
Outline

Computing Patterns in Strings II:
Generic Patterns

Bill Smyth1,2,3

1Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada

email: smyth@mcmaster.ca
2Digital Ecosystems & Business Intelligence Institute

Curtin University, Perth, Western Australia
email: b.smyth@curtin.edu.au

3Department of Computer Science
King’s College London, UK

DEBII 2008

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Abstract

In this talk, the second of three, we consider generic patterns in
strings — generally those that describe regularities: borders,
repeating substrings, regular decompositions/factorizations of
strings, periodicities.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Applications

Facilitating skips or shifts of the pattern along the text in
specific pattern-matching algorithms — the border array
calculation.
Data compression (gzip and others).
Identifying cloned or near-cloned methods/classes in large
software systems (e.g., the Wilderness that is Windows).
Identifying repetitive or periodic segments (exact or
approximate) in web pages, e-mail transmissions, encoded
material.
Finding repetitive or periodic segments of DNA (a result of
transciption) indicating common functionality of genes or
chromosomes.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Outline

1 Abstract

2 Applications

3 Five Generic Patterns
Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Border & Period

A string x = x [1..n] has period p if for every i ∈ 1..n−p,
x [i] = x [i+p]. So

1 2 3 4 5 6 7 8

t = a b c a b c a b

has period 3.
A string x has border u if x = uv and x = wu (u both a prefix
and a suffix of x) and len(u) < len(x). Let m = len(u). (We let
the empty string be a border, so maybe m = 0.) Then for every
i ∈ 1..m, x [i] = x [i+(n−m)]. A miracle — x has period
p = n−m !!
Example string t has a border of length 5 and period 8−5 = 3.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

The Border Array

In the border array β = β[1..n] of x , for every i ∈ 1..n, β[i] is the
length of the longest border of x [1..i]. Remember Fibonacci?

1 2 3 4 5 6 7 8 9 10 11 12 13

f = a b a a b a b a a b a a b
β = 0 0 1 1 2 3 2 3 4 5 6 4 5

An amazing property:
If u is the longest border of x , and v is the longest border
of u, then v is the second longest border of x !

So the border array gives all the borders (hence all the periods)
of every prefix of x . Furthermore, the border array can be
computed in time proportional to n (O(n) time) by a simple and
elegant algorithm.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

KMP Revisited I

The border array of p is precomputed in time
proportional to m. So the longest border of
every prefix is known.

x . . .

p

1

b
1 m

. . .

ni
a

. . .

j

Longest border
of [1.. -1]

equal

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

KMP Revisited II

Thus when a mismatch occurs, the correct shift
length is known that replaces the suffix of p with
the prefix of p.

x . . .

p

1

b
1 m

. . .

ni
a

. . .

j

compare

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Periodicity

We have looked at a very simple structure —
the border array — that is easy to compute and
describes all the periods of all the prefixes of a
string.

The border array is used in dozens of algorithms
to take advantage of the periodicity of a pattern
in order to speed up processing.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

The Periodicity Lemma

This is the mathematical foundation of stringology
(combinatorics on words), often used in proofs of theorems
required to show the correctness of algorithms:

Let p and q be two periods of x = x [1..n], and let
d = gcd(p, q). If p + q ≤ n + d , then d is also a period of x .

As an example, consider the string

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x = a b a a a b a a a b a a a b a a a b

of length n = 18 and periods q = 12, p = 8: since
d = gcd(p, q) = 4 and p + q = 20 < n + d = 22, we conclude
that d = 4 is also a period of x .

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Compression

Mostly compression will achieve a 40-60% reduction in file
size — if the file size is 10GB, this saves 4–6GB. Maybe
worthwhile!
The basic idea of lossless compression is to replace long
repeating substrings with much shorter ones; for example,
we can make the replacement

abcdgabcdabcd −→ AgAA

if we have a “dictionary” to tell us that A is really abcd .
This is the basic idea of the Lempel-Ziv (gzip) approach
— probably used without your knowledge every time you
send or receive an e-mail attachment. LZ compression
goes back to 1976!

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

What is the LZ Factorization?

The LZ factorization LZx of x is a factorization x = w1w2 · · ·wk
such that each wj , j ∈ 1..k , is
(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise
(b) the longest substring that occurs at least twice in

w1w2 · · ·wj .

Forever Fibonacci! For

f = a b a a b a b a a b a a b

the factorization is

w1 = a, w2 = b, w3 = a, w4 = aba, w5 = baaba, w7 = ab.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

LZ Does the Job.

For long strings, LZ usually identifies long
repeating substrings that form the basis of
effective compression.

LZ can be computed in O(n) time. Fast both for
compression and decompression.

And LZ is multipurpose: it is the basis of the
most efficient algorithm for computing all the
repetitions in x (see below).
Since 1993 LZ has a worthy competitor: the
Burrows-Wheeler transform (BWT).

