonical string xn

corresponding to every border array βn. Thus the letter λk+1 does not occur
in any position less than 2k of any b-canonical string x∗n′ , n′ ≥ 2k.

We need to show that for every n′ satisfying 2k ≤ n′ ≤ 2k+1 − 1, no b-
canonical string x∗n′ contains λk+2. Suppose on the contrary that some such
x∗n′ contains λk+2 as its final letter: x∗n′ = x∗n′−1λk+2. This can occur only
if each of the strings

{x∗n′−1λ1, x
∗
n′−1λ2, . . . , x

∗
n′−1λk+1}

is b-canonical and has a nonempty border. In particular, let x∗n′ = x∗n′−1λk+1,
and let j denote the position of the first occurrence of λk+1 in x∗n′ . By the
inductive hypothesis, j ≥ 2k, and so the length of the longest border of
x∗n′ must exceed n′/2. But this implies that x∗n′ [j − (n′ − β[n′])] = λk+1,

13

contradicting the assumption that j is the first occurrence of λk+1. We
conclude that x∗n′−1λk+1 cannot have a nonempty border, hence by Lemma
3.4 that no b-canonical string x∗n′ contains λk+2, as required.

(b) b′[1, n] = 1 corresponding to the strings λn
1 , while b′[k, 2k−1] = 1 correspond-

ing to the strings

{λ1, λ1λ2, λ1λ2λ1λ3, λ1λ2λ1λ3λ1λ2λ1λ4, . . .}.

(c) Follows from the observation that for n = 2 every p-canonical string is also
b-canonical.

(d) To improve readability we make the substitution {a, b, c} ← {λ1, λ2, λ3}.
Then observe that every b-canonical string x∗n−1 = ab ∗ a gives rise to a b-
canonical string x∗n = x∗n−1c. (Here ab ∗ a denotes a string with prefix ab,
suffix a, and zero or more “don’t-care” letters in between.) There are 2n−4

such b-canonical strings.

For any integer j ≥ 0, let yj denote a substring of length j on {a, b}. Then
observe further that every b-canonical string x∗n−1 = ay1b ∗ ay1 gives rise to
a b-canonical string x∗n = x∗n−1c: there are 2(2n−6) such strings.

Next consider x∗n−1 = ay2b ∗ ay2 giving rise to x∗n = x∗n−1c. Here y2 can take
the values aa, ab and bb, but not ba, since the string ab ∗ a has already been
counted. Thus in this case there are (22 − 1)2n−8 new distinct b-canonical
strings. Similarly for x∗n−1 = ay3b ∗ ay3: here y3 omits the values baa and
bba, again since ab∗a has already been omitted. Thus we count (24−2)2n−10

new distinct strings.

We see in general that corresponding to each x∗n−1 = ayjb ∗ ayj , there are

(2j − b̂[3, j + 2])2n−2j−4

distinct b-canonical strings which give rise to x∗n = x∗n−1c. Thus

b̂[3, n] =
bn/2c−2∑

j=0

(2j − b̂[3, j + 2])2n−2j−4,

a sum which after simplification reduces to the form given in the statement
of the theorem.

(e) Observe that the b-canonical strings counted by b̃[k, n] include at least the
strings x∗n−1λ1 and x∗n−1λ2, where x∗n−1 is any b-canonical string counted by
b′[k, n− 1].

14

(f) A consequence of (a) and the fact that every b-canonical string is also p-
canonical.

These results provide us with some capability to estimate the size of the entries in the
b′ array. It appears from Theorem 3.3(d) that exact computation of these entries is in
general rather complicated. Theorem 3.3(f) shows that, for every fixed k ≥ 3, the entries
b′[k, n] are asymptotically less, by a factor exponential in k, than the corresponding
entries p′[k, n]. This result can easily be applied to yield an upper bound on b[n]
expressed in terms of entries in the p′ array: for every positive integer n,

b[n] ≤
k∗∑

k=1

p′[k, n− 2k−1 + k], . . . (3.1)

where k∗ = dlog2(n + 1)e. Note that by reducing the value of k∗, we can also use (3.1)
to bound the partial column sums in the b′ array.

We conclude by displaying some of the smaller values in the b′ array:

Non-Zero Elements b′[k, n], n ≤ 10

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 1 3 7 15 31 63 127 255 511
3 1 2 6 12 27 54 114 (b̂[3, n])

2 9 34 107 316 883 (b̃[3, n])
4 1 2 7 (b̂[4, n])

2 9 (b̃[4, n])

b[n] 1 2 4 9 20 47 110 263 630 1525

Table 3.1

The values in this array satisfy an interesting recurrence relation that we put forward
as a

Conjecture b̃[k, n] =
∑k∗

j=k{b′[j, n− 1] + b′[j, n− 2]}.

4 CONCLUSION

In this paper we have shown how “distinct” strings of length n formed using ex-
actly k letters can be efficiently computed and counted, according to two definitions of
distinctness. Both of these definitions lead to algorithms that are considerably more
economical than the computation or counting of Θ(kn) strings.

15

REFERENCES

[1] Michael G. Main & Richard J. Lorentz, An O(n log n) algorithm for finding all
repetitions in a string, J. Algs. 5 (1984) 422-432.
[2] J. H. Morris & V. R. Pratt, A Linear Pattern Matching Algorithm, Tech. Report
No. 40, Computing Center, University of California, Berkeley (1970).
[3] Yin Li, A Windows-Based String Algorithm Testing System, Undergraduate Com-
puter Science Project, Department of Computer Science & Systems, McMaster Univer-
sity (1996).
[4] Donald E. Knuth, The Art of Computer Programming I — Fundamental Algorithms,
Addison-Wesley (1968).
[5] George Pólya, Robert E. Tarjan & Donald R. Woods, Notes on Introductory Com-
binatorics, Birkhäuser (1983).
[6] John Riordan, Combinatorial Identities, John Wiley (1968).
[7] N. J. A. Sloane & Simon Plouffe, The Encyclopedia of Integer Sequences, Academic
Press (1995). See also http://www.research.att.com/~ njas/sequences/.
[8] A. P. Prudnikov, Yu. A. Brychkov & O. L. Marichev, Integrals and Series I (transl.
N. M. Queen) Gordon & Breach (1986).

ACKNOWLEDGEMENTS

The work of the second author was supported in part by Grant No. A8180 of the
Natural Sciences & Engineering Research Council of Canada and by Grant No. GO-
12778 of the Medical Research Council of Canada. The authors also express their
gratitude to an anonymous referee whose comments have substantially improved the
quality of the paper.

16

