
Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Repetitions, Runs, Double Squares & Distinct
Squares — A Combinatorial Potpourri

Bill Smyth

Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Canada

School of Engineering & Information Technology,
Murdoch University, Perth, Australia

Algorithm Design Group, Department of Informatics
King’s College London

email: smyth@mcmaster.ca

Murdoch University, 12 & 19 September 2014
1 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Abstract

Mathematicians solve puzzles.

Sometimes the puzzle has no obvious application (Four Colour
Theorem, Fermat’s Last Theorem), but it turns out that the
methodology needed to solve it opens up marvellous new
mathematical vistas.

Perhaps more often the puzzle has application to the real world:
calculus, linear algebra.

The puzzles discussed here arise out of a simple practical problem:
computing the repetitions (tandem repeats) in a string such as

x = cgccgcgccg

This bit of DNA is only 10 base pairs long, but nevertheless
contains six squares, five of them distinct. We will see that
computing repetitions takes us into a new combinatorial world.

2 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Outline

1. Preliminaries: Terminology, Notation & Data Structures

2. Computing Repetitions & Runs

3. The Number of Runs in a String

4. Double Squares

5. Distinct Squares

3 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Preliminaries I
I A string is a finite sequence of symbols (letters) drawn from some finite

or infinite set Σ called the alphabet. The alphabet size is σ = |Σ|.
Usually the alphabet is ordered, thus inducing lexorder (dictionary order)
on the strings.

I We write a string x in mathbold, and we represent it as an array x[1..n]
for some n ≥ 0. We call n = x (non-bold) the length of x. For example,

1 2 3 4 5 6 7 8 9 10

x = c g c c g c g c c g
(1)

is a string of length x = 10 on Σ = {c, g}. For x = 0, x = ε, the empty
string.

I If x = uvw, then u is said to be a prefix, v a substring and w a suffix of x;
if vw 6= ε, uw 6= ε, uv 6= ε, respectively, then u, v, w is, respectively, a
proper prefix, proper substring, proper suffix of x.

I If x = x[1..n] and there exists an integer π such that x[i] = x[i+π] for
every i ∈ 1..n−π, then x is said to have period π and generator x[1..π].
The string (1) has periods 5 and 8 with corresponding generators cgccg
and cgccgcgc, respectively.

4 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Preliminaries II
I If x = vuew, with integer e > 1 and u neither a suffix of v nor a prefix of

w (e is maximum), then ue is a repetition in x. u and e are the period
and exponent, respectively, of the repetition. A string not a repetition is
primitive. We suppose that u itself is primitive (the period u is minimum).

I For example, in
x = cgccgcgccg , (2)

there are repetitions c2 (twice), (cg)2 and (gc)2, (cgc)2, and (cgccg)2.
Each of these repetitions is a square (e = 2). In general, every repetition
has a square prefix.

I If v = x[i ..j] has minimum period u, where v/u ≥ 2, and if neither
x[i−1..j] nor x[i ..j+1] (whenever defined) has period u, then x is said to
be a maximal periodicity or run in x [M89] and v is said to have exponent
e = bv/uc and tail t = v mod u. When t = 0, the run is also a repetition.

I All of the repetitions in (2) are runs except for (cg)2 and (gc)2: these are
prefix and suffix, respectively, of the run v = cgcgc.

I In general, every repetition is a substring of some run; thus computing all
the runs implicitly computes all the repetitions.

5 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Global Data Structures: ST, SA, LCP (Sorted Suffixes)

1 2 3 4 5 6 7 8

x = c g c c g c g c
SAx = 8 3 6 1 4 7 2 5

LCPx = 0 1 1 3 3 0 2 2

j
����

HH
HH

0

j
�� @@

1 j
�� @@

2

c gc

7 2
c · · ·

5

gc

8 3
c · · · j

�
�
A
A

3
gc

6 1
c · · ·

4

gc

Figure : Suffix Tree, Suffix Array, LCP array

6 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Global Data Structures: LZ

A factorization x = w1w2 · · · wk is LZ (for Lempel-Ziv
[LZ76, ZL77]) if each factor (substring) wj is either a letter that
has not occurred previously in x, or else the longest factor that has
occurred previously. For the string

x = cgccgcgccg

the factorization LZx is given by w1 = c , w2 = g , w3 = c ,
w4 = cgc , w5 = gccg .