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Understanding Repeats

A repeat R is a collection of identical repeating substrings in x ;
R is complete if it contains all of them.

So for (surprise!)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

f = a b a a b a b a a b a a b a

we can represent all the occurrences of aba by a complete
repeat

R = (3; 1, 4, 6, 9, 12),

where ` = 3 is the length of the repeating substring and
1, 4, 6, 9, 12 are the positions at which it occurs.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Understanding Repeats II

In this string

1 2 3 4 5 6 7 8 9 10 11 12 13 14

f = a b a a b a b a a b a a b a

the repeats of ab are NOT interesting: they can all be
right-extended with a, and so aba must occur at all the same
locations. Similarly the repeats of ba are not interesting: they
can all be left-extended with a.

However, aba is nonextendible (NE) and so interesting.

In general, we only need to output NE complete repeats!

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Computing Repeats

All NE complete repeats in x of length ` ≥ `min

can be computed in O(n) time — fast. (Munira
Yusufu’s research.)

And supernonextendible repeats can be
computed even faster: NE repeats that are not
substrings of any other repeat in x .
So to get an overview of repeats in any string
(web pages, e-mail transmissions, long
documents), only linear time is required —
perhaps a useful tool of research and analysis.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

What is a Repetition?

A repetition is a repeat of adjacent substrings:

x = · · ·dabcabcabcad · · ·

contains three repetitions (abc)3, (bca)3, (cab)2.

It was shown 25 years ago that over all strings of length n, the
maximum number of repetitions is O(n log n) — achieved by
Fibonacci strings of length n (of course).

To output O(n log n) repetitions must take O(n log n) time. Isn’t
this strange? — computing all the repeats only takes O(n) time.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

What is a Run?

Rescue! — the idea of a run or maximal periodicity: a
periodicity that cannot be extended, either left or right: it is NE!

x = · · ·dabcabcabcad · · ·

The underlined segment is a run that represents the three
repetitions (abc)3, (bca)3, (cab)2.

Using the LZ decomposition, it was shown 10 years ago that
the runs in any string x = x [1..n] can be computed in O(n)
time, and thus essentially the repetitions.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

What is O(n)?

O(n) means “proportional to n”, so the number of runs in x is at
most kn, where k is a constant. What if k = 101010

?!? How do
we know it isn’t? How big can k be? Recall the example

001010010110100101001011010010100 · · ·

A very exciting research question — to a mathematician!

But also practical — if the maximum number of runs is close to
the length of the string, then maybe simpler (and faster) ways
can be found to compute repetitions.

Currently we know (Jamie Simpson, Curtin University) that

0.944575712 < k < 1.048.

Five years of work by a few dozen mathematicians ...
Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Computing Repetitions

The fastest current method for computing all the
runs is linear, but still it does a lot of work: it has
to compute the suffix array (see intrinsic
patterns), the longest common prefix array
(another intrinsic pattern), then the LZ
decomposition — and still it isn’t done!

Knowing that the number of runs is not too large
may well lead to a faster all-runs algorithm.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Lyndon Words

Suppose the letters in the alphabet are ordered: a, b, c, . . . or
1, 2, 3, . . .. This induces lexicographical order (lexorder or
dictionary order) on strings: substitute < substitution,
anb < an−1b.

A Lyndon word L(x) is the lex least rotation of x :

x = aba, rotations aba, baa, aab.

So L(aba) = aab.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Lyndon Decomposition Theorem

Theorem (Chen, Fox, Lyndon: 1958) Every string x can be
expressed as a unique decomposition

x = w1w2 · · · wk

of Lyndon words wi , 1 ≤ i ≤ k , where w1 ≥ w2 ≥ · · · ≥ wk .

For example,

x = d/d/c/c/ab/a
x = aad/aac/aab
f = ab/aabab/aab/aab/a

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Five Generic Patterns

Pattern-Matching: the Ubiquitous Border Array
Compression: Lempel-Ziv Factorization
Repeats
Repetitions
A Beautiful Pattern: Lyndon Decomposition

Lyndon Decomposition Algorithm

Duval (1983): Compute L(x)

h← 0
while h < n do

i ← h+1
j ← h+2
while x [j] ≥ x [i] do

if x [j] > x [i] then i ← h+1 else i ← i+1
j ← j+1

repeat
h← h + (j−i); output h

until h ≥ i

Stringology’s most elegant algorithm!

Bill Smyth Computing Patterns in Strings I


	Outline
	Abstract
	Applications
	Five Generic Patterns
	Pattern-Matching: the Ubiquitous Border Array
	Compression: Lempel-Ziv Factorization
	Repeats
	Repetitions
	A Beautiful Pattern: Lyndon Decomposition


