
Outline

Computing Patterns in Strings III:
Intrinsic Patterns

Bill Smyth1,2,3

1Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada

email: smyth@mcmaster.ca
2Digital Ecosystems & Business Intelligence Institute

Curtin University, Perth, Western Australia
email: b.smyth@curtin.edu.au

3Department of Computer Science
King’s College London, UK

DEBII 2008

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Outline

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Abstract

In this, the last of three talks on computing patterns in strings,
we discuss intrinsic patterns — those that occur in all strings,
and that in particular are key data structures for the
computation of specific and intrinsic patterns. We focus on the
suffix tree (ST), the suffix array (SA), and the longest common
prefix array (LCP) – structures whose construction and
application have been developed and refined over 40 years by
hundreds of researchers. These are just examples — there are
many others.

One of the exciting aspects of this dynamic research area is the
likelihood that 40 years in the future new, more powerful and
more flexible data structures will surely have been discovered
and put to use.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Applications

ST/SA/LCP are basic data structures for
pattern-matching;
computing repeats;
computing repetitions;
LZ decomposiition.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

The Tree

1 2 3 4 5 6 7 8

f = a b a a b a b a

�
��
�

��
�

��

H
HH

H
HH

0

�
��
�

�
@

@

1 �
��
�

�
@

@

2

a ba

7 2

a · · ·

5

ba

8 3

a · · ·

�
��
�

�
�

A
A
A

3
ba

6 1

a · · ·

4

ba

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

ST Checklist

leaf nodes in lexorder
internal nodes give lcp
O(n log α) construction time, where α is the alphabet size
O(n) space
for construction and search: data structure at each node
pattern-matching in time proportional to pattern-length m
essential for repeats, repetitions, LZ

Marvellous!

BUT ... too much space!!

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

ST Space

Usually each element of a string x requires one byte, often less
(DNA two bits) — thus altogether n bytes. Even with Unicode,
2n bytes is usually enough.

Every ST node is an integer: altogether about 8n bytes.
Every edge in ST needs a pointer: at least 4n bytes.
At each internal node, perhaps an array of letters or a
search tree: αn bytes.

ST storage will generally be at least 15n bytes, often as much
as 40n bytes or more. When n = 1010, this is serious!

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

SA & LCP

1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5
lcpx = − 1 1 3 3 0 2 2

m
�

��
�

��

HH
H

H
HH

0

m
�

�
@

@

1 m
�

�
@

@

2

a ba

7 2

a · · ·
5

ba

8 3

a · · · m
�

��

A
AA

3
ba

6 1

a · · ·

4

ba

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

SA/LCP Advantages

Each requires 4n bytes — if both are required, 8n bytes.
SA can be computed quickly using only the space for x
and SA itself.
LCP can be computed using about 6n bytes, including x
and LCP.
SA/LCP can do everything ST can do, as fast or faster.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Outline

1 Abstract

2 Applications

3 Three Intrinsic Patterns
The Suffix Tree (ST) of “Myriad Virtues”
SA & LCP Are Virtuous Too

4 Chronology

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

A Little Chronology

1973 ST invented; first algorithm published.
1985 “Myriad Virtues” paper published; several ST construction algorithms

exist.
1990 SA/LCP arrays invented; inefficient algorithms for their construction

proposed.
1999 First fast SA construction algorithm proposed.
2001 Fast LCP construction algorithm proposed, but 13n bytes of space

required.
2003 Three linear-time algorithms for SA construction, but all are slow and

require much space!
2004 Algorithms proposed that use SAs more efficiently than STs.
2007 Fast algorithms found to compute repeats/repetitions using SAs.
2007 More than 20 SA construction algorithms proposed.
2008 First SA construction algorithm discovered that is linear, fast and

lightweight.
2008 Fast LCP algorithm propsed using only 6n bytes.

Bill Smyth Computing Patterns in Strings I



Abstract
Applications

Three Intrinsic Patterns
Chronology

Looking Ahead ...

“We stand on the shoulders of
giants.”

Isaac Newton

Bill Smyth Computing Patterns in Strings I


	Outline
	Abstract
	Applications
	Three Intrinsic Patterns
	The Suffix Tree (ST) of ``Myriad Virtues''
	SA & LCP Are Virtuous Too

	Chronology