All of these data structures can be computed in time linear in x:

ST [W73, M76, U95, F97],
SA [MM90, MM93, PST07, NZC09, M09],
LCP [KLAAP01, M04, PT08, KMP09].

And LZ can be computed from some combination of them: . . .
7 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Computing LZ

LZ77 KK AKO CPS1 CPS2 CPS3 CI CIS & CII OS

SA

LCP

SA

LPF

ESA

LCP

ST

LZ

LCP

SA QSA

LPF

LCP

SA

BWT

LCP

ESA Sliding

Window

Figure : From [ACIKSTY13]

8 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Computing Repetitions

In the early 1980s three O(x log x)-time algorithms were proposed
to compute all the repetitions in a given string x:

I Crochemore’s method [C81] is essentially an algorithm for
suffix tree construction [S03]. He also showed that a string x
can contain as many as O(x log x) repetitions — thus all
these algorithms are optimal.

I Apostolico & Preparata [AP83] use suffix trees plus auxiliary
data structures.

I Main & Lorentz [ML84] use a divide-and-conquer approach
based on prior computation of LZx.

*** ALL USE GLOBAL DATA STRUCTURES ***
*** ALL DEPEND ON ORDERING SUFFIXES ***

9 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Computing Runs

I In 1989 Main [M89] showed how to compute all “leftmost”
runs, again from LZx, in linear time.

I In 1999 Kolpakov & Kucherov [KK99, KK00] showed how to
compute all runs from the leftmost ones, also in linear time.
To establish linearity, they proved that the maximum number
ρ(n) of runs over all strings of length n satisfies

ρ(n) ≤ k1n−k2

√
n log2 n (3)

for some universal positive constants k1 and k2.

I More recent methods still use suffix arrays [CPS07].

*** GLOBAL DATA STRUCTURES, LINEAR OUTPUT ***
*** ALGORITHM DEPENDS ON ORDERING SUFFIXES ***

10 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

BUT ...

I Puglisi & Simpson [PS08] show that the expected number of
runs in a string of length n is small:

I 0.41n runs for alphabet size σ = 2;
I 0.25n runs for DNA (Σ = {a, c , g , t});
I 0.04n for protein (σ = 20);
I 0.01n for English-language text.

Runs (hence repetitions) in most strings are sparse!

I Runs are generally a local phenomenon: why do we need
global data structures to compute them?

I The computation of runs requires no definition of order in
strings or substrings — yet the Suffix Tree/Suffix Array data
structures depend on an ordering of the suffixes of a string.

Why can’t we compute runs more easily???

11 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Combinatorial Insight vs. Brute Force
I Using full data structures, linear-time processing (with a high constant of

proportionality) is achieved using 12 bytes of storage per input symbol:
36 gigabytes for the human genome (3GB long) [ACIKSTY13].

I Using compressed data structures, space can be reduced to about 5 bytes
per input symbol (15GB for the human genome), but linearity is lost
(order of magnitude slower) [ACIKSTY13].

I Maybe this is acceptable using current main memory capacity, but what
about processing plant DNA (15-20GB) or 50GB/500GB strings? Only
possible using secondary storage and slowing the computation by several
orders of magnitude.

I All this to compute something that is generally sparse and occurs locally
in the string: we want to use at most one byte per input symbol (only
two bits for DNA!) and process an order of magnitude faster.

So we need to understand why the maximal periodicities are restricted — why

there are restrictions on their overlaps — so that we can process a string from

left to right in a controlled way, outputing the runs as we go: we need

combinatorial insight! 12 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

An Idea

If ρ(n)/n is limited to be near one, it means that on average there
is about one run starting at each position. So ... if TWO runs
start at some position, then there must be some other position,
probably nearby, at which NO runs start.

Runs always start with squares — what do we know about squares
that begin at about the same position? What COMBINATORIAL
INSIGHT do we have into the restrictions that might be imposed
upon occurrences of overlapping squares? Until recently, very little:

13 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

What We Knew (After 90 Years of Stringology)

Definition
If x = v2 has a proper prefix u2, u < v < 2u, we say that x is a
double square and write it x = DS(u, v).

Lemma (Three Squares Lemma [CR95])

If u is not a repetition and DS(u, v) is a proper prefix of w2, then
w ≥ u+v.

The Fibonacci string demonstrates that this result is best possible
(squares ending at positions 6, 10, 16 = 6+10, 26 = 10+16):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

x = c g c c g c g c c g c c g c g c c g c g c c g c c g

Maybe this result is not so surprising. To identify squares and runs,
we need to know much more.

14 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Figuring Out Double Squares

There have been six identifiable approaches taken to the analysis
and understanding of double squares:

I DS I: Bounds on ρ(n)

I DS II: The New Periodicity Lemma

I DS III: Combinatorial Restrictions on the Third Square

I DS IV: The “General Case”

I DS V: Inversion Factors & the New NPL

I DS VI: The Magical L-Root

All are interesting and valuable. We look at each one in turn.

15 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS I: Bounds on ρ(n) — Upper

I Kolpakov & Kucherov [KK00]: ρ(n) ≤ k1n−k2
√

n log2 n for
universal positive constants k1 and k2, but without upper bounds on
k1 and k2. Linear, but how linear?

I Rytter [R06]: divided runs into those of “large” and “small”
periods, thus showed that ρ(n) ≤ 5.0n.

I Using similar methods, Puglisi, Simpson & Smyth [PSS08] and
Crochemore & Ilie [CI08] reduced the upper bound to 3.48n and
1.60n, respectively.

I Giraud [G08, G09] showed that limn→∞ ρ(n)/n exists, is approached
from below, and never attained, while proving ρ(n) ≤ 1.49n.

I Finally, Crochemore, Ilie & Tinta [CIT11] applied three years of
CPU time on a supercomputer to the results of [CI08], yielding
ρ(n) ≤ 1.029n.

So far, lots of computation, not so much combinatorial insight.
16 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS I: Bounds on ρ(n) — Lower

I Franek, Simpson & Smyth [FSS03] describe an infinite
sequence of strings of increasing lengths n1, n2, . . . such that
limi→∞ r(ni)/ni = 3/2φ = 0.927 · · · , where φ is the golden
mean and r(ni) is the number of runs in the string of length
ni . Later Franek & Yang [FY08] show that indeed
ρ(n) ≥ 3n/2φ.

I Matsubara et al. [MKIBS08] use simple arguments together
with some computation to show that ρ(n) ≥ 0.9445654n.

I Simpson [S10] uses a construction based on modified Padovan
words to show that ρ(n) ≥ 0.94457n.

Here the methods used are based more on number theory then on
a detailed understanding of the combinatorial consequences of
overlapping squares.

*** WE WILL HAVE MORE TO SAY ABOUT THIS LATER! ***
17 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS II — NPL

In 2005-2006 the collective efforts of Fan, Puglisi, Simpson, Smyth
& Turpin yielded a lemma that imposed constraints on the squares
that could occur to the right of a double square:

Lemma (New Periodicity Lemma [FSS05, PST05, FPST06])

Let x = DS(u, v), where u has no square prefix and v is not a
repetition. Then for all integers k and w such that
0 ≤ k < v−u < w < v and w 6= u, x[k+1..k+2w] is not a square.

But there were serious drawbacks:

I The conditions imposed on u (particularly) and v were
undesirable: for example, the NPL did not apply to any
u = cc · · · or cgcg · · · , thus omitting a great many strings.

I The proof broke down into FOURTEEN messy subcases
defined by the sizes of k and w relative to u and v : . . .

18 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS II — Subcases 6 & 8

u1 u2 u1 u1 u2 u1 u2 u1 u1

� -u
� -v

k w(1) w(2)

Figure : Subcase 6

u1 u2 u1 u1 u2 u1 u2 u1

� -u
� -v

k w(1) w(2)

Figure : Subcase 8

19 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS II: The Dreaded Fourteen

Subcase Special
S k k+w k+2w Conditions
1 0 ≤ k ≤ u1 k+w ≤ u k+2w ≤ u+u1 k ≥ u2
2 0 ≤ k ≤ u1 k+w ≤ u k+2w ≤ u+u1 k < u2
3 0 ≤ k ≤ u1 k+w ≤ u k+2w > u+u1 —
4 0 ≤ k ≤ u1 u < k+w ≤ u+u1 — —
5 0 ≤ k ≤ u1 u+u1 < k+w ≤ v — —
6 0 ≤ k ≤ u1 v < k+w < 2u — —
7 u1 < k < u1 +u2 k+w ≤ u+u1 k+2w ≤ 2u —
8 u1 < k < u1 +u2 k+w ≤ u+u1 k+2w > 2u —
9 u1 < k < u1 +u2 u+u1 < k+w ≤ v — w < u

10 u1 < k < u1 +u2 k+w ≤ v k+2w ≤ u+v w > u
11 u1 < k < u1 +u2 k+w ≤ v u+v < k+2w ≤ 2v − u2 —
12 u1 < k < u1 +u2 k+w ≤ v 2v − u2 < k+2w —
13 u1 < k < u1 +u2 v < k+w ≤ 2u — —
14 u1 < k < u1 +u2 2u < k+w < 2u+u2−1 — —

Unfortunately the proofs of the 14 cases turned out to be
essentially different: it took a lot of work to prove an NPL that
was not quite what one wanted ...

20 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS III: The Third Square

In an effort to make statements about double squares that were both
more precise and more general in their application, a series of papers by
Franek, Simpson, Smyth and their students [S07, KS12, FFSS12, BS14]
has yielded a characterization of the permissible values of w for each of
the 14 subcases:

u u

v v

k w w

It turned out to be useful to consider two main cases:

(C1) u < v ≤ 3u/2 (the easy case: no bounds on k and w required)

(C2) 3u/2 < v < 2u with v−u < w < v , w 6= u (the same 14
subcases!).

21 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS III: Case (C1)

Lemma ([KS12])

For DS(u, v) in case (C1):

(a) DS(u, v) = u1
mu2u1

m+1u2u1, where
u1 = v−u ≤ u/2, u2 = u mod u1, m = bu/u1c, and u2 is a
proper prefix of u1;

(b) DS(u, v) contains no runs of period π ≥ u1 other than exactly
m + 5 known specified runs.

Thus for (C1) the breakdown of DS(u, v) into runs of small period
can be established in a uniform way, independent of any subcases.
Not so however for (C2): . . .

22 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS III: Case (C2)

Table : Structure of x for subcases S ∈ 1..14: σ is the largest alphabet
size consistent with u, v , k ,w [FFSS12]; d, d1 and d3 are prefixes of x
with d = gcd(u, v ,w), d1 = gcd(u−w , v−u), d2 = gcd(u, v−w),
d3 = v mod d2.

Subcases S Conditions Breakdown of x

1, 2, 5, 6, 8–10 (∀x, σ = d) x = dx/d

3, 4, 7 (∀x) x = d1
u/d1d1

v/d1d1
(v−u)/d1

specified cases x = dx/d

11–14 σ = d or d2 ≤ 2u−v x = dx/d

otherwise x =
(
(d3

d2/d3)v/d2
)2

23 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS III: Case (C2)

Lemma
Suppose that in x = DS(u, v), 3u/2 < v < 2u, w2 occurs at
x[k +1], where 0 ≤ k < v−u < w < v, w 6= u. Then for each of
the Dreaded Fourteen, the corresponding structure of x is given in
the above table.

Note:

I The constraints on u and v are gone!

I In every case the assumption that w2 exists forces a
breakdown into runs of small period, whose generator (d, d1

or d3) is a prefix of x; in all but a few instances (subsubcases
of 3,4,7), x is a single repetition of small period.

I This is Structure! What do we do with it?

24 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS IV: The General Case

To describe all cases that arise from three overlapping squares, we
need to put together

u u
k1 v v

and

v v
k2 w w

Such a lemma has been stated and proved [BS14]; it was used to
establish the final remaining subcases (3 & 7) of (C2), but its
general usefulness is not clear.

25 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS V: Inversion Factors & the New NPL

An entirely different approach is taken in [BFS14]: a sequence of
simple lemmas is used to show that certain substrings (“inversion
factors”) must occur, exactly twice and at predictable locations,
within the range of a double square.

Definition
Given x = x[1..n] and an integer j ∈ 0..n−1, the string

Rj(x) = x[j +1..n]x[1..j] is called the jth rotation of x. x and Rj(x)
are said to be conjugate, written x ∼ Rj(x). (For example, cgat is
conjugate to gatc, atcg , tcga and itself.)

Lemma (Equal Conjugate Rotations ⇐⇒ Repetition)

[S03, Lemma 1.4.2] Let x be a string of length n and minimum
period π ≤ n, and let j ∈ 1..n−1 be an integer. Then Rj(x) = x if
and only if x is a repetition (π < n, π | n) and j | π.

26 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS V: Basic Lemmas

The repeated application of these two simple structural lemmas is
the key to identifying a “canonical form” for double squares:

Lemma (Synchronization Principle)

The primitive string x occurs exactly p times in x2xpx1, where p is
a nonnegative integer and x1 (respectively, x2) is a proper prefix
(respectively, proper suffix) of x.

Lemma (Common Factor Lemma)

Suppose that x and y are primitive strings, where x1 (respectively,
y1) is a proper prefix and x2 (respectively, y2) a proper suffix of x
(respectively, y). If for integers p and q, x2xpx1 and y2yqy1 have a
common factor of length |x|+|y|, then x ∼ y.

27 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS V: A Unique Canonical Form for Double Squares

Lemma (Two Squares Factorization Lemma)

If x = DS(u, v), there exists a unique primitive string u1 such that
u = u1

e1u2 and v = u1
e1u2u1

e2 , where u2 is a possibly empty
proper prefix of u1 and e1, e2 are integers such that e1 ≥ e2 ≥ 1.
Moreover,

(a) if |u2| = 0, then e1 > e2 (thus e1 ≥ 2);

(b) if |u2| > 0, then v is primitive, and if in addition e1 ≥ 2, then
u also is primitive.

In both cases, the factorization is unique, and so we write the
canonical factorization as

DS(u, v) = (u1,u2, e1, e2) = u1
e1u2u1

e1+e2u2u1
e2 .

28 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS V: Occurrences of the “Inversion Factor” IF

Definition
Let u1 = u2u2. Then

DS(u, v) = u2(u2u2)e1−1(IF)u2(u2u2)e1+e2−2(IF)(u2u2)e2−1, (4)

where IF = u2u2u2u2 = Ru2(u1)u1 is called the inversion factor.

Lemma
Suppose x = DS(u, v) = (u1,u2, e1, e2). Then the inversion factor
IF and specified rotations of IF occur as shown in (4), exactly v
positions apart, and nowhere else in x.

These structural lemmas yield a relatively straightforward proof of
a New NPL that requires no conditions on u and v and no bounds
on k; the only resulting restriction is that it says nothing about
values w ∈ v−u+1..u−1: . . .

29 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS V: Old & New NPL

Lemma (Old NPL)

Let x = DS(u, v), where u has no square prefix and v is not a
repetition. Then for all integers k and w such that
0 ≤ k < v−u < w < v and w 6= u, x[k+1..k+2w] is not a square.

Lemma (New NPL)

Consider a double square DS(u, v) = (u1,u2, e1, e2). If w2 is a
proper substring of v2, then either

(a) w < u, or

(b) u ≤ w < v and the smallest generator of w is a conjugate of
u1.

30 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS VI: The Magical L-Root

It took only a page [BIINTT14] for six Japanese mathematicians

I Bannai

I I (I kid you not)

I Inenaga

I Nakashima

I Takeda

I Tsuruta

to show that ρ(n) ≤ n−1.

Well, at least on a two-letter alphabet Σ = {c , g}.

31 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS VI: Lyndon Word

Definition
Consider the two orderings of Σ = {c , g}:

I F (Forward): c < g

I B (Backward): g < c

and the associated lexicographic (dictionary) orderings F and B of
strings x on Σ. Then a primitive string x on Σ is a Lyndon word
LF (respectively, LB) if it is the (unique) least in F-order
(respectively, B-order) over all rotations Rj(x), 1 ≤ j ≤ n−1.

For example, x = ccg is LF , y = gcc is LB , z = cgc is not a
Lyndon word.

32 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS VI: F-Root & B-Root

Definition
The F-root (respectively, B-root) of a run in x is the position in x
of the Lyndon word LF (respectively, LB) that is conjugate to the
(primitive) generator of the run and leftmost in the run, except not
the run’s first position.

1 2 3 4 5 6 7 8 9 10

x = c g c c g c g c c g
B F

(5)

The F-root of run cgcgc in x = (cgccg)2 is position 6, the B-root
is position 5.

33 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS VI: L-Root

Definition
Suppose that a sentinel letter $ > g > c is appended to x. Then
the L-root of a run in x is the F-root if the run is followed by c,
the B-root otherwise.

1 2 3 4 5 6 7 8 9 10 11

x = c g c c g c g c c g $
B F ↑

L

(6)

Lemma
The L-roots of the runs in x are distinct!

Corollary

ρ(n) ≤ n−1.
34 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

DS VI: L-Root Example

The runs in x = (cgccg)2 are

I cc (twice, period 1)

I cgcgc (period 2)

I (cgc)2 (period 3)

I (cgccg)2 (period 5)

1 2 3 4 5 6 7 8 9 10 11

x = c g c c g c g c c g $
periods = 3 1 5 2 1

(7)

Hey presto!

(And somehow the maximum number of runs is intimately
connected with the ordering of the letters!?!)

35 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Distinct Squares I

Recall there can be O(n log n) repetitions in x (in a Fibostring, for
example), while xn has O(n2) squares. How many distinct squares
can there be? Note x = (cgccg)2 contains six squares, of which
five are distinct:

c2, (cg)2, (gc)2, (cgc)2, (cgccg)2,

even though it contains only four runs.

Let δ(n) denote the maximum number of distinct squares in any
string of length n. Fraenkel & Simpson showed that no position in
x could be the start position of more than two rightmost
occurrences of squares, hence:

Lemma
[FS98] δ(n) < 2n.

36 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Distinct Squares II

In 2007 Ilie showed

Lemma
[I07] δ(n) ≤ 2n−Θ(log n).

Recently the “double square” methods used to prove the New NPL
have been applied to distinct squares (in a 29-page paper). The
following is claimed:

Lemma
[DFT13] δ(n) < b11n/6c.

Everybody believes the true upper bound is less than n — why is it
so hard to prove?

Perhaps another new combinatorial world awaits us!

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova, W. F.
Smyth, German Tischler & Munina Yusufu, A comparison of index-based
Lempel-Ziv LZ77 factorization algorithms, ACM Computing Surveys45–1
(2013) 5:1–5:17.

Alberto Apostolico & Franco P. Preparata, Optimal off-line detection of
repetitions in a string, Theoret. Comput. Sci. 22 (1983) 297–315.

Haoyue Bai, Frantisek Franek & W. F. Smyth, The New Periodicity Lemma
Revisited, Discrete Applied Math., submitted for publication (2014).

Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki
Takeda & Kazuya Tsuruta, The “runs” theorem,
http://arxiv.org/abs/1406.0263 (2014).

Widmer Bland & W. F. Smyth, Three Overlapping Squares: The General Case
Characterixed & Applications, Theoret. Comput. Sci. , submitted for publication
(2014).

Gang Chen, Simon J. Puglisi & W. F. Smyth, Fast & practical algorithms for
computing all the runs in a string, Proc. 18th Annual Symp. Combinatorial
Pattern Matching, B. Ma & K. Zhang (eds.), Springer Lecture Notes in
Computer Science, LNCS 4580, Springer-Verlag (2007) 307–315.

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Maxime Crochemore, An optimal algorithm for computing all the repetitions in
a word, Inform. Process. Lett. 12–5 (1981) 244–248.

Maxime Crochemore & Lucian Ilie, Maximal repetitions in strings, J. Comput.
Sys. Sci. (2008) 796–807.

Maxime Crochemore, Lucian Ilie & Liviu Tinta, The “runs” conjecture, Theoret.
Comput. Sci. 412 (2011) 2931–2941.

Maxime Crochemore and Wojciech Rytter, Squares, cubes, and time-space
efficient strings searching, Algorithmica 13 (1995) 405–425.

Antoine Deza, Frantisek Franek & Adrien Thierry, How many double squares
can a string contain?, http://arxiv.org/abs/1310.3429 (2014).

Kangmin Fan, Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A new
periodicity lemma, SIAM J. Discrete Math. 20–3 (2006) 656–668.

Kangmin Fan, R. J. Simpson & W. F. Smyth, A new periodicity lemma
(preliminary version), Proc. 16th Annual Symp. Combinatorial Pattern Matching,
Springer Lecture Notes in Computer Science, LNCS 3537, Springer-Verlag
(2005) 257–265.

Martin Farach, Optimal suffix tree construction with large alphabets, Proc.
38th IEEE Symp. Found. Computer Science, IEEE Computer Society (1997)
137–143.

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Aviezri S. Fraenkel & Jamie Simpson, How many squares can a string contain?,
J. Combinatorial Theory, Series A82–1 (1998) 112–120.

Frantisek Franek, Robert C. G. Fuller, Jamie Simpson & W. F. Smyth, More
results on overlapping squares, J. Discrete Algorithms 17 (2012) 2–8.

Frantisek Franek, R. J. Simpson & W. F. Smyth, The maximum number of runs
in a string, Proc. 14th Australasian Workshop on Combinatorial Algs., Mirka
Miller & Kunsoo Park (eds.) (2003) 26–35.

Frantisek Franek & Q. Yang, An asymptotic lower bound for the maximal
number of runs in a string, Internat. J. Foundations of Computer Science1
(2008) 195–203.

Mathieu Giraud, Not so many runs in strings, Proc. 2nd Internat. Conf. on
Language & Automata Theory & Applications, Carlos Mart́ın-Vide, Friedrich
Otto & Henning Fernau (eds.), Springer Lecture Notes in Computer Science,
LNCS 5196, Springer-Verlag (2008) 232–239.

Mathieu Giraud, Asymptotic behavior of the numbers of runs and microruns,
Inform. & Computation 207–11 (2009) 1221–1228.

Lucian Ilie, A note on the number of squares in a word, Theoret. Comput. Sci.
380–3 (2007) 373–376.

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Juha Kärkkäinen, Giovanni Manzini & Simon J. Puglisi, Permuted
longest-common-prefix array, Proc. 20th Annual Symp. Combinatorial Pattern
Matching, Gregory Kucherov & Esko Ukkonen (eds.), Springer Lecture Notes in
Computer Science, LNCS 5577, Springer Verlag (2009) 181–192.

Toru Kasai, Gunho Lee, Hiroki Akimura, Setsuo Arikawa & Kunsoo Park,
Linear-time longest-common-prefix computation in suffix arrays and its
applications, Proc. 12th Annual Symp. Combinatorial Pattern Matching,
Amihood Amir & Gad M. Landau (eds.), Springer Lecture Notes in Computer
Science, LNCS 2089, Springer-Verlag (2001) 181–192.

Roman Kolpakov & Gregory Kucherov, Finding maximal repetitions in a word in
linear time, Proc. 40th Annual IEEE Symp. Found. Computer Science (1999)
596–604.

Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words, J.
Discrete Algorithms 1 (2000) 159–186.

Evguenia Kopylova & W. F. Smyth, The three squares lemma revisited, J.
Discrete Algorithms 11 (2012) 3–14.

Abraham Lempel & Jacob Ziv, On the complexity of finite sequences, IEEE
Trans. Information Theory 22 (1976) 75–81.

Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied
Maths. 25 (1989) 145–153.

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Michael G. Main & Richard J. Lorentz, An O(n log n) algorithm for finding all
repetitions in a string, J. Algorithms 5 (1984) 422–432.

Udi Manber & Gene W. Myers, Suffix array: a new method for on-line string
searches, Proc. First Annual ACM-SIAM Symp. Discrete Algs. (1990) 319-327.

Udi Manber & Gene W. Myers, Suffix array: a new method for on-line string
searches, SIAM J. Computing 22–5 (1993) 935–948.

G. Manzini, Two space saving tricks for linear time LCP computation, Proc.
9th Scandinavian Workshop on Algorithm Theory, T. Hagerup & J. Katajainen
(eds.), Springer Lecture Notes in Computer Science, LNCS 3111, Springer-Verlag
(2004) 372–383.

Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai & Ayumi
Shinohara, New lower bounds for the maximum number of runs in a string,
PSC (2008) 140–145.

Edward M. McCreight, A space-economical suffix tree construction algorithm,
J. Assoc. Comput. Mach. 32–2 (1976) 262–272.

Yuta Mori, libdivsufsort: http://code.google.com/p/libdivsufsort/

Ge Nong, Sen Zhang & Wai Hong Chan, Linear time suffix array construction
using D-critical substrings, Proc. 20th Annual Symp. Combinatorial Pattern

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

Matching, Gregory Kucherov & Esko Ukkonen (eds.), Springer Lecture Notes in
Computer Science, LNCS 5577, Springer-Verlag (2009) 54–67.

Simon J. Puglisi & R. J. Simpson, The expected number of runs in a word,
Australasian J. Combinatorics 42 (2008) 45–54.

Simon J. Puglisi, R. J. Simpson & W. F. Smyth, How many runs can a string
contain?, Theoret. Comput. Sci. 401 (2008) 165–171.

Simon J. Puglisi, W. F. Smyth & Andrew Turpin, Some restrictions on
periodicity in strings, Proc. 16th Australasian Workshop on Combinatorial Algs.
(2005) 263–268.

Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A taxonomy of suffix array
construction algorithms, ACM Computing Surveys 39–2 (2007) Article 4, 1–31.

Simon J. Puglisi & Andrew Turpin, Space-time tradeoffs for
longest-common-prefix array computation, Proc. 19th Internat. Symp. Algs. &
Computation, S.-H. Hong, H. Nagamochi & T. Fukunaga (eds.) (2008) 124–135.

Wojciech Rytter, The number of runs in a string: improved analysis of the
linear upper bound, Proc. 23rd Symp. Theoretical Aspects of Computer Science,
B. Durand & W. Thomas (eds.), Springer Lecture Notes in Computer Science,
LNCS 2884, Springer-Verlag (2006) 184–195.

37 / 37

Outline
Preliminaries: Terminology & Notation

Computing Repetitions & Runs
Double Squares

R. J. Simpson, Intersecting periodic words, Theoret. Comput. Sci. 374 (2007)
58–65.

Jamie Simpson, Modified Padovan words and the maximum number of runs in
a word, Australasian J. Combinatorics 46 (2010) 129–145.

W. F. Smyth, Repetitive perhaps, but certainly not boring, Theoret. Comput.
Sci. 249–2 (2000) 343–355.

Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423
pp.

W. F. Smyth, Computing periodicities in strings — a new approach, Proc. 16th
Australasian Workshop on Combinatorial Algs. (2005) 481–488.

Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995)
249–260.

Peter Weiner, Linear pattern matching algorithms, Proc. 14th Annual IEEE
Symp. Switching & Automata Theory (1973) 1–11.

Jacob Ziv & Abraham Lempel, A universal algorithm for sequential data
compression, IEEE Trans. Information Theory 23 (1977) 337–343.

37 / 37

	Outline
	Preliminaries: Terminology & Notation
	Computing Repetitions & Runs
	Double Squares

